xref: /netbsd-src/sys/netatalk/at_control.c (revision 7fa608457b817eca6e0977b37f758ae064f3c99c)
1 /*	$NetBSD: at_control.c,v 1.20 2007/09/01 04:32:51 dyoung Exp $	 */
2 
3 /*
4  * Copyright (c) 1990,1994 Regents of The University of Michigan.
5  * All Rights Reserved.
6  *
7  * Permission to use, copy, modify, and distribute this software and
8  * its documentation for any purpose and without fee is hereby granted,
9  * provided that the above copyright notice appears in all copies and
10  * that both that copyright notice and this permission notice appear
11  * in supporting documentation, and that the name of The University
12  * of Michigan not be used in advertising or publicity pertaining to
13  * distribution of the software without specific, written prior
14  * permission. This software is supplied as is without expressed or
15  * implied warranties of any kind.
16  *
17  * This product includes software developed by the University of
18  * California, Berkeley and its contributors.
19  *
20  *	Research Systems Unix Group
21  *	The University of Michigan
22  *	c/o Wesley Craig
23  *	535 W. William Street
24  *	Ann Arbor, Michigan
25  *	+1-313-764-2278
26  *	netatalk@umich.edu
27  */
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: at_control.c,v 1.20 2007/09/01 04:32:51 dyoung Exp $");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/proc.h>
35 #include <sys/errno.h>
36 #include <sys/ioctl.h>
37 #include <sys/mbuf.h>
38 #include <sys/kernel.h>
39 #include <sys/socket.h>
40 #include <sys/socketvar.h>
41 #include <sys/kauth.h>
42 #include <net/if.h>
43 #include <net/route.h>
44 #include <net/if_ether.h>
45 #include <netinet/in.h>
46 #undef s_net
47 
48 #include <netatalk/at.h>
49 #include <netatalk/at_var.h>
50 #include <netatalk/aarp.h>
51 #include <netatalk/phase2.h>
52 #include <netatalk/at_extern.h>
53 
54 static int aa_dorangeroute(struct ifaddr * ifa,
55     u_int first, u_int last, int cmd);
56 static int aa_addsingleroute(struct ifaddr * ifa,
57     struct at_addr * addr, struct at_addr * mask);
58 static int aa_delsingleroute(struct ifaddr * ifa,
59     struct at_addr * addr, struct at_addr * mask);
60 static int aa_dosingleroute(struct ifaddr * ifa, struct at_addr * addr,
61     struct at_addr * mask, int cmd, int flags);
62 static int at_scrub(struct ifnet * ifp, struct at_ifaddr * aa);
63 static int at_ifinit(struct ifnet *, struct at_ifaddr *,
64     const struct sockaddr_at *);
65 #if 0
66 static void aa_clean(void);
67 #endif
68 
69 #define sateqaddr(a,b)	((a)->sat_len == (b)->sat_len && \
70 			 (a)->sat_family == (b)->sat_family && \
71 			 (a)->sat_addr.s_net == (b)->sat_addr.s_net && \
72 			 (a)->sat_addr.s_node == (b)->sat_addr.s_node )
73 
74 int
75 at_control(cmd, data, ifp, l)
76 	u_long          cmd;
77 	void *        data;
78 	struct ifnet   *ifp;
79 	struct lwp     *l;
80 {
81 	struct ifreq   *ifr = (struct ifreq *) data;
82 	const struct sockaddr_at *csat;
83 	struct netrange *nr;
84 	const struct netrange *cnr;
85 	struct at_aliasreq *ifra = (struct at_aliasreq *) data;
86 	struct at_ifaddr *aa0;
87 	struct at_ifaddr *aa = 0;
88 
89 	/*
90          * If we have an ifp, then find the matching at_ifaddr if it exists
91          */
92 	if (ifp)
93 		for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next)
94 			if (aa->aa_ifp == ifp)
95 				break;
96 
97 	/*
98          * In this first switch table we are basically getting ready for
99          * the second one, by getting the atalk-specific things set up
100          * so that they start to look more similar to other protocols etc.
101          */
102 
103 	switch (cmd) {
104 	case SIOCAIFADDR:
105 	case SIOCDIFADDR:
106 		/*
107 		 * If we have an appletalk sockaddr, scan forward of where
108 		 * we are now on the at_ifaddr list to find one with a matching
109 		 * address on this interface.
110 		 * This may leave aa pointing to the first address on the
111 		 * NEXT interface!
112 		 */
113 		if (ifra->ifra_addr.sat_family == AF_APPLETALK) {
114 			for (; aa; aa = aa->aa_list.tqe_next)
115 				if (aa->aa_ifp == ifp &&
116 				    sateqaddr(&aa->aa_addr, &ifra->ifra_addr))
117 					break;
118 		}
119 		/*
120 		 * If we a retrying to delete an addres but didn't find such,
121 		 * then return with an error
122 		 */
123 		if (cmd == SIOCDIFADDR && aa == 0)
124 			return (EADDRNOTAVAIL);
125 		/* FALLTHROUGH */
126 
127 	case SIOCSIFADDR:
128 		/*
129 		 * If we are not superuser, then we don't get to do these
130 		 * ops.
131 		 */
132 		if (l && kauth_authorize_network(l->l_cred,
133 		    KAUTH_NETWORK_INTERFACE,
134 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
135 		    NULL) != 0)
136 			return (EPERM);
137 
138 		csat = satocsat(ifreq_getaddr(cmd, ifr));
139 		cnr = (const struct netrange *)csat->sat_zero;
140 		if (cnr->nr_phase == 1) {
141 			/*
142 		         * Look for a phase 1 address on this interface.
143 		         * This may leave aa pointing to the first address on
144 			 * the NEXT interface!
145 		         */
146 			for (; aa; aa = aa->aa_list.tqe_next) {
147 				if (aa->aa_ifp == ifp &&
148 				    (aa->aa_flags & AFA_PHASE2) == 0)
149 					break;
150 			}
151 		} else {	/* default to phase 2 */
152 			/*
153 		         * Look for a phase 2 address on this interface.
154 		         * This may leave aa pointing to the first address on
155 			 * the NEXT interface!
156 		         */
157 			for (; aa; aa = aa->aa_list.tqe_next) {
158 				if (aa->aa_ifp == ifp &&
159 				    (aa->aa_flags & AFA_PHASE2))
160 					break;
161 			}
162 		}
163 
164 		if (ifp == 0)
165 			panic("at_control");
166 
167 		/*
168 		 * If we failed to find an existing at_ifaddr entry, then we
169 		 * allocate a fresh one.
170 		 * XXX change this to use malloc
171 		 */
172 		if (aa == (struct at_ifaddr *) 0) {
173 			aa = (struct at_ifaddr *)
174 			    malloc(sizeof(struct at_ifaddr), M_IFADDR,
175 			    M_WAITOK|M_ZERO);
176 
177 			if (aa == NULL)
178 				return (ENOBUFS);
179 
180 			callout_init(&aa->aa_probe_ch, 0);
181 
182 			if ((aa0 = at_ifaddr.tqh_first) != NULL) {
183 				/*
184 				 * Don't let the loopback be first, since the
185 				 * first address is the machine's default
186 				 * address for binding.
187 				 * If it is, stick ourself in front, otherwise
188 				 * go to the back of the list.
189 				 */
190 				if (aa0->aa_ifp->if_flags & IFF_LOOPBACK) {
191 					TAILQ_INSERT_HEAD(&at_ifaddr, aa,
192 					    aa_list);
193 				} else {
194 					TAILQ_INSERT_TAIL(&at_ifaddr, aa,
195 					    aa_list);
196 				}
197 			} else {
198 				TAILQ_INSERT_TAIL(&at_ifaddr, aa, aa_list);
199 			}
200 			IFAREF(&aa->aa_ifa);
201 
202 			/*
203 		         * Find the end of the interface's addresses
204 		         * and link our new one on the end
205 		         */
206 			TAILQ_INSERT_TAIL(&ifp->if_addrlist,
207 			    (struct ifaddr *) aa, ifa_list);
208 			IFAREF(&aa->aa_ifa);
209 
210 			/*
211 		         * As the at_ifaddr contains the actual sockaddrs,
212 		         * and the ifaddr itself, link them al together
213 			 * correctly.
214 		         */
215 			aa->aa_ifa.ifa_addr =
216 			    (struct sockaddr *) &aa->aa_addr;
217 			aa->aa_ifa.ifa_dstaddr =
218 			    (struct sockaddr *) &aa->aa_addr;
219 			aa->aa_ifa.ifa_netmask =
220 			    (struct sockaddr *) &aa->aa_netmask;
221 
222 			/*
223 		         * Set/clear the phase 2 bit.
224 		         */
225 			if (cnr->nr_phase == 1)
226 				aa->aa_flags &= ~AFA_PHASE2;
227 			else
228 				aa->aa_flags |= AFA_PHASE2;
229 
230 			/*
231 		         * and link it all together
232 		         */
233 			aa->aa_ifp = ifp;
234 		} else {
235 			/*
236 		         * If we DID find one then we clobber any routes
237 			 * dependent on it..
238 		         */
239 			at_scrub(ifp, aa);
240 		}
241 		break;
242 
243 	case SIOCGIFADDR:
244 		csat = satocsat(ifreq_getaddr(cmd, ifr));
245 		cnr = (const struct netrange *)csat->sat_zero;
246 		if (cnr->nr_phase == 1) {
247 			/*
248 		         * If the request is specifying phase 1, then
249 		         * only look at a phase one address
250 		         */
251 			for (; aa; aa = aa->aa_list.tqe_next) {
252 				if (aa->aa_ifp == ifp &&
253 				    (aa->aa_flags & AFA_PHASE2) == 0)
254 					break;
255 			}
256 		} else if (cnr->nr_phase == 2) {
257 			/*
258 		         * If the request is specifying phase 2, then
259 		         * only look at a phase two address
260 		         */
261 			for (; aa; aa = aa->aa_list.tqe_next) {
262 				if (aa->aa_ifp == ifp &&
263 				    (aa->aa_flags & AFA_PHASE2))
264 					break;
265 			}
266 		} else {
267 			/*
268 		         * default to everything
269 		         */
270 			for (; aa; aa = aa->aa_list.tqe_next) {
271 				if (aa->aa_ifp == ifp)
272 					break;
273 			}
274 		}
275 
276 		if (aa == (struct at_ifaddr *) 0)
277 			return (EADDRNOTAVAIL);
278 		break;
279 	}
280 
281 	/*
282          * By the time this switch is run we should be able to assume that
283          * the "aa" pointer is valid when needed.
284          */
285 	switch (cmd) {
286 	case SIOCGIFADDR: {
287 		union {
288 			struct sockaddr sa;
289 			struct sockaddr_at sat;
290 		} u;
291 
292 		/*
293 		 * copy the contents of the sockaddr blindly.
294 		 */
295 		sockaddr_copy(&u.sa, sizeof(u),
296 		    (const struct sockaddr *)&aa->aa_addr);
297 		/*
298 		 * and do some cleanups
299 		 */
300 		nr = (struct netrange *)&u.sat.sat_zero;
301 		nr->nr_phase = (aa->aa_flags & AFA_PHASE2) ? 2 : 1;
302 		nr->nr_firstnet = aa->aa_firstnet;
303 		nr->nr_lastnet = aa->aa_lastnet;
304 		ifreq_setaddr(cmd, ifr, &u.sa);
305 		break;
306 	}
307 
308 	case SIOCSIFADDR:
309 		return at_ifinit(ifp, aa,
310 		    (const struct sockaddr_at *)ifreq_getaddr(cmd, ifr));
311 
312 	case SIOCAIFADDR:
313 		if (sateqaddr(&ifra->ifra_addr, &aa->aa_addr))
314 			return 0;
315 		return at_ifinit(ifp, aa,
316 		    (const struct sockaddr_at *)ifreq_getaddr(cmd, ifr));
317 
318 	case SIOCDIFADDR:
319 		at_purgeaddr((struct ifaddr *) aa, ifp);
320 		break;
321 
322 	default:
323 		if (ifp == 0 || ifp->if_ioctl == 0)
324 			return (EOPNOTSUPP);
325 		return ((*ifp->if_ioctl) (ifp, cmd, data));
326 	}
327 	return (0);
328 }
329 
330 void
331 at_purgeaddr(ifa, ifp)
332 	struct ifaddr *ifa;
333 	struct ifnet *ifp;
334 {
335 	struct at_ifaddr *aa = (void *) ifa;
336 
337 	/*
338 	 * scrub all routes.. didn't we just DO this? XXX yes, del it
339 	 * XXX above XXX not necessarily true anymore
340 	 */
341 	at_scrub(ifp, aa);
342 
343 	/*
344 	 * remove the ifaddr from the interface
345 	 */
346 	TAILQ_REMOVE(&ifp->if_addrlist, (struct ifaddr *) aa, ifa_list);
347 	IFAFREE(&aa->aa_ifa);
348 	TAILQ_REMOVE(&at_ifaddr, aa, aa_list);
349 	IFAFREE(&aa->aa_ifa);
350 }
351 
352 void
353 at_purgeif(ifp)
354 	struct ifnet *ifp;
355 {
356 	struct ifaddr *ifa, *nifa;
357 
358 	for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) {
359 		nifa = TAILQ_NEXT(ifa, ifa_list);
360 		if (ifa->ifa_addr->sa_family != AF_APPLETALK)
361 			continue;
362 		at_purgeaddr(ifa, ifp);
363 	}
364 }
365 
366 /*
367  * Given an interface and an at_ifaddr (supposedly on that interface) remove
368  * any routes that depend on this. Why ifp is needed I'm not sure, as
369  * aa->at_ifaddr.ifa_ifp should be the same.
370  */
371 static int
372 at_scrub(ifp, aa)
373 	struct ifnet   *ifp;
374 	struct at_ifaddr *aa;
375 {
376 	int error = 0;
377 
378 	if (aa->aa_flags & AFA_ROUTE) {
379 		if (ifp->if_flags & IFF_LOOPBACK)
380 			error = aa_delsingleroute(&aa->aa_ifa,
381 			    &aa->aa_addr.sat_addr, &aa->aa_netmask.sat_addr);
382 		else if (ifp->if_flags & IFF_POINTOPOINT)
383 			error = rtinit(&aa->aa_ifa, RTM_DELETE, RTF_HOST);
384 		else if (ifp->if_flags & IFF_BROADCAST)
385 			error = aa_dorangeroute(&aa->aa_ifa,
386 			    ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
387 			    RTM_DELETE);
388 
389 		aa->aa_ifa.ifa_flags &= ~IFA_ROUTE;
390 		aa->aa_flags &= ~AFA_ROUTE;
391 	}
392 	return error;
393 }
394 
395 /*
396  * given an at_ifaddr,a sockaddr_at and an ifp,
397  * bang them all together at high speed and see what happens
398  */
399 static int
400 at_ifinit(ifp, aa, sat)
401 	struct ifnet   *ifp;
402 	struct at_ifaddr *aa;
403 	const struct sockaddr_at *sat;
404 {
405 	struct netrange nr, onr;
406 	struct sockaddr_at oldaddr;
407 	int             s = splnet(), error = 0, i, j;
408 	int             netinc, nodeinc, nnets;
409 	u_short         net;
410 
411 	/*
412 	 * save the old addresses in the at_ifaddr just in case we need them.
413 	 */
414 	oldaddr = aa->aa_addr;
415 	onr.nr_firstnet = aa->aa_firstnet;
416 	onr.nr_lastnet = aa->aa_lastnet;
417 
418 	/*
419          * take the address supplied as an argument, and add it to the
420          * at_ifnet (also given). Remember ing to update
421          * those parts of the at_ifaddr that need special processing
422          */
423 	bzero(AA_SAT(aa), sizeof(struct sockaddr_at));
424 	bcopy(sat->sat_zero, &nr, sizeof(struct netrange));
425 	bcopy(sat->sat_zero, AA_SAT(aa)->sat_zero, sizeof(struct netrange));
426 	nnets = ntohs(nr.nr_lastnet) - ntohs(nr.nr_firstnet) + 1;
427 	aa->aa_firstnet = nr.nr_firstnet;
428 	aa->aa_lastnet = nr.nr_lastnet;
429 
430 #ifdef NETATALKDEBUG
431 	printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n",
432 	    ifp->if_xname,
433 	    ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node,
434 	    ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
435 	    (aa->aa_flags & AFA_PHASE2) ? 2 : 1);
436 #endif
437 
438 	/*
439          * We could eliminate the need for a second phase 1 probe (post
440          * autoconf) if we check whether we're resetting the node. Note
441          * that phase 1 probes use only nodes, not net.node pairs.  Under
442          * phase 2, both the net and node must be the same.
443          */
444 	AA_SAT(aa)->sat_len = sat->sat_len;
445 	AA_SAT(aa)->sat_family = AF_APPLETALK;
446 	if (ifp->if_flags & IFF_LOOPBACK) {
447 		AA_SAT(aa)->sat_addr.s_net = sat->sat_addr.s_net;
448 		AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
449 #if 0
450 	} else if (fp->if_flags & IFF_POINTOPOINT) {
451 		/* unimplemented */
452 		/*
453 		 * we'd have to copy the dstaddr field over from the sat
454 		 * but it's not clear that it would contain the right info..
455 		 */
456 #endif
457 	} else {
458 		/*
459 		 * We are a normal (probably ethernet) interface.
460 		 * apply the new address to the interface structures etc.
461 		 * We will probe this address on the net first, before
462 		 * applying it to ensure that it is free.. If it is not, then
463 		 * we will try a number of other randomly generated addresses
464 		 * in this net and then increment the net.  etc.etc. until
465 		 * we find an unused address.
466 		 */
467 		aa->aa_flags |= AFA_PROBING;	/* if not loopback we Must
468 						 * probe? */
469 		if (aa->aa_flags & AFA_PHASE2) {
470 			if (sat->sat_addr.s_net == ATADDR_ANYNET) {
471 				/*
472 				 * If we are phase 2, and the net was not
473 				 * specified * then we select a random net
474 				 * within the supplied netrange.
475 				 * XXX use /dev/random?
476 				 */
477 				if (nnets != 1) {
478 					net = ntohs(nr.nr_firstnet) +
479 					    time_second % (nnets - 1);
480 				} else {
481 					net = ntohs(nr.nr_firstnet);
482 				}
483 			} else {
484 				/*
485 				 * if a net was supplied, then check that it
486 				 * is within the netrange. If it is not then
487 				 * replace the old values and return an error
488 				 */
489 				if (ntohs(sat->sat_addr.s_net) <
490 				    ntohs(nr.nr_firstnet) ||
491 				    ntohs(sat->sat_addr.s_net) >
492 				    ntohs(nr.nr_lastnet)) {
493 					aa->aa_addr = oldaddr;
494 					aa->aa_firstnet = onr.nr_firstnet;
495 					aa->aa_lastnet = onr.nr_lastnet;
496 					splx(s);
497 					return (EINVAL);
498 				}
499 				/*
500 				 * otherwise just use the new net number..
501 				 */
502 				net = ntohs(sat->sat_addr.s_net);
503 			}
504 		} else {
505 			/*
506 		         * we must be phase one, so just use whatever we were
507 			 * given. I guess it really isn't going to be used...
508 			 * RIGHT?
509 		         */
510 			net = ntohs(sat->sat_addr.s_net);
511 		}
512 
513 		/*
514 		 * set the node part of the address into the ifaddr. If it's
515 		 * not specified, be random about it... XXX use /dev/random?
516 		 */
517 		if (sat->sat_addr.s_node == ATADDR_ANYNODE) {
518 			AA_SAT(aa)->sat_addr.s_node = time_second;
519 		} else {
520 			AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
521 		}
522 
523 		/*
524 		 * step through the nets in the range starting at the
525 		 * (possibly random) start point.
526 		 */
527 		for (i = nnets, netinc = 1; i > 0; net = ntohs(nr.nr_firstnet) +
528 		     ((net - ntohs(nr.nr_firstnet) + netinc) % nnets), i--) {
529 			AA_SAT(aa)->sat_addr.s_net = htons(net);
530 
531 			/*
532 		         * using a rather strange stepping method,
533 		         * stagger through the possible node addresses
534 		         * Once again, starting at the (possibly random)
535 		         * initial node address.
536 		         */
537 			for (j = 0, nodeinc = time_second | 1; j < 256;
538 			     j++, AA_SAT(aa)->sat_addr.s_node += nodeinc) {
539 				if (AA_SAT(aa)->sat_addr.s_node > 253 ||
540 				    AA_SAT(aa)->sat_addr.s_node < 1) {
541 					continue;
542 				}
543 				aa->aa_probcnt = 10;
544 
545 				/*
546 				 * start off the probes as an asynchronous
547 				 * activity. though why wait 200mSec?
548 				 */
549 				callout_reset(&aa->aa_probe_ch, hz / 5,
550 				    aarpprobe, ifp);
551 				if (tsleep(aa, PPAUSE | PCATCH, "at_ifinit",
552 				    0)) {
553 					/*
554 				         * theoretically we shouldn't time out
555 					 * here so if we returned with an error.
556 				         */
557 					printf("at_ifinit: timeout?!\n");
558 					aa->aa_addr = oldaddr;
559 					aa->aa_firstnet = onr.nr_firstnet;
560 					aa->aa_lastnet = onr.nr_lastnet;
561 					splx(s);
562 					return (EINTR);
563 				}
564 				/*
565 				 * The async activity should have woken us
566 				 * up. We need to see if it was successful in
567 				 * finding a free spot, or if we need to
568 				 * iterate to the next address to try.
569 				 */
570 				if ((aa->aa_flags & AFA_PROBING) == 0)
571 					break;
572 			}
573 
574 			/*
575 		         * of course we need to break out through two loops...
576 		         */
577 			if ((aa->aa_flags & AFA_PROBING) == 0)
578 				break;
579 
580 			/* reset node for next network */
581 			AA_SAT(aa)->sat_addr.s_node = time_second;
582 		}
583 
584 		/*
585 		 * if we are still trying to probe, then we have finished all
586 		 * the possible addresses, so we need to give up
587 		 */
588 		if (aa->aa_flags & AFA_PROBING) {
589 			aa->aa_addr = oldaddr;
590 			aa->aa_firstnet = onr.nr_firstnet;
591 			aa->aa_lastnet = onr.nr_lastnet;
592 			splx(s);
593 			return (EADDRINUSE);
594 		}
595 	}
596 
597 	/*
598 	 * Now that we have selected an address, we need to tell the
599 	 * interface about it, just in case it needs to adjust something.
600 	 */
601 	if (ifp->if_ioctl &&
602 	    (error = (*ifp->if_ioctl) (ifp, SIOCSIFADDR, (void *) aa))) {
603 		/*
604 		 * of course this could mean that it objects violently
605 		 * so if it does, we back out again..
606 		 */
607 		aa->aa_addr = oldaddr;
608 		aa->aa_firstnet = onr.nr_firstnet;
609 		aa->aa_lastnet = onr.nr_lastnet;
610 		splx(s);
611 		return (error);
612 	}
613 	/*
614 	 * set up the netmask part of the at_ifaddr and point the appropriate
615 	 * pointer in the ifaddr to it. probably pointless, but what the
616 	 * heck.. XXX
617 	 */
618 	bzero(&aa->aa_netmask, sizeof(aa->aa_netmask));
619 	aa->aa_netmask.sat_len = sizeof(struct sockaddr_at);
620 	aa->aa_netmask.sat_family = AF_APPLETALK;
621 	aa->aa_netmask.sat_addr.s_net = 0xffff;
622 	aa->aa_netmask.sat_addr.s_node = 0;
623 #if 0
624 	aa->aa_ifa.ifa_netmask = (struct sockaddr *) &(aa->aa_netmask);/* XXX */
625 #endif
626 
627 	/*
628          * Initialize broadcast (or remote p2p) address
629          */
630 	bzero(&aa->aa_broadaddr, sizeof(aa->aa_broadaddr));
631 	aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at);
632 	aa->aa_broadaddr.sat_family = AF_APPLETALK;
633 
634 	aa->aa_ifa.ifa_metric = ifp->if_metric;
635 	if (ifp->if_flags & IFF_BROADCAST) {
636 		aa->aa_broadaddr.sat_addr.s_net = htons(0);
637 		aa->aa_broadaddr.sat_addr.s_node = 0xff;
638 		aa->aa_ifa.ifa_broadaddr =
639 		    (struct sockaddr *) &aa->aa_broadaddr;
640 		/* add the range of routes needed */
641 		error = aa_dorangeroute(&aa->aa_ifa,
642 		    ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), RTM_ADD);
643 	} else if (ifp->if_flags & IFF_POINTOPOINT) {
644 		struct at_addr  rtaddr, rtmask;
645 
646 		bzero(&rtaddr, sizeof(rtaddr));
647 		bzero(&rtmask, sizeof(rtmask));
648 		/* fill in the far end if we know it here XXX */
649 		aa->aa_ifa.ifa_dstaddr = (struct sockaddr *) & aa->aa_dstaddr;
650 		error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
651 	} else if (ifp->if_flags & IFF_LOOPBACK) {
652 		struct at_addr  rtaddr, rtmask;
653 
654 		bzero(&rtaddr, sizeof(rtaddr));
655 		bzero(&rtmask, sizeof(rtmask));
656 		rtaddr.s_net = AA_SAT(aa)->sat_addr.s_net;
657 		rtaddr.s_node = AA_SAT(aa)->sat_addr.s_node;
658 		rtmask.s_net = 0xffff;
659 		rtmask.s_node = 0x0;
660 		error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
661 	}
662 	/*
663          * of course if we can't add these routes we back out, but it's getting
664          * risky by now XXX
665          */
666 	if (error) {
667 		at_scrub(ifp, aa);
668 		aa->aa_addr = oldaddr;
669 		aa->aa_firstnet = onr.nr_firstnet;
670 		aa->aa_lastnet = onr.nr_lastnet;
671 		splx(s);
672 		return (error);
673 	}
674 	/*
675          * note that the address has a route associated with it....
676          */
677 	aa->aa_ifa.ifa_flags |= IFA_ROUTE;
678 	aa->aa_flags |= AFA_ROUTE;
679 	splx(s);
680 	return (0);
681 }
682 
683 /*
684  * check whether a given address is a broadcast address for us..
685  */
686 int
687 at_broadcast(const struct sockaddr_at *sat)
688 {
689 	struct at_ifaddr *aa;
690 
691 	/*
692          * If the node is not right, it can't be a broadcast
693          */
694 	if (sat->sat_addr.s_node != ATADDR_BCAST)
695 		return 0;
696 
697 	/*
698          * If the node was right then if the net is right, it's a broadcast
699          */
700 	if (sat->sat_addr.s_net == ATADDR_ANYNET)
701 		return 1;
702 
703 	/*
704          * failing that, if the net is one we have, it's a broadcast as well.
705          */
706 	for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) {
707 		if ((aa->aa_ifp->if_flags & IFF_BROADCAST)
708 		    && (ntohs(sat->sat_addr.s_net) >= ntohs(aa->aa_firstnet)
709 		  && ntohs(sat->sat_addr.s_net) <= ntohs(aa->aa_lastnet)))
710 			return 1;
711 	}
712 	return 0;
713 }
714 
715 
716 /*
717  * aa_dorangeroute()
718  *
719  * Add a route for a range of networks from bot to top - 1.
720  * Algorithm:
721  *
722  * Split the range into two subranges such that the middle
723  * of the two ranges is the point where the highest bit of difference
724  * between the two addresses, makes it's transition
725  * Each of the upper and lower ranges might not exist, or might be
726  * representable by 1 or more netmasks. In addition, if both
727  * ranges can be represented by the same netmask, then teh can be merged
728  * by using the next higher netmask..
729  */
730 
731 static int
732 aa_dorangeroute(ifa, bot, top, cmd)
733 	struct ifaddr *ifa;
734 	u_int bot;
735 	u_int top;
736 	int cmd;
737 {
738 	u_int           mask1;
739 	struct at_addr  addr;
740 	struct at_addr  mask;
741 	int             error;
742 
743 	/*
744 	 * slight sanity check
745 	 */
746 	if (bot > top)
747 		return (EINVAL);
748 
749 	addr.s_node = 0;
750 	mask.s_node = 0;
751 	/*
752 	 * just start out with the lowest boundary
753 	 * and keep extending the mask till it's too big.
754 	 */
755 
756 	while (bot <= top) {
757 		mask1 = 1;
758 		while (((bot & ~mask1) >= bot)
759 		       && ((bot | mask1) <= top)) {
760 			mask1 <<= 1;
761 			mask1 |= 1;
762 		}
763 		mask1 >>= 1;
764 		mask.s_net = htons(~mask1);
765 		addr.s_net = htons(bot);
766 		if (cmd == RTM_ADD) {
767 			error = aa_addsingleroute(ifa, &addr, &mask);
768 			if (error) {
769 				/* XXX clean up? */
770 				return (error);
771 			}
772 		} else {
773 			error = aa_delsingleroute(ifa, &addr, &mask);
774 		}
775 		bot = (bot | mask1) + 1;
776 	}
777 	return 0;
778 }
779 
780 static int
781 aa_addsingleroute(ifa, addr, mask)
782 	struct ifaddr *ifa;
783 	struct at_addr *addr;
784 	struct at_addr *mask;
785 {
786 	int error;
787 
788 #ifdef NETATALKDEBUG
789 	printf("aa_addsingleroute: %x.%x mask %x.%x ...",
790 	       ntohs(addr->s_net), addr->s_node,
791 	       ntohs(mask->s_net), mask->s_node);
792 #endif
793 
794 	error = aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP);
795 #ifdef NETATALKDEBUG
796 	if (error)
797 		printf("aa_addsingleroute: error %d\n", error);
798 #endif
799 	return (error);
800 }
801 
802 static int
803 aa_delsingleroute(ifa, addr, mask)
804 	struct ifaddr *ifa;
805 	struct at_addr *addr;
806 	struct at_addr *mask;
807 {
808 	int error;
809 
810 #ifdef NETATALKDEBUG
811 	printf("aa_delsingleroute: %x.%x mask %x.%x ...",
812 	       ntohs(addr->s_net), addr->s_node,
813 	       ntohs(mask->s_net), mask->s_node);
814 #endif
815 
816 	error = aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0);
817 #ifdef NETATALKDEBUG
818 	if (error)
819 		printf("aa_delsingleroute: error %d\n", error);
820 #endif
821 	return (error);
822 }
823 
824 static int
825 aa_dosingleroute(ifa, at_addr, at_mask, cmd, flags)
826 	struct ifaddr *ifa;
827 	struct at_addr *at_addr;
828 	struct at_addr *at_mask;
829 	int cmd;
830 	int flags;
831 {
832 	struct sockaddr_at addr, mask, *gate;
833 
834 	bzero(&addr, sizeof(addr));
835 	bzero(&mask, sizeof(mask));
836 	addr.sat_family = AF_APPLETALK;
837 	addr.sat_len = sizeof(struct sockaddr_at);
838 	addr.sat_addr.s_net = at_addr->s_net;
839 	addr.sat_addr.s_node = at_addr->s_node;
840 	mask.sat_family = AF_APPLETALK;
841 	mask.sat_len = sizeof(struct sockaddr_at);
842 	mask.sat_addr.s_net = at_mask->s_net;
843 	mask.sat_addr.s_node = at_mask->s_node;
844 
845 	if (at_mask->s_node) {
846 		gate = satosat(ifa->ifa_dstaddr);
847 		flags |= RTF_HOST;
848 	} else {
849 		gate = satosat(ifa->ifa_addr);
850 	}
851 
852 #ifdef NETATALKDEBUG
853 	printf("on %s %x.%x\n", (flags & RTF_HOST) ? "host" : "net",
854 	       ntohs(gate->sat_addr.s_net), gate->sat_addr.s_node);
855 #endif
856 	return (rtrequest(cmd, (struct sockaddr *) &addr,
857 	    (struct sockaddr *) gate, (struct sockaddr *) &mask, flags, NULL));
858 }
859 
860 #if 0
861 static void
862 aa_clean()
863 {
864 	struct at_ifaddr *aa;
865 	struct ifaddr  *ifa;
866 	struct ifnet   *ifp;
867 
868 	while (aa = at_ifaddr) {
869 		ifp = aa->aa_ifp;
870 		at_scrub(ifp, aa);
871 		at_ifaddr = aa->aa_next;
872 		if ((ifa = ifp->if_addrlist) == (struct ifaddr *) aa) {
873 			ifp->if_addrlist = ifa->ifa_next;
874 		} else {
875 			while (ifa->ifa_next &&
876 			       (ifa->ifa_next != (struct ifaddr *) aa)) {
877 				ifa = ifa->ifa_next;
878 			}
879 			if (ifa->ifa_next) {
880 				ifa->ifa_next =
881 				    ((struct ifaddr *) aa)->ifa_next;
882 			} else {
883 				panic("at_entry");
884 			}
885 		}
886 	}
887 }
888 #endif
889