1 /* $NetBSD: at_control.c,v 1.20 2007/09/01 04:32:51 dyoung Exp $ */ 2 3 /* 4 * Copyright (c) 1990,1994 Regents of The University of Michigan. 5 * All Rights Reserved. 6 * 7 * Permission to use, copy, modify, and distribute this software and 8 * its documentation for any purpose and without fee is hereby granted, 9 * provided that the above copyright notice appears in all copies and 10 * that both that copyright notice and this permission notice appear 11 * in supporting documentation, and that the name of The University 12 * of Michigan not be used in advertising or publicity pertaining to 13 * distribution of the software without specific, written prior 14 * permission. This software is supplied as is without expressed or 15 * implied warranties of any kind. 16 * 17 * This product includes software developed by the University of 18 * California, Berkeley and its contributors. 19 * 20 * Research Systems Unix Group 21 * The University of Michigan 22 * c/o Wesley Craig 23 * 535 W. William Street 24 * Ann Arbor, Michigan 25 * +1-313-764-2278 26 * netatalk@umich.edu 27 */ 28 29 #include <sys/cdefs.h> 30 __KERNEL_RCSID(0, "$NetBSD: at_control.c,v 1.20 2007/09/01 04:32:51 dyoung Exp $"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/proc.h> 35 #include <sys/errno.h> 36 #include <sys/ioctl.h> 37 #include <sys/mbuf.h> 38 #include <sys/kernel.h> 39 #include <sys/socket.h> 40 #include <sys/socketvar.h> 41 #include <sys/kauth.h> 42 #include <net/if.h> 43 #include <net/route.h> 44 #include <net/if_ether.h> 45 #include <netinet/in.h> 46 #undef s_net 47 48 #include <netatalk/at.h> 49 #include <netatalk/at_var.h> 50 #include <netatalk/aarp.h> 51 #include <netatalk/phase2.h> 52 #include <netatalk/at_extern.h> 53 54 static int aa_dorangeroute(struct ifaddr * ifa, 55 u_int first, u_int last, int cmd); 56 static int aa_addsingleroute(struct ifaddr * ifa, 57 struct at_addr * addr, struct at_addr * mask); 58 static int aa_delsingleroute(struct ifaddr * ifa, 59 struct at_addr * addr, struct at_addr * mask); 60 static int aa_dosingleroute(struct ifaddr * ifa, struct at_addr * addr, 61 struct at_addr * mask, int cmd, int flags); 62 static int at_scrub(struct ifnet * ifp, struct at_ifaddr * aa); 63 static int at_ifinit(struct ifnet *, struct at_ifaddr *, 64 const struct sockaddr_at *); 65 #if 0 66 static void aa_clean(void); 67 #endif 68 69 #define sateqaddr(a,b) ((a)->sat_len == (b)->sat_len && \ 70 (a)->sat_family == (b)->sat_family && \ 71 (a)->sat_addr.s_net == (b)->sat_addr.s_net && \ 72 (a)->sat_addr.s_node == (b)->sat_addr.s_node ) 73 74 int 75 at_control(cmd, data, ifp, l) 76 u_long cmd; 77 void * data; 78 struct ifnet *ifp; 79 struct lwp *l; 80 { 81 struct ifreq *ifr = (struct ifreq *) data; 82 const struct sockaddr_at *csat; 83 struct netrange *nr; 84 const struct netrange *cnr; 85 struct at_aliasreq *ifra = (struct at_aliasreq *) data; 86 struct at_ifaddr *aa0; 87 struct at_ifaddr *aa = 0; 88 89 /* 90 * If we have an ifp, then find the matching at_ifaddr if it exists 91 */ 92 if (ifp) 93 for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) 94 if (aa->aa_ifp == ifp) 95 break; 96 97 /* 98 * In this first switch table we are basically getting ready for 99 * the second one, by getting the atalk-specific things set up 100 * so that they start to look more similar to other protocols etc. 101 */ 102 103 switch (cmd) { 104 case SIOCAIFADDR: 105 case SIOCDIFADDR: 106 /* 107 * If we have an appletalk sockaddr, scan forward of where 108 * we are now on the at_ifaddr list to find one with a matching 109 * address on this interface. 110 * This may leave aa pointing to the first address on the 111 * NEXT interface! 112 */ 113 if (ifra->ifra_addr.sat_family == AF_APPLETALK) { 114 for (; aa; aa = aa->aa_list.tqe_next) 115 if (aa->aa_ifp == ifp && 116 sateqaddr(&aa->aa_addr, &ifra->ifra_addr)) 117 break; 118 } 119 /* 120 * If we a retrying to delete an addres but didn't find such, 121 * then return with an error 122 */ 123 if (cmd == SIOCDIFADDR && aa == 0) 124 return (EADDRNOTAVAIL); 125 /* FALLTHROUGH */ 126 127 case SIOCSIFADDR: 128 /* 129 * If we are not superuser, then we don't get to do these 130 * ops. 131 */ 132 if (l && kauth_authorize_network(l->l_cred, 133 KAUTH_NETWORK_INTERFACE, 134 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, 135 NULL) != 0) 136 return (EPERM); 137 138 csat = satocsat(ifreq_getaddr(cmd, ifr)); 139 cnr = (const struct netrange *)csat->sat_zero; 140 if (cnr->nr_phase == 1) { 141 /* 142 * Look for a phase 1 address on this interface. 143 * This may leave aa pointing to the first address on 144 * the NEXT interface! 145 */ 146 for (; aa; aa = aa->aa_list.tqe_next) { 147 if (aa->aa_ifp == ifp && 148 (aa->aa_flags & AFA_PHASE2) == 0) 149 break; 150 } 151 } else { /* default to phase 2 */ 152 /* 153 * Look for a phase 2 address on this interface. 154 * This may leave aa pointing to the first address on 155 * the NEXT interface! 156 */ 157 for (; aa; aa = aa->aa_list.tqe_next) { 158 if (aa->aa_ifp == ifp && 159 (aa->aa_flags & AFA_PHASE2)) 160 break; 161 } 162 } 163 164 if (ifp == 0) 165 panic("at_control"); 166 167 /* 168 * If we failed to find an existing at_ifaddr entry, then we 169 * allocate a fresh one. 170 * XXX change this to use malloc 171 */ 172 if (aa == (struct at_ifaddr *) 0) { 173 aa = (struct at_ifaddr *) 174 malloc(sizeof(struct at_ifaddr), M_IFADDR, 175 M_WAITOK|M_ZERO); 176 177 if (aa == NULL) 178 return (ENOBUFS); 179 180 callout_init(&aa->aa_probe_ch, 0); 181 182 if ((aa0 = at_ifaddr.tqh_first) != NULL) { 183 /* 184 * Don't let the loopback be first, since the 185 * first address is the machine's default 186 * address for binding. 187 * If it is, stick ourself in front, otherwise 188 * go to the back of the list. 189 */ 190 if (aa0->aa_ifp->if_flags & IFF_LOOPBACK) { 191 TAILQ_INSERT_HEAD(&at_ifaddr, aa, 192 aa_list); 193 } else { 194 TAILQ_INSERT_TAIL(&at_ifaddr, aa, 195 aa_list); 196 } 197 } else { 198 TAILQ_INSERT_TAIL(&at_ifaddr, aa, aa_list); 199 } 200 IFAREF(&aa->aa_ifa); 201 202 /* 203 * Find the end of the interface's addresses 204 * and link our new one on the end 205 */ 206 TAILQ_INSERT_TAIL(&ifp->if_addrlist, 207 (struct ifaddr *) aa, ifa_list); 208 IFAREF(&aa->aa_ifa); 209 210 /* 211 * As the at_ifaddr contains the actual sockaddrs, 212 * and the ifaddr itself, link them al together 213 * correctly. 214 */ 215 aa->aa_ifa.ifa_addr = 216 (struct sockaddr *) &aa->aa_addr; 217 aa->aa_ifa.ifa_dstaddr = 218 (struct sockaddr *) &aa->aa_addr; 219 aa->aa_ifa.ifa_netmask = 220 (struct sockaddr *) &aa->aa_netmask; 221 222 /* 223 * Set/clear the phase 2 bit. 224 */ 225 if (cnr->nr_phase == 1) 226 aa->aa_flags &= ~AFA_PHASE2; 227 else 228 aa->aa_flags |= AFA_PHASE2; 229 230 /* 231 * and link it all together 232 */ 233 aa->aa_ifp = ifp; 234 } else { 235 /* 236 * If we DID find one then we clobber any routes 237 * dependent on it.. 238 */ 239 at_scrub(ifp, aa); 240 } 241 break; 242 243 case SIOCGIFADDR: 244 csat = satocsat(ifreq_getaddr(cmd, ifr)); 245 cnr = (const struct netrange *)csat->sat_zero; 246 if (cnr->nr_phase == 1) { 247 /* 248 * If the request is specifying phase 1, then 249 * only look at a phase one address 250 */ 251 for (; aa; aa = aa->aa_list.tqe_next) { 252 if (aa->aa_ifp == ifp && 253 (aa->aa_flags & AFA_PHASE2) == 0) 254 break; 255 } 256 } else if (cnr->nr_phase == 2) { 257 /* 258 * If the request is specifying phase 2, then 259 * only look at a phase two address 260 */ 261 for (; aa; aa = aa->aa_list.tqe_next) { 262 if (aa->aa_ifp == ifp && 263 (aa->aa_flags & AFA_PHASE2)) 264 break; 265 } 266 } else { 267 /* 268 * default to everything 269 */ 270 for (; aa; aa = aa->aa_list.tqe_next) { 271 if (aa->aa_ifp == ifp) 272 break; 273 } 274 } 275 276 if (aa == (struct at_ifaddr *) 0) 277 return (EADDRNOTAVAIL); 278 break; 279 } 280 281 /* 282 * By the time this switch is run we should be able to assume that 283 * the "aa" pointer is valid when needed. 284 */ 285 switch (cmd) { 286 case SIOCGIFADDR: { 287 union { 288 struct sockaddr sa; 289 struct sockaddr_at sat; 290 } u; 291 292 /* 293 * copy the contents of the sockaddr blindly. 294 */ 295 sockaddr_copy(&u.sa, sizeof(u), 296 (const struct sockaddr *)&aa->aa_addr); 297 /* 298 * and do some cleanups 299 */ 300 nr = (struct netrange *)&u.sat.sat_zero; 301 nr->nr_phase = (aa->aa_flags & AFA_PHASE2) ? 2 : 1; 302 nr->nr_firstnet = aa->aa_firstnet; 303 nr->nr_lastnet = aa->aa_lastnet; 304 ifreq_setaddr(cmd, ifr, &u.sa); 305 break; 306 } 307 308 case SIOCSIFADDR: 309 return at_ifinit(ifp, aa, 310 (const struct sockaddr_at *)ifreq_getaddr(cmd, ifr)); 311 312 case SIOCAIFADDR: 313 if (sateqaddr(&ifra->ifra_addr, &aa->aa_addr)) 314 return 0; 315 return at_ifinit(ifp, aa, 316 (const struct sockaddr_at *)ifreq_getaddr(cmd, ifr)); 317 318 case SIOCDIFADDR: 319 at_purgeaddr((struct ifaddr *) aa, ifp); 320 break; 321 322 default: 323 if (ifp == 0 || ifp->if_ioctl == 0) 324 return (EOPNOTSUPP); 325 return ((*ifp->if_ioctl) (ifp, cmd, data)); 326 } 327 return (0); 328 } 329 330 void 331 at_purgeaddr(ifa, ifp) 332 struct ifaddr *ifa; 333 struct ifnet *ifp; 334 { 335 struct at_ifaddr *aa = (void *) ifa; 336 337 /* 338 * scrub all routes.. didn't we just DO this? XXX yes, del it 339 * XXX above XXX not necessarily true anymore 340 */ 341 at_scrub(ifp, aa); 342 343 /* 344 * remove the ifaddr from the interface 345 */ 346 TAILQ_REMOVE(&ifp->if_addrlist, (struct ifaddr *) aa, ifa_list); 347 IFAFREE(&aa->aa_ifa); 348 TAILQ_REMOVE(&at_ifaddr, aa, aa_list); 349 IFAFREE(&aa->aa_ifa); 350 } 351 352 void 353 at_purgeif(ifp) 354 struct ifnet *ifp; 355 { 356 struct ifaddr *ifa, *nifa; 357 358 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) { 359 nifa = TAILQ_NEXT(ifa, ifa_list); 360 if (ifa->ifa_addr->sa_family != AF_APPLETALK) 361 continue; 362 at_purgeaddr(ifa, ifp); 363 } 364 } 365 366 /* 367 * Given an interface and an at_ifaddr (supposedly on that interface) remove 368 * any routes that depend on this. Why ifp is needed I'm not sure, as 369 * aa->at_ifaddr.ifa_ifp should be the same. 370 */ 371 static int 372 at_scrub(ifp, aa) 373 struct ifnet *ifp; 374 struct at_ifaddr *aa; 375 { 376 int error = 0; 377 378 if (aa->aa_flags & AFA_ROUTE) { 379 if (ifp->if_flags & IFF_LOOPBACK) 380 error = aa_delsingleroute(&aa->aa_ifa, 381 &aa->aa_addr.sat_addr, &aa->aa_netmask.sat_addr); 382 else if (ifp->if_flags & IFF_POINTOPOINT) 383 error = rtinit(&aa->aa_ifa, RTM_DELETE, RTF_HOST); 384 else if (ifp->if_flags & IFF_BROADCAST) 385 error = aa_dorangeroute(&aa->aa_ifa, 386 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), 387 RTM_DELETE); 388 389 aa->aa_ifa.ifa_flags &= ~IFA_ROUTE; 390 aa->aa_flags &= ~AFA_ROUTE; 391 } 392 return error; 393 } 394 395 /* 396 * given an at_ifaddr,a sockaddr_at and an ifp, 397 * bang them all together at high speed and see what happens 398 */ 399 static int 400 at_ifinit(ifp, aa, sat) 401 struct ifnet *ifp; 402 struct at_ifaddr *aa; 403 const struct sockaddr_at *sat; 404 { 405 struct netrange nr, onr; 406 struct sockaddr_at oldaddr; 407 int s = splnet(), error = 0, i, j; 408 int netinc, nodeinc, nnets; 409 u_short net; 410 411 /* 412 * save the old addresses in the at_ifaddr just in case we need them. 413 */ 414 oldaddr = aa->aa_addr; 415 onr.nr_firstnet = aa->aa_firstnet; 416 onr.nr_lastnet = aa->aa_lastnet; 417 418 /* 419 * take the address supplied as an argument, and add it to the 420 * at_ifnet (also given). Remember ing to update 421 * those parts of the at_ifaddr that need special processing 422 */ 423 bzero(AA_SAT(aa), sizeof(struct sockaddr_at)); 424 bcopy(sat->sat_zero, &nr, sizeof(struct netrange)); 425 bcopy(sat->sat_zero, AA_SAT(aa)->sat_zero, sizeof(struct netrange)); 426 nnets = ntohs(nr.nr_lastnet) - ntohs(nr.nr_firstnet) + 1; 427 aa->aa_firstnet = nr.nr_firstnet; 428 aa->aa_lastnet = nr.nr_lastnet; 429 430 #ifdef NETATALKDEBUG 431 printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n", 432 ifp->if_xname, 433 ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node, 434 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), 435 (aa->aa_flags & AFA_PHASE2) ? 2 : 1); 436 #endif 437 438 /* 439 * We could eliminate the need for a second phase 1 probe (post 440 * autoconf) if we check whether we're resetting the node. Note 441 * that phase 1 probes use only nodes, not net.node pairs. Under 442 * phase 2, both the net and node must be the same. 443 */ 444 AA_SAT(aa)->sat_len = sat->sat_len; 445 AA_SAT(aa)->sat_family = AF_APPLETALK; 446 if (ifp->if_flags & IFF_LOOPBACK) { 447 AA_SAT(aa)->sat_addr.s_net = sat->sat_addr.s_net; 448 AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node; 449 #if 0 450 } else if (fp->if_flags & IFF_POINTOPOINT) { 451 /* unimplemented */ 452 /* 453 * we'd have to copy the dstaddr field over from the sat 454 * but it's not clear that it would contain the right info.. 455 */ 456 #endif 457 } else { 458 /* 459 * We are a normal (probably ethernet) interface. 460 * apply the new address to the interface structures etc. 461 * We will probe this address on the net first, before 462 * applying it to ensure that it is free.. If it is not, then 463 * we will try a number of other randomly generated addresses 464 * in this net and then increment the net. etc.etc. until 465 * we find an unused address. 466 */ 467 aa->aa_flags |= AFA_PROBING; /* if not loopback we Must 468 * probe? */ 469 if (aa->aa_flags & AFA_PHASE2) { 470 if (sat->sat_addr.s_net == ATADDR_ANYNET) { 471 /* 472 * If we are phase 2, and the net was not 473 * specified * then we select a random net 474 * within the supplied netrange. 475 * XXX use /dev/random? 476 */ 477 if (nnets != 1) { 478 net = ntohs(nr.nr_firstnet) + 479 time_second % (nnets - 1); 480 } else { 481 net = ntohs(nr.nr_firstnet); 482 } 483 } else { 484 /* 485 * if a net was supplied, then check that it 486 * is within the netrange. If it is not then 487 * replace the old values and return an error 488 */ 489 if (ntohs(sat->sat_addr.s_net) < 490 ntohs(nr.nr_firstnet) || 491 ntohs(sat->sat_addr.s_net) > 492 ntohs(nr.nr_lastnet)) { 493 aa->aa_addr = oldaddr; 494 aa->aa_firstnet = onr.nr_firstnet; 495 aa->aa_lastnet = onr.nr_lastnet; 496 splx(s); 497 return (EINVAL); 498 } 499 /* 500 * otherwise just use the new net number.. 501 */ 502 net = ntohs(sat->sat_addr.s_net); 503 } 504 } else { 505 /* 506 * we must be phase one, so just use whatever we were 507 * given. I guess it really isn't going to be used... 508 * RIGHT? 509 */ 510 net = ntohs(sat->sat_addr.s_net); 511 } 512 513 /* 514 * set the node part of the address into the ifaddr. If it's 515 * not specified, be random about it... XXX use /dev/random? 516 */ 517 if (sat->sat_addr.s_node == ATADDR_ANYNODE) { 518 AA_SAT(aa)->sat_addr.s_node = time_second; 519 } else { 520 AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node; 521 } 522 523 /* 524 * step through the nets in the range starting at the 525 * (possibly random) start point. 526 */ 527 for (i = nnets, netinc = 1; i > 0; net = ntohs(nr.nr_firstnet) + 528 ((net - ntohs(nr.nr_firstnet) + netinc) % nnets), i--) { 529 AA_SAT(aa)->sat_addr.s_net = htons(net); 530 531 /* 532 * using a rather strange stepping method, 533 * stagger through the possible node addresses 534 * Once again, starting at the (possibly random) 535 * initial node address. 536 */ 537 for (j = 0, nodeinc = time_second | 1; j < 256; 538 j++, AA_SAT(aa)->sat_addr.s_node += nodeinc) { 539 if (AA_SAT(aa)->sat_addr.s_node > 253 || 540 AA_SAT(aa)->sat_addr.s_node < 1) { 541 continue; 542 } 543 aa->aa_probcnt = 10; 544 545 /* 546 * start off the probes as an asynchronous 547 * activity. though why wait 200mSec? 548 */ 549 callout_reset(&aa->aa_probe_ch, hz / 5, 550 aarpprobe, ifp); 551 if (tsleep(aa, PPAUSE | PCATCH, "at_ifinit", 552 0)) { 553 /* 554 * theoretically we shouldn't time out 555 * here so if we returned with an error. 556 */ 557 printf("at_ifinit: timeout?!\n"); 558 aa->aa_addr = oldaddr; 559 aa->aa_firstnet = onr.nr_firstnet; 560 aa->aa_lastnet = onr.nr_lastnet; 561 splx(s); 562 return (EINTR); 563 } 564 /* 565 * The async activity should have woken us 566 * up. We need to see if it was successful in 567 * finding a free spot, or if we need to 568 * iterate to the next address to try. 569 */ 570 if ((aa->aa_flags & AFA_PROBING) == 0) 571 break; 572 } 573 574 /* 575 * of course we need to break out through two loops... 576 */ 577 if ((aa->aa_flags & AFA_PROBING) == 0) 578 break; 579 580 /* reset node for next network */ 581 AA_SAT(aa)->sat_addr.s_node = time_second; 582 } 583 584 /* 585 * if we are still trying to probe, then we have finished all 586 * the possible addresses, so we need to give up 587 */ 588 if (aa->aa_flags & AFA_PROBING) { 589 aa->aa_addr = oldaddr; 590 aa->aa_firstnet = onr.nr_firstnet; 591 aa->aa_lastnet = onr.nr_lastnet; 592 splx(s); 593 return (EADDRINUSE); 594 } 595 } 596 597 /* 598 * Now that we have selected an address, we need to tell the 599 * interface about it, just in case it needs to adjust something. 600 */ 601 if (ifp->if_ioctl && 602 (error = (*ifp->if_ioctl) (ifp, SIOCSIFADDR, (void *) aa))) { 603 /* 604 * of course this could mean that it objects violently 605 * so if it does, we back out again.. 606 */ 607 aa->aa_addr = oldaddr; 608 aa->aa_firstnet = onr.nr_firstnet; 609 aa->aa_lastnet = onr.nr_lastnet; 610 splx(s); 611 return (error); 612 } 613 /* 614 * set up the netmask part of the at_ifaddr and point the appropriate 615 * pointer in the ifaddr to it. probably pointless, but what the 616 * heck.. XXX 617 */ 618 bzero(&aa->aa_netmask, sizeof(aa->aa_netmask)); 619 aa->aa_netmask.sat_len = sizeof(struct sockaddr_at); 620 aa->aa_netmask.sat_family = AF_APPLETALK; 621 aa->aa_netmask.sat_addr.s_net = 0xffff; 622 aa->aa_netmask.sat_addr.s_node = 0; 623 #if 0 624 aa->aa_ifa.ifa_netmask = (struct sockaddr *) &(aa->aa_netmask);/* XXX */ 625 #endif 626 627 /* 628 * Initialize broadcast (or remote p2p) address 629 */ 630 bzero(&aa->aa_broadaddr, sizeof(aa->aa_broadaddr)); 631 aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at); 632 aa->aa_broadaddr.sat_family = AF_APPLETALK; 633 634 aa->aa_ifa.ifa_metric = ifp->if_metric; 635 if (ifp->if_flags & IFF_BROADCAST) { 636 aa->aa_broadaddr.sat_addr.s_net = htons(0); 637 aa->aa_broadaddr.sat_addr.s_node = 0xff; 638 aa->aa_ifa.ifa_broadaddr = 639 (struct sockaddr *) &aa->aa_broadaddr; 640 /* add the range of routes needed */ 641 error = aa_dorangeroute(&aa->aa_ifa, 642 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), RTM_ADD); 643 } else if (ifp->if_flags & IFF_POINTOPOINT) { 644 struct at_addr rtaddr, rtmask; 645 646 bzero(&rtaddr, sizeof(rtaddr)); 647 bzero(&rtmask, sizeof(rtmask)); 648 /* fill in the far end if we know it here XXX */ 649 aa->aa_ifa.ifa_dstaddr = (struct sockaddr *) & aa->aa_dstaddr; 650 error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask); 651 } else if (ifp->if_flags & IFF_LOOPBACK) { 652 struct at_addr rtaddr, rtmask; 653 654 bzero(&rtaddr, sizeof(rtaddr)); 655 bzero(&rtmask, sizeof(rtmask)); 656 rtaddr.s_net = AA_SAT(aa)->sat_addr.s_net; 657 rtaddr.s_node = AA_SAT(aa)->sat_addr.s_node; 658 rtmask.s_net = 0xffff; 659 rtmask.s_node = 0x0; 660 error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask); 661 } 662 /* 663 * of course if we can't add these routes we back out, but it's getting 664 * risky by now XXX 665 */ 666 if (error) { 667 at_scrub(ifp, aa); 668 aa->aa_addr = oldaddr; 669 aa->aa_firstnet = onr.nr_firstnet; 670 aa->aa_lastnet = onr.nr_lastnet; 671 splx(s); 672 return (error); 673 } 674 /* 675 * note that the address has a route associated with it.... 676 */ 677 aa->aa_ifa.ifa_flags |= IFA_ROUTE; 678 aa->aa_flags |= AFA_ROUTE; 679 splx(s); 680 return (0); 681 } 682 683 /* 684 * check whether a given address is a broadcast address for us.. 685 */ 686 int 687 at_broadcast(const struct sockaddr_at *sat) 688 { 689 struct at_ifaddr *aa; 690 691 /* 692 * If the node is not right, it can't be a broadcast 693 */ 694 if (sat->sat_addr.s_node != ATADDR_BCAST) 695 return 0; 696 697 /* 698 * If the node was right then if the net is right, it's a broadcast 699 */ 700 if (sat->sat_addr.s_net == ATADDR_ANYNET) 701 return 1; 702 703 /* 704 * failing that, if the net is one we have, it's a broadcast as well. 705 */ 706 for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) { 707 if ((aa->aa_ifp->if_flags & IFF_BROADCAST) 708 && (ntohs(sat->sat_addr.s_net) >= ntohs(aa->aa_firstnet) 709 && ntohs(sat->sat_addr.s_net) <= ntohs(aa->aa_lastnet))) 710 return 1; 711 } 712 return 0; 713 } 714 715 716 /* 717 * aa_dorangeroute() 718 * 719 * Add a route for a range of networks from bot to top - 1. 720 * Algorithm: 721 * 722 * Split the range into two subranges such that the middle 723 * of the two ranges is the point where the highest bit of difference 724 * between the two addresses, makes it's transition 725 * Each of the upper and lower ranges might not exist, or might be 726 * representable by 1 or more netmasks. In addition, if both 727 * ranges can be represented by the same netmask, then teh can be merged 728 * by using the next higher netmask.. 729 */ 730 731 static int 732 aa_dorangeroute(ifa, bot, top, cmd) 733 struct ifaddr *ifa; 734 u_int bot; 735 u_int top; 736 int cmd; 737 { 738 u_int mask1; 739 struct at_addr addr; 740 struct at_addr mask; 741 int error; 742 743 /* 744 * slight sanity check 745 */ 746 if (bot > top) 747 return (EINVAL); 748 749 addr.s_node = 0; 750 mask.s_node = 0; 751 /* 752 * just start out with the lowest boundary 753 * and keep extending the mask till it's too big. 754 */ 755 756 while (bot <= top) { 757 mask1 = 1; 758 while (((bot & ~mask1) >= bot) 759 && ((bot | mask1) <= top)) { 760 mask1 <<= 1; 761 mask1 |= 1; 762 } 763 mask1 >>= 1; 764 mask.s_net = htons(~mask1); 765 addr.s_net = htons(bot); 766 if (cmd == RTM_ADD) { 767 error = aa_addsingleroute(ifa, &addr, &mask); 768 if (error) { 769 /* XXX clean up? */ 770 return (error); 771 } 772 } else { 773 error = aa_delsingleroute(ifa, &addr, &mask); 774 } 775 bot = (bot | mask1) + 1; 776 } 777 return 0; 778 } 779 780 static int 781 aa_addsingleroute(ifa, addr, mask) 782 struct ifaddr *ifa; 783 struct at_addr *addr; 784 struct at_addr *mask; 785 { 786 int error; 787 788 #ifdef NETATALKDEBUG 789 printf("aa_addsingleroute: %x.%x mask %x.%x ...", 790 ntohs(addr->s_net), addr->s_node, 791 ntohs(mask->s_net), mask->s_node); 792 #endif 793 794 error = aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP); 795 #ifdef NETATALKDEBUG 796 if (error) 797 printf("aa_addsingleroute: error %d\n", error); 798 #endif 799 return (error); 800 } 801 802 static int 803 aa_delsingleroute(ifa, addr, mask) 804 struct ifaddr *ifa; 805 struct at_addr *addr; 806 struct at_addr *mask; 807 { 808 int error; 809 810 #ifdef NETATALKDEBUG 811 printf("aa_delsingleroute: %x.%x mask %x.%x ...", 812 ntohs(addr->s_net), addr->s_node, 813 ntohs(mask->s_net), mask->s_node); 814 #endif 815 816 error = aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0); 817 #ifdef NETATALKDEBUG 818 if (error) 819 printf("aa_delsingleroute: error %d\n", error); 820 #endif 821 return (error); 822 } 823 824 static int 825 aa_dosingleroute(ifa, at_addr, at_mask, cmd, flags) 826 struct ifaddr *ifa; 827 struct at_addr *at_addr; 828 struct at_addr *at_mask; 829 int cmd; 830 int flags; 831 { 832 struct sockaddr_at addr, mask, *gate; 833 834 bzero(&addr, sizeof(addr)); 835 bzero(&mask, sizeof(mask)); 836 addr.sat_family = AF_APPLETALK; 837 addr.sat_len = sizeof(struct sockaddr_at); 838 addr.sat_addr.s_net = at_addr->s_net; 839 addr.sat_addr.s_node = at_addr->s_node; 840 mask.sat_family = AF_APPLETALK; 841 mask.sat_len = sizeof(struct sockaddr_at); 842 mask.sat_addr.s_net = at_mask->s_net; 843 mask.sat_addr.s_node = at_mask->s_node; 844 845 if (at_mask->s_node) { 846 gate = satosat(ifa->ifa_dstaddr); 847 flags |= RTF_HOST; 848 } else { 849 gate = satosat(ifa->ifa_addr); 850 } 851 852 #ifdef NETATALKDEBUG 853 printf("on %s %x.%x\n", (flags & RTF_HOST) ? "host" : "net", 854 ntohs(gate->sat_addr.s_net), gate->sat_addr.s_node); 855 #endif 856 return (rtrequest(cmd, (struct sockaddr *) &addr, 857 (struct sockaddr *) gate, (struct sockaddr *) &mask, flags, NULL)); 858 } 859 860 #if 0 861 static void 862 aa_clean() 863 { 864 struct at_ifaddr *aa; 865 struct ifaddr *ifa; 866 struct ifnet *ifp; 867 868 while (aa = at_ifaddr) { 869 ifp = aa->aa_ifp; 870 at_scrub(ifp, aa); 871 at_ifaddr = aa->aa_next; 872 if ((ifa = ifp->if_addrlist) == (struct ifaddr *) aa) { 873 ifp->if_addrlist = ifa->ifa_next; 874 } else { 875 while (ifa->ifa_next && 876 (ifa->ifa_next != (struct ifaddr *) aa)) { 877 ifa = ifa->ifa_next; 878 } 879 if (ifa->ifa_next) { 880 ifa->ifa_next = 881 ((struct ifaddr *) aa)->ifa_next; 882 } else { 883 panic("at_entry"); 884 } 885 } 886 } 887 } 888 #endif 889