xref: /netbsd-src/sys/netbt/rfcomm_socket.c (revision f89f6560d453f5e37386cc7938c072d2f528b9fa)
1 /*	$NetBSD: rfcomm_socket.c,v 1.34 2015/04/03 20:01:07 rtr Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006 Itronix Inc.
5  * All rights reserved.
6  *
7  * Written by Iain Hibbert for Itronix Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The name of Itronix Inc. may not be used to endorse
18  *    or promote products derived from this software without specific
19  *    prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY
25  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
28  * ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rfcomm_socket.c,v 1.34 2015/04/03 20:01:07 rtr Exp $");
36 
37 /* load symbolic names */
38 #ifdef BLUETOOTH_DEBUG
39 #define PRUREQUESTS
40 #define PRCOREQUESTS
41 #endif
42 
43 #include <sys/param.h>
44 #include <sys/domain.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/proc.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/systm.h>
52 
53 #include <netbt/bluetooth.h>
54 #include <netbt/rfcomm.h>
55 
56 /****************************************************************************
57  *
58  *	RFCOMM SOCK_STREAM Sockets - serial line emulation
59  *
60  */
61 
62 static void rfcomm_connecting(void *);
63 static void rfcomm_connected(void *);
64 static void rfcomm_disconnected(void *, int);
65 static void *rfcomm_newconn(void *, struct sockaddr_bt *, struct sockaddr_bt *);
66 static void rfcomm_complete(void *, int);
67 static void rfcomm_linkmode(void *, int);
68 static void rfcomm_input(void *, struct mbuf *);
69 
70 static const struct btproto rfcomm_proto = {
71 	rfcomm_connecting,
72 	rfcomm_connected,
73 	rfcomm_disconnected,
74 	rfcomm_newconn,
75 	rfcomm_complete,
76 	rfcomm_linkmode,
77 	rfcomm_input,
78 };
79 
80 /* sysctl variables */
81 int rfcomm_sendspace = 4096;
82 int rfcomm_recvspace = 4096;
83 
84 static int
85 rfcomm_attach(struct socket *so, int proto)
86 {
87 	int error;
88 
89 	KASSERT(so->so_pcb == NULL);
90 
91 	if (so->so_lock == NULL) {
92 		mutex_obj_hold(bt_lock);
93 		so->so_lock = bt_lock;
94 		solock(so);
95 	}
96 	KASSERT(solocked(so));
97 
98 	/*
99 	 * Since we have nothing to add, we attach the DLC
100 	 * structure directly to our PCB pointer.
101 	 */
102 	error = soreserve(so, rfcomm_sendspace, rfcomm_recvspace);
103 	if (error)
104 		return error;
105 
106 	error = rfcomm_attach_pcb((struct rfcomm_dlc **)&so->so_pcb,
107 				&rfcomm_proto, so);
108 	if (error)
109 		return error;
110 
111 	error = rfcomm_rcvd_pcb(so->so_pcb, sbspace(&so->so_rcv));
112 	if (error) {
113 		rfcomm_detach_pcb((struct rfcomm_dlc **)&so->so_pcb);
114 		return error;
115 	}
116 	return 0;
117 }
118 
119 static void
120 rfcomm_detach(struct socket *so)
121 {
122 	KASSERT(so->so_pcb != NULL);
123 	rfcomm_detach_pcb((struct rfcomm_dlc **)&so->so_pcb);
124 	KASSERT(so->so_pcb == NULL);
125 }
126 
127 static int
128 rfcomm_accept(struct socket *so, struct mbuf *nam)
129 {
130 	struct rfcomm_dlc *pcb = so->so_pcb;
131 	struct sockaddr_bt *sa;
132 
133 	KASSERT(solocked(so));
134 	KASSERT(nam != NULL);
135 
136 	if (pcb == NULL)
137 		return EINVAL;
138 
139 	sa = mtod(nam, struct sockaddr_bt *);
140 	nam->m_len = sizeof(struct sockaddr_bt);
141 	return rfcomm_peeraddr_pcb(pcb, sa);
142 }
143 
144 static int
145 rfcomm_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
146 {
147 	struct rfcomm_dlc *pcb = so->so_pcb;
148 	struct sockaddr_bt *sa = (struct sockaddr_bt *)nam;
149 
150 	KASSERT(solocked(so));
151 	KASSERT(nam != NULL);
152 
153 	if (pcb == NULL)
154 		return EINVAL;
155 
156 	if (sa->bt_len != sizeof(struct sockaddr_bt))
157 		return EINVAL;
158 
159 	if (sa->bt_family != AF_BLUETOOTH)
160 		return EAFNOSUPPORT;
161 
162 	return rfcomm_bind_pcb(pcb, sa);
163 }
164 
165 static int
166 rfcomm_listen(struct socket *so, struct lwp *l)
167 {
168 	struct rfcomm_dlc *pcb = so->so_pcb;
169 
170 	KASSERT(solocked(so));
171 
172 	if (pcb == NULL)
173 		return EINVAL;
174 
175 	return rfcomm_listen_pcb(pcb);
176 }
177 
178 static int
179 rfcomm_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
180 {
181 	struct rfcomm_dlc *pcb = so->so_pcb;
182 	struct sockaddr_bt *sa;
183 
184 	KASSERT(solocked(so));
185 	KASSERT(nam != NULL);
186 
187 	if (pcb == NULL)
188 		return EINVAL;
189 
190 	sa = mtod(nam, struct sockaddr_bt *);
191 	if (sa->bt_len != sizeof(struct sockaddr_bt))
192 		return EINVAL;
193 
194 	if (sa->bt_family != AF_BLUETOOTH)
195 		return EAFNOSUPPORT;
196 
197 	soisconnecting(so);
198 	return rfcomm_connect_pcb(pcb, sa);
199 }
200 
201 static int
202 rfcomm_connect2(struct socket *so, struct socket *so2)
203 {
204 	struct rfcomm_dlc *pcb = so->so_pcb;
205 
206 	KASSERT(solocked(so));
207 
208 	if (pcb == NULL)
209 		return EINVAL;
210 
211 	return EOPNOTSUPP;
212 }
213 
214 static int
215 rfcomm_disconnect(struct socket *so)
216 {
217 	struct rfcomm_dlc *pcb = so->so_pcb;
218 
219 	KASSERT(solocked(so));
220 
221 	if (pcb == NULL)
222 		return EINVAL;
223 
224 	soisdisconnecting(so);
225 	return rfcomm_disconnect_pcb(pcb, so->so_linger);
226 }
227 
228 static int
229 rfcomm_shutdown(struct socket *so)
230 {
231 	KASSERT(solocked(so));
232 
233 	socantsendmore(so);
234 	return 0;
235 }
236 
237 static int
238 rfcomm_abort(struct socket *so)
239 {
240 	struct rfcomm_dlc *pcb = so->so_pcb;
241 
242 	KASSERT(solocked(so));
243 
244 	if (pcb == NULL)
245 		return EINVAL;
246 
247 	rfcomm_disconnect_pcb(pcb, 0);
248 	soisdisconnected(so);
249 	rfcomm_detach(so);
250 	return 0;
251 }
252 
253 static int
254 rfcomm_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
255 {
256 	return EPASSTHROUGH;
257 }
258 
259 static int
260 rfcomm_stat(struct socket *so, struct stat *ub)
261 {
262 	KASSERT(solocked(so));
263 
264 	return 0;
265 }
266 
267 static int
268 rfcomm_peeraddr(struct socket *so, struct mbuf *nam)
269 {
270 	struct rfcomm_dlc *pcb = so->so_pcb;
271 	struct sockaddr_bt *sa;
272 
273 	KASSERT(solocked(so));
274 	KASSERT(pcb != NULL);
275 	KASSERT(nam != NULL);
276 
277 	sa = mtod(nam, struct sockaddr_bt *);
278 	nam->m_len = sizeof(struct sockaddr_bt);
279 	return rfcomm_peeraddr_pcb(pcb, sa);
280 }
281 
282 static int
283 rfcomm_sockaddr(struct socket *so, struct mbuf *nam)
284 {
285 	struct rfcomm_dlc *pcb = so->so_pcb;
286 	struct sockaddr_bt *sa;
287 
288 	KASSERT(solocked(so));
289 	KASSERT(pcb != NULL);
290 	KASSERT(nam != NULL);
291 
292 	sa = mtod(nam, struct sockaddr_bt *);
293 	nam->m_len = sizeof(struct sockaddr_bt);
294 	return rfcomm_sockaddr_pcb(pcb, sa);
295 }
296 
297 static int
298 rfcomm_rcvd(struct socket *so, int flags, struct lwp *l)
299 {
300 	struct rfcomm_dlc *pcb = so->so_pcb;
301 
302 	KASSERT(solocked(so));
303 
304 	if (pcb == NULL)
305 		return EINVAL;
306 
307 	return rfcomm_rcvd_pcb(pcb, sbspace(&so->so_rcv));
308 }
309 
310 static int
311 rfcomm_recvoob(struct socket *so, struct mbuf *m, int flags)
312 {
313 	KASSERT(solocked(so));
314 
315 	return EOPNOTSUPP;
316 }
317 
318 static int
319 rfcomm_send(struct socket *so, struct mbuf *m, struct mbuf *nam,
320     struct mbuf *control, struct lwp *l)
321 {
322 	struct rfcomm_dlc *pcb = so->so_pcb;
323 	int err = 0;
324 	struct mbuf *m0;
325 
326 	KASSERT(solocked(so));
327 	KASSERT(m != NULL);
328 
329 	if (control)	/* no use for that */
330 		m_freem(control);
331 
332 	if (pcb == NULL) {
333 		err = EINVAL;
334 		goto release;
335 	}
336 
337 	m0 = m_copypacket(m, M_DONTWAIT);
338 	if (m0 == NULL) {
339 		err = ENOMEM;
340 		goto release;
341 	}
342 
343 	sbappendstream(&so->so_snd, m);
344 	return rfcomm_send_pcb(pcb, m0);
345 
346 release:
347 	m_freem(m);
348 	return err;
349 }
350 
351 static int
352 rfcomm_sendoob(struct socket *so, struct mbuf *m, struct mbuf *control)
353 {
354 	KASSERT(solocked(so));
355 
356 	if (m)
357 		m_freem(m);
358 	if (control)
359 		m_freem(control);
360 
361 	return EOPNOTSUPP;
362 }
363 
364 static int
365 rfcomm_purgeif(struct socket *so, struct ifnet *ifp)
366 {
367 
368 	return EOPNOTSUPP;
369 }
370 
371 /*
372  * User Request.
373  * up is socket
374  * m is optional mbuf chain containing message
375  * ctl is either
376  *	optional mbuf chain containing socket options
377  * l is pointer to process requesting action (if any)
378  *
379  * we are responsible for disposing of m and ctl if
380  * they are mbuf chains
381  */
382 static int
383 rfcomm_usrreq(struct socket *up, int req, struct mbuf *m,
384 		struct mbuf *nam, struct mbuf *ctl, struct lwp *l)
385 {
386 	struct rfcomm_dlc *pcb = up->so_pcb;
387 	int err = 0;
388 
389 	DPRINTFN(2, "%s\n", prurequests[req]);
390 	KASSERT(req != PRU_ATTACH);
391 	KASSERT(req != PRU_DETACH);
392 	KASSERT(req != PRU_ACCEPT);
393 	KASSERT(req != PRU_BIND);
394 	KASSERT(req != PRU_LISTEN);
395 	KASSERT(req != PRU_CONNECT);
396 	KASSERT(req != PRU_CONNECT2);
397 	KASSERT(req != PRU_DISCONNECT);
398 	KASSERT(req != PRU_SHUTDOWN);
399 	KASSERT(req != PRU_ABORT);
400 	KASSERT(req != PRU_CONTROL);
401 	KASSERT(req != PRU_SENSE);
402 	KASSERT(req != PRU_PEERADDR);
403 	KASSERT(req != PRU_SOCKADDR);
404 	KASSERT(req != PRU_RCVD);
405 	KASSERT(req != PRU_RCVOOB);
406 	KASSERT(req != PRU_SEND);
407 	KASSERT(req != PRU_SENDOOB);
408 	KASSERT(req != PRU_PURGEIF);
409 
410 	if (pcb == NULL) {
411 		err = EINVAL;
412 		goto release;
413 	}
414 
415 	switch(req) {
416 	case PRU_FASTTIMO:
417 	case PRU_SLOWTIMO:
418 	case PRU_PROTORCV:
419 	case PRU_PROTOSEND:
420 		err = EOPNOTSUPP;
421 		break;
422 
423 	default:
424 		UNKNOWN(req);
425 		err = EOPNOTSUPP;
426 		break;
427 	}
428 
429 release:
430 	if (m) m_freem(m);
431 	if (ctl) m_freem(ctl);
432 	return err;
433 }
434 
435 /*
436  * rfcomm_ctloutput(req, socket, sockopt)
437  *
438  */
439 int
440 rfcomm_ctloutput(int req, struct socket *so, struct sockopt *sopt)
441 {
442 	struct rfcomm_dlc *pcb = so->so_pcb;
443 	int err = 0;
444 
445 	DPRINTFN(2, "%s\n", prcorequests[req]);
446 
447 	if (pcb == NULL)
448 		return EINVAL;
449 
450 	if (sopt->sopt_level != BTPROTO_RFCOMM)
451 		return ENOPROTOOPT;
452 
453 	switch(req) {
454 	case PRCO_GETOPT:
455 		err = rfcomm_getopt(pcb, sopt);
456 		break;
457 
458 	case PRCO_SETOPT:
459 		err = rfcomm_setopt(pcb, sopt);
460 		break;
461 
462 	default:
463 		err = ENOPROTOOPT;
464 		break;
465 	}
466 
467 	return err;
468 }
469 
470 /**********************************************************************
471  *
472  * RFCOMM callbacks
473  */
474 
475 static void
476 rfcomm_connecting(void *arg)
477 {
478 	/* struct socket *so = arg; */
479 
480 	KASSERT(arg != NULL);
481 	DPRINTF("Connecting\n");
482 }
483 
484 static void
485 rfcomm_connected(void *arg)
486 {
487 	struct socket *so = arg;
488 
489 	KASSERT(so != NULL);
490 	DPRINTF("Connected\n");
491 	soisconnected(so);
492 }
493 
494 static void
495 rfcomm_disconnected(void *arg, int err)
496 {
497 	struct socket *so = arg;
498 
499 	KASSERT(so != NULL);
500 	DPRINTF("Disconnected\n");
501 
502 	so->so_error = err;
503 	soisdisconnected(so);
504 }
505 
506 static void *
507 rfcomm_newconn(void *arg, struct sockaddr_bt *laddr,
508     struct sockaddr_bt *raddr)
509 {
510 	struct socket *so = arg;
511 
512 	DPRINTF("New Connection\n");
513 	so = sonewconn(so, false);
514 	if (so == NULL)
515 		return NULL;
516 
517 	soisconnecting(so);
518 
519 	return so->so_pcb;
520 }
521 
522 /*
523  * rfcomm_complete(rfcomm_dlc, length)
524  *
525  * length bytes are sent and may be removed from socket buffer
526  */
527 static void
528 rfcomm_complete(void *arg, int length)
529 {
530 	struct socket *so = arg;
531 
532 	sbdrop(&so->so_snd, length);
533 	sowwakeup(so);
534 }
535 
536 /*
537  * rfcomm_linkmode(rfcomm_dlc, new)
538  *
539  * link mode change notification.
540  */
541 static void
542 rfcomm_linkmode(void *arg, int new)
543 {
544 	struct socket *so = arg;
545 	struct sockopt sopt;
546 	int mode;
547 
548 	DPRINTF("auth %s, encrypt %s, secure %s\n",
549 		(new & RFCOMM_LM_AUTH ? "on" : "off"),
550 		(new & RFCOMM_LM_ENCRYPT ? "on" : "off"),
551 		(new & RFCOMM_LM_SECURE ? "on" : "off"));
552 
553 	sockopt_init(&sopt, BTPROTO_RFCOMM, SO_RFCOMM_LM, 0);
554 	(void)rfcomm_getopt(so->so_pcb, &sopt);
555 	(void)sockopt_getint(&sopt, &mode);
556 	sockopt_destroy(&sopt);
557 
558 	if (((mode & RFCOMM_LM_AUTH) && !(new & RFCOMM_LM_AUTH))
559 	    || ((mode & RFCOMM_LM_ENCRYPT) && !(new & RFCOMM_LM_ENCRYPT))
560 	    || ((mode & RFCOMM_LM_SECURE) && !(new & RFCOMM_LM_SECURE)))
561 		rfcomm_disconnect_pcb(so->so_pcb, 0);
562 }
563 
564 /*
565  * rfcomm_input(rfcomm_dlc, mbuf)
566  */
567 static void
568 rfcomm_input(void *arg, struct mbuf *m)
569 {
570 	struct socket *so = arg;
571 
572 	KASSERT(so != NULL);
573 
574 	if (m->m_pkthdr.len > sbspace(&so->so_rcv)) {
575 		printf("%s: %d bytes dropped (socket buffer full)\n",
576 			__func__, m->m_pkthdr.len);
577 		m_freem(m);
578 		return;
579 	}
580 
581 	DPRINTFN(10, "received %d bytes\n", m->m_pkthdr.len);
582 
583 	sbappendstream(&so->so_rcv, m);
584 	sorwakeup(so);
585 }
586 
587 PR_WRAP_USRREQS(rfcomm)
588 
589 #define	rfcomm_attach		rfcomm_attach_wrapper
590 #define	rfcomm_detach		rfcomm_detach_wrapper
591 #define	rfcomm_accept		rfcomm_accept_wrapper
592 #define	rfcomm_bind		rfcomm_bind_wrapper
593 #define	rfcomm_listen		rfcomm_listen_wrapper
594 #define	rfcomm_connect		rfcomm_connect_wrapper
595 #define	rfcomm_connect2		rfcomm_connect2_wrapper
596 #define	rfcomm_disconnect	rfcomm_disconnect_wrapper
597 #define	rfcomm_shutdown		rfcomm_shutdown_wrapper
598 #define	rfcomm_abort		rfcomm_abort_wrapper
599 #define	rfcomm_ioctl		rfcomm_ioctl_wrapper
600 #define	rfcomm_stat		rfcomm_stat_wrapper
601 #define	rfcomm_peeraddr		rfcomm_peeraddr_wrapper
602 #define	rfcomm_sockaddr		rfcomm_sockaddr_wrapper
603 #define	rfcomm_rcvd		rfcomm_rcvd_wrapper
604 #define	rfcomm_recvoob		rfcomm_recvoob_wrapper
605 #define	rfcomm_send		rfcomm_send_wrapper
606 #define	rfcomm_sendoob		rfcomm_sendoob_wrapper
607 #define	rfcomm_purgeif		rfcomm_purgeif_wrapper
608 #define	rfcomm_usrreq		rfcomm_usrreq_wrapper
609 
610 const struct pr_usrreqs rfcomm_usrreqs = {
611 	.pr_attach	= rfcomm_attach,
612 	.pr_detach	= rfcomm_detach,
613 	.pr_accept	= rfcomm_accept,
614 	.pr_bind	= rfcomm_bind,
615 	.pr_listen	= rfcomm_listen,
616 	.pr_connect	= rfcomm_connect,
617 	.pr_connect2	= rfcomm_connect2,
618 	.pr_disconnect	= rfcomm_disconnect,
619 	.pr_shutdown	= rfcomm_shutdown,
620 	.pr_abort	= rfcomm_abort,
621 	.pr_ioctl	= rfcomm_ioctl,
622 	.pr_stat	= rfcomm_stat,
623 	.pr_peeraddr	= rfcomm_peeraddr,
624 	.pr_sockaddr	= rfcomm_sockaddr,
625 	.pr_rcvd	= rfcomm_rcvd,
626 	.pr_recvoob	= rfcomm_recvoob,
627 	.pr_send	= rfcomm_send,
628 	.pr_sendoob	= rfcomm_sendoob,
629 	.pr_purgeif	= rfcomm_purgeif,
630 	.pr_generic	= rfcomm_usrreq,
631 };
632