1 /* $NetBSD: at_control.c,v 1.27 2008/11/07 00:20:18 dyoung Exp $ */ 2 3 /* 4 * Copyright (c) 1990,1994 Regents of The University of Michigan. 5 * All Rights Reserved. 6 * 7 * Permission to use, copy, modify, and distribute this software and 8 * its documentation for any purpose and without fee is hereby granted, 9 * provided that the above copyright notice appears in all copies and 10 * that both that copyright notice and this permission notice appear 11 * in supporting documentation, and that the name of The University 12 * of Michigan not be used in advertising or publicity pertaining to 13 * distribution of the software without specific, written prior 14 * permission. This software is supplied as is without expressed or 15 * implied warranties of any kind. 16 * 17 * This product includes software developed by the University of 18 * California, Berkeley and its contributors. 19 * 20 * Research Systems Unix Group 21 * The University of Michigan 22 * c/o Wesley Craig 23 * 535 W. William Street 24 * Ann Arbor, Michigan 25 * +1-313-764-2278 26 * netatalk@umich.edu 27 */ 28 29 #include <sys/cdefs.h> 30 __KERNEL_RCSID(0, "$NetBSD: at_control.c,v 1.27 2008/11/07 00:20:18 dyoung Exp $"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/proc.h> 35 #include <sys/errno.h> 36 #include <sys/ioctl.h> 37 #include <sys/mbuf.h> 38 #include <sys/kernel.h> 39 #include <sys/socket.h> 40 #include <sys/socketvar.h> 41 #include <sys/kauth.h> 42 #include <net/if.h> 43 #include <net/route.h> 44 #include <net/if_ether.h> 45 #include <netinet/in.h> 46 #undef s_net 47 48 #include <netatalk/at.h> 49 #include <netatalk/at_var.h> 50 #include <netatalk/aarp.h> 51 #include <netatalk/phase2.h> 52 #include <netatalk/at_extern.h> 53 54 static int aa_dorangeroute(struct ifaddr * ifa, 55 u_int first, u_int last, int cmd); 56 static int aa_addsingleroute(struct ifaddr * ifa, 57 struct at_addr * addr, struct at_addr * mask); 58 static int aa_delsingleroute(struct ifaddr * ifa, 59 struct at_addr * addr, struct at_addr * mask); 60 static int aa_dosingleroute(struct ifaddr * ifa, struct at_addr * addr, 61 struct at_addr * mask, int cmd, int flags); 62 static int at_scrub(struct ifnet * ifp, struct at_ifaddr * aa); 63 static int at_ifinit(struct ifnet *, struct at_ifaddr *, 64 const struct sockaddr_at *); 65 #if 0 66 static void aa_clean(void); 67 #endif 68 69 #define sateqaddr(a,b) ((a)->sat_len == (b)->sat_len && \ 70 (a)->sat_family == (b)->sat_family && \ 71 (a)->sat_addr.s_net == (b)->sat_addr.s_net && \ 72 (a)->sat_addr.s_node == (b)->sat_addr.s_node ) 73 74 int 75 at_control(cmd, data, ifp, l) 76 u_long cmd; 77 void * data; 78 struct ifnet *ifp; 79 struct lwp *l; 80 { 81 struct ifreq *ifr = (struct ifreq *) data; 82 const struct sockaddr_at *csat; 83 struct netrange *nr; 84 const struct netrange *cnr; 85 struct at_aliasreq *ifra = (struct at_aliasreq *) data; 86 struct at_ifaddr *aa0; 87 struct at_ifaddr *aa = 0; 88 89 /* 90 * If we have an ifp, then find the matching at_ifaddr if it exists 91 */ 92 if (ifp) 93 for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) 94 if (aa->aa_ifp == ifp) 95 break; 96 97 /* 98 * In this first switch table we are basically getting ready for 99 * the second one, by getting the atalk-specific things set up 100 * so that they start to look more similar to other protocols etc. 101 */ 102 103 switch (cmd) { 104 case SIOCAIFADDR: 105 case SIOCDIFADDR: 106 /* 107 * If we have an appletalk sockaddr, scan forward of where 108 * we are now on the at_ifaddr list to find one with a matching 109 * address on this interface. 110 * This may leave aa pointing to the first address on the 111 * NEXT interface! 112 */ 113 if (ifra->ifra_addr.sat_family == AF_APPLETALK) { 114 for (; aa; aa = aa->aa_list.tqe_next) 115 if (aa->aa_ifp == ifp && 116 sateqaddr(&aa->aa_addr, &ifra->ifra_addr)) 117 break; 118 } 119 /* 120 * If we a retrying to delete an addres but didn't find such, 121 * then return with an error 122 */ 123 if (cmd == SIOCDIFADDR && aa == 0) 124 return (EADDRNOTAVAIL); 125 /* FALLTHROUGH */ 126 127 case SIOCSIFADDR: 128 /* 129 * If we are not superuser, then we don't get to do these 130 * ops. 131 */ 132 if (l && kauth_authorize_network(l->l_cred, 133 KAUTH_NETWORK_INTERFACE, 134 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, 135 NULL) != 0) 136 return (EPERM); 137 138 csat = satocsat(ifreq_getaddr(cmd, ifr)); 139 cnr = (const struct netrange *)csat->sat_zero; 140 if (cnr->nr_phase == 1) { 141 /* 142 * Look for a phase 1 address on this interface. 143 * This may leave aa pointing to the first address on 144 * the NEXT interface! 145 */ 146 for (; aa; aa = aa->aa_list.tqe_next) { 147 if (aa->aa_ifp == ifp && 148 (aa->aa_flags & AFA_PHASE2) == 0) 149 break; 150 } 151 } else { /* default to phase 2 */ 152 /* 153 * Look for a phase 2 address on this interface. 154 * This may leave aa pointing to the first address on 155 * the NEXT interface! 156 */ 157 for (; aa; aa = aa->aa_list.tqe_next) { 158 if (aa->aa_ifp == ifp && 159 (aa->aa_flags & AFA_PHASE2)) 160 break; 161 } 162 } 163 164 if (ifp == 0) 165 panic("at_control"); 166 167 /* 168 * If we failed to find an existing at_ifaddr entry, then we 169 * allocate a fresh one. 170 * XXX change this to use malloc 171 */ 172 if (aa == (struct at_ifaddr *) 0) { 173 aa = (struct at_ifaddr *) 174 malloc(sizeof(struct at_ifaddr), M_IFADDR, 175 M_WAITOK|M_ZERO); 176 177 if (aa == NULL) 178 return (ENOBUFS); 179 180 callout_init(&aa->aa_probe_ch, 0); 181 182 if ((aa0 = at_ifaddr.tqh_first) != NULL) { 183 /* 184 * Don't let the loopback be first, since the 185 * first address is the machine's default 186 * address for binding. 187 * If it is, stick ourself in front, otherwise 188 * go to the back of the list. 189 */ 190 if (aa0->aa_ifp->if_flags & IFF_LOOPBACK) { 191 TAILQ_INSERT_HEAD(&at_ifaddr, aa, 192 aa_list); 193 } else { 194 TAILQ_INSERT_TAIL(&at_ifaddr, aa, 195 aa_list); 196 } 197 } else { 198 TAILQ_INSERT_TAIL(&at_ifaddr, aa, aa_list); 199 } 200 IFAREF(&aa->aa_ifa); 201 202 /* 203 * Find the end of the interface's addresses 204 * and link our new one on the end 205 */ 206 ifa_insert(ifp, &aa->aa_ifa); 207 208 /* 209 * As the at_ifaddr contains the actual sockaddrs, 210 * and the ifaddr itself, link them al together 211 * correctly. 212 */ 213 aa->aa_ifa.ifa_addr = 214 (struct sockaddr *) &aa->aa_addr; 215 aa->aa_ifa.ifa_dstaddr = 216 (struct sockaddr *) &aa->aa_addr; 217 aa->aa_ifa.ifa_netmask = 218 (struct sockaddr *) &aa->aa_netmask; 219 220 /* 221 * Set/clear the phase 2 bit. 222 */ 223 if (cnr->nr_phase == 1) 224 aa->aa_flags &= ~AFA_PHASE2; 225 else 226 aa->aa_flags |= AFA_PHASE2; 227 228 /* 229 * and link it all together 230 */ 231 aa->aa_ifp = ifp; 232 } else { 233 /* 234 * If we DID find one then we clobber any routes 235 * dependent on it.. 236 */ 237 at_scrub(ifp, aa); 238 } 239 break; 240 241 case SIOCGIFADDR: 242 csat = satocsat(ifreq_getaddr(cmd, ifr)); 243 cnr = (const struct netrange *)csat->sat_zero; 244 if (cnr->nr_phase == 1) { 245 /* 246 * If the request is specifying phase 1, then 247 * only look at a phase one address 248 */ 249 for (; aa; aa = aa->aa_list.tqe_next) { 250 if (aa->aa_ifp == ifp && 251 (aa->aa_flags & AFA_PHASE2) == 0) 252 break; 253 } 254 } else if (cnr->nr_phase == 2) { 255 /* 256 * If the request is specifying phase 2, then 257 * only look at a phase two address 258 */ 259 for (; aa; aa = aa->aa_list.tqe_next) { 260 if (aa->aa_ifp == ifp && 261 (aa->aa_flags & AFA_PHASE2)) 262 break; 263 } 264 } else { 265 /* 266 * default to everything 267 */ 268 for (; aa; aa = aa->aa_list.tqe_next) { 269 if (aa->aa_ifp == ifp) 270 break; 271 } 272 } 273 274 if (aa == (struct at_ifaddr *) 0) 275 return (EADDRNOTAVAIL); 276 break; 277 } 278 279 /* 280 * By the time this switch is run we should be able to assume that 281 * the "aa" pointer is valid when needed. 282 */ 283 switch (cmd) { 284 case SIOCGIFADDR: { 285 union { 286 struct sockaddr sa; 287 struct sockaddr_at sat; 288 } u; 289 290 /* 291 * copy the contents of the sockaddr blindly. 292 */ 293 sockaddr_copy(&u.sa, sizeof(u), 294 (const struct sockaddr *)&aa->aa_addr); 295 /* 296 * and do some cleanups 297 */ 298 nr = (struct netrange *)&u.sat.sat_zero; 299 nr->nr_phase = (aa->aa_flags & AFA_PHASE2) ? 2 : 1; 300 nr->nr_firstnet = aa->aa_firstnet; 301 nr->nr_lastnet = aa->aa_lastnet; 302 ifreq_setaddr(cmd, ifr, &u.sa); 303 break; 304 } 305 306 case SIOCSIFADDR: 307 return at_ifinit(ifp, aa, 308 (const struct sockaddr_at *)ifreq_getaddr(cmd, ifr)); 309 310 case SIOCAIFADDR: 311 if (sateqaddr(&ifra->ifra_addr, &aa->aa_addr)) 312 return 0; 313 return at_ifinit(ifp, aa, 314 (const struct sockaddr_at *)ifreq_getaddr(cmd, ifr)); 315 316 case SIOCDIFADDR: 317 at_purgeaddr(&aa->aa_ifa); 318 break; 319 320 default: 321 return ENOTTY; 322 } 323 return (0); 324 } 325 326 void 327 at_purgeaddr(struct ifaddr *ifa) 328 { 329 struct ifnet *ifp = ifa->ifa_ifp; 330 struct at_ifaddr *aa = (void *) ifa; 331 332 /* 333 * scrub all routes.. didn't we just DO this? XXX yes, del it 334 * XXX above XXX not necessarily true anymore 335 */ 336 at_scrub(ifp, aa); 337 338 /* 339 * remove the ifaddr from the interface 340 */ 341 ifa_remove(ifp, &aa->aa_ifa); 342 TAILQ_REMOVE(&at_ifaddr, aa, aa_list); 343 IFAFREE(&aa->aa_ifa); 344 } 345 346 void 347 at_purgeif(struct ifnet *ifp) 348 { 349 if_purgeaddrs(ifp, AF_APPLETALK, at_purgeaddr); 350 } 351 352 /* 353 * Given an interface and an at_ifaddr (supposedly on that interface) remove 354 * any routes that depend on this. Why ifp is needed I'm not sure, as 355 * aa->at_ifaddr.ifa_ifp should be the same. 356 */ 357 static int 358 at_scrub(ifp, aa) 359 struct ifnet *ifp; 360 struct at_ifaddr *aa; 361 { 362 int error = 0; 363 364 if (aa->aa_flags & AFA_ROUTE) { 365 if (ifp->if_flags & IFF_LOOPBACK) 366 error = aa_delsingleroute(&aa->aa_ifa, 367 &aa->aa_addr.sat_addr, &aa->aa_netmask.sat_addr); 368 else if (ifp->if_flags & IFF_POINTOPOINT) 369 error = rtinit(&aa->aa_ifa, RTM_DELETE, RTF_HOST); 370 else if (ifp->if_flags & IFF_BROADCAST) 371 error = aa_dorangeroute(&aa->aa_ifa, 372 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), 373 RTM_DELETE); 374 375 aa->aa_ifa.ifa_flags &= ~IFA_ROUTE; 376 aa->aa_flags &= ~AFA_ROUTE; 377 } 378 return error; 379 } 380 381 /* 382 * given an at_ifaddr,a sockaddr_at and an ifp, 383 * bang them all together at high speed and see what happens 384 */ 385 static int 386 at_ifinit(ifp, aa, sat) 387 struct ifnet *ifp; 388 struct at_ifaddr *aa; 389 const struct sockaddr_at *sat; 390 { 391 struct netrange nr, onr; 392 struct sockaddr_at oldaddr; 393 int s = splnet(), error = 0, i, j; 394 int netinc, nodeinc, nnets; 395 u_short net; 396 397 /* 398 * save the old addresses in the at_ifaddr just in case we need them. 399 */ 400 oldaddr = aa->aa_addr; 401 onr.nr_firstnet = aa->aa_firstnet; 402 onr.nr_lastnet = aa->aa_lastnet; 403 404 /* 405 * take the address supplied as an argument, and add it to the 406 * at_ifnet (also given). Remember ing to update 407 * those parts of the at_ifaddr that need special processing 408 */ 409 bzero(AA_SAT(aa), sizeof(struct sockaddr_at)); 410 bcopy(sat->sat_zero, &nr, sizeof(struct netrange)); 411 bcopy(sat->sat_zero, AA_SAT(aa)->sat_zero, sizeof(struct netrange)); 412 nnets = ntohs(nr.nr_lastnet) - ntohs(nr.nr_firstnet) + 1; 413 aa->aa_firstnet = nr.nr_firstnet; 414 aa->aa_lastnet = nr.nr_lastnet; 415 416 #ifdef NETATALKDEBUG 417 printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n", 418 ifp->if_xname, 419 ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node, 420 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), 421 (aa->aa_flags & AFA_PHASE2) ? 2 : 1); 422 #endif 423 424 /* 425 * We could eliminate the need for a second phase 1 probe (post 426 * autoconf) if we check whether we're resetting the node. Note 427 * that phase 1 probes use only nodes, not net.node pairs. Under 428 * phase 2, both the net and node must be the same. 429 */ 430 AA_SAT(aa)->sat_len = sat->sat_len; 431 AA_SAT(aa)->sat_family = AF_APPLETALK; 432 if (ifp->if_flags & IFF_LOOPBACK) { 433 AA_SAT(aa)->sat_addr.s_net = sat->sat_addr.s_net; 434 AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node; 435 #if 0 436 } else if (fp->if_flags & IFF_POINTOPOINT) { 437 /* unimplemented */ 438 /* 439 * we'd have to copy the dstaddr field over from the sat 440 * but it's not clear that it would contain the right info.. 441 */ 442 #endif 443 } else { 444 /* 445 * We are a normal (probably ethernet) interface. 446 * apply the new address to the interface structures etc. 447 * We will probe this address on the net first, before 448 * applying it to ensure that it is free.. If it is not, then 449 * we will try a number of other randomly generated addresses 450 * in this net and then increment the net. etc.etc. until 451 * we find an unused address. 452 */ 453 aa->aa_flags |= AFA_PROBING; /* if not loopback we Must 454 * probe? */ 455 if (aa->aa_flags & AFA_PHASE2) { 456 if (sat->sat_addr.s_net == ATADDR_ANYNET) { 457 /* 458 * If we are phase 2, and the net was not 459 * specified * then we select a random net 460 * within the supplied netrange. 461 * XXX use /dev/random? 462 */ 463 if (nnets != 1) { 464 net = ntohs(nr.nr_firstnet) + 465 time_second % (nnets - 1); 466 } else { 467 net = ntohs(nr.nr_firstnet); 468 } 469 } else { 470 /* 471 * if a net was supplied, then check that it 472 * is within the netrange. If it is not then 473 * replace the old values and return an error 474 */ 475 if (ntohs(sat->sat_addr.s_net) < 476 ntohs(nr.nr_firstnet) || 477 ntohs(sat->sat_addr.s_net) > 478 ntohs(nr.nr_lastnet)) { 479 aa->aa_addr = oldaddr; 480 aa->aa_firstnet = onr.nr_firstnet; 481 aa->aa_lastnet = onr.nr_lastnet; 482 splx(s); 483 return (EINVAL); 484 } 485 /* 486 * otherwise just use the new net number.. 487 */ 488 net = ntohs(sat->sat_addr.s_net); 489 } 490 } else { 491 /* 492 * we must be phase one, so just use whatever we were 493 * given. I guess it really isn't going to be used... 494 * RIGHT? 495 */ 496 net = ntohs(sat->sat_addr.s_net); 497 } 498 499 /* 500 * set the node part of the address into the ifaddr. If it's 501 * not specified, be random about it... XXX use /dev/random? 502 */ 503 if (sat->sat_addr.s_node == ATADDR_ANYNODE) { 504 AA_SAT(aa)->sat_addr.s_node = time_second; 505 } else { 506 AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node; 507 } 508 509 /* 510 * step through the nets in the range starting at the 511 * (possibly random) start point. 512 */ 513 for (i = nnets, netinc = 1; i > 0; net = ntohs(nr.nr_firstnet) + 514 ((net - ntohs(nr.nr_firstnet) + netinc) % nnets), i--) { 515 AA_SAT(aa)->sat_addr.s_net = htons(net); 516 517 /* 518 * using a rather strange stepping method, 519 * stagger through the possible node addresses 520 * Once again, starting at the (possibly random) 521 * initial node address. 522 */ 523 for (j = 0, nodeinc = time_second | 1; j < 256; 524 j++, AA_SAT(aa)->sat_addr.s_node += nodeinc) { 525 if (AA_SAT(aa)->sat_addr.s_node > 253 || 526 AA_SAT(aa)->sat_addr.s_node < 1) { 527 continue; 528 } 529 aa->aa_probcnt = 10; 530 531 /* 532 * start off the probes as an asynchronous 533 * activity. though why wait 200mSec? 534 */ 535 callout_reset(&aa->aa_probe_ch, hz / 5, 536 aarpprobe, ifp); 537 if (tsleep(aa, PPAUSE | PCATCH, "at_ifinit", 538 0)) { 539 /* 540 * theoretically we shouldn't time out 541 * here so if we returned with an error. 542 */ 543 printf("at_ifinit: timeout?!\n"); 544 aa->aa_addr = oldaddr; 545 aa->aa_firstnet = onr.nr_firstnet; 546 aa->aa_lastnet = onr.nr_lastnet; 547 splx(s); 548 return (EINTR); 549 } 550 /* 551 * The async activity should have woken us 552 * up. We need to see if it was successful in 553 * finding a free spot, or if we need to 554 * iterate to the next address to try. 555 */ 556 if ((aa->aa_flags & AFA_PROBING) == 0) 557 break; 558 } 559 560 /* 561 * of course we need to break out through two loops... 562 */ 563 if ((aa->aa_flags & AFA_PROBING) == 0) 564 break; 565 566 /* reset node for next network */ 567 AA_SAT(aa)->sat_addr.s_node = time_second; 568 } 569 570 /* 571 * if we are still trying to probe, then we have finished all 572 * the possible addresses, so we need to give up 573 */ 574 if (aa->aa_flags & AFA_PROBING) { 575 aa->aa_addr = oldaddr; 576 aa->aa_firstnet = onr.nr_firstnet; 577 aa->aa_lastnet = onr.nr_lastnet; 578 splx(s); 579 return (EADDRINUSE); 580 } 581 } 582 583 /* 584 * Now that we have selected an address, we need to tell the 585 * interface about it, just in case it needs to adjust something. 586 */ 587 if ((error = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, aa)) != 0) { 588 /* 589 * of course this could mean that it objects violently 590 * so if it does, we back out again.. 591 */ 592 aa->aa_addr = oldaddr; 593 aa->aa_firstnet = onr.nr_firstnet; 594 aa->aa_lastnet = onr.nr_lastnet; 595 splx(s); 596 return (error); 597 } 598 /* 599 * set up the netmask part of the at_ifaddr and point the appropriate 600 * pointer in the ifaddr to it. probably pointless, but what the 601 * heck.. XXX 602 */ 603 bzero(&aa->aa_netmask, sizeof(aa->aa_netmask)); 604 aa->aa_netmask.sat_len = sizeof(struct sockaddr_at); 605 aa->aa_netmask.sat_family = AF_APPLETALK; 606 aa->aa_netmask.sat_addr.s_net = 0xffff; 607 aa->aa_netmask.sat_addr.s_node = 0; 608 #if 0 609 aa->aa_ifa.ifa_netmask = (struct sockaddr *) &(aa->aa_netmask);/* XXX */ 610 #endif 611 612 /* 613 * Initialize broadcast (or remote p2p) address 614 */ 615 bzero(&aa->aa_broadaddr, sizeof(aa->aa_broadaddr)); 616 aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at); 617 aa->aa_broadaddr.sat_family = AF_APPLETALK; 618 619 aa->aa_ifa.ifa_metric = ifp->if_metric; 620 if (ifp->if_flags & IFF_BROADCAST) { 621 aa->aa_broadaddr.sat_addr.s_net = htons(0); 622 aa->aa_broadaddr.sat_addr.s_node = 0xff; 623 aa->aa_ifa.ifa_broadaddr = 624 (struct sockaddr *) &aa->aa_broadaddr; 625 /* add the range of routes needed */ 626 error = aa_dorangeroute(&aa->aa_ifa, 627 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), RTM_ADD); 628 } else if (ifp->if_flags & IFF_POINTOPOINT) { 629 struct at_addr rtaddr, rtmask; 630 631 bzero(&rtaddr, sizeof(rtaddr)); 632 bzero(&rtmask, sizeof(rtmask)); 633 /* fill in the far end if we know it here XXX */ 634 aa->aa_ifa.ifa_dstaddr = (struct sockaddr *) & aa->aa_dstaddr; 635 error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask); 636 } else if (ifp->if_flags & IFF_LOOPBACK) { 637 struct at_addr rtaddr, rtmask; 638 639 bzero(&rtaddr, sizeof(rtaddr)); 640 bzero(&rtmask, sizeof(rtmask)); 641 rtaddr.s_net = AA_SAT(aa)->sat_addr.s_net; 642 rtaddr.s_node = AA_SAT(aa)->sat_addr.s_node; 643 rtmask.s_net = 0xffff; 644 rtmask.s_node = 0x0; 645 error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask); 646 } 647 /* 648 * of course if we can't add these routes we back out, but it's getting 649 * risky by now XXX 650 */ 651 if (error) { 652 at_scrub(ifp, aa); 653 aa->aa_addr = oldaddr; 654 aa->aa_firstnet = onr.nr_firstnet; 655 aa->aa_lastnet = onr.nr_lastnet; 656 splx(s); 657 return (error); 658 } 659 /* 660 * note that the address has a route associated with it.... 661 */ 662 aa->aa_ifa.ifa_flags |= IFA_ROUTE; 663 aa->aa_flags |= AFA_ROUTE; 664 splx(s); 665 return (0); 666 } 667 668 /* 669 * check whether a given address is a broadcast address for us.. 670 */ 671 int 672 at_broadcast(const struct sockaddr_at *sat) 673 { 674 struct at_ifaddr *aa; 675 676 /* 677 * If the node is not right, it can't be a broadcast 678 */ 679 if (sat->sat_addr.s_node != ATADDR_BCAST) 680 return 0; 681 682 /* 683 * If the node was right then if the net is right, it's a broadcast 684 */ 685 if (sat->sat_addr.s_net == ATADDR_ANYNET) 686 return 1; 687 688 /* 689 * failing that, if the net is one we have, it's a broadcast as well. 690 */ 691 for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) { 692 if ((aa->aa_ifp->if_flags & IFF_BROADCAST) 693 && (ntohs(sat->sat_addr.s_net) >= ntohs(aa->aa_firstnet) 694 && ntohs(sat->sat_addr.s_net) <= ntohs(aa->aa_lastnet))) 695 return 1; 696 } 697 return 0; 698 } 699 700 701 /* 702 * aa_dorangeroute() 703 * 704 * Add a route for a range of networks from bot to top - 1. 705 * Algorithm: 706 * 707 * Split the range into two subranges such that the middle 708 * of the two ranges is the point where the highest bit of difference 709 * between the two addresses, makes it's transition 710 * Each of the upper and lower ranges might not exist, or might be 711 * representable by 1 or more netmasks. In addition, if both 712 * ranges can be represented by the same netmask, then teh can be merged 713 * by using the next higher netmask.. 714 */ 715 716 static int 717 aa_dorangeroute(ifa, bot, top, cmd) 718 struct ifaddr *ifa; 719 u_int bot; 720 u_int top; 721 int cmd; 722 { 723 u_int mask1; 724 struct at_addr addr; 725 struct at_addr mask; 726 int error; 727 728 /* 729 * slight sanity check 730 */ 731 if (bot > top) 732 return (EINVAL); 733 734 addr.s_node = 0; 735 mask.s_node = 0; 736 /* 737 * just start out with the lowest boundary 738 * and keep extending the mask till it's too big. 739 */ 740 741 while (bot <= top) { 742 mask1 = 1; 743 while (((bot & ~mask1) >= bot) 744 && ((bot | mask1) <= top)) { 745 mask1 <<= 1; 746 mask1 |= 1; 747 } 748 mask1 >>= 1; 749 mask.s_net = htons(~mask1); 750 addr.s_net = htons(bot); 751 if (cmd == RTM_ADD) { 752 error = aa_addsingleroute(ifa, &addr, &mask); 753 if (error) { 754 /* XXX clean up? */ 755 return (error); 756 } 757 } else { 758 error = aa_delsingleroute(ifa, &addr, &mask); 759 } 760 bot = (bot | mask1) + 1; 761 } 762 return 0; 763 } 764 765 static int 766 aa_addsingleroute(ifa, addr, mask) 767 struct ifaddr *ifa; 768 struct at_addr *addr; 769 struct at_addr *mask; 770 { 771 int error; 772 773 #ifdef NETATALKDEBUG 774 printf("aa_addsingleroute: %x.%x mask %x.%x ...", 775 ntohs(addr->s_net), addr->s_node, 776 ntohs(mask->s_net), mask->s_node); 777 #endif 778 779 error = aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP); 780 #ifdef NETATALKDEBUG 781 if (error) 782 printf("aa_addsingleroute: error %d\n", error); 783 #endif 784 return (error); 785 } 786 787 static int 788 aa_delsingleroute(ifa, addr, mask) 789 struct ifaddr *ifa; 790 struct at_addr *addr; 791 struct at_addr *mask; 792 { 793 int error; 794 795 #ifdef NETATALKDEBUG 796 printf("aa_delsingleroute: %x.%x mask %x.%x ...", 797 ntohs(addr->s_net), addr->s_node, 798 ntohs(mask->s_net), mask->s_node); 799 #endif 800 801 error = aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0); 802 #ifdef NETATALKDEBUG 803 if (error) 804 printf("aa_delsingleroute: error %d\n", error); 805 #endif 806 return (error); 807 } 808 809 static int 810 aa_dosingleroute(ifa, at_addr, at_mask, cmd, flags) 811 struct ifaddr *ifa; 812 struct at_addr *at_addr; 813 struct at_addr *at_mask; 814 int cmd; 815 int flags; 816 { 817 struct sockaddr_at addr, mask, *gate; 818 819 bzero(&addr, sizeof(addr)); 820 bzero(&mask, sizeof(mask)); 821 addr.sat_family = AF_APPLETALK; 822 addr.sat_len = sizeof(struct sockaddr_at); 823 addr.sat_addr.s_net = at_addr->s_net; 824 addr.sat_addr.s_node = at_addr->s_node; 825 mask.sat_family = AF_APPLETALK; 826 mask.sat_len = sizeof(struct sockaddr_at); 827 mask.sat_addr.s_net = at_mask->s_net; 828 mask.sat_addr.s_node = at_mask->s_node; 829 830 if (at_mask->s_node) { 831 gate = satosat(ifa->ifa_dstaddr); 832 flags |= RTF_HOST; 833 } else { 834 gate = satosat(ifa->ifa_addr); 835 } 836 837 #ifdef NETATALKDEBUG 838 printf("on %s %x.%x\n", (flags & RTF_HOST) ? "host" : "net", 839 ntohs(gate->sat_addr.s_net), gate->sat_addr.s_node); 840 #endif 841 return (rtrequest(cmd, (struct sockaddr *) &addr, 842 (struct sockaddr *) gate, (struct sockaddr *) &mask, flags, NULL)); 843 } 844 845 #if 0 846 static void 847 aa_clean() 848 { 849 struct at_ifaddr *aa; 850 struct ifaddr *ifa; 851 struct ifnet *ifp; 852 853 while ((aa = TAILQ_FIRST(&at_ifaddr)) != NULL) { 854 TAILQ_REMOVE(&at_ifaddr, aa, aa_list); 855 ifp = aa->aa_ifp; 856 at_scrub(ifp, aa); 857 IFADDR_FOREACH(ifa, ifp) { 858 if (ifa == &aa->aa_ifa) 859 break; 860 } 861 if (ifa == NULL) 862 panic("aa not present"); 863 ifa_remove(ifp, ifa); 864 } 865 } 866 #endif 867