xref: /netbsd-src/sys/net80211/ieee80211_output.c (revision fc4f42693f9b1c31f39f9cf50af1bf2010325808)
1 /*	$NetBSD: ieee80211_output.c,v 1.61 2018/01/18 16:23:43 maxv Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * Alternatively, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") version 2 as published by the Free
21  * Software Foundation.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 #ifdef __FreeBSD__
37 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.34 2005/08/10 16:22:29 sam Exp $");
38 #endif
39 #ifdef __NetBSD__
40 __KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.61 2018/01/18 16:23:43 maxv Exp $");
41 #endif
42 
43 #ifdef _KERNEL_OPT
44 #include "opt_inet.h"
45 #endif
46 
47 #ifdef __NetBSD__
48 #endif /* __NetBSD__ */
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/mbuf.h>
53 #include <sys/kernel.h>
54 #include <sys/endian.h>
55 #include <sys/errno.h>
56 #include <sys/proc.h>
57 #include <sys/sysctl.h>
58 
59 #include <net/if.h>
60 #include <net/if_llc.h>
61 #include <net/if_media.h>
62 #include <net/if_arp.h>
63 #include <net/if_ether.h>
64 #include <net/if_llc.h>
65 #include <net/if_vlanvar.h>
66 
67 #include <net80211/ieee80211_netbsd.h>
68 #include <net80211/ieee80211_var.h>
69 
70 #include <net/bpf.h>
71 
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <net/if_ether.h>
78 #endif
79 
80 static int ieee80211_fragment(struct ieee80211com *, struct mbuf *,
81 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
82 
83 #ifdef IEEE80211_DEBUG
84 /*
85  * Decide if an outbound management frame should be
86  * printed when debugging is enabled.  This filters some
87  * of the less interesting frames that come frequently
88  * (e.g. beacons).
89  */
90 static __inline int
91 doprint(struct ieee80211com *ic, int subtype)
92 {
93 	switch (subtype) {
94 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
95 		return (ic->ic_opmode == IEEE80211_M_IBSS);
96 	}
97 	return 1;
98 }
99 #endif
100 
101 /*
102  * Set the direction field and address fields of an outgoing
103  * non-QoS frame.  Note this should be called early on in
104  * constructing a frame as it sets i_fc[1]; other bits can
105  * then be or'd in.
106  */
107 static void
108 ieee80211_send_setup(struct ieee80211com *ic,
109 	struct ieee80211_node *ni,
110 	struct ieee80211_frame *wh,
111 	int type,
112 	const u_int8_t sa[IEEE80211_ADDR_LEN],
113 	const u_int8_t da[IEEE80211_ADDR_LEN],
114 	const u_int8_t bssid[IEEE80211_ADDR_LEN])
115 {
116 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
117 
118 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
119 
120 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
121 		switch (ic->ic_opmode) {
122 		case IEEE80211_M_STA:
123 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
124 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
125 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
126 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
127 			break;
128 
129 		case IEEE80211_M_IBSS:
130 		case IEEE80211_M_AHDEMO:
131 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
132 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
133 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
134 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
135 			break;
136 
137 		case IEEE80211_M_HOSTAP:
138 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
139 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
140 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
141 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
142 			break;
143 
144 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
145 			break;
146 		}
147 	} else {
148 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
149 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
150 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
151 		IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
152 	}
153 
154 	*(u_int16_t *)&wh->i_dur[0] = 0;
155 	/* NB: use non-QoS tid */
156 	*(u_int16_t *)&wh->i_seq[0] =
157 	    htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
158 	ni->ni_txseqs[0]++;
159 #undef WH4
160 }
161 
162 /*
163  * Send a management frame to the specified node.  The node pointer
164  * must have a reference as the pointer will be passed to the driver
165  * and potentially held for a long time.  If the frame is successfully
166  * dispatched to the driver, then it is responsible for freeing the
167  * reference (and potentially free'ing up any associated storage).
168  */
169 static int
170 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni,
171     struct mbuf *m, int type, int timer)
172 {
173 	struct ifnet *ifp = ic->ic_ifp;
174 	struct ieee80211_frame *wh;
175 
176 	IASSERT(ni != NULL, ("null node"));
177 
178 	/*
179 	 * Yech, hack alert!  We want to pass the node down to the
180 	 * driver's start routine.  If we don't do so then the start
181 	 * routine must immediately look it up again and that can
182 	 * cause a lock order reversal if, for example, this frame
183 	 * is being sent because the station is being timedout and
184 	 * the frame being sent is a DEAUTH message.  We could stick
185 	 * this in an m_tag and tack that on to the mbuf.  However
186 	 * that's rather expensive to do for every frame so instead
187 	 * we stuff it in the rcvif field since outbound frames do
188 	 * not (presently) use this.
189 	 */
190 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
191 	if (m == NULL)
192 		return ENOMEM;
193 	M_SETCTX(m, ni);
194 
195 	wh = mtod(m, struct ieee80211_frame *);
196 	ieee80211_send_setup(ic, ni, wh, IEEE80211_FC0_TYPE_MGT | type,
197 	    ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
198 
199 	if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) {
200 		m->m_flags &= ~M_LINK0;
201 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
202 			"[%s] encrypting frame (%s)\n",
203 			ether_sprintf(wh->i_addr1), __func__);
204 		wh->i_fc[1] |= IEEE80211_FC1_WEP;
205 	}
206 
207 #ifdef IEEE80211_DEBUG
208 	/* avoid printing too many frames */
209 	if ((ieee80211_msg_debug(ic) && doprint(ic, type)) ||
210 	    ieee80211_msg_dumppkts(ic)) {
211 		printf("[%s] send %s on channel %u\n",
212 		    ether_sprintf(wh->i_addr1),
213 		    ieee80211_mgt_subtype_name[
214 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
215 				IEEE80211_FC0_SUBTYPE_SHIFT],
216 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
217 	}
218 #endif
219 
220 	IEEE80211_NODE_STAT(ni, tx_mgmt);
221 	IF_ENQUEUE(&ic->ic_mgtq, m);
222 	if (timer) {
223 		/*
224 		 * Set the mgt frame timeout.
225 		 */
226 		ic->ic_mgt_timer = timer;
227 		ifp->if_timer = 1;
228 	}
229 	if_start_lock(ifp);
230 	return 0;
231 }
232 
233 /*
234  * Send a null data frame to the specified node.
235  *
236  * NB: the caller is assumed to have setup a node reference
237  *     for use; this is necessary to deal with a race condition
238  *     when probing for inactive stations.
239  */
240 int
241 ieee80211_send_nulldata(struct ieee80211_node *ni)
242 {
243 	struct ieee80211com *ic = ni->ni_ic;
244 	struct ifnet *ifp = ic->ic_ifp;
245 	struct mbuf *m;
246 	struct ieee80211_frame *wh;
247 
248 	MGETHDR(m, M_NOWAIT, MT_HEADER);
249 	if (m == NULL) {
250 		/* XXX debug msg */
251 		ic->ic_stats.is_tx_nobuf++;
252 		ieee80211_unref_node(&ni);
253 		return ENOMEM;
254 	}
255 	M_SETCTX(m, ni);
256 
257 	wh = mtod(m, struct ieee80211_frame *);
258 
259 	ieee80211_send_setup(ic, ni, wh,
260 	    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
261 	    ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
262 
263 	/* NB: power management bit is never sent by an AP */
264 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
265 	    ic->ic_opmode != IEEE80211_M_HOSTAP) {
266 		wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
267 	}
268 
269 	m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame);
270 
271 	IEEE80211_NODE_STAT(ni, tx_data);
272 
273 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
274 	    "[%s] send null data frame on channel %u, pwr mgt %s\n",
275 	    ether_sprintf(ni->ni_macaddr),
276 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
277 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
278 
279 	IF_ENQUEUE(&ic->ic_mgtq, m);		/* cheat */
280 	if_start_lock(ifp);
281 
282 	return 0;
283 }
284 
285 /*
286  * Assign priority to a frame based on any vlan tag assigned
287  * to the station and/or any Diffserv setting in an IP header.
288  * Finally, if an ACM policy is setup (in station mode) it's
289  * applied.
290  */
291 int
292 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m,
293     struct ieee80211_node *ni)
294 {
295 	int v_wme_ac, d_wme_ac, ac;
296 #ifdef INET
297 	struct ether_header *eh;
298 #endif
299 
300 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
301 		ac = WME_AC_BE;
302 		goto done;
303 	}
304 
305 	/*
306 	 * If node has a vlan tag then all traffic
307 	 * to it must have a matching tag.
308 	 */
309 	v_wme_ac = 0;
310 	if (ni->ni_vlan != 0) {
311 		/* XXX used to check ec_nvlans. */
312 		if (!vlan_has_tag(m)) {
313 			IEEE80211_NODE_STAT(ni, tx_novlantag);
314 			return 1;
315 		}
316 		if (EVL_VLANOFTAG(vlan_get_tag(m)) !=
317 		    EVL_VLANOFTAG(ni->ni_vlan)) {
318 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
319 			return 1;
320 		}
321 		/* map vlan priority to AC */
322 		switch (EVL_PRIOFTAG(ni->ni_vlan)) {
323 		case 1:
324 		case 2:
325 			v_wme_ac = WME_AC_BK;
326 			break;
327 		case 0:
328 		case 3:
329 			v_wme_ac = WME_AC_BE;
330 			break;
331 		case 4:
332 		case 5:
333 			v_wme_ac = WME_AC_VI;
334 			break;
335 		case 6:
336 		case 7:
337 			v_wme_ac = WME_AC_VO;
338 			break;
339 		}
340 	}
341 
342 #ifdef INET
343 	eh = mtod(m, struct ether_header *);
344 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
345 		const struct ip *ip = (struct ip *)
346 			(mtod(m, u_int8_t *) + sizeof (*eh));
347 		/*
348 		 * IP frame, map the TOS field.
349 		 */
350 		switch (ip->ip_tos) {
351 		case 0x08:
352 		case 0x20:
353 			d_wme_ac = WME_AC_BK;	/* background */
354 			break;
355 		case 0x28:
356 		case 0xa0:
357 			d_wme_ac = WME_AC_VI;	/* video */
358 			break;
359 		case 0x30:			/* voice */
360 		case 0xe0:
361 		case 0x88:			/* XXX UPSD */
362 		case 0xb8:
363 			d_wme_ac = WME_AC_VO;
364 			break;
365 		default:
366 			d_wme_ac = WME_AC_BE;
367 			break;
368 		}
369 	} else {
370 #endif /* INET */
371 		d_wme_ac = WME_AC_BE;
372 #ifdef INET
373 	}
374 #endif
375 	/*
376 	 * Use highest priority AC.
377 	 */
378 	if (v_wme_ac > d_wme_ac)
379 		ac = v_wme_ac;
380 	else
381 		ac = d_wme_ac;
382 
383 	/*
384 	 * Apply ACM policy.
385 	 */
386 	if (ic->ic_opmode == IEEE80211_M_STA) {
387 		static const int acmap[4] = {
388 			WME_AC_BK,	/* WME_AC_BE */
389 			WME_AC_BK,	/* WME_AC_BK */
390 			WME_AC_BE,	/* WME_AC_VI */
391 			WME_AC_VI,	/* WME_AC_VO */
392 		};
393 		while (ac != WME_AC_BK &&
394 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
395 			ac = acmap[ac];
396 	}
397 done:
398 	M_WME_SETAC(m, ac);
399 	return 0;
400 }
401 
402 /*
403  * Insure there is sufficient contiguous space to encapsulate the
404  * 802.11 data frame.  If room isn't already there, arrange for it.
405  * Drivers and cipher modules assume we have done the necessary work
406  * and fail rudely if they don't find the space they need.
407  *
408  * Basically, we are trying to make sure that the several M_PREPENDs
409  * called after this function do not fail.
410  */
411 static struct mbuf *
412 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize,
413 	struct ieee80211_key *key, struct mbuf *m)
414 {
415 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
416 	int needed_space = hdrsize;
417 	int wlen = 0;
418 
419 	if (key != NULL) {
420 		/* XXX belongs in crypto code? */
421 		needed_space += key->wk_cipher->ic_header;
422 		/* XXX frags */
423 	}
424 
425 	/*
426 	 * We know we are called just before stripping an Ethernet
427 	 * header and prepending an LLC header.  This means we know
428 	 * there will be
429 	 *	sizeof(struct ether_header) - sizeof(struct llc)
430 	 * bytes recovered to which we need additional space for the
431 	 * 802.11 header and any crypto header.
432 	 */
433 	/* XXX check trailing space and copy instead? */
434 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
435 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
436 		if (n == NULL) {
437 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
438 			    "%s: cannot expand storage\n", __func__);
439 			ic->ic_stats.is_tx_nobuf++;
440 			m_freem(m);
441 			return NULL;
442 		}
443 
444 		IASSERT(needed_space <= MHLEN,
445 		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
446 
447 		/*
448 		 * Setup new mbuf to have leading space to prepend the
449 		 * 802.11 header and any crypto header bits that are
450 		 * required (the latter are added when the driver calls
451 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
452 		 */
453 		M_MOVE_PKTHDR(n, m);
454 		n->m_len = 0;
455 		n->m_data += needed_space;
456 
457 		/*
458 		 * Pull up Ethernet header to create the expected layout.
459 		 * We could use m_pullup but that's overkill (i.e. we don't
460 		 * need the actual data) and it cannot fail so do it inline
461 		 * for speed.
462 		 */
463 		n->m_len += sizeof(struct ether_header);
464 		m->m_len -= sizeof(struct ether_header);
465 		m->m_data += sizeof(struct ether_header);
466 
467 		/*
468 		 * Replace the head of the chain.
469 		 */
470 		n->m_next = m;
471 		m = n;
472 	} else {
473 		/*
474 		 * We will overwrite the ethernet header in the
475 		 * 802.11 encapsulation stage.  Make sure that it
476 		 * is writable.
477 		 */
478 		wlen = sizeof(struct ether_header);
479 	}
480 
481 	/*
482 	 * If we're going to s/w encrypt the mbuf chain make sure it is
483 	 * writable.
484 	 */
485 	if (key != NULL && (key->wk_flags & IEEE80211_KEY_SWCRYPT) != 0) {
486 		wlen = M_COPYALL;
487 	}
488 	if (wlen != 0 && m_makewritable(&m, 0, wlen, M_DONTWAIT) != 0) {
489 		m_freem(m);
490 		return NULL;
491 	}
492 
493 	return m;
494 #undef TO_BE_RECLAIMED
495 }
496 
497 /*
498  * Return the transmit key to use in sending a unicast frame.
499  * If a unicast key is set we use that.  When no unicast key is set
500  * we fall back to the default transmit key.
501  */
502 static __inline struct ieee80211_key *
503 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
504 {
505 	if (IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)) {
506 		if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
507 		    IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
508 			return NULL;
509 		return &ic->ic_nw_keys[ic->ic_def_txkey];
510 	} else {
511 		return &ni->ni_ucastkey;
512 	}
513 }
514 
515 /*
516  * Return the transmit key to use in sending a multicast frame.
517  * Multicast traffic always uses the group key which is installed as
518  * the default tx key.
519  */
520 static __inline struct ieee80211_key *
521 ieee80211_crypto_getmcastkey(struct ieee80211com *ic,
522     struct ieee80211_node *ni)
523 {
524 	if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
525 	    IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
526 		return NULL;
527 	return &ic->ic_nw_keys[ic->ic_def_txkey];
528 }
529 
530 /*
531  * Encapsulate an outbound data frame.  The mbuf chain is updated.
532  * If an error is encountered NULL is returned.  The caller is required
533  * to provide a node reference and pullup the ethernet header in the
534  * first mbuf.
535  */
536 struct mbuf *
537 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m,
538 	struct ieee80211_node *ni)
539 {
540 	struct ether_header eh;
541 	struct ieee80211_frame *wh;
542 	struct ieee80211_key *key;
543 	struct llc *llc;
544 	int hdrsize, datalen, addqos, txfrag;
545 
546 	IASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
547 	memcpy(&eh, mtod(m, void *), sizeof(struct ether_header));
548 
549 	/*
550 	 * Insure space for additional headers.  First identify
551 	 * transmit key to use in calculating any buffer adjustments
552 	 * required.  This is also used below to do privacy
553 	 * encapsulation work.  Then calculate the 802.11 header
554 	 * size and any padding required by the driver.
555 	 *
556 	 * Note key may be NULL if we fall back to the default
557 	 * transmit key and that is not set.  In that case the
558 	 * buffer may not be expanded as needed by the cipher
559 	 * routines, but they will/should discard it.
560 	 */
561 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
562 		if (ic->ic_opmode == IEEE80211_M_STA ||
563 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
564 			key = ieee80211_crypto_getucastkey(ic, ni);
565 		} else {
566 			key = ieee80211_crypto_getmcastkey(ic, ni);
567 		}
568 		if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) {
569 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
570 			    "[%s] no default transmit key (%s) deftxkey %u\n",
571 			    ether_sprintf(eh.ether_dhost), __func__,
572 			    ic->ic_def_txkey);
573 			ic->ic_stats.is_tx_nodefkey++;
574 		}
575 	} else {
576 		key = NULL;
577 	}
578 
579 	/*
580 	 * XXX 4-address format.
581 	 *
582 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
583 	 * frames so suppress use.  This may be an issue if other
584 	 * ap's require all data frames to be QoS-encapsulated
585 	 * once negotiated in which case we'll need to make this
586 	 * configurable.
587 	 */
588 	addqos = (ni->ni_flags & IEEE80211_NODE_QOS) &&
589 	    eh.ether_type != htons(ETHERTYPE_PAE);
590 	if (addqos)
591 		hdrsize = sizeof(struct ieee80211_qosframe);
592 	else
593 		hdrsize = sizeof(struct ieee80211_frame);
594 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
595 		hdrsize = roundup(hdrsize, sizeof(u_int32_t));
596 
597 	m = ieee80211_mbuf_adjust(ic, hdrsize, key, m);
598 	if (m == NULL) {
599 		/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
600 		goto bad;
601 	}
602 
603 	/* NB: this could be optimized because of ieee80211_mbuf_adjust */
604 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
605 	llc = mtod(m, struct llc *);
606 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
607 	llc->llc_control = LLC_UI;
608 	llc->llc_snap.org_code[0] = 0;
609 	llc->llc_snap.org_code[1] = 0;
610 	llc->llc_snap.org_code[2] = 0;
611 	llc->llc_snap.ether_type = eh.ether_type;
612 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
613 
614 	M_PREPEND(m, hdrsize, M_DONTWAIT);
615 	if (m == NULL) {
616 		ic->ic_stats.is_tx_nobuf++;
617 		goto bad;
618 	}
619 
620 	wh = mtod(m, struct ieee80211_frame *);
621 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
622 	*(u_int16_t *)wh->i_dur = 0;
623 
624 	switch (ic->ic_opmode) {
625 	case IEEE80211_M_STA:
626 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
627 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
628 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
629 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
630 		break;
631 
632 	case IEEE80211_M_IBSS:
633 	case IEEE80211_M_AHDEMO:
634 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
635 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
636 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
637 		/*
638 		 * NB: always use the bssid from ic_bss as the
639 		 *     neighbor's may be stale after an ibss merge
640 		 */
641 		IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid);
642 		break;
643 
644 	case IEEE80211_M_HOSTAP:
645 #ifndef IEEE80211_NO_HOSTAP
646 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
647 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
648 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
649 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
650 #endif
651 		break;
652 
653 	case IEEE80211_M_MONITOR:
654 		goto bad;
655 	}
656 
657 	if (m->m_flags & M_MORE_DATA)
658 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
659 
660 	if (addqos) {
661 		struct ieee80211_qosframe *qwh =
662 			(struct ieee80211_qosframe *)wh;
663 		int ac, tid;
664 
665 		ac = M_WME_GETAC(m);
666 		/* map from access class/queue to 11e header priorty value */
667 		tid = WME_AC_TO_TID(ac);
668 		qwh->i_qos[0] = tid & IEEE80211_QOS_TID;
669 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
670 			qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S;
671 		qwh->i_qos[1] = 0;
672 		qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
673 
674 		*(u_int16_t *)wh->i_seq =
675 		    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
676 		ni->ni_txseqs[tid]++;
677 	} else {
678 		*(u_int16_t *)wh->i_seq =
679 		    htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
680 		ni->ni_txseqs[0]++;
681 	}
682 
683 	/* check if xmit fragmentation is required */
684 	txfrag = (m->m_pkthdr.len > ic->ic_fragthreshold &&
685 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
686 	    (m->m_flags & M_FF) == 0);          /* NB: don't fragment ff's */
687 
688 	if (key != NULL) {
689 		/*
690 		 * IEEE 802.1X: send EAPOL frames always in the clear.
691 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
692 		 */
693 		if (eh.ether_type != htons(ETHERTYPE_PAE) ||
694 		    ((ic->ic_flags & IEEE80211_F_WPA) &&
695 		     (ic->ic_opmode == IEEE80211_M_STA ?
696 		      !IEEE80211_KEY_UNDEFINED(*key) :
697 		      !IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)))) {
698 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
699 			if (!ieee80211_crypto_enmic(ic, key, m, txfrag)) {
700 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
701 				    "[%s] enmic failed, discard frame\n",
702 				    ether_sprintf(eh.ether_dhost));
703 				ic->ic_stats.is_crypto_enmicfail++;
704 				goto bad;
705 			}
706 		}
707 	}
708 
709 	if (txfrag && !ieee80211_fragment(ic, m, hdrsize,
710 	    key != NULL ? key->wk_cipher->ic_header : 0, ic->ic_fragthreshold))
711 		goto bad;
712 
713 	IEEE80211_NODE_STAT(ni, tx_data);
714 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
715 
716 	return m;
717 
718 bad:
719 	if (m != NULL)
720 		m_freem(m);
721 	return NULL;
722 }
723 
724 /*
725  * Arguments in:
726  *
727  * paylen:  payload length (no FCS, no WEP header)
728  *
729  * hdrlen:  header length
730  *
731  * rate:    MSDU speed, units 500kb/s
732  *
733  * flags:   IEEE80211_F_SHPREAMBLE (use short preamble),
734  *          IEEE80211_F_SHSLOT (use short slot length)
735  *
736  * Arguments out:
737  *
738  * d:       802.11 Duration field for RTS,
739  *          802.11 Duration field for data frame,
740  *          PLCP Length for data frame,
741  *          residual octets at end of data slot
742  */
743 static int
744 ieee80211_compute_duration1(int len, int use_ack, uint32_t icflags, int rate,
745     struct ieee80211_duration *d)
746 {
747 	int pre, ctsrate;
748 	int ack, bitlen, data_dur, remainder;
749 
750 	/* RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK
751 	 * DATA reserves medium for SIFS | ACK,
752 	 *
753 	 * (XXX or SIFS | ACK | SIFS | DATA | SIFS | ACK, if more fragments)
754 	 *
755 	 * XXXMYC: no ACK on multicast/broadcast or control packets
756 	 */
757 
758 	bitlen = len * 8;
759 
760 	pre = IEEE80211_DUR_DS_SIFS;
761 	if ((icflags & IEEE80211_F_SHPREAMBLE) != 0)
762 		pre += IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR;
763 	else
764 		pre += IEEE80211_DUR_DS_LONG_PREAMBLE + IEEE80211_DUR_DS_SLOW_PLCPHDR;
765 
766 	d->d_residue = 0;
767 	data_dur = (bitlen * 2) / rate;
768 	remainder = (bitlen * 2) % rate;
769 	if (remainder != 0) {
770 		d->d_residue = (rate - remainder) / 16;
771 		data_dur++;
772 	}
773 
774 	switch (rate) {
775 	case 2:		/* 1 Mb/s */
776 	case 4:		/* 2 Mb/s */
777 		/* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */
778 		ctsrate = 2;
779 		break;
780 	case 11:	/* 5.5 Mb/s */
781 	case 22:	/* 11  Mb/s */
782 	case 44:	/* 22  Mb/s */
783 		/* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */
784 		ctsrate = 4;
785 		break;
786 	default:
787 		/* TBD */
788 		return -1;
789 	}
790 
791 	d->d_plcp_len = data_dur;
792 
793 	ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0;
794 
795 	d->d_rts_dur =
796 	    pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate +
797 	    pre + data_dur +
798 	    ack;
799 
800 	d->d_data_dur = ack;
801 
802 	return 0;
803 }
804 
805 /*
806  * Arguments in:
807  *
808  * wh:      802.11 header
809  *
810  * paylen:  payload length (no FCS, no WEP header)
811  *
812  * rate:    MSDU speed, units 500kb/s
813  *
814  * fraglen: fragment length, set to maximum (or higher) for no
815  *          fragmentation
816  *
817  * flags:   IEEE80211_F_PRIVACY (hardware adds WEP),
818  *          IEEE80211_F_SHPREAMBLE (use short preamble),
819  *          IEEE80211_F_SHSLOT (use short slot length)
820  *
821  * Arguments out:
822  *
823  * d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
824  *     of first/only fragment
825  *
826  * dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
827  *     of last fragment
828  *
829  * ieee80211_compute_duration assumes crypto-encapsulation, if any,
830  * has already taken place.
831  */
832 int
833 ieee80211_compute_duration(const struct ieee80211_frame_min *wh,
834     const struct ieee80211_key *wk, int len,
835     uint32_t icflags, int fraglen, int rate, struct ieee80211_duration *d0,
836     struct ieee80211_duration *dn, int *npktp, int debug)
837 {
838 	int ack, rc;
839 	int cryptolen,	/* crypto overhead: header+trailer */
840 	    firstlen,	/* first fragment's payload + overhead length */
841 	    hdrlen,	/* header length w/o driver padding */
842 	    lastlen,	/* last fragment's payload length w/ overhead */
843 	    lastlen0,	/* last fragment's payload length w/o overhead */
844 	    npkt,	/* number of fragments */
845 	    overlen,	/* non-802.11 header overhead per fragment */
846 	    paylen;	/* payload length w/o overhead */
847 
848 	hdrlen = ieee80211_anyhdrsize((const void *)wh);
849 
850 	/* Account for padding required by the driver. */
851 	if (icflags & IEEE80211_F_DATAPAD) {
852 		paylen = len - roundup(hdrlen, sizeof(u_int32_t));
853 		if (paylen < 0) {
854 			panic("%s: paylen < 0", __func__);
855 		}
856 	} else {
857 		paylen = len - hdrlen;
858 	}
859 
860 	overlen = IEEE80211_CRC_LEN;
861 
862 	if (wk != NULL) {
863 		cryptolen = wk->wk_cipher->ic_header +
864 		            wk->wk_cipher->ic_trailer;
865 		paylen -= cryptolen;
866 		overlen += cryptolen;
867 	}
868 
869 	npkt = paylen / fraglen;
870 	lastlen0 = paylen % fraglen;
871 
872 	if (npkt == 0)			/* no fragments */
873 		lastlen = paylen + overlen;
874 	else if (lastlen0 != 0) {	/* a short "tail" fragment */
875 		lastlen = lastlen0 + overlen;
876 		npkt++;
877 	} else				/* full-length "tail" fragment */
878 		lastlen = fraglen + overlen;
879 
880 	if (npktp != NULL)
881 		*npktp = npkt;
882 
883 	if (npkt > 1)
884 		firstlen = fraglen + overlen;
885 	else
886 		firstlen = paylen + overlen;
887 
888 	if (debug) {
889 		printf("%s: npkt %d firstlen %d lastlen0 %d lastlen %d "
890 		    "fraglen %d overlen %d len %d rate %d icflags %08x\n",
891 		    __func__, npkt, firstlen, lastlen0, lastlen, fraglen,
892 		    overlen, len, rate, icflags);
893 	}
894 
895 	ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
896 	    (wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL;
897 
898 	rc = ieee80211_compute_duration1(firstlen + hdrlen,
899 	    ack, icflags, rate, d0);
900 	if (rc == -1)
901 		return rc;
902 
903 	if (npkt <= 1) {
904 		*dn = *d0;
905 		return 0;
906 	}
907 	return ieee80211_compute_duration1(lastlen + hdrlen, ack, icflags, rate,
908 	    dn);
909 }
910 
911 /*
912  * Fragment the frame according to the specified mtu.
913  * The size of the 802.11 header (w/o padding) is provided
914  * so we don't need to recalculate it.  We create a new
915  * mbuf for each fragment and chain it through m_nextpkt;
916  * we might be able to optimize this by reusing the original
917  * packet's mbufs but that is significantly more complicated.
918  */
919 static int
920 ieee80211_fragment(struct ieee80211com *ic, struct mbuf *m0,
921 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
922 {
923 	struct ieee80211_frame *wh, *whf;
924 	struct mbuf *m, *prev, *next;
925 	const u_int totalhdrsize = hdrsize + ciphdrsize;
926 	u_int fragno, fragsize, off, remainder, payload;
927 
928 	IASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
929 	IASSERT(m0->m_pkthdr.len > mtu,
930 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
931 
932 	wh = mtod(m0, struct ieee80211_frame *);
933 	/* NB: mark the first frag; it will be propagated below */
934 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
935 
936 	fragno = 1;
937 	off = mtu - ciphdrsize;
938 	remainder = m0->m_pkthdr.len - off;
939 	prev = m0;
940 	do {
941 		fragsize = totalhdrsize + remainder;
942 		if (fragsize > mtu)
943 			fragsize = mtu;
944 		IASSERT(fragsize < MCLBYTES,
945 			("fragment size %u too big!", fragsize));
946 		if (fragsize > MHLEN)
947 			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
948 		else
949 			m = m_gethdr(M_DONTWAIT, MT_DATA);
950 		if (m == NULL)
951 			goto bad;
952 
953 		/* leave room to prepend any cipher header */
954 		m_align(m, fragsize - ciphdrsize);
955 
956 		/*
957 		 * Form the header in the fragment.  Note that since
958 		 * we mark the first fragment with the MORE_FRAG bit
959 		 * it automatically is propagated to each fragment; we
960 		 * need only clear it on the last fragment (done below).
961 		 */
962 		whf = mtod(m, struct ieee80211_frame *);
963 		memcpy(whf, wh, hdrsize);
964 		*(u_int16_t *)&whf->i_seq[0] |= htole16(
965 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
966 				IEEE80211_SEQ_FRAG_SHIFT);
967 		fragno++;
968 
969 		payload = fragsize - totalhdrsize;
970 		/* NB: destination is known to be contiguous */
971 		m_copydata(m0, off, payload, mtod(m, u_int8_t *) + hdrsize);
972 		m->m_len = hdrsize + payload;
973 		m->m_pkthdr.len = hdrsize + payload;
974 		m->m_flags |= M_FRAG;
975 
976 		/* chain up the fragment */
977 		prev->m_nextpkt = m;
978 		prev = m;
979 
980 		/* deduct fragment just formed */
981 		remainder -= payload;
982 		off += payload;
983 	} while (remainder != 0);
984 
985 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
986 
987 	/* strip first mbuf now that everything has been copied */
988 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
989 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
990 
991 	ic->ic_stats.is_tx_fragframes++;
992 	ic->ic_stats.is_tx_frags += fragno-1;
993 
994 	return 1;
995 
996 bad:
997 	/* reclaim fragments but leave original frame for caller to free */
998 	for (m = m0->m_nextpkt; m != NULL; m = next) {
999 		next = m->m_nextpkt;
1000 		m->m_nextpkt = NULL; /* XXX paranoid */
1001 		m_freem(m);
1002 	}
1003 	m0->m_nextpkt = NULL;
1004 
1005 	return 0;
1006 }
1007 
1008 /*
1009  * Add a supported rates element id to a frame.
1010  */
1011 u_int8_t *
1012 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
1013 {
1014 	int nrates;
1015 
1016 	*frm++ = IEEE80211_ELEMID_RATES;
1017 	nrates = rs->rs_nrates;
1018 	if (nrates > IEEE80211_RATE_SIZE)
1019 		nrates = IEEE80211_RATE_SIZE;
1020 	*frm++ = nrates;
1021 	memcpy(frm, rs->rs_rates, nrates);
1022 	return frm + nrates;
1023 }
1024 
1025 /*
1026  * Add an extended supported rates element id to a frame.
1027  */
1028 u_int8_t *
1029 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
1030 {
1031 	/*
1032 	 * Add an extended supported rates element if operating in 11g mode.
1033 	 */
1034 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1035 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1036 		*frm++ = IEEE80211_ELEMID_XRATES;
1037 		*frm++ = nrates;
1038 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1039 		frm += nrates;
1040 	}
1041 	return frm;
1042 }
1043 
1044 /*
1045  * Add an ssid elemet to a frame.
1046  */
1047 u_int8_t *
1048 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
1049 {
1050 	*frm++ = IEEE80211_ELEMID_SSID;
1051 	*frm++ = len;
1052 	memcpy(frm, ssid, len);
1053 	return frm + len;
1054 }
1055 
1056 /*
1057  * Add an erp element to a frame.
1058  */
1059 static u_int8_t *
1060 ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic)
1061 {
1062 	u_int8_t erp;
1063 
1064 	*frm++ = IEEE80211_ELEMID_ERP;
1065 	*frm++ = 1;
1066 	erp = 0;
1067 	if (ic->ic_nonerpsta != 0)
1068 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1069 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1070 		erp |= IEEE80211_ERP_USE_PROTECTION;
1071 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1072 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1073 	*frm++ = erp;
1074 	return frm;
1075 }
1076 
1077 static u_int8_t *
1078 ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie)
1079 {
1080 #define	WPA_OUI_BYTES		0x00, 0x50, 0xf2
1081 #define	ADDSHORT(frm, v) do {			\
1082 	frm[0] = (v) & 0xff;			\
1083 	frm[1] = (v) >> 8;			\
1084 	frm += 2;				\
1085 } while (0)
1086 #define	ADDSELECTOR(frm, sel) do {		\
1087 	memcpy(frm, sel, 4);			\
1088 	frm += 4;				\
1089 } while (0)
1090 	static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE };
1091 	static const u_int8_t cipher_suite[][4] = {
1092 		{ WPA_OUI_BYTES, WPA_CSE_WEP40 },	/* NB: 40-bit */
1093 		{ WPA_OUI_BYTES, WPA_CSE_TKIP },
1094 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX WRAP */
1095 		{ WPA_OUI_BYTES, WPA_CSE_CCMP },
1096 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX CKIP */
1097 		{ WPA_OUI_BYTES, WPA_CSE_NULL },
1098 	};
1099 	static const u_int8_t wep104_suite[4] =
1100 		{ WPA_OUI_BYTES, WPA_CSE_WEP104 };
1101 	static const u_int8_t key_mgt_unspec[4] =
1102 		{ WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC };
1103 	static const u_int8_t key_mgt_psk[4] =
1104 		{ WPA_OUI_BYTES, WPA_ASE_8021X_PSK };
1105 	const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
1106 	u_int8_t *frm = ie;
1107 	u_int8_t *selcnt;
1108 
1109 	*frm++ = IEEE80211_ELEMID_VENDOR;
1110 	*frm++ = 0;				/* length filled in below */
1111 	memcpy(frm, oui, sizeof(oui));		/* WPA OUI */
1112 	frm += sizeof(oui);
1113 	ADDSHORT(frm, WPA_VERSION);
1114 
1115 	/* XXX filter out CKIP */
1116 
1117 	/* multicast cipher */
1118 	if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
1119 	    rsn->rsn_mcastkeylen >= 13)
1120 		ADDSELECTOR(frm, wep104_suite);
1121 	else
1122 		ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
1123 
1124 	/* unicast cipher list */
1125 	selcnt = frm;
1126 	ADDSHORT(frm, 0);			/* selector count */
1127 	if (rsn->rsn_ucastcipherset & (1 << IEEE80211_CIPHER_AES_CCM)) {
1128 		selcnt[0]++;
1129 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
1130 	}
1131 	if (rsn->rsn_ucastcipherset & (1 << IEEE80211_CIPHER_TKIP)) {
1132 		selcnt[0]++;
1133 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
1134 	}
1135 
1136 	/* authenticator selector list */
1137 	selcnt = frm;
1138 	ADDSHORT(frm, 0);			/* selector count */
1139 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
1140 		selcnt[0]++;
1141 		ADDSELECTOR(frm, key_mgt_unspec);
1142 	}
1143 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
1144 		selcnt[0]++;
1145 		ADDSELECTOR(frm, key_mgt_psk);
1146 	}
1147 
1148 	/* optional capabilities */
1149 	if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH)
1150 		ADDSHORT(frm, rsn->rsn_caps);
1151 
1152 	/* calculate element length */
1153 	ie[1] = frm - ie - 2;
1154 	IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
1155 		("WPA IE too big, %u > %zu",
1156 		ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
1157 	return frm;
1158 #undef ADDSHORT
1159 #undef ADDSELECTOR
1160 #undef WPA_OUI_BYTES
1161 }
1162 
1163 static u_int8_t *
1164 ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie)
1165 {
1166 #define	RSN_OUI_BYTES		0x00, 0x0f, 0xac
1167 #define	ADDSHORT(frm, v) do {			\
1168 	frm[0] = (v) & 0xff;			\
1169 	frm[1] = (v) >> 8;			\
1170 	frm += 2;				\
1171 } while (0)
1172 #define	ADDSELECTOR(frm, sel) do {		\
1173 	memcpy(frm, sel, 4);			\
1174 	frm += 4;				\
1175 } while (0)
1176 	static const u_int8_t cipher_suite[][4] = {
1177 		{ RSN_OUI_BYTES, RSN_CSE_WEP40 },	/* NB: 40-bit */
1178 		{ RSN_OUI_BYTES, RSN_CSE_TKIP },
1179 		{ RSN_OUI_BYTES, RSN_CSE_WRAP },
1180 		{ RSN_OUI_BYTES, RSN_CSE_CCMP },
1181 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX CKIP */
1182 		{ RSN_OUI_BYTES, RSN_CSE_NULL },
1183 	};
1184 	static const u_int8_t wep104_suite[4] =
1185 		{ RSN_OUI_BYTES, RSN_CSE_WEP104 };
1186 	static const u_int8_t key_mgt_unspec[4] =
1187 		{ RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC };
1188 	static const u_int8_t key_mgt_psk[4] =
1189 		{ RSN_OUI_BYTES, RSN_ASE_8021X_PSK };
1190 	const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
1191 	u_int8_t *frm = ie;
1192 	u_int8_t *selcnt;
1193 
1194 	*frm++ = IEEE80211_ELEMID_RSN;
1195 	*frm++ = 0;				/* length filled in below */
1196 	ADDSHORT(frm, RSN_VERSION);
1197 
1198 	/* XXX filter out CKIP */
1199 
1200 	/* multicast cipher */
1201 	if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
1202 	    rsn->rsn_mcastkeylen >= 13)
1203 		ADDSELECTOR(frm, wep104_suite);
1204 	else
1205 		ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
1206 
1207 	/* unicast cipher list */
1208 	selcnt = frm;
1209 	ADDSHORT(frm, 0);			/* selector count */
1210 	if (rsn->rsn_ucastcipherset & (1 << IEEE80211_CIPHER_AES_CCM)) {
1211 		selcnt[0]++;
1212 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
1213 	}
1214 	if (rsn->rsn_ucastcipherset & (1 << IEEE80211_CIPHER_TKIP)) {
1215 		selcnt[0]++;
1216 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
1217 	}
1218 
1219 	/* authenticator selector list */
1220 	selcnt = frm;
1221 	ADDSHORT(frm, 0);			/* selector count */
1222 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
1223 		selcnt[0]++;
1224 		ADDSELECTOR(frm, key_mgt_unspec);
1225 	}
1226 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
1227 		selcnt[0]++;
1228 		ADDSELECTOR(frm, key_mgt_psk);
1229 	}
1230 
1231 	/* optional capabilities */
1232 	ADDSHORT(frm, rsn->rsn_caps);
1233 	/* XXX PMKID */
1234 
1235 	/* calculate element length */
1236 	ie[1] = frm - ie - 2;
1237 	IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
1238 		("RSN IE too big, %u > %zu",
1239 		ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
1240 	return frm;
1241 #undef ADDSELECTOR
1242 #undef ADDSHORT
1243 #undef RSN_OUI_BYTES
1244 }
1245 
1246 /*
1247  * Add a WPA/RSN element to a frame.
1248  */
1249 u_int8_t *
1250 ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic)
1251 {
1252 
1253 	IASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!"));
1254 	if (ic->ic_flags & IEEE80211_F_WPA2)
1255 		frm = ieee80211_setup_rsn_ie(ic, frm);
1256 	if (ic->ic_flags & IEEE80211_F_WPA1)
1257 		frm = ieee80211_setup_wpa_ie(ic, frm);
1258 	return frm;
1259 }
1260 
1261 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1262 /*
1263  * Add a WME information element to a frame.
1264  */
1265 u_int8_t *
1266 ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme)
1267 {
1268 	static const struct ieee80211_wme_info info = {
1269 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1270 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1271 		.wme_oui	= { WME_OUI_BYTES },
1272 		.wme_type	= WME_OUI_TYPE,
1273 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1274 		.wme_version	= WME_VERSION,
1275 		.wme_info	= 0,
1276 	};
1277 	memcpy(frm, &info, sizeof(info));
1278 	return frm + sizeof(info);
1279 }
1280 
1281 /*
1282  * Add a WME parameters element to a frame.
1283  */
1284 static u_int8_t *
1285 ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme)
1286 {
1287 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1288 #define	ADDSHORT(frm, v) do {			\
1289 	frm[0] = (v) & 0xff;			\
1290 	frm[1] = (v) >> 8;			\
1291 	frm += 2;				\
1292 } while (0)
1293 	/* NB: this works because a param has an info at the front */
1294 	static const struct ieee80211_wme_info param = {
1295 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1296 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1297 		.wme_oui	= { WME_OUI_BYTES },
1298 		.wme_type	= WME_OUI_TYPE,
1299 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1300 		.wme_version	= WME_VERSION,
1301 	};
1302 	int i;
1303 
1304 	memcpy(frm, &param, sizeof(param));
1305 	frm += offsetof(struct ieee80211_wme_info, wme_info);
1306 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1307 	*frm++ = 0;					/* reserved field */
1308 	for (i = 0; i < WME_NUM_AC; i++) {
1309 		const struct wmeParams *ac =
1310 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1311 		*frm++ = SM(i, WME_PARAM_ACI) |
1312 		    SM(ac->wmep_acm, WME_PARAM_ACM) |
1313 		    SM(ac->wmep_aifsn, WME_PARAM_AIFSN);
1314 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) |
1315 		    SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN);
1316 		ADDSHORT(frm, ac->wmep_txopLimit);
1317 	}
1318 
1319 	return frm;
1320 #undef SM
1321 #undef ADDSHORT
1322 }
1323 #undef WME_OUI_BYTES
1324 
1325 /*
1326  * Send a probe request frame with the specified ssid
1327  * and any optional information element data.
1328  */
1329 int
1330 ieee80211_send_probereq(struct ieee80211_node *ni,
1331 	const u_int8_t sa[IEEE80211_ADDR_LEN],
1332 	const u_int8_t da[IEEE80211_ADDR_LEN],
1333 	const u_int8_t bssid[IEEE80211_ADDR_LEN],
1334 	const u_int8_t *ssid, size_t ssidlen,
1335 	const void *optie, size_t optielen)
1336 {
1337 	struct ieee80211com *ic = ni->ni_ic;
1338 	enum ieee80211_phymode mode;
1339 	struct ieee80211_frame *wh;
1340 	struct mbuf *m;
1341 	u_int8_t *frm;
1342 
1343 	/*
1344 	 * Hold a reference on the node so it doesn't go away until after
1345 	 * the xmit is complete all the way in the driver.  On error we
1346 	 * will remove our reference.
1347 	 */
1348 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
1349 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1350 		__func__, __LINE__,
1351 		ni, ether_sprintf(ni->ni_macaddr),
1352 		ieee80211_node_refcnt(ni)+1);
1353 	ieee80211_ref_node(ni);
1354 
1355 	/*
1356 	 * prreq frame format
1357 	 *	[tlv] ssid
1358 	 *	[tlv] supported rates
1359 	 *	[tlv] extended supported rates
1360 	 *	[tlv] user-specified ie's
1361 	 */
1362 	m = ieee80211_getmgtframe(&frm,
1363 		 2 + IEEE80211_NWID_LEN
1364 	       + 2 + IEEE80211_RATE_SIZE
1365 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1366 	       + (optie != NULL ? optielen : 0)
1367 	);
1368 	if (m == NULL) {
1369 		ic->ic_stats.is_tx_nobuf++;
1370 		ieee80211_free_node(ni);
1371 		return ENOMEM;
1372 	}
1373 
1374 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1375 	mode = ieee80211_chan2mode(ic, ic->ic_curchan);
1376 	frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]);
1377 	frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]);
1378 
1379 	if (optie != NULL) {
1380 		memcpy(frm, optie, optielen);
1381 		frm += optielen;
1382 	}
1383 	m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1384 
1385 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1386 	if (m == NULL) {
1387 		ic->ic_stats.is_tx_nobuf++;
1388 		ieee80211_free_node(ni);
1389 		return ENOMEM;
1390 	}
1391 	M_SETCTX(m, ni);
1392 
1393 	wh = mtod(m, struct ieee80211_frame *);
1394 	ieee80211_send_setup(ic, ni, wh,
1395 	    IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1396 	    sa, da, bssid);
1397 	/* XXX power management? */
1398 
1399 	IEEE80211_NODE_STAT(ni, tx_probereq);
1400 	IEEE80211_NODE_STAT(ni, tx_mgmt);
1401 
1402 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1403 	    "[%s] send probe req on channel %u\n",
1404 	    ether_sprintf(wh->i_addr1),
1405 	    ieee80211_chan2ieee(ic, ic->ic_curchan));
1406 
1407 	IF_ENQUEUE(&ic->ic_mgtq, m);
1408 	if_start_lock(ic->ic_ifp);
1409 	return 0;
1410 }
1411 
1412 /*
1413  * Send a management frame.  The node is for the destination (or ic_bss
1414  * when in station mode).  Nodes other than ic_bss have their reference
1415  * count bumped to reflect our use for an indeterminant time.
1416  */
1417 int
1418 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni,
1419 	int type, int arg)
1420 {
1421 #define	senderr(_x, _v)	do { ic->ic_stats._v++; ret = _x; goto bad; } while (0)
1422 	struct mbuf *m;
1423 	u_int8_t *frm;
1424 	u_int16_t capinfo;
1425 	int ret, timer, status;
1426 
1427 	IASSERT(ni != NULL, ("null node"));
1428 
1429 	/*
1430 	 * Hold a reference on the node so it doesn't go away until after
1431 	 * the xmit is complete all the way in the driver.  On error we
1432 	 * will remove our reference.
1433 	 */
1434 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
1435 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1436 		__func__, __LINE__,
1437 		ni, ether_sprintf(ni->ni_macaddr),
1438 		ieee80211_node_refcnt(ni)+1);
1439 	ieee80211_ref_node(ni);
1440 
1441 	timer = 0;
1442 	switch (type) {
1443 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP: {
1444 		const bool has_wpa = (ic->ic_flags & IEEE80211_F_WPA) != 0;
1445 
1446 		/*
1447 		 * probe response frame format
1448 		 *	[8] time stamp
1449 		 *	[2] beacon interval
1450 		 *	[2] cabability information
1451 		 *	[tlv] ssid
1452 		 *	[tlv] supported rates
1453 		 *	[tlv] parameter set (FH/DS)
1454 		 *	[tlv] parameter set (IBSS)
1455 		 *	[tlv] extended rate phy (ERP)
1456 		 *	[tlv] extended supported rates
1457 		 *	[tlv] WPA
1458 		 *	[tlv] WME (optional)
1459 		 */
1460 		m = ieee80211_getmgtframe(&frm,
1461 			 8 /* timestamp */
1462 		       + sizeof(u_int16_t) /* interval */
1463 		       + sizeof(u_int16_t) /* capinfo */
1464 		       + 2 + IEEE80211_NWID_LEN /* ssid */
1465 		       + 2 + IEEE80211_RATE_SIZE /* rates */
1466 		       + 7 /* max(7,3) */
1467 		       + 6 /* ibss (XXX could be 4?) */
1468 		       + 3 /* erp */
1469 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1470 		       /* XXX !WPA1+WPA2 fits w/o a cluster */
1471 		       + (has_wpa ? (2 * sizeof(struct ieee80211_ie_wpa)) : 0)
1472 		       + sizeof(struct ieee80211_wme_param)
1473 		);
1474 		if (m == NULL)
1475 			senderr(ENOMEM, is_tx_nobuf);
1476 
1477 		/* timestamp (should be filled later) */
1478 		memset(frm, 0, 8);
1479 		frm += 8;
1480 
1481 		/* interval */
1482 		*(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval);
1483 		frm += 2;
1484 
1485 		/* capinfo */
1486 		if (ic->ic_opmode == IEEE80211_M_IBSS)
1487 			capinfo = IEEE80211_CAPINFO_IBSS;
1488 		else
1489 			capinfo = IEEE80211_CAPINFO_ESS;
1490 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
1491 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
1492 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1493 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1494 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1495 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1496 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1497 		*(u_int16_t *)frm = htole16(capinfo);
1498 		frm += 2;
1499 
1500 		/* ssid */
1501 		frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid,
1502 		    ic->ic_bss->ni_esslen);
1503 
1504 		/* rates */
1505 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
1506 
1507 		/* variable */
1508 		if (ic->ic_phytype == IEEE80211_T_FH) {
1509 			*frm++ = IEEE80211_ELEMID_FHPARMS;
1510 			*frm++ = 5;
1511 			*frm++ = ni->ni_fhdwell & 0x00ff;
1512 			*frm++ = (ni->ni_fhdwell >> 8) & 0x00ff;
1513 			*frm++ = IEEE80211_FH_CHANSET(
1514 			    ieee80211_chan2ieee(ic, ic->ic_curchan));
1515 			*frm++ = IEEE80211_FH_CHANPAT(
1516 			    ieee80211_chan2ieee(ic, ic->ic_curchan));
1517 			*frm++ = ni->ni_fhindex;
1518 		} else {
1519 			*frm++ = IEEE80211_ELEMID_DSPARMS;
1520 			*frm++ = 1;
1521 			*frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan);
1522 		}
1523 
1524 		/* ibss */
1525 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
1526 			*frm++ = IEEE80211_ELEMID_IBSSPARMS;
1527 			*frm++ = 2;
1528 			*frm++ = 0; *frm++ = 0;	/* TODO: ATIM window */
1529 		}
1530 
1531 		/* wpa */
1532 		if (has_wpa)
1533 			frm = ieee80211_add_wpa(frm, ic);
1534 
1535 		/* erp */
1536 		if (ic->ic_curmode == IEEE80211_MODE_11G)
1537 			frm = ieee80211_add_erp(frm, ic);
1538 
1539 		/* xrates */
1540 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1541 
1542 		/* wme */
1543 		if (ic->ic_flags & IEEE80211_F_WME)
1544 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1545 
1546 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1547 		break;
1548 	}
1549 
1550 	case IEEE80211_FC0_SUBTYPE_AUTH: {
1551 		status = arg >> 16;
1552 		arg &= 0xffff;
1553 		const bool has_challenge =
1554 		    (arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1555 		     arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1556 		    ni->ni_challenge != NULL;
1557 
1558 		/*
1559 		 * Deduce whether we're doing open authentication or
1560 		 * shared key authentication.  We do the latter if
1561 		 * we're in the middle of a shared key authentication
1562 		 * handshake or if we're initiating an authentication
1563 		 * request and configured to use shared key.
1564 		 */
1565 		const bool is_shared_key = has_challenge ||
1566 		    (arg >= IEEE80211_AUTH_SHARED_RESPONSE) ||
1567 		    (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1568 		     ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED);
1569 
1570 		const bool need_challenge =
1571 		    has_challenge && (status == IEEE80211_STATUS_SUCCESS);
1572 
1573 		const int frm_size = 3 * sizeof(u_int16_t)
1574 			+ (need_challenge ?
1575 				sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0);
1576 
1577 		m = ieee80211_getmgtframe(&frm, frm_size);
1578 		if (m == NULL)
1579 			senderr(ENOMEM, is_tx_nobuf);
1580 
1581 		((u_int16_t *)frm)[0] =
1582 		      is_shared_key ? htole16(IEEE80211_AUTH_ALG_SHARED)
1583 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
1584 		((u_int16_t *)frm)[1] = htole16(arg);	/* sequence number */
1585 		((u_int16_t *)frm)[2] = htole16(status);/* status */
1586 
1587 		if (need_challenge) {
1588 			((u_int16_t *)frm)[3] =
1589 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
1590 			    IEEE80211_ELEMID_CHALLENGE);
1591 			memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge,
1592 			    IEEE80211_CHALLENGE_LEN);
1593 
1594 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1595 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
1596 				    "[%s] request encrypt frame (%s)\n",
1597 				    ether_sprintf(ni->ni_macaddr), __func__);
1598 				m->m_flags |= M_LINK0; /* WEP-encrypt, please */
1599 			}
1600 		}
1601 
1602 		m->m_pkthdr.len = m->m_len = frm_size;
1603 
1604 		/* XXX not right for shared key */
1605 		if (status == IEEE80211_STATUS_SUCCESS)
1606 			IEEE80211_NODE_STAT(ni, tx_auth);
1607 		else
1608 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
1609 
1610 		if (ic->ic_opmode == IEEE80211_M_STA)
1611 			timer = IEEE80211_TRANS_WAIT;
1612 		break;
1613 	}
1614 
1615 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
1616 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
1617 			"[%s] send station deauthenticate (reason %d)\n",
1618 			ether_sprintf(ni->ni_macaddr), arg);
1619 		m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
1620 		if (m == NULL)
1621 			senderr(ENOMEM, is_tx_nobuf);
1622 		*(u_int16_t *)frm = htole16(arg);	/* reason */
1623 		m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
1624 
1625 		IEEE80211_NODE_STAT(ni, tx_deauth);
1626 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1627 
1628 		ieee80211_node_unauthorize(ni);		/* port closed */
1629 		break;
1630 
1631 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1632 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1633 		/*
1634 		 * asreq frame format
1635 		 *	[2] capability information
1636 		 *	[2] listen interval
1637 		 *	[6*] current AP address (reassoc only)
1638 		 *	[tlv] ssid
1639 		 *	[tlv] supported rates
1640 		 *	[tlv] extended supported rates
1641 		 *	[tlv] WME
1642 		 *	[tlv] user-specified ie's
1643 		 */
1644 		m = ieee80211_getmgtframe(&frm,
1645 			 sizeof(u_int16_t)
1646 		       + sizeof(u_int16_t)
1647 		       + IEEE80211_ADDR_LEN
1648 		       + 2 + IEEE80211_NWID_LEN
1649 		       + 2 + IEEE80211_RATE_SIZE
1650 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1651 		       + sizeof(struct ieee80211_wme_info)
1652 		       + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0)
1653 		);
1654 		if (m == NULL)
1655 			senderr(ENOMEM, is_tx_nobuf);
1656 
1657 		capinfo = 0;
1658 		if (ic->ic_opmode == IEEE80211_M_IBSS)
1659 			capinfo |= IEEE80211_CAPINFO_IBSS;
1660 		else /* IEEE80211_M_STA */
1661 			capinfo |= IEEE80211_CAPINFO_ESS;
1662 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
1663 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
1664 		/*
1665 		 * NB: Some 11a AP's reject the request when
1666 		 *     short premable is set.
1667 		 */
1668 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1669 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1670 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1671 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) &&
1672 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
1673 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1674 		*(u_int16_t *)frm = htole16(capinfo);
1675 		frm += 2;
1676 
1677 		*(u_int16_t *)frm = htole16(ic->ic_lintval);
1678 		frm += 2;
1679 
1680 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
1681 			IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid);
1682 			frm += IEEE80211_ADDR_LEN;
1683 		}
1684 
1685 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
1686 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
1687 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1688 		if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
1689 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
1690 		if (ic->ic_opt_ie != NULL) {
1691 			memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
1692 			frm += ic->ic_opt_ie_len;
1693 		}
1694 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1695 
1696 		timer = IEEE80211_TRANS_WAIT;
1697 		break;
1698 
1699 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
1700 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
1701 		/*
1702 		 * asreq frame format
1703 		 *	[2] capability information
1704 		 *	[2] status
1705 		 *	[2] association ID
1706 		 *	[tlv] supported rates
1707 		 *	[tlv] extended supported rates
1708 		 *	[tlv] WME (if enabled and STA enabled)
1709 		 */
1710 		m = ieee80211_getmgtframe(&frm,
1711 			 sizeof(u_int16_t)
1712 		       + sizeof(u_int16_t)
1713 		       + sizeof(u_int16_t)
1714 		       + 2 + IEEE80211_RATE_SIZE
1715 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1716 		       + sizeof(struct ieee80211_wme_param)
1717 		);
1718 		if (m == NULL)
1719 			senderr(ENOMEM, is_tx_nobuf);
1720 
1721 		capinfo = IEEE80211_CAPINFO_ESS;
1722 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
1723 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
1724 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1725 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1726 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1727 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1728 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1729 		*(u_int16_t *)frm = htole16(capinfo);
1730 		frm += 2;
1731 
1732 		*(u_int16_t *)frm = htole16(arg);	/* status */
1733 		frm += 2;
1734 
1735 		if (arg == IEEE80211_STATUS_SUCCESS) {
1736 			*(u_int16_t *)frm = htole16(ni->ni_associd);
1737 			IEEE80211_NODE_STAT(ni, tx_assoc);
1738 		} else {
1739 			*(u_int16_t *)frm = 0;
1740 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
1741 		}
1742 		frm += 2;
1743 
1744 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
1745 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1746 		if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
1747 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1748 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1749 		break;
1750 
1751 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
1752 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC,
1753 			"[%s] send station disassociate (reason %d)\n",
1754 			ether_sprintf(ni->ni_macaddr), arg);
1755 		m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
1756 		if (m == NULL)
1757 			senderr(ENOMEM, is_tx_nobuf);
1758 		*(u_int16_t *)frm = htole16(arg);	/* reason */
1759 		m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
1760 
1761 		IEEE80211_NODE_STAT(ni, tx_disassoc);
1762 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
1763 		break;
1764 
1765 	default:
1766 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1767 			"[%s] invalid mgmt frame type %u\n",
1768 			ether_sprintf(ni->ni_macaddr), type);
1769 		senderr(EINVAL, is_tx_unknownmgt);
1770 		/* NOTREACHED */
1771 	}
1772 	ret = ieee80211_mgmt_output(ic, ni, m, type, timer);
1773 	if (ret != 0) {
1774 bad:
1775 		ieee80211_free_node(ni);
1776 	}
1777 	return ret;
1778 #undef senderr
1779 }
1780 
1781 /*
1782  * Build a RTS (Request To Send) control frame.
1783  */
1784 struct mbuf *
1785 ieee80211_get_rts(struct ieee80211com *ic, const struct ieee80211_frame *wh,
1786     uint16_t dur)
1787 {
1788 	struct ieee80211_frame_rts *rts;
1789 	struct mbuf *m;
1790 
1791 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1792 	if (m == NULL)
1793 		return NULL;
1794 
1795 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
1796 
1797 	rts = mtod(m, struct ieee80211_frame_rts *);
1798 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1799 	    IEEE80211_FC0_SUBTYPE_RTS;
1800 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1801 	*(uint16_t *)rts->i_dur = htole16(dur);
1802 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1803 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1804 
1805 	return m;
1806 }
1807 
1808 /*
1809  * Build a CTS-to-self (Clear To Send) control frame.
1810  */
1811 struct mbuf *
1812 ieee80211_get_cts_to_self(struct ieee80211com *ic, uint16_t dur)
1813 {
1814 	struct ieee80211_frame_cts *cts;
1815 	struct mbuf *m;
1816 
1817 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1818 	if (m == NULL)
1819 		return NULL;
1820 
1821 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
1822 
1823 	cts = mtod(m, struct ieee80211_frame_cts *);
1824 	cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1825 	    IEEE80211_FC0_SUBTYPE_CTS;
1826 	cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1827 	*(uint16_t *)cts->i_dur = htole16(dur);
1828 	IEEE80211_ADDR_COPY(cts->i_ra, ic->ic_myaddr);
1829 
1830 	return m;
1831 }
1832 
1833 /*
1834  * Allocate a beacon frame and fill in the appropriate bits.
1835  */
1836 struct mbuf *
1837 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni,
1838 	struct ieee80211_beacon_offsets *bo)
1839 {
1840 	struct ifnet *ifp = ic->ic_ifp;
1841 	struct ieee80211_frame *wh;
1842 	struct mbuf *m;
1843 	int pktlen;
1844 	u_int8_t *frm, *efrm;
1845 	u_int16_t capinfo;
1846 	struct ieee80211_rateset *rs;
1847 
1848 	rs = &ni->ni_rates;
1849 
1850 	/*
1851 	 * beacon frame format
1852 	 *	[8] time stamp
1853 	 *	[2] beacon interval
1854 	 *	[2] cabability information
1855 	 *	[tlv] ssid
1856 	 *	[tlv] supported rates
1857 	 *	[3] parameter set (DS)
1858 	 *	[tlv] parameter set (IBSS/TIM)
1859 	 *	[tlv] extended rate phy (ERP)
1860 	 *	[tlv] extended supported rates
1861 	 *	[tlv] WME parameters
1862 	 *	[tlv] WPA/RSN parameters
1863 	 * XXX Vendor-specific OIDs (e.g. Atheros)
1864 	 *
1865 	 * NB: we allocate the max space required for the TIM bitmap
1866 	 * (ic_tim_len).
1867 	 */
1868 	pktlen =   8					/* time stamp */
1869 		 + sizeof(u_int16_t)			/* beacon interval */
1870 		 + sizeof(u_int16_t)			/* capabilities */
1871 		 + 2 + ni->ni_esslen			/* ssid */
1872 		 + 2 + IEEE80211_RATE_SIZE		/* supported rates */
1873 		 + 2 + 1				/* DS parameters */
1874 		 + 2 + 4 + ic->ic_tim_len		/* DTIM/IBSSPARMS */
1875 		 + 2 + 1				/* ERP */
1876 		 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1877 		 + (ic->ic_caps & IEEE80211_C_WME ?	/* WME */
1878 			sizeof(struct ieee80211_wme_param) : 0)
1879 		 + (ic->ic_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
1880 			2*sizeof(struct ieee80211_ie_wpa) : 0)
1881 		 ;
1882 	m = ieee80211_getmgtframe(&frm, pktlen);
1883 	if (m == NULL) {
1884 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1885 			"%s: cannot get buf; size %u\n", __func__, pktlen);
1886 		ic->ic_stats.is_tx_nobuf++;
1887 		return NULL;
1888 	}
1889 
1890 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
1891 	frm += 8;
1892 
1893 	*(u_int16_t *)frm = htole16(ni->ni_intval);
1894 	frm += 2;
1895 
1896 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1897 		capinfo = IEEE80211_CAPINFO_IBSS;
1898 	else
1899 		capinfo = IEEE80211_CAPINFO_ESS;
1900 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
1901 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1902 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1903 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1904 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1905 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1906 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1907 	bo->bo_caps = (u_int16_t *)frm;
1908 	*(u_int16_t *)frm = htole16(capinfo);
1909 	frm += 2;
1910 
1911 	*frm++ = IEEE80211_ELEMID_SSID;
1912 	if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) {
1913 		*frm++ = ni->ni_esslen;
1914 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
1915 		frm += ni->ni_esslen;
1916 	} else
1917 		*frm++ = 0;
1918 
1919 	frm = ieee80211_add_rates(frm, rs);
1920 
1921 	if (ic->ic_curmode != IEEE80211_MODE_FH) {
1922 		*frm++ = IEEE80211_ELEMID_DSPARMS;
1923 		*frm++ = 1;
1924 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1925 	}
1926 
1927 	bo->bo_tim = frm;
1928 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1929 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
1930 		*frm++ = 2;
1931 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
1932 		bo->bo_tim_len = 0;
1933 	} else {
1934 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *)frm;
1935 
1936 		tie->tim_ie = IEEE80211_ELEMID_TIM;
1937 		tie->tim_len = 4;	/* length */
1938 		tie->tim_count = 0;	/* DTIM count */
1939 		tie->tim_period = ic->ic_dtim_period;	/* DTIM period */
1940 		tie->tim_bitctl = 0;	/* bitmap control */
1941 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
1942 		frm += sizeof(struct ieee80211_tim_ie);
1943 		bo->bo_tim_len = 1;
1944 	}
1945 
1946 	bo->bo_trailer = frm;
1947 	if (ic->ic_flags & IEEE80211_F_WME) {
1948 		bo->bo_wme = frm;
1949 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1950 		ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
1951 	}
1952 
1953 	if (ic->ic_flags & IEEE80211_F_WPA)
1954 		frm = ieee80211_add_wpa(frm, ic);
1955 
1956 	if (ic->ic_curmode == IEEE80211_MODE_11G)
1957 		frm = ieee80211_add_erp(frm, ic);
1958 
1959 	efrm = ieee80211_add_xrates(frm, rs);
1960 
1961 	bo->bo_trailer_len = efrm - bo->bo_trailer;
1962 	m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *);
1963 
1964 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1965 	IASSERT(m != NULL, ("no space for 802.11 header?"));
1966 
1967 	wh = mtod(m, struct ieee80211_frame *);
1968 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1969 	    IEEE80211_FC0_SUBTYPE_BEACON;
1970 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1971 	*(u_int16_t *)wh->i_dur = 0;
1972 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
1973 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
1974 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
1975 	*(u_int16_t *)wh->i_seq = 0;
1976 
1977 	return m;
1978 }
1979 
1980 /*
1981  * Update the dynamic parts of a beacon frame based on the current state.
1982  */
1983 int
1984 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni,
1985     struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
1986 {
1987 	int len_changed = 0;
1988 	u_int16_t capinfo;
1989 
1990 	IEEE80211_BEACON_LOCK(ic);
1991 
1992 	/* XXX faster to recalculate entirely or just changes? */
1993 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1994 		capinfo = IEEE80211_CAPINFO_IBSS;
1995 	else
1996 		capinfo = IEEE80211_CAPINFO_ESS;
1997 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
1998 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1999 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2000 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2001 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2002 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2003 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2004 	*bo->bo_caps = htole16(capinfo);
2005 
2006 	if (ic->ic_flags & IEEE80211_F_WME) {
2007 		struct ieee80211_wme_state *wme = &ic->ic_wme;
2008 
2009 		/*
2010 		 * Check for agressive mode change.  When there is
2011 		 * significant high priority traffic in the BSS
2012 		 * throttle back BE traffic by using conservative
2013 		 * parameters.  Otherwise BE uses agressive params
2014 		 * to optimize performance of legacy/non-QoS traffic.
2015 		 */
2016 		if (wme->wme_flags & WME_F_AGGRMODE) {
2017 			if (wme->wme_hipri_traffic >
2018 			    wme->wme_hipri_switch_thresh) {
2019 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
2020 				    "%s: traffic %u, disable aggressive mode\n",
2021 				    __func__, wme->wme_hipri_traffic);
2022 				wme->wme_flags &= ~WME_F_AGGRMODE;
2023 				ieee80211_wme_updateparams_locked(ic);
2024 				wme->wme_hipri_traffic =
2025 					wme->wme_hipri_switch_hysteresis;
2026 			} else
2027 				wme->wme_hipri_traffic = 0;
2028 		} else {
2029 			if (wme->wme_hipri_traffic <=
2030 			    wme->wme_hipri_switch_thresh) {
2031 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
2032 				    "%s: traffic %u, enable aggressive mode\n",
2033 				    __func__, wme->wme_hipri_traffic);
2034 				wme->wme_flags |= WME_F_AGGRMODE;
2035 				ieee80211_wme_updateparams_locked(ic);
2036 				wme->wme_hipri_traffic = 0;
2037 			} else
2038 				wme->wme_hipri_traffic =
2039 					wme->wme_hipri_switch_hysteresis;
2040 		}
2041 		if (ic->ic_flags & IEEE80211_F_WMEUPDATE) {
2042 			(void)ieee80211_add_wme_param(bo->bo_wme, wme);
2043 			ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
2044 		}
2045 	}
2046 
2047 #ifndef IEEE80211_NO_HOSTAP
2048 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {	/* NB: no IBSS support*/
2049 		struct ieee80211_tim_ie *tie =
2050 			(struct ieee80211_tim_ie *)bo->bo_tim;
2051 		if (ic->ic_flags & IEEE80211_F_TIMUPDATE) {
2052 			u_int timlen, timoff, i;
2053 			/*
2054 			 * ATIM/DTIM needs updating.  If it fits in the
2055 			 * current space allocated then just copy in the
2056 			 * new bits.  Otherwise we need to move any trailing
2057 			 * data to make room.  Note that we know there is
2058 			 * contiguous space because ieee80211_beacon_allocate
2059 			 * insures there is space in the mbuf to write a
2060 			 * maximal-size virtual bitmap (based on ic_max_aid).
2061 			 */
2062 			/*
2063 			 * Calculate the bitmap size and offset, copy any
2064 			 * trailer out of the way, and then copy in the
2065 			 * new bitmap and update the information element.
2066 			 * Note that the tim bitmap must contain at least
2067 			 * one byte and any offset must be even.
2068 			 */
2069 			if (ic->ic_ps_pending != 0) {
2070 				timoff = 128;		/* impossibly large */
2071 				for (i = 0; i < ic->ic_tim_len; i++)
2072 					if (ic->ic_tim_bitmap[i]) {
2073 						timoff = i &~ 1;
2074 						break;
2075 					}
2076 				IASSERT(timoff != 128, ("tim bitmap empty!"));
2077 				for (i = ic->ic_tim_len-1; i >= timoff; i--)
2078 					if (ic->ic_tim_bitmap[i])
2079 						break;
2080 				timlen = 1 + (i - timoff);
2081 			} else {
2082 				timoff = 0;
2083 				timlen = 1;
2084 			}
2085 			if (timlen != bo->bo_tim_len) {
2086 				/* copy up/down trailer */
2087 				ovbcopy(bo->bo_trailer, tie->tim_bitmap+timlen,
2088 					bo->bo_trailer_len);
2089 				bo->bo_trailer = tie->tim_bitmap+timlen;
2090 				bo->bo_wme = bo->bo_trailer;
2091 				bo->bo_tim_len = timlen;
2092 
2093 				/* update information element */
2094 				tie->tim_len = 3 + timlen;
2095 				tie->tim_bitctl = timoff;
2096 				len_changed = 1;
2097 			}
2098 			memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff,
2099 				bo->bo_tim_len);
2100 
2101 			ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
2102 
2103 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
2104 				"%s: TIM updated, pending %u, off %u, len %u\n",
2105 				__func__, ic->ic_ps_pending, timoff, timlen);
2106 		}
2107 		/* count down DTIM period */
2108 		if (tie->tim_count == 0)
2109 			tie->tim_count = tie->tim_period - 1;
2110 		else
2111 			tie->tim_count--;
2112 		/* update state for buffered multicast frames on DTIM */
2113 		if (mcast && (tie->tim_count == 1 || tie->tim_period == 1))
2114 			tie->tim_bitctl |= 1;
2115 		else
2116 			tie->tim_bitctl &= ~1;
2117 	}
2118 #endif /* !IEEE80211_NO_HOSTAP */
2119 
2120 	IEEE80211_BEACON_UNLOCK(ic);
2121 
2122 	return len_changed;
2123 }
2124 
2125 /*
2126  * Save an outbound packet for a node in power-save sleep state.
2127  * The new packet is placed on the node's saved queue, and the TIM
2128  * is changed, if necessary.
2129  */
2130 void
2131 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni,
2132     struct mbuf *m)
2133 {
2134 	int qlen, age;
2135 
2136 	IEEE80211_NODE_SAVEQ_LOCK(ni);
2137 	if (IF_QFULL(&ni->ni_savedq)) {
2138 		IF_DROP(&ni->ni_savedq);
2139 		IEEE80211_NODE_SAVEQ_UNLOCK(ni);
2140 
2141 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
2142 			"[%s] pwr save q overflow, drops %d (size %d)\n",
2143 			ether_sprintf(ni->ni_macaddr),
2144 			ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE);
2145 #ifdef IEEE80211_DEBUG
2146 		if (ieee80211_msg_dumppkts(ic))
2147 			ieee80211_dump_pkt(mtod(m, void *), m->m_len, -1, -1);
2148 #endif
2149 
2150 		m_freem(m);
2151 		return;
2152 	}
2153 
2154 	/*
2155 	 * Tag the frame with its expiry time and insert
2156 	 * it in the queue.  The aging interval is 4 times
2157 	 * the listen interval specified by the station.
2158 	 * Frames that sit around too long are reclaimed
2159 	 * using this information.
2160 	 */
2161 	/* XXX handle overflow? */
2162 	age = ((ni->ni_intval * ic->ic_bintval) << 2) / 1024; /* TU -> secs */
2163 	_IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age);
2164 	IEEE80211_NODE_SAVEQ_UNLOCK(ni);
2165 
2166 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
2167 		"[%s] save frame with age %d, %u now queued\n",
2168 		ether_sprintf(ni->ni_macaddr), age, qlen);
2169 
2170 	if (qlen == 1)
2171 		ic->ic_set_tim(ni, 1);
2172 }
2173