xref: /netbsd-src/sys/netatalk/at_control.c (revision fad4c9f71477ae11cea2ee75ec82151ac770a534)
1 /*	$NetBSD: at_control.c,v 1.14 2006/06/07 22:34:00 kardel Exp $	 */
2 
3 /*
4  * Copyright (c) 1990,1994 Regents of The University of Michigan.
5  * All Rights Reserved.
6  *
7  * Permission to use, copy, modify, and distribute this software and
8  * its documentation for any purpose and without fee is hereby granted,
9  * provided that the above copyright notice appears in all copies and
10  * that both that copyright notice and this permission notice appear
11  * in supporting documentation, and that the name of The University
12  * of Michigan not be used in advertising or publicity pertaining to
13  * distribution of the software without specific, written prior
14  * permission. This software is supplied as is without expressed or
15  * implied warranties of any kind.
16  *
17  * This product includes software developed by the University of
18  * California, Berkeley and its contributors.
19  *
20  *	Research Systems Unix Group
21  *	The University of Michigan
22  *	c/o Wesley Craig
23  *	535 W. William Street
24  *	Ann Arbor, Michigan
25  *	+1-313-764-2278
26  *	netatalk@umich.edu
27  */
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: at_control.c,v 1.14 2006/06/07 22:34:00 kardel Exp $");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/proc.h>
35 #include <sys/errno.h>
36 #include <sys/ioctl.h>
37 #include <sys/mbuf.h>
38 #include <sys/kernel.h>
39 #include <sys/socket.h>
40 #include <sys/socketvar.h>
41 #include <sys/kauth.h>
42 #include <net/if.h>
43 #include <net/route.h>
44 #include <net/if_ether.h>
45 #include <netinet/in.h>
46 #undef s_net
47 
48 #include <netatalk/at.h>
49 #include <netatalk/at_var.h>
50 #include <netatalk/aarp.h>
51 #include <netatalk/phase2.h>
52 #include <netatalk/at_extern.h>
53 
54 static int aa_dorangeroute __P((struct ifaddr * ifa,
55     u_int first, u_int last, int cmd));
56 static int aa_addsingleroute __P((struct ifaddr * ifa,
57     struct at_addr * addr, struct at_addr * mask));
58 static int aa_delsingleroute __P((struct ifaddr * ifa,
59     struct at_addr * addr, struct at_addr * mask));
60 static int aa_dosingleroute __P((struct ifaddr * ifa, struct at_addr * addr,
61     struct at_addr * mask, int cmd, int flags));
62 static int at_scrub __P((struct ifnet * ifp, struct at_ifaddr * aa));
63 static int at_ifinit __P((struct ifnet * ifp, struct at_ifaddr * aa,
64     struct sockaddr_at * sat));
65 #if 0
66 static void aa_clean __P((void));
67 #endif
68 
69 #define sateqaddr(a,b)	((a)->sat_len == (b)->sat_len && \
70 			 (a)->sat_family == (b)->sat_family && \
71 			 (a)->sat_addr.s_net == (b)->sat_addr.s_net && \
72 			 (a)->sat_addr.s_node == (b)->sat_addr.s_node )
73 
74 int
75 at_control(cmd, data, ifp, p)
76 	u_long          cmd;
77 	caddr_t         data;
78 	struct ifnet   *ifp;
79 	struct proc    *p;
80 {
81 	struct ifreq   *ifr = (struct ifreq *) data;
82 	struct sockaddr_at *sat;
83 	struct netrange *nr;
84 	struct at_aliasreq *ifra = (struct at_aliasreq *) data;
85 	struct at_ifaddr *aa0;
86 	struct at_ifaddr *aa = 0;
87 
88 	/*
89          * If we have an ifp, then find the matching at_ifaddr if it exists
90          */
91 	if (ifp)
92 		for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next)
93 			if (aa->aa_ifp == ifp)
94 				break;
95 
96 	/*
97          * In this first switch table we are basically getting ready for
98          * the second one, by getting the atalk-specific things set up
99          * so that they start to look more similar to other protocols etc.
100          */
101 
102 	switch (cmd) {
103 	case SIOCAIFADDR:
104 	case SIOCDIFADDR:
105 		/*
106 		 * If we have an appletalk sockaddr, scan forward of where
107 		 * we are now on the at_ifaddr list to find one with a matching
108 		 * address on this interface.
109 		 * This may leave aa pointing to the first address on the
110 		 * NEXT interface!
111 		 */
112 		if (ifra->ifra_addr.sat_family == AF_APPLETALK) {
113 			for (; aa; aa = aa->aa_list.tqe_next)
114 				if (aa->aa_ifp == ifp &&
115 				    sateqaddr(&aa->aa_addr, &ifra->ifra_addr))
116 					break;
117 		}
118 		/*
119 		 * If we a retrying to delete an addres but didn't find such,
120 		 * then return with an error
121 		 */
122 		if (cmd == SIOCDIFADDR && aa == 0)
123 			return (EADDRNOTAVAIL);
124 		/* FALLTHROUGH */
125 
126 	case SIOCSIFADDR:
127 		/*
128 		 * If we are not superuser, then we don't get to do these
129 		 * ops.
130 		 */
131 		if (p && kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
132 				      &p->p_acflag))
133 			return (EPERM);
134 
135 		sat = satosat(&ifr->ifr_addr);
136 		nr = (struct netrange *) sat->sat_zero;
137 		if (nr->nr_phase == 1) {
138 			/*
139 		         * Look for a phase 1 address on this interface.
140 		         * This may leave aa pointing to the first address on
141 			 * the NEXT interface!
142 		         */
143 			for (; aa; aa = aa->aa_list.tqe_next) {
144 				if (aa->aa_ifp == ifp &&
145 				    (aa->aa_flags & AFA_PHASE2) == 0)
146 					break;
147 			}
148 		} else {	/* default to phase 2 */
149 			/*
150 		         * Look for a phase 2 address on this interface.
151 		         * This may leave aa pointing to the first address on
152 			 * the NEXT interface!
153 		         */
154 			for (; aa; aa = aa->aa_list.tqe_next) {
155 				if (aa->aa_ifp == ifp &&
156 				    (aa->aa_flags & AFA_PHASE2))
157 					break;
158 			}
159 		}
160 
161 		if (ifp == 0)
162 			panic("at_control");
163 
164 		/*
165 		 * If we failed to find an existing at_ifaddr entry, then we
166 		 * allocate a fresh one.
167 		 * XXX change this to use malloc
168 		 */
169 		if (aa == (struct at_ifaddr *) 0) {
170 			aa = (struct at_ifaddr *)
171 			    malloc(sizeof(struct at_ifaddr), M_IFADDR,
172 			    M_WAITOK|M_ZERO);
173 
174 			if (aa == NULL)
175 				return (ENOBUFS);
176 
177 			callout_init(&aa->aa_probe_ch);
178 
179 			if ((aa0 = at_ifaddr.tqh_first) != NULL) {
180 				/*
181 				 * Don't let the loopback be first, since the
182 				 * first address is the machine's default
183 				 * address for binding.
184 				 * If it is, stick ourself in front, otherwise
185 				 * go to the back of the list.
186 				 */
187 				if (aa0->aa_ifp->if_flags & IFF_LOOPBACK) {
188 					TAILQ_INSERT_HEAD(&at_ifaddr, aa,
189 					    aa_list);
190 				} else {
191 					TAILQ_INSERT_TAIL(&at_ifaddr, aa,
192 					    aa_list);
193 				}
194 			} else {
195 				TAILQ_INSERT_TAIL(&at_ifaddr, aa, aa_list);
196 			}
197 			IFAREF(&aa->aa_ifa);
198 
199 			/*
200 		         * Find the end of the interface's addresses
201 		         * and link our new one on the end
202 		         */
203 			TAILQ_INSERT_TAIL(&ifp->if_addrlist,
204 			    (struct ifaddr *) aa, ifa_list);
205 			IFAREF(&aa->aa_ifa);
206 
207 			/*
208 		         * As the at_ifaddr contains the actual sockaddrs,
209 		         * and the ifaddr itself, link them al together
210 			 * correctly.
211 		         */
212 			aa->aa_ifa.ifa_addr =
213 			    (struct sockaddr *) &aa->aa_addr;
214 			aa->aa_ifa.ifa_dstaddr =
215 			    (struct sockaddr *) &aa->aa_addr;
216 			aa->aa_ifa.ifa_netmask =
217 			    (struct sockaddr *) &aa->aa_netmask;
218 
219 			/*
220 		         * Set/clear the phase 2 bit.
221 		         */
222 			if (nr->nr_phase == 1)
223 				aa->aa_flags &= ~AFA_PHASE2;
224 			else
225 				aa->aa_flags |= AFA_PHASE2;
226 
227 			/*
228 		         * and link it all together
229 		         */
230 			aa->aa_ifp = ifp;
231 		} else {
232 			/*
233 		         * If we DID find one then we clobber any routes
234 			 * dependent on it..
235 		         */
236 			at_scrub(ifp, aa);
237 		}
238 		break;
239 
240 	case SIOCGIFADDR:
241 		sat = satosat(&ifr->ifr_addr);
242 		nr = (struct netrange *) sat->sat_zero;
243 		if (nr->nr_phase == 1) {
244 			/*
245 		         * If the request is specifying phase 1, then
246 		         * only look at a phase one address
247 		         */
248 			for (; aa; aa = aa->aa_list.tqe_next) {
249 				if (aa->aa_ifp == ifp &&
250 				    (aa->aa_flags & AFA_PHASE2) == 0)
251 					break;
252 			}
253 		} else if (nr->nr_phase == 2) {
254 			/*
255 		         * If the request is specifying phase 2, then
256 		         * only look at a phase two address
257 		         */
258 			for (; aa; aa = aa->aa_list.tqe_next) {
259 				if (aa->aa_ifp == ifp &&
260 				    (aa->aa_flags & AFA_PHASE2))
261 					break;
262 			}
263 		} else {
264 			/*
265 		         * default to everything
266 		         */
267 			for (; aa; aa = aa->aa_list.tqe_next) {
268 				if (aa->aa_ifp == ifp)
269 					break;
270 			}
271 		}
272 
273 		if (aa == (struct at_ifaddr *) 0)
274 			return (EADDRNOTAVAIL);
275 		break;
276 	}
277 
278 	/*
279          * By the time this switch is run we should be able to assume that
280          * the "aa" pointer is valid when needed.
281          */
282 	switch (cmd) {
283 	case SIOCGIFADDR:
284 
285 		/*
286 		 * copy the contents of the sockaddr blindly.
287 		 */
288 		sat = (struct sockaddr_at *) & ifr->ifr_addr;
289 		*sat = aa->aa_addr;
290 
291 		/*
292 		 * and do some cleanups
293 		 */
294 		((struct netrange *) &sat->sat_zero)->nr_phase =
295 		    (aa->aa_flags & AFA_PHASE2) ? 2 : 1;
296 		((struct netrange *) &sat->sat_zero)->nr_firstnet =
297 		    aa->aa_firstnet;
298 		((struct netrange *) &sat->sat_zero)->nr_lastnet =
299 		    aa->aa_lastnet;
300 		break;
301 
302 	case SIOCSIFADDR:
303 		return (at_ifinit(ifp, aa,
304 		    (struct sockaddr_at *) &ifr->ifr_addr));
305 
306 	case SIOCAIFADDR:
307 		if (sateqaddr(&ifra->ifra_addr, &aa->aa_addr))
308 			return 0;
309 		return (at_ifinit(ifp, aa,
310 		    (struct sockaddr_at *) &ifr->ifr_addr));
311 
312 	case SIOCDIFADDR:
313 		at_purgeaddr((struct ifaddr *) aa, ifp);
314 		break;
315 
316 	default:
317 		if (ifp == 0 || ifp->if_ioctl == 0)
318 			return (EOPNOTSUPP);
319 		return ((*ifp->if_ioctl) (ifp, cmd, data));
320 	}
321 	return (0);
322 }
323 
324 void
325 at_purgeaddr(ifa, ifp)
326 	struct ifaddr *ifa;
327 	struct ifnet *ifp;
328 {
329 	struct at_ifaddr *aa = (void *) ifa;
330 
331 	/*
332 	 * scrub all routes.. didn't we just DO this? XXX yes, del it
333 	 * XXX above XXX not necessarily true anymore
334 	 */
335 	at_scrub(ifp, aa);
336 
337 	/*
338 	 * remove the ifaddr from the interface
339 	 */
340 	TAILQ_REMOVE(&ifp->if_addrlist, (struct ifaddr *) aa, ifa_list);
341 	IFAFREE(&aa->aa_ifa);
342 	TAILQ_REMOVE(&at_ifaddr, aa, aa_list);
343 	IFAFREE(&aa->aa_ifa);
344 }
345 
346 void
347 at_purgeif(ifp)
348 	struct ifnet *ifp;
349 {
350 	struct ifaddr *ifa, *nifa;
351 
352 	for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) {
353 		nifa = TAILQ_NEXT(ifa, ifa_list);
354 		if (ifa->ifa_addr->sa_family != AF_APPLETALK)
355 			continue;
356 		at_purgeaddr(ifa, ifp);
357 	}
358 }
359 
360 /*
361  * Given an interface and an at_ifaddr (supposedly on that interface) remove
362  * any routes that depend on this. Why ifp is needed I'm not sure, as
363  * aa->at_ifaddr.ifa_ifp should be the same.
364  */
365 static int
366 at_scrub(ifp, aa)
367 	struct ifnet   *ifp;
368 	struct at_ifaddr *aa;
369 {
370 	int error = 0;
371 
372 	if (aa->aa_flags & AFA_ROUTE) {
373 		if (ifp->if_flags & IFF_LOOPBACK)
374 			error = aa_delsingleroute(&aa->aa_ifa,
375 			    &aa->aa_addr.sat_addr, &aa->aa_netmask.sat_addr);
376 		else if (ifp->if_flags & IFF_POINTOPOINT)
377 			error = rtinit(&aa->aa_ifa, RTM_DELETE, RTF_HOST);
378 		else if (ifp->if_flags & IFF_BROADCAST)
379 			error = aa_dorangeroute(&aa->aa_ifa,
380 			    ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
381 			    RTM_DELETE);
382 
383 		aa->aa_ifa.ifa_flags &= ~IFA_ROUTE;
384 		aa->aa_flags &= ~AFA_ROUTE;
385 	}
386 	return error;
387 }
388 
389 /*
390  * given an at_ifaddr,a sockaddr_at and an ifp,
391  * bang them all together at high speed and see what happens
392  */
393 static int
394 at_ifinit(ifp, aa, sat)
395 	struct ifnet   *ifp;
396 	struct at_ifaddr *aa;
397 	struct sockaddr_at *sat;
398 {
399 	struct netrange nr, onr;
400 	struct sockaddr_at oldaddr;
401 	int             s = splnet(), error = 0, i, j;
402 	int             netinc, nodeinc, nnets;
403 	u_short         net;
404 
405 	/*
406 	 * save the old addresses in the at_ifaddr just in case we need them.
407 	 */
408 	oldaddr = aa->aa_addr;
409 	onr.nr_firstnet = aa->aa_firstnet;
410 	onr.nr_lastnet = aa->aa_lastnet;
411 
412 	/*
413          * take the address supplied as an argument, and add it to the
414          * at_ifnet (also given). Remember ing to update
415          * those parts of the at_ifaddr that need special processing
416          */
417 	bzero(AA_SAT(aa), sizeof(struct sockaddr_at));
418 	bcopy(sat->sat_zero, &nr, sizeof(struct netrange));
419 	bcopy(sat->sat_zero, AA_SAT(aa)->sat_zero, sizeof(struct netrange));
420 	nnets = ntohs(nr.nr_lastnet) - ntohs(nr.nr_firstnet) + 1;
421 	aa->aa_firstnet = nr.nr_firstnet;
422 	aa->aa_lastnet = nr.nr_lastnet;
423 
424 #ifdef NETATALKDEBUG
425 	printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n",
426 	    ifp->if_xname,
427 	    ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node,
428 	    ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
429 	    (aa->aa_flags & AFA_PHASE2) ? 2 : 1);
430 #endif
431 
432 	/*
433          * We could eliminate the need for a second phase 1 probe (post
434          * autoconf) if we check whether we're resetting the node. Note
435          * that phase 1 probes use only nodes, not net.node pairs.  Under
436          * phase 2, both the net and node must be the same.
437          */
438 	AA_SAT(aa)->sat_len = sat->sat_len;
439 	AA_SAT(aa)->sat_family = AF_APPLETALK;
440 	if (ifp->if_flags & IFF_LOOPBACK) {
441 		AA_SAT(aa)->sat_addr.s_net = sat->sat_addr.s_net;
442 		AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
443 #if 0
444 	} else if (fp->if_flags & IFF_POINTOPOINT) {
445 		/* unimplemented */
446 		/*
447 		 * we'd have to copy the dstaddr field over from the sat
448 		 * but it's not clear that it would contain the right info..
449 		 */
450 #endif
451 	} else {
452 		/*
453 		 * We are a normal (probably ethernet) interface.
454 		 * apply the new address to the interface structures etc.
455 		 * We will probe this address on the net first, before
456 		 * applying it to ensure that it is free.. If it is not, then
457 		 * we will try a number of other randomly generated addresses
458 		 * in this net and then increment the net.  etc.etc. until
459 		 * we find an unused address.
460 		 */
461 		aa->aa_flags |= AFA_PROBING;	/* if not loopback we Must
462 						 * probe? */
463 		if (aa->aa_flags & AFA_PHASE2) {
464 			if (sat->sat_addr.s_net == ATADDR_ANYNET) {
465 				/*
466 				 * If we are phase 2, and the net was not
467 				 * specified * then we select a random net
468 				 * within the supplied netrange.
469 				 * XXX use /dev/random?
470 				 */
471 				if (nnets != 1) {
472 					net = ntohs(nr.nr_firstnet) +
473 					    time_second % (nnets - 1);
474 				} else {
475 					net = ntohs(nr.nr_firstnet);
476 				}
477 			} else {
478 				/*
479 				 * if a net was supplied, then check that it
480 				 * is within the netrange. If it is not then
481 				 * replace the old values and return an error
482 				 */
483 				if (ntohs(sat->sat_addr.s_net) <
484 				    ntohs(nr.nr_firstnet) ||
485 				    ntohs(sat->sat_addr.s_net) >
486 				    ntohs(nr.nr_lastnet)) {
487 					aa->aa_addr = oldaddr;
488 					aa->aa_firstnet = onr.nr_firstnet;
489 					aa->aa_lastnet = onr.nr_lastnet;
490 					splx(s);
491 					return (EINVAL);
492 				}
493 				/*
494 				 * otherwise just use the new net number..
495 				 */
496 				net = ntohs(sat->sat_addr.s_net);
497 			}
498 		} else {
499 			/*
500 		         * we must be phase one, so just use whatever we were
501 			 * given. I guess it really isn't going to be used...
502 			 * RIGHT?
503 		         */
504 			net = ntohs(sat->sat_addr.s_net);
505 		}
506 
507 		/*
508 		 * set the node part of the address into the ifaddr. If it's
509 		 * not specified, be random about it... XXX use /dev/random?
510 		 */
511 		if (sat->sat_addr.s_node == ATADDR_ANYNODE) {
512 			AA_SAT(aa)->sat_addr.s_node = time_second;
513 		} else {
514 			AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
515 		}
516 
517 		/*
518 		 * step through the nets in the range starting at the
519 		 * (possibly random) start point.
520 		 */
521 		for (i = nnets, netinc = 1; i > 0; net = ntohs(nr.nr_firstnet) +
522 		     ((net - ntohs(nr.nr_firstnet) + netinc) % nnets), i--) {
523 			AA_SAT(aa)->sat_addr.s_net = htons(net);
524 
525 			/*
526 		         * using a rather strange stepping method,
527 		         * stagger through the possible node addresses
528 		         * Once again, starting at the (possibly random)
529 		         * initial node address.
530 		         */
531 			for (j = 0, nodeinc = time_second | 1; j < 256;
532 			     j++, AA_SAT(aa)->sat_addr.s_node += nodeinc) {
533 				if (AA_SAT(aa)->sat_addr.s_node > 253 ||
534 				    AA_SAT(aa)->sat_addr.s_node < 1) {
535 					continue;
536 				}
537 				aa->aa_probcnt = 10;
538 
539 				/*
540 				 * start off the probes as an asynchronous
541 				 * activity. though why wait 200mSec?
542 				 */
543 				callout_reset(&aa->aa_probe_ch, hz / 5,
544 				    aarpprobe, ifp);
545 				if (tsleep(aa, PPAUSE | PCATCH, "at_ifinit",
546 				    0)) {
547 					/*
548 				         * theoretically we shouldn't time out
549 					 * here so if we returned with an error.
550 				         */
551 					printf("at_ifinit: timeout?!\n");
552 					aa->aa_addr = oldaddr;
553 					aa->aa_firstnet = onr.nr_firstnet;
554 					aa->aa_lastnet = onr.nr_lastnet;
555 					splx(s);
556 					return (EINTR);
557 				}
558 				/*
559 				 * The async activity should have woken us
560 				 * up. We need to see if it was successful in
561 				 * finding a free spot, or if we need to
562 				 * iterate to the next address to try.
563 				 */
564 				if ((aa->aa_flags & AFA_PROBING) == 0)
565 					break;
566 			}
567 
568 			/*
569 		         * of course we need to break out through two loops...
570 		         */
571 			if ((aa->aa_flags & AFA_PROBING) == 0)
572 				break;
573 
574 			/* reset node for next network */
575 			AA_SAT(aa)->sat_addr.s_node = time_second;
576 		}
577 
578 		/*
579 		 * if we are still trying to probe, then we have finished all
580 		 * the possible addresses, so we need to give up
581 		 */
582 		if (aa->aa_flags & AFA_PROBING) {
583 			aa->aa_addr = oldaddr;
584 			aa->aa_firstnet = onr.nr_firstnet;
585 			aa->aa_lastnet = onr.nr_lastnet;
586 			splx(s);
587 			return (EADDRINUSE);
588 		}
589 	}
590 
591 	/*
592 	 * Now that we have selected an address, we need to tell the
593 	 * interface about it, just in case it needs to adjust something.
594 	 */
595 	if (ifp->if_ioctl &&
596 	    (error = (*ifp->if_ioctl) (ifp, SIOCSIFADDR, (caddr_t) aa))) {
597 		/*
598 		 * of course this could mean that it objects violently
599 		 * so if it does, we back out again..
600 		 */
601 		aa->aa_addr = oldaddr;
602 		aa->aa_firstnet = onr.nr_firstnet;
603 		aa->aa_lastnet = onr.nr_lastnet;
604 		splx(s);
605 		return (error);
606 	}
607 	/*
608 	 * set up the netmask part of the at_ifaddr and point the appropriate
609 	 * pointer in the ifaddr to it. probably pointless, but what the
610 	 * heck.. XXX
611 	 */
612 	bzero(&aa->aa_netmask, sizeof(aa->aa_netmask));
613 	aa->aa_netmask.sat_len = sizeof(struct sockaddr_at);
614 	aa->aa_netmask.sat_family = AF_APPLETALK;
615 	aa->aa_netmask.sat_addr.s_net = 0xffff;
616 	aa->aa_netmask.sat_addr.s_node = 0;
617 #if 0
618 	aa->aa_ifa.ifa_netmask = (struct sockaddr *) &(aa->aa_netmask);/* XXX */
619 #endif
620 
621 	/*
622          * Initialize broadcast (or remote p2p) address
623          */
624 	bzero(&aa->aa_broadaddr, sizeof(aa->aa_broadaddr));
625 	aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at);
626 	aa->aa_broadaddr.sat_family = AF_APPLETALK;
627 
628 	aa->aa_ifa.ifa_metric = ifp->if_metric;
629 	if (ifp->if_flags & IFF_BROADCAST) {
630 		aa->aa_broadaddr.sat_addr.s_net = htons(0);
631 		aa->aa_broadaddr.sat_addr.s_node = 0xff;
632 		aa->aa_ifa.ifa_broadaddr =
633 		    (struct sockaddr *) &aa->aa_broadaddr;
634 		/* add the range of routes needed */
635 		error = aa_dorangeroute(&aa->aa_ifa,
636 		    ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), RTM_ADD);
637 	} else if (ifp->if_flags & IFF_POINTOPOINT) {
638 		struct at_addr  rtaddr, rtmask;
639 
640 		bzero(&rtaddr, sizeof(rtaddr));
641 		bzero(&rtmask, sizeof(rtmask));
642 		/* fill in the far end if we know it here XXX */
643 		aa->aa_ifa.ifa_dstaddr = (struct sockaddr *) & aa->aa_dstaddr;
644 		error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
645 	} else if (ifp->if_flags & IFF_LOOPBACK) {
646 		struct at_addr  rtaddr, rtmask;
647 
648 		bzero(&rtaddr, sizeof(rtaddr));
649 		bzero(&rtmask, sizeof(rtmask));
650 		rtaddr.s_net = AA_SAT(aa)->sat_addr.s_net;
651 		rtaddr.s_node = AA_SAT(aa)->sat_addr.s_node;
652 		rtmask.s_net = 0xffff;
653 		rtmask.s_node = 0x0;
654 		error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
655 	}
656 	/*
657          * of course if we can't add these routes we back out, but it's getting
658          * risky by now XXX
659          */
660 	if (error) {
661 		at_scrub(ifp, aa);
662 		aa->aa_addr = oldaddr;
663 		aa->aa_firstnet = onr.nr_firstnet;
664 		aa->aa_lastnet = onr.nr_lastnet;
665 		splx(s);
666 		return (error);
667 	}
668 	/*
669          * note that the address has a route associated with it....
670          */
671 	aa->aa_ifa.ifa_flags |= IFA_ROUTE;
672 	aa->aa_flags |= AFA_ROUTE;
673 	splx(s);
674 	return (0);
675 }
676 
677 /*
678  * check whether a given address is a broadcast address for us..
679  */
680 int
681 at_broadcast(sat)
682 	struct sockaddr_at *sat;
683 {
684 	struct at_ifaddr *aa;
685 
686 	/*
687          * If the node is not right, it can't be a broadcast
688          */
689 	if (sat->sat_addr.s_node != ATADDR_BCAST)
690 		return 0;
691 
692 	/*
693          * If the node was right then if the net is right, it's a broadcast
694          */
695 	if (sat->sat_addr.s_net == ATADDR_ANYNET)
696 		return 1;
697 
698 	/*
699          * failing that, if the net is one we have, it's a broadcast as well.
700          */
701 	for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) {
702 		if ((aa->aa_ifp->if_flags & IFF_BROADCAST)
703 		    && (ntohs(sat->sat_addr.s_net) >= ntohs(aa->aa_firstnet)
704 		  && ntohs(sat->sat_addr.s_net) <= ntohs(aa->aa_lastnet)))
705 			return 1;
706 	}
707 	return 0;
708 }
709 
710 
711 /*
712  * aa_dorangeroute()
713  *
714  * Add a route for a range of networks from bot to top - 1.
715  * Algorithm:
716  *
717  * Split the range into two subranges such that the middle
718  * of the two ranges is the point where the highest bit of difference
719  * between the two addresses, makes it's transition
720  * Each of the upper and lower ranges might not exist, or might be
721  * representable by 1 or more netmasks. In addition, if both
722  * ranges can be represented by the same netmask, then teh can be merged
723  * by using the next higher netmask..
724  */
725 
726 static int
727 aa_dorangeroute(ifa, bot, top, cmd)
728 	struct ifaddr *ifa;
729 	u_int bot;
730 	u_int top;
731 	int cmd;
732 {
733 	u_int           mask1;
734 	struct at_addr  addr;
735 	struct at_addr  mask;
736 	int             error;
737 
738 	/*
739 	 * slight sanity check
740 	 */
741 	if (bot > top)
742 		return (EINVAL);
743 
744 	addr.s_node = 0;
745 	mask.s_node = 0;
746 	/*
747 	 * just start out with the lowest boundary
748 	 * and keep extending the mask till it's too big.
749 	 */
750 
751 	while (bot <= top) {
752 		mask1 = 1;
753 		while (((bot & ~mask1) >= bot)
754 		       && ((bot | mask1) <= top)) {
755 			mask1 <<= 1;
756 			mask1 |= 1;
757 		}
758 		mask1 >>= 1;
759 		mask.s_net = htons(~mask1);
760 		addr.s_net = htons(bot);
761 		if (cmd == RTM_ADD) {
762 			error = aa_addsingleroute(ifa, &addr, &mask);
763 			if (error) {
764 				/* XXX clean up? */
765 				return (error);
766 			}
767 		} else {
768 			error = aa_delsingleroute(ifa, &addr, &mask);
769 		}
770 		bot = (bot | mask1) + 1;
771 	}
772 	return 0;
773 }
774 
775 static int
776 aa_addsingleroute(ifa, addr, mask)
777 	struct ifaddr *ifa;
778 	struct at_addr *addr;
779 	struct at_addr *mask;
780 {
781 	int error;
782 
783 #ifdef NETATALKDEBUG
784 	printf("aa_addsingleroute: %x.%x mask %x.%x ...",
785 	       ntohs(addr->s_net), addr->s_node,
786 	       ntohs(mask->s_net), mask->s_node);
787 #endif
788 
789 	error = aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP);
790 #ifdef NETATALKDEBUG
791 	if (error)
792 		printf("aa_addsingleroute: error %d\n", error);
793 #endif
794 	return (error);
795 }
796 
797 static int
798 aa_delsingleroute(ifa, addr, mask)
799 	struct ifaddr *ifa;
800 	struct at_addr *addr;
801 	struct at_addr *mask;
802 {
803 	int error;
804 
805 #ifdef NETATALKDEBUG
806 	printf("aa_delsingleroute: %x.%x mask %x.%x ...",
807 	       ntohs(addr->s_net), addr->s_node,
808 	       ntohs(mask->s_net), mask->s_node);
809 #endif
810 
811 	error = aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0);
812 #ifdef NETATALKDEBUG
813 	if (error)
814 		printf("aa_delsingleroute: error %d\n", error);
815 #endif
816 	return (error);
817 }
818 
819 static int
820 aa_dosingleroute(ifa, at_addr, at_mask, cmd, flags)
821 	struct ifaddr *ifa;
822 	struct at_addr *at_addr;
823 	struct at_addr *at_mask;
824 	int cmd;
825 	int flags;
826 {
827 	struct sockaddr_at addr, mask, *gate;
828 
829 	bzero(&addr, sizeof(addr));
830 	bzero(&mask, sizeof(mask));
831 	addr.sat_family = AF_APPLETALK;
832 	addr.sat_len = sizeof(struct sockaddr_at);
833 	addr.sat_addr.s_net = at_addr->s_net;
834 	addr.sat_addr.s_node = at_addr->s_node;
835 	mask.sat_family = AF_APPLETALK;
836 	mask.sat_len = sizeof(struct sockaddr_at);
837 	mask.sat_addr.s_net = at_mask->s_net;
838 	mask.sat_addr.s_node = at_mask->s_node;
839 
840 	if (at_mask->s_node) {
841 		gate = satosat(ifa->ifa_dstaddr);
842 		flags |= RTF_HOST;
843 	} else {
844 		gate = satosat(ifa->ifa_addr);
845 	}
846 
847 #ifdef NETATALKDEBUG
848 	printf("on %s %x.%x\n", (flags & RTF_HOST) ? "host" : "net",
849 	       ntohs(gate->sat_addr.s_net), gate->sat_addr.s_node);
850 #endif
851 	return (rtrequest(cmd, (struct sockaddr *) &addr,
852 	    (struct sockaddr *) gate, (struct sockaddr *) &mask, flags, NULL));
853 }
854 
855 #if 0
856 static void
857 aa_clean()
858 {
859 	struct at_ifaddr *aa;
860 	struct ifaddr  *ifa;
861 	struct ifnet   *ifp;
862 
863 	while (aa = at_ifaddr) {
864 		ifp = aa->aa_ifp;
865 		at_scrub(ifp, aa);
866 		at_ifaddr = aa->aa_next;
867 		if ((ifa = ifp->if_addrlist) == (struct ifaddr *) aa) {
868 			ifp->if_addrlist = ifa->ifa_next;
869 		} else {
870 			while (ifa->ifa_next &&
871 			       (ifa->ifa_next != (struct ifaddr *) aa)) {
872 				ifa = ifa->ifa_next;
873 			}
874 			if (ifa->ifa_next) {
875 				ifa->ifa_next =
876 				    ((struct ifaddr *) aa)->ifa_next;
877 			} else {
878 				panic("at_entry");
879 			}
880 		}
881 	}
882 }
883 #endif
884