1 /* $NetBSD: rfcomm_upper.c,v 1.11 2008/08/06 15:01:24 plunky Exp $ */ 2 3 /*- 4 * Copyright (c) 2006 Itronix Inc. 5 * All rights reserved. 6 * 7 * Written by Iain Hibbert for Itronix Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of Itronix Inc. may not be used to endorse 18 * or promote products derived from this software without specific 19 * prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY 25 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 26 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 28 * ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: rfcomm_upper.c,v 1.11 2008/08/06 15:01:24 plunky Exp $"); 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/mbuf.h> 40 #include <sys/proc.h> 41 #include <sys/socketvar.h> 42 #include <sys/systm.h> 43 44 #include <netbt/bluetooth.h> 45 #include <netbt/hci.h> 46 #include <netbt/l2cap.h> 47 #include <netbt/rfcomm.h> 48 49 /**************************************************************************** 50 * 51 * RFCOMM DLC - Upper Protocol API 52 * 53 * Currently the only 'Port Emulation Entity' is the RFCOMM socket code 54 * but it is should be possible to provide a pseudo-device for a direct 55 * tty interface. 56 */ 57 58 /* 59 * rfcomm_attach(handle, proto, upper) 60 * 61 * attach a new RFCOMM DLC to handle, populate with reasonable defaults 62 */ 63 int 64 rfcomm_attach(struct rfcomm_dlc **handle, 65 const struct btproto *proto, void *upper) 66 { 67 struct rfcomm_dlc *dlc; 68 69 KASSERT(handle != NULL); 70 KASSERT(proto != NULL); 71 KASSERT(upper != NULL); 72 73 dlc = malloc(sizeof(struct rfcomm_dlc), M_BLUETOOTH, M_NOWAIT | M_ZERO); 74 if (dlc == NULL) 75 return ENOMEM; 76 77 dlc->rd_state = RFCOMM_DLC_CLOSED; 78 dlc->rd_mtu = rfcomm_mtu_default; 79 80 dlc->rd_proto = proto; 81 dlc->rd_upper = upper; 82 83 dlc->rd_laddr.bt_len = sizeof(struct sockaddr_bt); 84 dlc->rd_laddr.bt_family = AF_BLUETOOTH; 85 dlc->rd_laddr.bt_psm = L2CAP_PSM_RFCOMM; 86 87 dlc->rd_raddr.bt_len = sizeof(struct sockaddr_bt); 88 dlc->rd_raddr.bt_family = AF_BLUETOOTH; 89 dlc->rd_raddr.bt_psm = L2CAP_PSM_RFCOMM; 90 91 dlc->rd_lmodem = RFCOMM_MSC_RTC | RFCOMM_MSC_RTR | RFCOMM_MSC_DV; 92 93 callout_init(&dlc->rd_timeout, 0); 94 callout_setfunc(&dlc->rd_timeout, rfcomm_dlc_timeout, dlc); 95 96 *handle = dlc; 97 return 0; 98 } 99 100 /* 101 * rfcomm_bind(dlc, sockaddr) 102 * 103 * bind DLC to local address 104 */ 105 int 106 rfcomm_bind(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) 107 { 108 109 memcpy(&dlc->rd_laddr, addr, sizeof(struct sockaddr_bt)); 110 return 0; 111 } 112 113 /* 114 * rfcomm_sockaddr(dlc, sockaddr) 115 * 116 * return local address 117 */ 118 int 119 rfcomm_sockaddr(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) 120 { 121 122 memcpy(addr, &dlc->rd_laddr, sizeof(struct sockaddr_bt)); 123 return 0; 124 } 125 126 /* 127 * rfcomm_connect(dlc, sockaddr) 128 * 129 * Initiate connection of RFCOMM DLC to remote address. 130 */ 131 int 132 rfcomm_connect(struct rfcomm_dlc *dlc, struct sockaddr_bt *dest) 133 { 134 struct rfcomm_session *rs; 135 int err = 0; 136 137 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 138 return EISCONN; 139 140 memcpy(&dlc->rd_raddr, dest, sizeof(struct sockaddr_bt)); 141 142 if (dlc->rd_raddr.bt_channel < RFCOMM_CHANNEL_MIN 143 || dlc->rd_raddr.bt_channel > RFCOMM_CHANNEL_MAX 144 || bdaddr_any(&dlc->rd_raddr.bt_bdaddr)) 145 return EDESTADDRREQ; 146 147 if (dlc->rd_raddr.bt_psm == L2CAP_PSM_ANY) 148 dlc->rd_raddr.bt_psm = L2CAP_PSM_RFCOMM; 149 else if (dlc->rd_raddr.bt_psm != L2CAP_PSM_RFCOMM 150 && (dlc->rd_raddr.bt_psm < 0x1001 151 || L2CAP_PSM_INVALID(dlc->rd_raddr.bt_psm))) 152 return EINVAL; 153 154 /* 155 * We are allowed only one RFCOMM session between any 2 Bluetooth 156 * devices, so see if there is a session already otherwise create 157 * one and set it connecting. 158 */ 159 rs = rfcomm_session_lookup(&dlc->rd_laddr, &dlc->rd_raddr); 160 if (rs == NULL) { 161 rs = rfcomm_session_alloc(&rfcomm_session_active, 162 &dlc->rd_laddr); 163 if (rs == NULL) 164 return ENOMEM; 165 166 rs->rs_flags |= RFCOMM_SESSION_INITIATOR; 167 rs->rs_state = RFCOMM_SESSION_WAIT_CONNECT; 168 169 err = l2cap_connect(rs->rs_l2cap, &dlc->rd_raddr); 170 if (err) { 171 rfcomm_session_free(rs); 172 return err; 173 } 174 175 /* 176 * This session will start up automatically when its 177 * L2CAP channel is connected. 178 */ 179 } 180 181 /* construct DLC */ 182 dlc->rd_dlci = RFCOMM_MKDLCI(IS_INITIATOR(rs) ? 0:1, dest->bt_channel); 183 if (rfcomm_dlc_lookup(rs, dlc->rd_dlci)) 184 return EBUSY; 185 186 l2cap_sockaddr(rs->rs_l2cap, &dlc->rd_laddr); 187 188 /* 189 * attach the DLC to the session and start it off 190 */ 191 dlc->rd_session = rs; 192 dlc->rd_state = RFCOMM_DLC_WAIT_SESSION; 193 LIST_INSERT_HEAD(&rs->rs_dlcs, dlc, rd_next); 194 195 if (rs->rs_state == RFCOMM_SESSION_OPEN) 196 err = rfcomm_dlc_connect(dlc); 197 198 return err; 199 } 200 201 /* 202 * rfcomm_peeraddr(dlc, sockaddr) 203 * 204 * return remote address 205 */ 206 int 207 rfcomm_peeraddr(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) 208 { 209 210 memcpy(addr, &dlc->rd_raddr, sizeof(struct sockaddr_bt)); 211 return 0; 212 } 213 214 /* 215 * rfcomm_disconnect(dlc, linger) 216 * 217 * disconnect RFCOMM DLC 218 */ 219 int 220 rfcomm_disconnect(struct rfcomm_dlc *dlc, int linger) 221 { 222 struct rfcomm_session *rs = dlc->rd_session; 223 int err = 0; 224 225 KASSERT(dlc != NULL); 226 227 switch (dlc->rd_state) { 228 case RFCOMM_DLC_CLOSED: 229 case RFCOMM_DLC_LISTEN: 230 return EINVAL; 231 232 case RFCOMM_DLC_WAIT_SEND_UA: 233 err = rfcomm_session_send_frame(rs, 234 RFCOMM_FRAME_DM, dlc->rd_dlci); 235 236 /* fall through */ 237 case RFCOMM_DLC_WAIT_SESSION: 238 case RFCOMM_DLC_WAIT_CONNECT: 239 case RFCOMM_DLC_WAIT_SEND_SABM: 240 rfcomm_dlc_close(dlc, 0); 241 break; 242 243 case RFCOMM_DLC_OPEN: 244 if (dlc->rd_txbuf != NULL && linger != 0) { 245 dlc->rd_flags |= RFCOMM_DLC_SHUTDOWN; 246 break; 247 } 248 249 /* else fall through */ 250 case RFCOMM_DLC_WAIT_RECV_UA: 251 dlc->rd_state = RFCOMM_DLC_WAIT_DISCONNECT; 252 err = rfcomm_session_send_frame(rs, RFCOMM_FRAME_DISC, 253 dlc->rd_dlci); 254 callout_schedule(&dlc->rd_timeout, rfcomm_ack_timeout * hz); 255 break; 256 257 case RFCOMM_DLC_WAIT_DISCONNECT: 258 err = EALREADY; 259 break; 260 261 default: 262 UNKNOWN(dlc->rd_state); 263 break; 264 } 265 266 return err; 267 } 268 269 /* 270 * rfcomm_detach(handle) 271 * 272 * detach RFCOMM DLC from handle 273 */ 274 int 275 rfcomm_detach(struct rfcomm_dlc **handle) 276 { 277 struct rfcomm_dlc *dlc = *handle; 278 279 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 280 rfcomm_dlc_close(dlc, 0); 281 282 if (dlc->rd_txbuf != NULL) { 283 m_freem(dlc->rd_txbuf); 284 dlc->rd_txbuf = NULL; 285 } 286 287 dlc->rd_upper = NULL; 288 *handle = NULL; 289 290 /* 291 * If callout is invoking we can't free the DLC so 292 * mark it and let the callout release it. 293 */ 294 if (callout_invoking(&dlc->rd_timeout)) 295 dlc->rd_flags |= RFCOMM_DLC_DETACH; 296 else { 297 callout_destroy(&dlc->rd_timeout); 298 free(dlc, M_BLUETOOTH); 299 } 300 301 return 0; 302 } 303 304 /* 305 * rfcomm_listen(dlc) 306 * 307 * This DLC is a listener. We look for an existing listening session 308 * with a matching address to attach to or else create a new one on 309 * the listeners list. If the ANY channel is given, allocate the first 310 * available for the session. 311 */ 312 int 313 rfcomm_listen(struct rfcomm_dlc *dlc) 314 { 315 struct rfcomm_session *rs; 316 struct rfcomm_dlc *used; 317 struct sockaddr_bt addr; 318 int err, channel; 319 320 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 321 return EISCONN; 322 323 if (dlc->rd_laddr.bt_channel != RFCOMM_CHANNEL_ANY 324 && (dlc->rd_laddr.bt_channel < RFCOMM_CHANNEL_MIN 325 || dlc->rd_laddr.bt_channel > RFCOMM_CHANNEL_MAX)) 326 return EADDRNOTAVAIL; 327 328 if (dlc->rd_laddr.bt_psm == L2CAP_PSM_ANY) 329 dlc->rd_laddr.bt_psm = L2CAP_PSM_RFCOMM; 330 else if (dlc->rd_laddr.bt_psm != L2CAP_PSM_RFCOMM 331 && (dlc->rd_laddr.bt_psm < 0x1001 332 || L2CAP_PSM_INVALID(dlc->rd_laddr.bt_psm))) 333 return EADDRNOTAVAIL; 334 335 LIST_FOREACH(rs, &rfcomm_session_listen, rs_next) { 336 l2cap_sockaddr(rs->rs_l2cap, &addr); 337 338 if (addr.bt_psm != dlc->rd_laddr.bt_psm) 339 continue; 340 341 if (bdaddr_same(&dlc->rd_laddr.bt_bdaddr, &addr.bt_bdaddr)) 342 break; 343 } 344 345 if (rs == NULL) { 346 rs = rfcomm_session_alloc(&rfcomm_session_listen, 347 &dlc->rd_laddr); 348 if (rs == NULL) 349 return ENOMEM; 350 351 rs->rs_state = RFCOMM_SESSION_LISTEN; 352 353 err = l2cap_listen(rs->rs_l2cap); 354 if (err) { 355 rfcomm_session_free(rs); 356 return err; 357 } 358 } 359 360 if (dlc->rd_laddr.bt_channel == RFCOMM_CHANNEL_ANY) { 361 channel = RFCOMM_CHANNEL_MIN; 362 used = LIST_FIRST(&rs->rs_dlcs); 363 364 while (used != NULL) { 365 if (used->rd_laddr.bt_channel == channel) { 366 if (channel++ == RFCOMM_CHANNEL_MAX) 367 return EADDRNOTAVAIL; 368 369 used = LIST_FIRST(&rs->rs_dlcs); 370 } else { 371 used = LIST_NEXT(used, rd_next); 372 } 373 } 374 375 dlc->rd_laddr.bt_channel = channel; 376 } 377 378 dlc->rd_session = rs; 379 dlc->rd_state = RFCOMM_DLC_LISTEN; 380 LIST_INSERT_HEAD(&rs->rs_dlcs, dlc, rd_next); 381 382 return 0; 383 } 384 385 /* 386 * rfcomm_send(dlc, mbuf) 387 * 388 * Output data on DLC. This is streamed data, so we add it 389 * to our buffer and start the the DLC, which will assemble 390 * packets and send them if it can. 391 */ 392 int 393 rfcomm_send(struct rfcomm_dlc *dlc, struct mbuf *m) 394 { 395 396 if (dlc->rd_txbuf != NULL) { 397 dlc->rd_txbuf->m_pkthdr.len += m->m_pkthdr.len; 398 m_cat(dlc->rd_txbuf, m); 399 } else { 400 dlc->rd_txbuf = m; 401 } 402 403 if (dlc->rd_state == RFCOMM_DLC_OPEN) 404 rfcomm_dlc_start(dlc); 405 406 return 0; 407 } 408 409 /* 410 * rfcomm_rcvd(dlc, space) 411 * 412 * Indicate space now available in receive buffer 413 * 414 * This should be used to give an initial value of the receive buffer 415 * size when the DLC is attached and anytime data is cleared from the 416 * buffer after that. 417 */ 418 int 419 rfcomm_rcvd(struct rfcomm_dlc *dlc, size_t space) 420 { 421 422 KASSERT(dlc != NULL); 423 424 dlc->rd_rxsize = space; 425 426 /* 427 * if we are using credit based flow control, we may 428 * want to send some credits.. 429 */ 430 if (dlc->rd_state == RFCOMM_DLC_OPEN 431 && (dlc->rd_session->rs_flags & RFCOMM_SESSION_CFC)) 432 rfcomm_dlc_start(dlc); 433 434 return 0; 435 } 436 437 /* 438 * rfcomm_setopt(dlc, sopt) 439 * 440 * set DLC options 441 */ 442 int 443 rfcomm_setopt(struct rfcomm_dlc *dlc, const struct sockopt *sopt) 444 { 445 int mode, err = 0; 446 uint16_t mtu; 447 448 switch (sopt->sopt_name) { 449 case SO_RFCOMM_MTU: 450 err = sockopt_get(sopt, &mtu, sizeof(mtu)); 451 if (err) 452 break; 453 454 if (mtu < RFCOMM_MTU_MIN || mtu > RFCOMM_MTU_MAX) 455 err = EINVAL; 456 else if (dlc->rd_state == RFCOMM_DLC_CLOSED) 457 dlc->rd_mtu = mtu; 458 else 459 err = EBUSY; 460 461 break; 462 463 case SO_RFCOMM_LM: 464 err = sockopt_getint(sopt, &mode); 465 if (err) 466 break; 467 468 mode &= (RFCOMM_LM_SECURE | RFCOMM_LM_ENCRYPT | RFCOMM_LM_AUTH); 469 470 if (mode & RFCOMM_LM_SECURE) 471 mode |= RFCOMM_LM_ENCRYPT; 472 473 if (mode & RFCOMM_LM_ENCRYPT) 474 mode |= RFCOMM_LM_AUTH; 475 476 dlc->rd_mode = mode; 477 478 if (dlc->rd_state == RFCOMM_DLC_OPEN) 479 err = rfcomm_dlc_setmode(dlc); 480 481 break; 482 483 default: 484 err = ENOPROTOOPT; 485 break; 486 } 487 return err; 488 } 489 490 /* 491 * rfcomm_getopt(dlc, sopt) 492 * 493 * get DLC options 494 */ 495 int 496 rfcomm_getopt(struct rfcomm_dlc *dlc, struct sockopt *sopt) 497 { 498 struct rfcomm_fc_info fc; 499 500 switch (sopt->sopt_name) { 501 case SO_RFCOMM_MTU: 502 return sockopt_set(sopt, &dlc->rd_mtu, sizeof(uint16_t)); 503 504 case SO_RFCOMM_FC_INFO: 505 memset(&fc, 0, sizeof(fc)); 506 fc.lmodem = dlc->rd_lmodem; 507 fc.rmodem = dlc->rd_rmodem; 508 fc.tx_cred = max(dlc->rd_txcred, 0xff); 509 fc.rx_cred = max(dlc->rd_rxcred, 0xff); 510 if (dlc->rd_session 511 && (dlc->rd_session->rs_flags & RFCOMM_SESSION_CFC)) 512 fc.cfc = 1; 513 514 return sockopt_set(sopt, &fc, sizeof(fc)); 515 516 case SO_RFCOMM_LM: 517 return sockopt_setint(sopt, dlc->rd_mode); 518 519 default: 520 break; 521 } 522 523 return ENOPROTOOPT; 524 } 525