1 /* $NetBSD: at_control.c,v 1.14 2006/06/07 22:34:00 kardel Exp $ */ 2 3 /* 4 * Copyright (c) 1990,1994 Regents of The University of Michigan. 5 * All Rights Reserved. 6 * 7 * Permission to use, copy, modify, and distribute this software and 8 * its documentation for any purpose and without fee is hereby granted, 9 * provided that the above copyright notice appears in all copies and 10 * that both that copyright notice and this permission notice appear 11 * in supporting documentation, and that the name of The University 12 * of Michigan not be used in advertising or publicity pertaining to 13 * distribution of the software without specific, written prior 14 * permission. This software is supplied as is without expressed or 15 * implied warranties of any kind. 16 * 17 * This product includes software developed by the University of 18 * California, Berkeley and its contributors. 19 * 20 * Research Systems Unix Group 21 * The University of Michigan 22 * c/o Wesley Craig 23 * 535 W. William Street 24 * Ann Arbor, Michigan 25 * +1-313-764-2278 26 * netatalk@umich.edu 27 */ 28 29 #include <sys/cdefs.h> 30 __KERNEL_RCSID(0, "$NetBSD: at_control.c,v 1.14 2006/06/07 22:34:00 kardel Exp $"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/proc.h> 35 #include <sys/errno.h> 36 #include <sys/ioctl.h> 37 #include <sys/mbuf.h> 38 #include <sys/kernel.h> 39 #include <sys/socket.h> 40 #include <sys/socketvar.h> 41 #include <sys/kauth.h> 42 #include <net/if.h> 43 #include <net/route.h> 44 #include <net/if_ether.h> 45 #include <netinet/in.h> 46 #undef s_net 47 48 #include <netatalk/at.h> 49 #include <netatalk/at_var.h> 50 #include <netatalk/aarp.h> 51 #include <netatalk/phase2.h> 52 #include <netatalk/at_extern.h> 53 54 static int aa_dorangeroute __P((struct ifaddr * ifa, 55 u_int first, u_int last, int cmd)); 56 static int aa_addsingleroute __P((struct ifaddr * ifa, 57 struct at_addr * addr, struct at_addr * mask)); 58 static int aa_delsingleroute __P((struct ifaddr * ifa, 59 struct at_addr * addr, struct at_addr * mask)); 60 static int aa_dosingleroute __P((struct ifaddr * ifa, struct at_addr * addr, 61 struct at_addr * mask, int cmd, int flags)); 62 static int at_scrub __P((struct ifnet * ifp, struct at_ifaddr * aa)); 63 static int at_ifinit __P((struct ifnet * ifp, struct at_ifaddr * aa, 64 struct sockaddr_at * sat)); 65 #if 0 66 static void aa_clean __P((void)); 67 #endif 68 69 #define sateqaddr(a,b) ((a)->sat_len == (b)->sat_len && \ 70 (a)->sat_family == (b)->sat_family && \ 71 (a)->sat_addr.s_net == (b)->sat_addr.s_net && \ 72 (a)->sat_addr.s_node == (b)->sat_addr.s_node ) 73 74 int 75 at_control(cmd, data, ifp, p) 76 u_long cmd; 77 caddr_t data; 78 struct ifnet *ifp; 79 struct proc *p; 80 { 81 struct ifreq *ifr = (struct ifreq *) data; 82 struct sockaddr_at *sat; 83 struct netrange *nr; 84 struct at_aliasreq *ifra = (struct at_aliasreq *) data; 85 struct at_ifaddr *aa0; 86 struct at_ifaddr *aa = 0; 87 88 /* 89 * If we have an ifp, then find the matching at_ifaddr if it exists 90 */ 91 if (ifp) 92 for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) 93 if (aa->aa_ifp == ifp) 94 break; 95 96 /* 97 * In this first switch table we are basically getting ready for 98 * the second one, by getting the atalk-specific things set up 99 * so that they start to look more similar to other protocols etc. 100 */ 101 102 switch (cmd) { 103 case SIOCAIFADDR: 104 case SIOCDIFADDR: 105 /* 106 * If we have an appletalk sockaddr, scan forward of where 107 * we are now on the at_ifaddr list to find one with a matching 108 * address on this interface. 109 * This may leave aa pointing to the first address on the 110 * NEXT interface! 111 */ 112 if (ifra->ifra_addr.sat_family == AF_APPLETALK) { 113 for (; aa; aa = aa->aa_list.tqe_next) 114 if (aa->aa_ifp == ifp && 115 sateqaddr(&aa->aa_addr, &ifra->ifra_addr)) 116 break; 117 } 118 /* 119 * If we a retrying to delete an addres but didn't find such, 120 * then return with an error 121 */ 122 if (cmd == SIOCDIFADDR && aa == 0) 123 return (EADDRNOTAVAIL); 124 /* FALLTHROUGH */ 125 126 case SIOCSIFADDR: 127 /* 128 * If we are not superuser, then we don't get to do these 129 * ops. 130 */ 131 if (p && kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER, 132 &p->p_acflag)) 133 return (EPERM); 134 135 sat = satosat(&ifr->ifr_addr); 136 nr = (struct netrange *) sat->sat_zero; 137 if (nr->nr_phase == 1) { 138 /* 139 * Look for a phase 1 address on this interface. 140 * This may leave aa pointing to the first address on 141 * the NEXT interface! 142 */ 143 for (; aa; aa = aa->aa_list.tqe_next) { 144 if (aa->aa_ifp == ifp && 145 (aa->aa_flags & AFA_PHASE2) == 0) 146 break; 147 } 148 } else { /* default to phase 2 */ 149 /* 150 * Look for a phase 2 address on this interface. 151 * This may leave aa pointing to the first address on 152 * the NEXT interface! 153 */ 154 for (; aa; aa = aa->aa_list.tqe_next) { 155 if (aa->aa_ifp == ifp && 156 (aa->aa_flags & AFA_PHASE2)) 157 break; 158 } 159 } 160 161 if (ifp == 0) 162 panic("at_control"); 163 164 /* 165 * If we failed to find an existing at_ifaddr entry, then we 166 * allocate a fresh one. 167 * XXX change this to use malloc 168 */ 169 if (aa == (struct at_ifaddr *) 0) { 170 aa = (struct at_ifaddr *) 171 malloc(sizeof(struct at_ifaddr), M_IFADDR, 172 M_WAITOK|M_ZERO); 173 174 if (aa == NULL) 175 return (ENOBUFS); 176 177 callout_init(&aa->aa_probe_ch); 178 179 if ((aa0 = at_ifaddr.tqh_first) != NULL) { 180 /* 181 * Don't let the loopback be first, since the 182 * first address is the machine's default 183 * address for binding. 184 * If it is, stick ourself in front, otherwise 185 * go to the back of the list. 186 */ 187 if (aa0->aa_ifp->if_flags & IFF_LOOPBACK) { 188 TAILQ_INSERT_HEAD(&at_ifaddr, aa, 189 aa_list); 190 } else { 191 TAILQ_INSERT_TAIL(&at_ifaddr, aa, 192 aa_list); 193 } 194 } else { 195 TAILQ_INSERT_TAIL(&at_ifaddr, aa, aa_list); 196 } 197 IFAREF(&aa->aa_ifa); 198 199 /* 200 * Find the end of the interface's addresses 201 * and link our new one on the end 202 */ 203 TAILQ_INSERT_TAIL(&ifp->if_addrlist, 204 (struct ifaddr *) aa, ifa_list); 205 IFAREF(&aa->aa_ifa); 206 207 /* 208 * As the at_ifaddr contains the actual sockaddrs, 209 * and the ifaddr itself, link them al together 210 * correctly. 211 */ 212 aa->aa_ifa.ifa_addr = 213 (struct sockaddr *) &aa->aa_addr; 214 aa->aa_ifa.ifa_dstaddr = 215 (struct sockaddr *) &aa->aa_addr; 216 aa->aa_ifa.ifa_netmask = 217 (struct sockaddr *) &aa->aa_netmask; 218 219 /* 220 * Set/clear the phase 2 bit. 221 */ 222 if (nr->nr_phase == 1) 223 aa->aa_flags &= ~AFA_PHASE2; 224 else 225 aa->aa_flags |= AFA_PHASE2; 226 227 /* 228 * and link it all together 229 */ 230 aa->aa_ifp = ifp; 231 } else { 232 /* 233 * If we DID find one then we clobber any routes 234 * dependent on it.. 235 */ 236 at_scrub(ifp, aa); 237 } 238 break; 239 240 case SIOCGIFADDR: 241 sat = satosat(&ifr->ifr_addr); 242 nr = (struct netrange *) sat->sat_zero; 243 if (nr->nr_phase == 1) { 244 /* 245 * If the request is specifying phase 1, then 246 * only look at a phase one address 247 */ 248 for (; aa; aa = aa->aa_list.tqe_next) { 249 if (aa->aa_ifp == ifp && 250 (aa->aa_flags & AFA_PHASE2) == 0) 251 break; 252 } 253 } else if (nr->nr_phase == 2) { 254 /* 255 * If the request is specifying phase 2, then 256 * only look at a phase two address 257 */ 258 for (; aa; aa = aa->aa_list.tqe_next) { 259 if (aa->aa_ifp == ifp && 260 (aa->aa_flags & AFA_PHASE2)) 261 break; 262 } 263 } else { 264 /* 265 * default to everything 266 */ 267 for (; aa; aa = aa->aa_list.tqe_next) { 268 if (aa->aa_ifp == ifp) 269 break; 270 } 271 } 272 273 if (aa == (struct at_ifaddr *) 0) 274 return (EADDRNOTAVAIL); 275 break; 276 } 277 278 /* 279 * By the time this switch is run we should be able to assume that 280 * the "aa" pointer is valid when needed. 281 */ 282 switch (cmd) { 283 case SIOCGIFADDR: 284 285 /* 286 * copy the contents of the sockaddr blindly. 287 */ 288 sat = (struct sockaddr_at *) & ifr->ifr_addr; 289 *sat = aa->aa_addr; 290 291 /* 292 * and do some cleanups 293 */ 294 ((struct netrange *) &sat->sat_zero)->nr_phase = 295 (aa->aa_flags & AFA_PHASE2) ? 2 : 1; 296 ((struct netrange *) &sat->sat_zero)->nr_firstnet = 297 aa->aa_firstnet; 298 ((struct netrange *) &sat->sat_zero)->nr_lastnet = 299 aa->aa_lastnet; 300 break; 301 302 case SIOCSIFADDR: 303 return (at_ifinit(ifp, aa, 304 (struct sockaddr_at *) &ifr->ifr_addr)); 305 306 case SIOCAIFADDR: 307 if (sateqaddr(&ifra->ifra_addr, &aa->aa_addr)) 308 return 0; 309 return (at_ifinit(ifp, aa, 310 (struct sockaddr_at *) &ifr->ifr_addr)); 311 312 case SIOCDIFADDR: 313 at_purgeaddr((struct ifaddr *) aa, ifp); 314 break; 315 316 default: 317 if (ifp == 0 || ifp->if_ioctl == 0) 318 return (EOPNOTSUPP); 319 return ((*ifp->if_ioctl) (ifp, cmd, data)); 320 } 321 return (0); 322 } 323 324 void 325 at_purgeaddr(ifa, ifp) 326 struct ifaddr *ifa; 327 struct ifnet *ifp; 328 { 329 struct at_ifaddr *aa = (void *) ifa; 330 331 /* 332 * scrub all routes.. didn't we just DO this? XXX yes, del it 333 * XXX above XXX not necessarily true anymore 334 */ 335 at_scrub(ifp, aa); 336 337 /* 338 * remove the ifaddr from the interface 339 */ 340 TAILQ_REMOVE(&ifp->if_addrlist, (struct ifaddr *) aa, ifa_list); 341 IFAFREE(&aa->aa_ifa); 342 TAILQ_REMOVE(&at_ifaddr, aa, aa_list); 343 IFAFREE(&aa->aa_ifa); 344 } 345 346 void 347 at_purgeif(ifp) 348 struct ifnet *ifp; 349 { 350 struct ifaddr *ifa, *nifa; 351 352 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) { 353 nifa = TAILQ_NEXT(ifa, ifa_list); 354 if (ifa->ifa_addr->sa_family != AF_APPLETALK) 355 continue; 356 at_purgeaddr(ifa, ifp); 357 } 358 } 359 360 /* 361 * Given an interface and an at_ifaddr (supposedly on that interface) remove 362 * any routes that depend on this. Why ifp is needed I'm not sure, as 363 * aa->at_ifaddr.ifa_ifp should be the same. 364 */ 365 static int 366 at_scrub(ifp, aa) 367 struct ifnet *ifp; 368 struct at_ifaddr *aa; 369 { 370 int error = 0; 371 372 if (aa->aa_flags & AFA_ROUTE) { 373 if (ifp->if_flags & IFF_LOOPBACK) 374 error = aa_delsingleroute(&aa->aa_ifa, 375 &aa->aa_addr.sat_addr, &aa->aa_netmask.sat_addr); 376 else if (ifp->if_flags & IFF_POINTOPOINT) 377 error = rtinit(&aa->aa_ifa, RTM_DELETE, RTF_HOST); 378 else if (ifp->if_flags & IFF_BROADCAST) 379 error = aa_dorangeroute(&aa->aa_ifa, 380 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), 381 RTM_DELETE); 382 383 aa->aa_ifa.ifa_flags &= ~IFA_ROUTE; 384 aa->aa_flags &= ~AFA_ROUTE; 385 } 386 return error; 387 } 388 389 /* 390 * given an at_ifaddr,a sockaddr_at and an ifp, 391 * bang them all together at high speed and see what happens 392 */ 393 static int 394 at_ifinit(ifp, aa, sat) 395 struct ifnet *ifp; 396 struct at_ifaddr *aa; 397 struct sockaddr_at *sat; 398 { 399 struct netrange nr, onr; 400 struct sockaddr_at oldaddr; 401 int s = splnet(), error = 0, i, j; 402 int netinc, nodeinc, nnets; 403 u_short net; 404 405 /* 406 * save the old addresses in the at_ifaddr just in case we need them. 407 */ 408 oldaddr = aa->aa_addr; 409 onr.nr_firstnet = aa->aa_firstnet; 410 onr.nr_lastnet = aa->aa_lastnet; 411 412 /* 413 * take the address supplied as an argument, and add it to the 414 * at_ifnet (also given). Remember ing to update 415 * those parts of the at_ifaddr that need special processing 416 */ 417 bzero(AA_SAT(aa), sizeof(struct sockaddr_at)); 418 bcopy(sat->sat_zero, &nr, sizeof(struct netrange)); 419 bcopy(sat->sat_zero, AA_SAT(aa)->sat_zero, sizeof(struct netrange)); 420 nnets = ntohs(nr.nr_lastnet) - ntohs(nr.nr_firstnet) + 1; 421 aa->aa_firstnet = nr.nr_firstnet; 422 aa->aa_lastnet = nr.nr_lastnet; 423 424 #ifdef NETATALKDEBUG 425 printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n", 426 ifp->if_xname, 427 ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node, 428 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), 429 (aa->aa_flags & AFA_PHASE2) ? 2 : 1); 430 #endif 431 432 /* 433 * We could eliminate the need for a second phase 1 probe (post 434 * autoconf) if we check whether we're resetting the node. Note 435 * that phase 1 probes use only nodes, not net.node pairs. Under 436 * phase 2, both the net and node must be the same. 437 */ 438 AA_SAT(aa)->sat_len = sat->sat_len; 439 AA_SAT(aa)->sat_family = AF_APPLETALK; 440 if (ifp->if_flags & IFF_LOOPBACK) { 441 AA_SAT(aa)->sat_addr.s_net = sat->sat_addr.s_net; 442 AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node; 443 #if 0 444 } else if (fp->if_flags & IFF_POINTOPOINT) { 445 /* unimplemented */ 446 /* 447 * we'd have to copy the dstaddr field over from the sat 448 * but it's not clear that it would contain the right info.. 449 */ 450 #endif 451 } else { 452 /* 453 * We are a normal (probably ethernet) interface. 454 * apply the new address to the interface structures etc. 455 * We will probe this address on the net first, before 456 * applying it to ensure that it is free.. If it is not, then 457 * we will try a number of other randomly generated addresses 458 * in this net and then increment the net. etc.etc. until 459 * we find an unused address. 460 */ 461 aa->aa_flags |= AFA_PROBING; /* if not loopback we Must 462 * probe? */ 463 if (aa->aa_flags & AFA_PHASE2) { 464 if (sat->sat_addr.s_net == ATADDR_ANYNET) { 465 /* 466 * If we are phase 2, and the net was not 467 * specified * then we select a random net 468 * within the supplied netrange. 469 * XXX use /dev/random? 470 */ 471 if (nnets != 1) { 472 net = ntohs(nr.nr_firstnet) + 473 time_second % (nnets - 1); 474 } else { 475 net = ntohs(nr.nr_firstnet); 476 } 477 } else { 478 /* 479 * if a net was supplied, then check that it 480 * is within the netrange. If it is not then 481 * replace the old values and return an error 482 */ 483 if (ntohs(sat->sat_addr.s_net) < 484 ntohs(nr.nr_firstnet) || 485 ntohs(sat->sat_addr.s_net) > 486 ntohs(nr.nr_lastnet)) { 487 aa->aa_addr = oldaddr; 488 aa->aa_firstnet = onr.nr_firstnet; 489 aa->aa_lastnet = onr.nr_lastnet; 490 splx(s); 491 return (EINVAL); 492 } 493 /* 494 * otherwise just use the new net number.. 495 */ 496 net = ntohs(sat->sat_addr.s_net); 497 } 498 } else { 499 /* 500 * we must be phase one, so just use whatever we were 501 * given. I guess it really isn't going to be used... 502 * RIGHT? 503 */ 504 net = ntohs(sat->sat_addr.s_net); 505 } 506 507 /* 508 * set the node part of the address into the ifaddr. If it's 509 * not specified, be random about it... XXX use /dev/random? 510 */ 511 if (sat->sat_addr.s_node == ATADDR_ANYNODE) { 512 AA_SAT(aa)->sat_addr.s_node = time_second; 513 } else { 514 AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node; 515 } 516 517 /* 518 * step through the nets in the range starting at the 519 * (possibly random) start point. 520 */ 521 for (i = nnets, netinc = 1; i > 0; net = ntohs(nr.nr_firstnet) + 522 ((net - ntohs(nr.nr_firstnet) + netinc) % nnets), i--) { 523 AA_SAT(aa)->sat_addr.s_net = htons(net); 524 525 /* 526 * using a rather strange stepping method, 527 * stagger through the possible node addresses 528 * Once again, starting at the (possibly random) 529 * initial node address. 530 */ 531 for (j = 0, nodeinc = time_second | 1; j < 256; 532 j++, AA_SAT(aa)->sat_addr.s_node += nodeinc) { 533 if (AA_SAT(aa)->sat_addr.s_node > 253 || 534 AA_SAT(aa)->sat_addr.s_node < 1) { 535 continue; 536 } 537 aa->aa_probcnt = 10; 538 539 /* 540 * start off the probes as an asynchronous 541 * activity. though why wait 200mSec? 542 */ 543 callout_reset(&aa->aa_probe_ch, hz / 5, 544 aarpprobe, ifp); 545 if (tsleep(aa, PPAUSE | PCATCH, "at_ifinit", 546 0)) { 547 /* 548 * theoretically we shouldn't time out 549 * here so if we returned with an error. 550 */ 551 printf("at_ifinit: timeout?!\n"); 552 aa->aa_addr = oldaddr; 553 aa->aa_firstnet = onr.nr_firstnet; 554 aa->aa_lastnet = onr.nr_lastnet; 555 splx(s); 556 return (EINTR); 557 } 558 /* 559 * The async activity should have woken us 560 * up. We need to see if it was successful in 561 * finding a free spot, or if we need to 562 * iterate to the next address to try. 563 */ 564 if ((aa->aa_flags & AFA_PROBING) == 0) 565 break; 566 } 567 568 /* 569 * of course we need to break out through two loops... 570 */ 571 if ((aa->aa_flags & AFA_PROBING) == 0) 572 break; 573 574 /* reset node for next network */ 575 AA_SAT(aa)->sat_addr.s_node = time_second; 576 } 577 578 /* 579 * if we are still trying to probe, then we have finished all 580 * the possible addresses, so we need to give up 581 */ 582 if (aa->aa_flags & AFA_PROBING) { 583 aa->aa_addr = oldaddr; 584 aa->aa_firstnet = onr.nr_firstnet; 585 aa->aa_lastnet = onr.nr_lastnet; 586 splx(s); 587 return (EADDRINUSE); 588 } 589 } 590 591 /* 592 * Now that we have selected an address, we need to tell the 593 * interface about it, just in case it needs to adjust something. 594 */ 595 if (ifp->if_ioctl && 596 (error = (*ifp->if_ioctl) (ifp, SIOCSIFADDR, (caddr_t) aa))) { 597 /* 598 * of course this could mean that it objects violently 599 * so if it does, we back out again.. 600 */ 601 aa->aa_addr = oldaddr; 602 aa->aa_firstnet = onr.nr_firstnet; 603 aa->aa_lastnet = onr.nr_lastnet; 604 splx(s); 605 return (error); 606 } 607 /* 608 * set up the netmask part of the at_ifaddr and point the appropriate 609 * pointer in the ifaddr to it. probably pointless, but what the 610 * heck.. XXX 611 */ 612 bzero(&aa->aa_netmask, sizeof(aa->aa_netmask)); 613 aa->aa_netmask.sat_len = sizeof(struct sockaddr_at); 614 aa->aa_netmask.sat_family = AF_APPLETALK; 615 aa->aa_netmask.sat_addr.s_net = 0xffff; 616 aa->aa_netmask.sat_addr.s_node = 0; 617 #if 0 618 aa->aa_ifa.ifa_netmask = (struct sockaddr *) &(aa->aa_netmask);/* XXX */ 619 #endif 620 621 /* 622 * Initialize broadcast (or remote p2p) address 623 */ 624 bzero(&aa->aa_broadaddr, sizeof(aa->aa_broadaddr)); 625 aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at); 626 aa->aa_broadaddr.sat_family = AF_APPLETALK; 627 628 aa->aa_ifa.ifa_metric = ifp->if_metric; 629 if (ifp->if_flags & IFF_BROADCAST) { 630 aa->aa_broadaddr.sat_addr.s_net = htons(0); 631 aa->aa_broadaddr.sat_addr.s_node = 0xff; 632 aa->aa_ifa.ifa_broadaddr = 633 (struct sockaddr *) &aa->aa_broadaddr; 634 /* add the range of routes needed */ 635 error = aa_dorangeroute(&aa->aa_ifa, 636 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), RTM_ADD); 637 } else if (ifp->if_flags & IFF_POINTOPOINT) { 638 struct at_addr rtaddr, rtmask; 639 640 bzero(&rtaddr, sizeof(rtaddr)); 641 bzero(&rtmask, sizeof(rtmask)); 642 /* fill in the far end if we know it here XXX */ 643 aa->aa_ifa.ifa_dstaddr = (struct sockaddr *) & aa->aa_dstaddr; 644 error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask); 645 } else if (ifp->if_flags & IFF_LOOPBACK) { 646 struct at_addr rtaddr, rtmask; 647 648 bzero(&rtaddr, sizeof(rtaddr)); 649 bzero(&rtmask, sizeof(rtmask)); 650 rtaddr.s_net = AA_SAT(aa)->sat_addr.s_net; 651 rtaddr.s_node = AA_SAT(aa)->sat_addr.s_node; 652 rtmask.s_net = 0xffff; 653 rtmask.s_node = 0x0; 654 error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask); 655 } 656 /* 657 * of course if we can't add these routes we back out, but it's getting 658 * risky by now XXX 659 */ 660 if (error) { 661 at_scrub(ifp, aa); 662 aa->aa_addr = oldaddr; 663 aa->aa_firstnet = onr.nr_firstnet; 664 aa->aa_lastnet = onr.nr_lastnet; 665 splx(s); 666 return (error); 667 } 668 /* 669 * note that the address has a route associated with it.... 670 */ 671 aa->aa_ifa.ifa_flags |= IFA_ROUTE; 672 aa->aa_flags |= AFA_ROUTE; 673 splx(s); 674 return (0); 675 } 676 677 /* 678 * check whether a given address is a broadcast address for us.. 679 */ 680 int 681 at_broadcast(sat) 682 struct sockaddr_at *sat; 683 { 684 struct at_ifaddr *aa; 685 686 /* 687 * If the node is not right, it can't be a broadcast 688 */ 689 if (sat->sat_addr.s_node != ATADDR_BCAST) 690 return 0; 691 692 /* 693 * If the node was right then if the net is right, it's a broadcast 694 */ 695 if (sat->sat_addr.s_net == ATADDR_ANYNET) 696 return 1; 697 698 /* 699 * failing that, if the net is one we have, it's a broadcast as well. 700 */ 701 for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) { 702 if ((aa->aa_ifp->if_flags & IFF_BROADCAST) 703 && (ntohs(sat->sat_addr.s_net) >= ntohs(aa->aa_firstnet) 704 && ntohs(sat->sat_addr.s_net) <= ntohs(aa->aa_lastnet))) 705 return 1; 706 } 707 return 0; 708 } 709 710 711 /* 712 * aa_dorangeroute() 713 * 714 * Add a route for a range of networks from bot to top - 1. 715 * Algorithm: 716 * 717 * Split the range into two subranges such that the middle 718 * of the two ranges is the point where the highest bit of difference 719 * between the two addresses, makes it's transition 720 * Each of the upper and lower ranges might not exist, or might be 721 * representable by 1 or more netmasks. In addition, if both 722 * ranges can be represented by the same netmask, then teh can be merged 723 * by using the next higher netmask.. 724 */ 725 726 static int 727 aa_dorangeroute(ifa, bot, top, cmd) 728 struct ifaddr *ifa; 729 u_int bot; 730 u_int top; 731 int cmd; 732 { 733 u_int mask1; 734 struct at_addr addr; 735 struct at_addr mask; 736 int error; 737 738 /* 739 * slight sanity check 740 */ 741 if (bot > top) 742 return (EINVAL); 743 744 addr.s_node = 0; 745 mask.s_node = 0; 746 /* 747 * just start out with the lowest boundary 748 * and keep extending the mask till it's too big. 749 */ 750 751 while (bot <= top) { 752 mask1 = 1; 753 while (((bot & ~mask1) >= bot) 754 && ((bot | mask1) <= top)) { 755 mask1 <<= 1; 756 mask1 |= 1; 757 } 758 mask1 >>= 1; 759 mask.s_net = htons(~mask1); 760 addr.s_net = htons(bot); 761 if (cmd == RTM_ADD) { 762 error = aa_addsingleroute(ifa, &addr, &mask); 763 if (error) { 764 /* XXX clean up? */ 765 return (error); 766 } 767 } else { 768 error = aa_delsingleroute(ifa, &addr, &mask); 769 } 770 bot = (bot | mask1) + 1; 771 } 772 return 0; 773 } 774 775 static int 776 aa_addsingleroute(ifa, addr, mask) 777 struct ifaddr *ifa; 778 struct at_addr *addr; 779 struct at_addr *mask; 780 { 781 int error; 782 783 #ifdef NETATALKDEBUG 784 printf("aa_addsingleroute: %x.%x mask %x.%x ...", 785 ntohs(addr->s_net), addr->s_node, 786 ntohs(mask->s_net), mask->s_node); 787 #endif 788 789 error = aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP); 790 #ifdef NETATALKDEBUG 791 if (error) 792 printf("aa_addsingleroute: error %d\n", error); 793 #endif 794 return (error); 795 } 796 797 static int 798 aa_delsingleroute(ifa, addr, mask) 799 struct ifaddr *ifa; 800 struct at_addr *addr; 801 struct at_addr *mask; 802 { 803 int error; 804 805 #ifdef NETATALKDEBUG 806 printf("aa_delsingleroute: %x.%x mask %x.%x ...", 807 ntohs(addr->s_net), addr->s_node, 808 ntohs(mask->s_net), mask->s_node); 809 #endif 810 811 error = aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0); 812 #ifdef NETATALKDEBUG 813 if (error) 814 printf("aa_delsingleroute: error %d\n", error); 815 #endif 816 return (error); 817 } 818 819 static int 820 aa_dosingleroute(ifa, at_addr, at_mask, cmd, flags) 821 struct ifaddr *ifa; 822 struct at_addr *at_addr; 823 struct at_addr *at_mask; 824 int cmd; 825 int flags; 826 { 827 struct sockaddr_at addr, mask, *gate; 828 829 bzero(&addr, sizeof(addr)); 830 bzero(&mask, sizeof(mask)); 831 addr.sat_family = AF_APPLETALK; 832 addr.sat_len = sizeof(struct sockaddr_at); 833 addr.sat_addr.s_net = at_addr->s_net; 834 addr.sat_addr.s_node = at_addr->s_node; 835 mask.sat_family = AF_APPLETALK; 836 mask.sat_len = sizeof(struct sockaddr_at); 837 mask.sat_addr.s_net = at_mask->s_net; 838 mask.sat_addr.s_node = at_mask->s_node; 839 840 if (at_mask->s_node) { 841 gate = satosat(ifa->ifa_dstaddr); 842 flags |= RTF_HOST; 843 } else { 844 gate = satosat(ifa->ifa_addr); 845 } 846 847 #ifdef NETATALKDEBUG 848 printf("on %s %x.%x\n", (flags & RTF_HOST) ? "host" : "net", 849 ntohs(gate->sat_addr.s_net), gate->sat_addr.s_node); 850 #endif 851 return (rtrequest(cmd, (struct sockaddr *) &addr, 852 (struct sockaddr *) gate, (struct sockaddr *) &mask, flags, NULL)); 853 } 854 855 #if 0 856 static void 857 aa_clean() 858 { 859 struct at_ifaddr *aa; 860 struct ifaddr *ifa; 861 struct ifnet *ifp; 862 863 while (aa = at_ifaddr) { 864 ifp = aa->aa_ifp; 865 at_scrub(ifp, aa); 866 at_ifaddr = aa->aa_next; 867 if ((ifa = ifp->if_addrlist) == (struct ifaddr *) aa) { 868 ifp->if_addrlist = ifa->ifa_next; 869 } else { 870 while (ifa->ifa_next && 871 (ifa->ifa_next != (struct ifaddr *) aa)) { 872 ifa = ifa->ifa_next; 873 } 874 if (ifa->ifa_next) { 875 ifa->ifa_next = 876 ((struct ifaddr *) aa)->ifa_next; 877 } else { 878 panic("at_entry"); 879 } 880 } 881 } 882 } 883 #endif 884