1 /* $NetBSD: at_control.c,v 1.6 2001/11/13 00:00:58 lukem Exp $ */ 2 3 /* 4 * Copyright (c) 1990,1994 Regents of The University of Michigan. 5 * All Rights Reserved. 6 * 7 * Permission to use, copy, modify, and distribute this software and 8 * its documentation for any purpose and without fee is hereby granted, 9 * provided that the above copyright notice appears in all copies and 10 * that both that copyright notice and this permission notice appear 11 * in supporting documentation, and that the name of The University 12 * of Michigan not be used in advertising or publicity pertaining to 13 * distribution of the software without specific, written prior 14 * permission. This software is supplied as is without expressed or 15 * implied warranties of any kind. 16 * 17 * This product includes software developed by the University of 18 * California, Berkeley and its contributors. 19 * 20 * Research Systems Unix Group 21 * The University of Michigan 22 * c/o Wesley Craig 23 * 535 W. William Street 24 * Ann Arbor, Michigan 25 * +1-313-764-2278 26 * netatalk@umich.edu 27 */ 28 29 #include <sys/cdefs.h> 30 __KERNEL_RCSID(0, "$NetBSD: at_control.c,v 1.6 2001/11/13 00:00:58 lukem Exp $"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/proc.h> 35 #include <sys/types.h> 36 #include <sys/errno.h> 37 #include <sys/ioctl.h> 38 #include <sys/mbuf.h> 39 #include <sys/kernel.h> 40 #include <sys/socket.h> 41 #include <sys/socketvar.h> 42 #include <net/if.h> 43 #include <net/route.h> 44 #include <net/if_ether.h> 45 #include <netinet/in.h> 46 #undef s_net 47 48 #include <netatalk/at.h> 49 #include <netatalk/at_var.h> 50 #include <netatalk/aarp.h> 51 #include <netatalk/phase2.h> 52 #include <netatalk/at_extern.h> 53 54 static int aa_dorangeroute __P((struct ifaddr * ifa, 55 u_int first, u_int last, int cmd)); 56 static int aa_addsingleroute __P((struct ifaddr * ifa, 57 struct at_addr * addr, struct at_addr * mask)); 58 static int aa_delsingleroute __P((struct ifaddr * ifa, 59 struct at_addr * addr, struct at_addr * mask)); 60 static int aa_dosingleroute __P((struct ifaddr * ifa, struct at_addr * addr, 61 struct at_addr * mask, int cmd, int flags)); 62 static int at_scrub __P((struct ifnet * ifp, struct at_ifaddr * aa)); 63 static int at_ifinit __P((struct ifnet * ifp, struct at_ifaddr * aa, 64 struct sockaddr_at * sat)); 65 #if 0 66 static void aa_clean __P((void)); 67 #endif 68 69 #define sateqaddr(a,b) ((a)->sat_len == (b)->sat_len && \ 70 (a)->sat_family == (b)->sat_family && \ 71 (a)->sat_addr.s_net == (b)->sat_addr.s_net && \ 72 (a)->sat_addr.s_node == (b)->sat_addr.s_node ) 73 74 int 75 at_control(cmd, data, ifp, p) 76 u_long cmd; 77 caddr_t data; 78 struct ifnet *ifp; 79 struct proc *p; 80 { 81 struct ifreq *ifr = (struct ifreq *) data; 82 struct sockaddr_at *sat; 83 struct netrange *nr; 84 struct at_aliasreq *ifra = (struct at_aliasreq *) data; 85 struct at_ifaddr *aa0; 86 struct at_ifaddr *aa = 0; 87 88 /* 89 * If we have an ifp, then find the matching at_ifaddr if it exists 90 */ 91 if (ifp) 92 for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) 93 if (aa->aa_ifp == ifp) 94 break; 95 96 /* 97 * In this first switch table we are basically getting ready for 98 * the second one, by getting the atalk-specific things set up 99 * so that they start to look more similar to other protocols etc. 100 */ 101 102 switch (cmd) { 103 case SIOCAIFADDR: 104 case SIOCDIFADDR: 105 /* 106 * If we have an appletalk sockaddr, scan forward of where 107 * we are now on the at_ifaddr list to find one with a matching 108 * address on this interface. 109 * This may leave aa pointing to the first address on the 110 * NEXT interface! 111 */ 112 if (ifra->ifra_addr.sat_family == AF_APPLETALK) { 113 for (; aa; aa = aa->aa_list.tqe_next) 114 if (aa->aa_ifp == ifp && 115 sateqaddr(&aa->aa_addr, &ifra->ifra_addr)) 116 break; 117 } 118 /* 119 * If we a retrying to delete an addres but didn't find such, 120 * then return with an error 121 */ 122 if (cmd == SIOCDIFADDR && aa == 0) 123 return (EADDRNOTAVAIL); 124 /* FALLTHROUGH */ 125 126 case SIOCSIFADDR: 127 /* 128 * If we are not superuser, then we don't get to do these 129 * ops. 130 */ 131 if (suser(p->p_ucred, &p->p_acflag)) 132 return (EPERM); 133 134 sat = satosat(&ifr->ifr_addr); 135 nr = (struct netrange *) sat->sat_zero; 136 if (nr->nr_phase == 1) { 137 /* 138 * Look for a phase 1 address on this interface. 139 * This may leave aa pointing to the first address on 140 * the NEXT interface! 141 */ 142 for (; aa; aa = aa->aa_list.tqe_next) { 143 if (aa->aa_ifp == ifp && 144 (aa->aa_flags & AFA_PHASE2) == 0) 145 break; 146 } 147 } else { /* default to phase 2 */ 148 /* 149 * Look for a phase 2 address on this interface. 150 * This may leave aa pointing to the first address on 151 * the NEXT interface! 152 */ 153 for (; aa; aa = aa->aa_list.tqe_next) { 154 if (aa->aa_ifp == ifp && 155 (aa->aa_flags & AFA_PHASE2)) 156 break; 157 } 158 } 159 160 if (ifp == 0) 161 panic("at_control"); 162 163 /* 164 * If we failed to find an existing at_ifaddr entry, then we 165 * allocate a fresh one. 166 * XXX change this to use malloc 167 */ 168 if (aa == (struct at_ifaddr *) 0) { 169 aa = (struct at_ifaddr *) 170 malloc(sizeof(struct at_ifaddr), M_IFADDR, 171 M_WAITOK); 172 173 if (aa == NULL) 174 return (ENOBUFS); 175 176 bzero(aa, sizeof *aa); 177 callout_init(&aa->aa_probe_ch); 178 179 if ((aa0 = at_ifaddr.tqh_first) != NULL) { 180 /* 181 * Don't let the loopback be first, since the 182 * first address is the machine's default 183 * address for binding. 184 * If it is, stick ourself in front, otherwise 185 * go to the back of the list. 186 */ 187 if (aa0->aa_ifp->if_flags & IFF_LOOPBACK) { 188 TAILQ_INSERT_HEAD(&at_ifaddr, aa, 189 aa_list); 190 } else { 191 TAILQ_INSERT_TAIL(&at_ifaddr, aa, 192 aa_list); 193 } 194 } else { 195 TAILQ_INSERT_TAIL(&at_ifaddr, aa, aa_list); 196 } 197 IFAREF(&aa->aa_ifa); 198 199 /* 200 * Find the end of the interface's addresses 201 * and link our new one on the end 202 */ 203 TAILQ_INSERT_TAIL(&ifp->if_addrlist, 204 (struct ifaddr *) aa, ifa_list); 205 IFAREF(&aa->aa_ifa); 206 207 /* 208 * As the at_ifaddr contains the actual sockaddrs, 209 * and the ifaddr itself, link them al together 210 * correctly. 211 */ 212 aa->aa_ifa.ifa_addr = 213 (struct sockaddr *) &aa->aa_addr; 214 aa->aa_ifa.ifa_dstaddr = 215 (struct sockaddr *) &aa->aa_addr; 216 aa->aa_ifa.ifa_netmask = 217 (struct sockaddr *) &aa->aa_netmask; 218 219 /* 220 * Set/clear the phase 2 bit. 221 */ 222 if (nr->nr_phase == 1) 223 aa->aa_flags &= ~AFA_PHASE2; 224 else 225 aa->aa_flags |= AFA_PHASE2; 226 227 /* 228 * and link it all together 229 */ 230 aa->aa_ifp = ifp; 231 } else { 232 /* 233 * If we DID find one then we clobber any routes 234 * dependent on it.. 235 */ 236 at_scrub(ifp, aa); 237 } 238 break; 239 240 case SIOCGIFADDR: 241 sat = satosat(&ifr->ifr_addr); 242 nr = (struct netrange *) sat->sat_zero; 243 if (nr->nr_phase == 1) { 244 /* 245 * If the request is specifying phase 1, then 246 * only look at a phase one address 247 */ 248 for (; aa; aa = aa->aa_list.tqe_next) { 249 if (aa->aa_ifp == ifp && 250 (aa->aa_flags & AFA_PHASE2) == 0) 251 break; 252 } 253 } else { 254 /* 255 * default to phase 2 256 */ 257 for (; aa; aa = aa->aa_list.tqe_next) { 258 if (aa->aa_ifp == ifp && 259 (aa->aa_flags & AFA_PHASE2)) 260 break; 261 } 262 } 263 264 if (aa == (struct at_ifaddr *) 0) 265 return (EADDRNOTAVAIL); 266 break; 267 } 268 269 /* 270 * By the time this switch is run we should be able to assume that 271 * the "aa" pointer is valid when needed. 272 */ 273 switch (cmd) { 274 case SIOCGIFADDR: 275 276 /* 277 * copy the contents of the sockaddr blindly. 278 */ 279 sat = (struct sockaddr_at *) & ifr->ifr_addr; 280 *sat = aa->aa_addr; 281 282 /* 283 * and do some cleanups 284 */ 285 ((struct netrange *) &sat->sat_zero)->nr_phase = 286 (aa->aa_flags & AFA_PHASE2) ? 2 : 1; 287 ((struct netrange *) &sat->sat_zero)->nr_firstnet = 288 aa->aa_firstnet; 289 ((struct netrange *) &sat->sat_zero)->nr_lastnet = 290 aa->aa_lastnet; 291 break; 292 293 case SIOCSIFADDR: 294 return (at_ifinit(ifp, aa, 295 (struct sockaddr_at *) &ifr->ifr_addr)); 296 297 case SIOCAIFADDR: 298 if (sateqaddr(&ifra->ifra_addr, &aa->aa_addr)) 299 return 0; 300 return (at_ifinit(ifp, aa, 301 (struct sockaddr_at *) &ifr->ifr_addr)); 302 303 case SIOCDIFADDR: 304 at_purgeaddr((struct ifaddr *) aa, ifp); 305 break; 306 307 default: 308 if (ifp == 0 || ifp->if_ioctl == 0) 309 return (EOPNOTSUPP); 310 return ((*ifp->if_ioctl) (ifp, cmd, data)); 311 } 312 return (0); 313 } 314 315 void 316 at_purgeaddr(ifa, ifp) 317 struct ifaddr *ifa; 318 struct ifnet *ifp; 319 { 320 struct at_ifaddr *aa = (void *) ifa; 321 322 /* 323 * scrub all routes.. didn't we just DO this? XXX yes, del it 324 * XXX above XXX not necessarily true anymore 325 */ 326 at_scrub(ifp, aa); 327 328 /* 329 * remove the ifaddr from the interface 330 */ 331 TAILQ_REMOVE(&ifp->if_addrlist, (struct ifaddr *) aa, ifa_list); 332 IFAFREE(&aa->aa_ifa); 333 TAILQ_REMOVE(&at_ifaddr, aa, aa_list); 334 IFAFREE(&aa->aa_ifa); 335 } 336 337 void 338 at_purgeif(ifp) 339 struct ifnet *ifp; 340 { 341 struct ifaddr *ifa, *nifa; 342 343 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) { 344 nifa = TAILQ_NEXT(ifa, ifa_list); 345 if (ifa->ifa_addr->sa_family != AF_APPLETALK) 346 continue; 347 at_purgeaddr(ifa, ifp); 348 } 349 } 350 351 /* 352 * Given an interface and an at_ifaddr (supposedly on that interface) remove 353 * any routes that depend on this. Why ifp is needed I'm not sure, as 354 * aa->at_ifaddr.ifa_ifp should be the same. 355 */ 356 static int 357 at_scrub(ifp, aa) 358 struct ifnet *ifp; 359 struct at_ifaddr *aa; 360 { 361 int error = 0; 362 363 if (aa->aa_flags & AFA_ROUTE) { 364 if (ifp->if_flags & IFF_LOOPBACK) 365 error = aa_delsingleroute(&aa->aa_ifa, 366 &aa->aa_addr.sat_addr, &aa->aa_netmask.sat_addr); 367 else if (ifp->if_flags & IFF_POINTOPOINT) 368 error = rtinit(&aa->aa_ifa, RTM_DELETE, RTF_HOST); 369 else if (ifp->if_flags & IFF_BROADCAST) 370 error = aa_dorangeroute(&aa->aa_ifa, 371 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), 372 RTM_DELETE); 373 374 aa->aa_ifa.ifa_flags &= ~IFA_ROUTE; 375 aa->aa_flags &= ~AFA_ROUTE; 376 } 377 return error; 378 } 379 380 /* 381 * given an at_ifaddr,a sockaddr_at and an ifp, 382 * bang them all together at high speed and see what happens 383 */ 384 static int 385 at_ifinit(ifp, aa, sat) 386 struct ifnet *ifp; 387 struct at_ifaddr *aa; 388 struct sockaddr_at *sat; 389 { 390 struct netrange nr, onr; 391 struct sockaddr_at oldaddr; 392 int s = splnet(), error = 0, i, j; 393 int netinc, nodeinc, nnets; 394 u_short net; 395 396 /* 397 * save the old addresses in the at_ifaddr just in case we need them. 398 */ 399 oldaddr = aa->aa_addr; 400 onr.nr_firstnet = aa->aa_firstnet; 401 onr.nr_lastnet = aa->aa_lastnet; 402 403 /* 404 * take the address supplied as an argument, and add it to the 405 * at_ifnet (also given). Remember ing to update 406 * those parts of the at_ifaddr that need special processing 407 */ 408 bzero(AA_SAT(aa), sizeof(struct sockaddr_at)); 409 bcopy(sat->sat_zero, &nr, sizeof(struct netrange)); 410 bcopy(sat->sat_zero, AA_SAT(aa)->sat_zero, sizeof(struct netrange)); 411 nnets = ntohs(nr.nr_lastnet) - ntohs(nr.nr_firstnet) + 1; 412 aa->aa_firstnet = nr.nr_firstnet; 413 aa->aa_lastnet = nr.nr_lastnet; 414 415 #ifdef NETATALKDEBUG 416 printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n", 417 ifp->if_xname, 418 ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node, 419 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), 420 (aa->aa_flags & AFA_PHASE2) ? 2 : 1); 421 #endif 422 423 /* 424 * We could eliminate the need for a second phase 1 probe (post 425 * autoconf) if we check whether we're resetting the node. Note 426 * that phase 1 probes use only nodes, not net.node pairs. Under 427 * phase 2, both the net and node must be the same. 428 */ 429 AA_SAT(aa)->sat_len = sat->sat_len; 430 AA_SAT(aa)->sat_family = AF_APPLETALK; 431 if (ifp->if_flags & IFF_LOOPBACK) { 432 AA_SAT(aa)->sat_addr.s_net = sat->sat_addr.s_net; 433 AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node; 434 #if 0 435 } else if (fp->if_flags & IFF_POINTOPOINT) { 436 /* unimplemented */ 437 /* 438 * we'd have to copy the dstaddr field over from the sat 439 * but it's not clear that it would contain the right info.. 440 */ 441 #endif 442 } else { 443 /* 444 * We are a normal (probably ethernet) interface. 445 * apply the new address to the interface structures etc. 446 * We will probe this address on the net first, before 447 * applying it to ensure that it is free.. If it is not, then 448 * we will try a number of other randomly generated addresses 449 * in this net and then increment the net. etc.etc. until 450 * we find an unused address. 451 */ 452 aa->aa_flags |= AFA_PROBING; /* if not loopback we Must 453 * probe? */ 454 if (aa->aa_flags & AFA_PHASE2) { 455 if (sat->sat_addr.s_net == ATADDR_ANYNET) { 456 /* 457 * If we are phase 2, and the net was not 458 * specified * then we select a random net 459 * within the supplied netrange. 460 * XXX use /dev/random? 461 */ 462 if (nnets != 1) { 463 net = ntohs(nr.nr_firstnet) + 464 time.tv_sec % (nnets - 1); 465 } else { 466 net = ntohs(nr.nr_firstnet); 467 } 468 } else { 469 /* 470 * if a net was supplied, then check that it 471 * is within the netrange. If it is not then 472 * replace the old values and return an error 473 */ 474 if (ntohs(sat->sat_addr.s_net) < 475 ntohs(nr.nr_firstnet) || 476 ntohs(sat->sat_addr.s_net) > 477 ntohs(nr.nr_lastnet)) { 478 aa->aa_addr = oldaddr; 479 aa->aa_firstnet = onr.nr_firstnet; 480 aa->aa_lastnet = onr.nr_lastnet; 481 splx(s); 482 return (EINVAL); 483 } 484 /* 485 * otherwise just use the new net number.. 486 */ 487 net = ntohs(sat->sat_addr.s_net); 488 } 489 } else { 490 /* 491 * we must be phase one, so just use whatever we were 492 * given. I guess it really isn't going to be used... 493 * RIGHT? 494 */ 495 net = ntohs(sat->sat_addr.s_net); 496 } 497 498 /* 499 * set the node part of the address into the ifaddr. If it's 500 * not specified, be random about it... XXX use /dev/random? 501 */ 502 if (sat->sat_addr.s_node == ATADDR_ANYNODE) { 503 AA_SAT(aa)->sat_addr.s_node = time.tv_sec; 504 } else { 505 AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node; 506 } 507 508 /* 509 * step through the nets in the range starting at the 510 * (possibly random) start point. 511 */ 512 for (i = nnets, netinc = 1; i > 0; net = ntohs(nr.nr_firstnet) + 513 ((net - ntohs(nr.nr_firstnet) + netinc) % nnets), i--) { 514 AA_SAT(aa)->sat_addr.s_net = htons(net); 515 516 /* 517 * using a rather strange stepping method, 518 * stagger through the possible node addresses 519 * Once again, starting at the (possibly random) 520 * initial node address. 521 */ 522 for (j = 0, nodeinc = time.tv_sec | 1; j < 256; 523 j++, AA_SAT(aa)->sat_addr.s_node += nodeinc) { 524 if (AA_SAT(aa)->sat_addr.s_node > 253 || 525 AA_SAT(aa)->sat_addr.s_node < 1) { 526 continue; 527 } 528 aa->aa_probcnt = 10; 529 530 /* 531 * start off the probes as an asynchronous 532 * activity. though why wait 200mSec? 533 */ 534 callout_reset(&aa->aa_probe_ch, hz / 5, 535 aarpprobe, ifp); 536 if (tsleep(aa, PPAUSE | PCATCH, "at_ifinit", 537 0)) { 538 /* 539 * theoretically we shouldn't time out 540 * here so if we returned with an error. 541 */ 542 printf("at_ifinit: timeout?!\n"); 543 aa->aa_addr = oldaddr; 544 aa->aa_firstnet = onr.nr_firstnet; 545 aa->aa_lastnet = onr.nr_lastnet; 546 splx(s); 547 return (EINTR); 548 } 549 /* 550 * The async activity should have woken us 551 * up. We need to see if it was successful in 552 * finding a free spot, or if we need to 553 * iterate to the next address to try. 554 */ 555 if ((aa->aa_flags & AFA_PROBING) == 0) 556 break; 557 } 558 559 /* 560 * of course we need to break out through two loops... 561 */ 562 if ((aa->aa_flags & AFA_PROBING) == 0) 563 break; 564 565 /* reset node for next network */ 566 AA_SAT(aa)->sat_addr.s_node = time.tv_sec; 567 } 568 569 /* 570 * if we are still trying to probe, then we have finished all 571 * the possible addresses, so we need to give up 572 */ 573 if (aa->aa_flags & AFA_PROBING) { 574 aa->aa_addr = oldaddr; 575 aa->aa_firstnet = onr.nr_firstnet; 576 aa->aa_lastnet = onr.nr_lastnet; 577 splx(s); 578 return (EADDRINUSE); 579 } 580 } 581 582 /* 583 * Now that we have selected an address, we need to tell the 584 * interface about it, just in case it needs to adjust something. 585 */ 586 if (ifp->if_ioctl && 587 (error = (*ifp->if_ioctl) (ifp, SIOCSIFADDR, (caddr_t) aa))) { 588 /* 589 * of course this could mean that it objects violently 590 * so if it does, we back out again.. 591 */ 592 aa->aa_addr = oldaddr; 593 aa->aa_firstnet = onr.nr_firstnet; 594 aa->aa_lastnet = onr.nr_lastnet; 595 splx(s); 596 return (error); 597 } 598 /* 599 * set up the netmask part of the at_ifaddr and point the appropriate 600 * pointer in the ifaddr to it. probably pointless, but what the 601 * heck.. XXX 602 */ 603 bzero(&aa->aa_netmask, sizeof(aa->aa_netmask)); 604 aa->aa_netmask.sat_len = sizeof(struct sockaddr_at); 605 aa->aa_netmask.sat_family = AF_APPLETALK; 606 aa->aa_netmask.sat_addr.s_net = 0xffff; 607 aa->aa_netmask.sat_addr.s_node = 0; 608 #if 0 609 aa->aa_ifa.ifa_netmask = (struct sockaddr *) &(aa->aa_netmask);/* XXX */ 610 #endif 611 612 /* 613 * Initialize broadcast (or remote p2p) address 614 */ 615 bzero(&aa->aa_broadaddr, sizeof(aa->aa_broadaddr)); 616 aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at); 617 aa->aa_broadaddr.sat_family = AF_APPLETALK; 618 619 aa->aa_ifa.ifa_metric = ifp->if_metric; 620 if (ifp->if_flags & IFF_BROADCAST) { 621 aa->aa_broadaddr.sat_addr.s_net = htons(0); 622 aa->aa_broadaddr.sat_addr.s_node = 0xff; 623 aa->aa_ifa.ifa_broadaddr = 624 (struct sockaddr *) &aa->aa_broadaddr; 625 /* add the range of routes needed */ 626 error = aa_dorangeroute(&aa->aa_ifa, 627 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), RTM_ADD); 628 } else if (ifp->if_flags & IFF_POINTOPOINT) { 629 struct at_addr rtaddr, rtmask; 630 631 bzero(&rtaddr, sizeof(rtaddr)); 632 bzero(&rtmask, sizeof(rtmask)); 633 /* fill in the far end if we know it here XXX */ 634 aa->aa_ifa.ifa_dstaddr = (struct sockaddr *) & aa->aa_dstaddr; 635 error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask); 636 } else if (ifp->if_flags & IFF_LOOPBACK) { 637 struct at_addr rtaddr, rtmask; 638 639 bzero(&rtaddr, sizeof(rtaddr)); 640 bzero(&rtmask, sizeof(rtmask)); 641 rtaddr.s_net = AA_SAT(aa)->sat_addr.s_net; 642 rtaddr.s_node = AA_SAT(aa)->sat_addr.s_node; 643 rtmask.s_net = 0xffff; 644 rtmask.s_node = 0x0; 645 error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask); 646 } 647 /* 648 * of course if we can't add these routes we back out, but it's getting 649 * risky by now XXX 650 */ 651 if (error) { 652 at_scrub(ifp, aa); 653 aa->aa_addr = oldaddr; 654 aa->aa_firstnet = onr.nr_firstnet; 655 aa->aa_lastnet = onr.nr_lastnet; 656 splx(s); 657 return (error); 658 } 659 /* 660 * note that the address has a route associated with it.... 661 */ 662 aa->aa_ifa.ifa_flags |= IFA_ROUTE; 663 aa->aa_flags |= AFA_ROUTE; 664 splx(s); 665 return (0); 666 } 667 668 /* 669 * check whether a given address is a broadcast address for us.. 670 */ 671 int 672 at_broadcast(sat) 673 struct sockaddr_at *sat; 674 { 675 struct at_ifaddr *aa; 676 677 /* 678 * If the node is not right, it can't be a broadcast 679 */ 680 if (sat->sat_addr.s_node != ATADDR_BCAST) 681 return 0; 682 683 /* 684 * If the node was right then if the net is right, it's a broadcast 685 */ 686 if (sat->sat_addr.s_net == ATADDR_ANYNET) 687 return 1; 688 689 /* 690 * failing that, if the net is one we have, it's a broadcast as well. 691 */ 692 for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) { 693 if ((aa->aa_ifp->if_flags & IFF_BROADCAST) 694 && (ntohs(sat->sat_addr.s_net) >= ntohs(aa->aa_firstnet) 695 && ntohs(sat->sat_addr.s_net) <= ntohs(aa->aa_lastnet))) 696 return 1; 697 } 698 return 0; 699 } 700 701 702 /* 703 * aa_dorangeroute() 704 * 705 * Add a route for a range of networks from bot to top - 1. 706 * Algorithm: 707 * 708 * Split the range into two subranges such that the middle 709 * of the two ranges is the point where the highest bit of difference 710 * between the two addresses, makes it's transition 711 * Each of the upper and lower ranges might not exist, or might be 712 * representable by 1 or more netmasks. In addition, if both 713 * ranges can be represented by the same netmask, then teh can be merged 714 * by using the next higher netmask.. 715 */ 716 717 static int 718 aa_dorangeroute(ifa, bot, top, cmd) 719 struct ifaddr *ifa; 720 u_int bot; 721 u_int top; 722 int cmd; 723 { 724 u_int mask1; 725 struct at_addr addr; 726 struct at_addr mask; 727 int error; 728 729 /* 730 * slight sanity check 731 */ 732 if (bot > top) 733 return (EINVAL); 734 735 addr.s_node = 0; 736 mask.s_node = 0; 737 /* 738 * just start out with the lowest boundary 739 * and keep extending the mask till it's too big. 740 */ 741 742 while (bot <= top) { 743 mask1 = 1; 744 while (((bot & ~mask1) >= bot) 745 && ((bot | mask1) <= top)) { 746 mask1 <<= 1; 747 mask1 |= 1; 748 } 749 mask1 >>= 1; 750 mask.s_net = htons(~mask1); 751 addr.s_net = htons(bot); 752 if (cmd == RTM_ADD) { 753 error = aa_addsingleroute(ifa, &addr, &mask); 754 if (error) { 755 /* XXX clean up? */ 756 return (error); 757 } 758 } else { 759 error = aa_delsingleroute(ifa, &addr, &mask); 760 } 761 bot = (bot | mask1) + 1; 762 } 763 return 0; 764 } 765 766 static int 767 aa_addsingleroute(ifa, addr, mask) 768 struct ifaddr *ifa; 769 struct at_addr *addr; 770 struct at_addr *mask; 771 { 772 int error; 773 774 #ifdef NETATALKDEBUG 775 printf("aa_addsingleroute: %x.%x mask %x.%x ...", 776 ntohs(addr->s_net), addr->s_node, 777 ntohs(mask->s_net), mask->s_node); 778 #endif 779 780 error = aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP); 781 #ifdef NETATALKDEBUG 782 if (error) 783 printf("aa_addsingleroute: error %d\n", error); 784 #endif 785 return (error); 786 } 787 788 static int 789 aa_delsingleroute(ifa, addr, mask) 790 struct ifaddr *ifa; 791 struct at_addr *addr; 792 struct at_addr *mask; 793 { 794 int error; 795 796 #ifdef NETATALKDEBUG 797 printf("aa_delsingleroute: %x.%x mask %x.%x ...", 798 ntohs(addr->s_net), addr->s_node, 799 ntohs(mask->s_net), mask->s_node); 800 #endif 801 802 error = aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0); 803 #ifdef NETATALKDEBUG 804 if (error) 805 printf("aa_delsingleroute: error %d\n", error); 806 #endif 807 return (error); 808 } 809 810 static int 811 aa_dosingleroute(ifa, at_addr, at_mask, cmd, flags) 812 struct ifaddr *ifa; 813 struct at_addr *at_addr; 814 struct at_addr *at_mask; 815 int cmd; 816 int flags; 817 { 818 struct sockaddr_at addr, mask, *gate; 819 820 bzero(&addr, sizeof(addr)); 821 bzero(&mask, sizeof(mask)); 822 addr.sat_family = AF_APPLETALK; 823 addr.sat_len = sizeof(struct sockaddr_at); 824 addr.sat_addr.s_net = at_addr->s_net; 825 addr.sat_addr.s_node = at_addr->s_node; 826 mask.sat_family = AF_APPLETALK; 827 mask.sat_len = sizeof(struct sockaddr_at); 828 mask.sat_addr.s_net = at_mask->s_net; 829 mask.sat_addr.s_node = at_mask->s_node; 830 831 if (at_mask->s_node) { 832 gate = satosat(ifa->ifa_dstaddr); 833 flags |= RTF_HOST; 834 } else { 835 gate = satosat(ifa->ifa_addr); 836 } 837 838 #ifdef NETATALKDEBUG 839 printf("on %s %x.%x\n", (flags & RTF_HOST) ? "host" : "net", 840 ntohs(gate->sat_addr.s_net), gate->sat_addr.s_node); 841 #endif 842 return (rtrequest(cmd, (struct sockaddr *) &addr, 843 (struct sockaddr *) gate, (struct sockaddr *) &mask, flags, NULL)); 844 } 845 846 #if 0 847 static void 848 aa_clean() 849 { 850 struct at_ifaddr *aa; 851 struct ifaddr *ifa; 852 struct ifnet *ifp; 853 854 while (aa = at_ifaddr) { 855 ifp = aa->aa_ifp; 856 at_scrub(ifp, aa); 857 at_ifaddr = aa->aa_next; 858 if ((ifa = ifp->if_addrlist) == (struct ifaddr *) aa) { 859 ifp->if_addrlist = ifa->ifa_next; 860 } else { 861 while (ifa->ifa_next && 862 (ifa->ifa_next != (struct ifaddr *) aa)) { 863 ifa = ifa->ifa_next; 864 } 865 if (ifa->ifa_next) { 866 ifa->ifa_next = 867 ((struct ifaddr *) aa)->ifa_next; 868 } else { 869 panic("at_entry"); 870 } 871 } 872 } 873 } 874 #endif 875