1 /* $NetBSD: ieee80211_output.c,v 1.40 2005/12/11 00:55:42 dyoung Exp $ */ 2 /*- 3 * Copyright (c) 2001 Atsushi Onoe 4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * Alternatively, this software may be distributed under the terms of the 19 * GNU General Public License ("GPL") version 2 as published by the Free 20 * Software Foundation. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 #ifdef __FreeBSD__ 36 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.34 2005/08/10 16:22:29 sam Exp $"); 37 #endif 38 #ifdef __NetBSD__ 39 __KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.40 2005/12/11 00:55:42 dyoung Exp $"); 40 #endif 41 42 #include "opt_inet.h" 43 44 #ifdef __NetBSD__ 45 #include "bpfilter.h" 46 #endif /* __NetBSD__ */ 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/mbuf.h> 51 #include <sys/kernel.h> 52 #include <sys/endian.h> 53 #include <sys/errno.h> 54 #include <sys/proc.h> 55 #include <sys/sysctl.h> 56 57 #include <net/if.h> 58 #include <net/if_llc.h> 59 #include <net/if_media.h> 60 #include <net/if_arp.h> 61 #include <net/if_ether.h> 62 #include <net/if_llc.h> 63 #include <net/if_vlanvar.h> 64 65 #include <net80211/ieee80211_netbsd.h> 66 #include <net80211/ieee80211_var.h> 67 68 #if NBPFILTER > 0 69 #include <net/bpf.h> 70 #endif 71 72 #ifdef INET 73 #include <netinet/in.h> 74 #include <netinet/in_systm.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <net/if_ether.h> 78 #endif 79 80 #ifdef IEEE80211_DEBUG 81 /* 82 * Decide if an outbound management frame should be 83 * printed when debugging is enabled. This filters some 84 * of the less interesting frames that come frequently 85 * (e.g. beacons). 86 */ 87 static __inline int 88 doprint(struct ieee80211com *ic, int subtype) 89 { 90 switch (subtype) { 91 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 92 return (ic->ic_opmode == IEEE80211_M_IBSS); 93 } 94 return 1; 95 } 96 #endif 97 98 /* 99 * Set the direction field and address fields of an outgoing 100 * non-QoS frame. Note this should be called early on in 101 * constructing a frame as it sets i_fc[1]; other bits can 102 * then be or'd in. 103 */ 104 static void 105 ieee80211_send_setup(struct ieee80211com *ic, 106 struct ieee80211_node *ni, 107 struct ieee80211_frame *wh, 108 int type, 109 const u_int8_t sa[IEEE80211_ADDR_LEN], 110 const u_int8_t da[IEEE80211_ADDR_LEN], 111 const u_int8_t bssid[IEEE80211_ADDR_LEN]) 112 { 113 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 114 115 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 116 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 117 switch (ic->ic_opmode) { 118 case IEEE80211_M_STA: 119 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 120 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 121 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 122 IEEE80211_ADDR_COPY(wh->i_addr3, da); 123 break; 124 case IEEE80211_M_IBSS: 125 case IEEE80211_M_AHDEMO: 126 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 127 IEEE80211_ADDR_COPY(wh->i_addr1, da); 128 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 129 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 130 break; 131 case IEEE80211_M_HOSTAP: 132 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 133 IEEE80211_ADDR_COPY(wh->i_addr1, da); 134 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 135 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 136 break; 137 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 138 break; 139 } 140 } else { 141 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 142 IEEE80211_ADDR_COPY(wh->i_addr1, da); 143 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 144 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 145 } 146 *(u_int16_t *)&wh->i_dur[0] = 0; 147 /* NB: use non-QoS tid */ 148 *(u_int16_t *)&wh->i_seq[0] = 149 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 150 ni->ni_txseqs[0]++; 151 #undef WH4 152 } 153 154 /* 155 * Send a management frame to the specified node. The node pointer 156 * must have a reference as the pointer will be passed to the driver 157 * and potentially held for a long time. If the frame is successfully 158 * dispatched to the driver, then it is responsible for freeing the 159 * reference (and potentially free'ing up any associated storage). 160 */ 161 static int 162 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni, 163 struct mbuf *m, int type) 164 { 165 struct ifnet *ifp = ic->ic_ifp; 166 struct ieee80211_frame *wh; 167 168 IASSERT(ni != NULL, ("null node")); 169 170 /* 171 * Yech, hack alert! We want to pass the node down to the 172 * driver's start routine. If we don't do so then the start 173 * routine must immediately look it up again and that can 174 * cause a lock order reversal if, for example, this frame 175 * is being sent because the station is being timedout and 176 * the frame being sent is a DEAUTH message. We could stick 177 * this in an m_tag and tack that on to the mbuf. However 178 * that's rather expensive to do for every frame so instead 179 * we stuff it in the rcvif field since outbound frames do 180 * not (presently) use this. 181 */ 182 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 183 if (m == NULL) 184 return ENOMEM; 185 #ifdef __FreeBSD__ 186 KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null")); 187 #endif 188 m->m_pkthdr.rcvif = (void *)ni; 189 190 wh = mtod(m, struct ieee80211_frame *); 191 ieee80211_send_setup(ic, ni, wh, 192 IEEE80211_FC0_TYPE_MGT | type, 193 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); 194 if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) { 195 m->m_flags &= ~M_LINK0; 196 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 197 "[%s] encrypting frame (%s)\n", 198 ether_sprintf(wh->i_addr1), __func__); 199 wh->i_fc[1] |= IEEE80211_FC1_WEP; 200 } 201 #ifdef IEEE80211_DEBUG 202 /* avoid printing too many frames */ 203 if ((ieee80211_msg_debug(ic) && doprint(ic, type)) || 204 ieee80211_msg_dumppkts(ic)) { 205 printf("[%s] send %s on channel %u\n", 206 ether_sprintf(wh->i_addr1), 207 ieee80211_mgt_subtype_name[ 208 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 209 IEEE80211_FC0_SUBTYPE_SHIFT], 210 ieee80211_chan2ieee(ic, ic->ic_curchan)); 211 } 212 #endif 213 IEEE80211_NODE_STAT(ni, tx_mgmt); 214 IF_ENQUEUE(&ic->ic_mgtq, m); 215 ifp->if_timer = 1; 216 (*ifp->if_start)(ifp); 217 return 0; 218 } 219 220 /* 221 * Send a null data frame to the specified node. 222 * 223 * NB: the caller is assumed to have setup a node reference 224 * for use; this is necessary to deal with a race condition 225 * when probing for inactive stations. 226 */ 227 int 228 ieee80211_send_nulldata(struct ieee80211_node *ni) 229 { 230 struct ieee80211com *ic = ni->ni_ic; 231 struct ifnet *ifp = ic->ic_ifp; 232 struct mbuf *m; 233 struct ieee80211_frame *wh; 234 235 MGETHDR(m, M_NOWAIT, MT_HEADER); 236 if (m == NULL) { 237 /* XXX debug msg */ 238 ic->ic_stats.is_tx_nobuf++; 239 ieee80211_unref_node(&ni); 240 return ENOMEM; 241 } 242 m->m_pkthdr.rcvif = (void *) ni; 243 244 wh = mtod(m, struct ieee80211_frame *); 245 ieee80211_send_setup(ic, ni, wh, 246 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 247 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); 248 /* NB: power management bit is never sent by an AP */ 249 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 250 ic->ic_opmode != IEEE80211_M_HOSTAP) 251 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 252 m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame); 253 254 IEEE80211_NODE_STAT(ni, tx_data); 255 256 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 257 "[%s] send null data frame on channel %u, pwr mgt %s\n", 258 ether_sprintf(ni->ni_macaddr), 259 ieee80211_chan2ieee(ic, ic->ic_curchan), 260 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 261 262 IF_ENQUEUE(&ic->ic_mgtq, m); /* cheat */ 263 (*ifp->if_start)(ifp); 264 265 return 0; 266 } 267 268 /* 269 * Assign priority to a frame based on any vlan tag assigned 270 * to the station and/or any Diffserv setting in an IP header. 271 * Finally, if an ACM policy is setup (in station mode) it's 272 * applied. 273 */ 274 int 275 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni) 276 { 277 int v_wme_ac, d_wme_ac, ac; 278 #ifdef INET 279 struct ether_header *eh; 280 #endif 281 282 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 283 ac = WME_AC_BE; 284 goto done; 285 } 286 287 /* 288 * If node has a vlan tag then all traffic 289 * to it must have a matching tag. 290 */ 291 v_wme_ac = 0; 292 if (ni->ni_vlan != 0) { 293 /* XXX used to check ec_nvlans. */ 294 struct m_tag *mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL); 295 if (mtag == NULL) { 296 IEEE80211_NODE_STAT(ni, tx_novlantag); 297 return 1; 298 } 299 if (EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag)) != 300 EVL_VLANOFTAG(ni->ni_vlan)) { 301 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 302 return 1; 303 } 304 /* map vlan priority to AC */ 305 switch (EVL_PRIOFTAG(ni->ni_vlan)) { 306 case 1: 307 case 2: 308 v_wme_ac = WME_AC_BK; 309 break; 310 case 0: 311 case 3: 312 v_wme_ac = WME_AC_BE; 313 break; 314 case 4: 315 case 5: 316 v_wme_ac = WME_AC_VI; 317 break; 318 case 6: 319 case 7: 320 v_wme_ac = WME_AC_VO; 321 break; 322 } 323 } 324 325 #ifdef INET 326 eh = mtod(m, struct ether_header *); 327 if (eh->ether_type == htons(ETHERTYPE_IP)) { 328 const struct ip *ip = (struct ip *) 329 (mtod(m, u_int8_t *) + sizeof (*eh)); 330 /* 331 * IP frame, map the TOS field. 332 */ 333 switch (ip->ip_tos) { 334 case 0x08: 335 case 0x20: 336 d_wme_ac = WME_AC_BK; /* background */ 337 break; 338 case 0x28: 339 case 0xa0: 340 d_wme_ac = WME_AC_VI; /* video */ 341 break; 342 case 0x30: /* voice */ 343 case 0xe0: 344 case 0x88: /* XXX UPSD */ 345 case 0xb8: 346 d_wme_ac = WME_AC_VO; 347 break; 348 default: 349 d_wme_ac = WME_AC_BE; 350 break; 351 } 352 } else { 353 #endif /* INET */ 354 d_wme_ac = WME_AC_BE; 355 #ifdef INET 356 } 357 #endif 358 /* 359 * Use highest priority AC. 360 */ 361 if (v_wme_ac > d_wme_ac) 362 ac = v_wme_ac; 363 else 364 ac = d_wme_ac; 365 366 /* 367 * Apply ACM policy. 368 */ 369 if (ic->ic_opmode == IEEE80211_M_STA) { 370 static const int acmap[4] = { 371 WME_AC_BK, /* WME_AC_BE */ 372 WME_AC_BK, /* WME_AC_BK */ 373 WME_AC_BE, /* WME_AC_VI */ 374 WME_AC_VI, /* WME_AC_VO */ 375 }; 376 while (ac != WME_AC_BK && 377 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 378 ac = acmap[ac]; 379 } 380 done: 381 M_WME_SETAC(m, ac); 382 return 0; 383 } 384 385 /* 386 * Insure there is sufficient contiguous space to encapsulate the 387 * 802.11 data frame. If room isn't already there, arrange for it. 388 * Drivers and cipher modules assume we have done the necessary work 389 * and fail rudely if they don't find the space they need. 390 */ 391 static struct mbuf * 392 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize, 393 struct ieee80211_key *key, struct mbuf *m) 394 { 395 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 396 int needed_space = hdrsize; 397 int wlen = 0; 398 399 if (key != NULL) { 400 /* XXX belongs in crypto code? */ 401 needed_space += key->wk_cipher->ic_header; 402 /* XXX frags */ 403 } 404 /* 405 * We know we are called just before stripping an Ethernet 406 * header and prepending an LLC header. This means we know 407 * there will be 408 * sizeof(struct ether_header) - sizeof(struct llc) 409 * bytes recovered to which we need additional space for the 410 * 802.11 header and any crypto header. 411 */ 412 /* XXX check trailing space and copy instead? */ 413 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 414 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 415 if (n == NULL) { 416 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 417 "%s: cannot expand storage\n", __func__); 418 ic->ic_stats.is_tx_nobuf++; 419 m_freem(m); 420 return NULL; 421 } 422 IASSERT(needed_space <= MHLEN, 423 ("not enough room, need %u got %zu\n", needed_space, MHLEN)); 424 /* 425 * Setup new mbuf to have leading space to prepend the 426 * 802.11 header and any crypto header bits that are 427 * required (the latter are added when the driver calls 428 * back to ieee80211_crypto_encap to do crypto encapsulation). 429 */ 430 /* NB: must be first 'cuz it clobbers m_data */ 431 M_MOVE_PKTHDR(n, m); 432 n->m_len = 0; /* NB: m_gethdr does not set */ 433 n->m_data += needed_space; 434 /* 435 * Pull up Ethernet header to create the expected layout. 436 * We could use m_pullup but that's overkill (i.e. we don't 437 * need the actual data) and it cannot fail so do it inline 438 * for speed. 439 */ 440 /* NB: struct ether_header is known to be contiguous */ 441 n->m_len += sizeof(struct ether_header); 442 m->m_len -= sizeof(struct ether_header); 443 m->m_data += sizeof(struct ether_header); 444 /* 445 * Replace the head of the chain. 446 */ 447 n->m_next = m; 448 m = n; 449 } else { 450 /* We will overwrite the ethernet header in the 451 * 802.11 encapsulation stage. Make sure that it 452 * is writable. 453 */ 454 wlen = sizeof(struct ether_header); 455 } 456 457 /* 458 * If we're going to s/w encrypt the mbuf chain make sure it is 459 * writable. 460 */ 461 if (key != NULL && (key->wk_flags & IEEE80211_KEY_SWCRYPT) != 0) 462 wlen = M_COPYALL; 463 464 if (wlen != 0 && m_makewritable(&m, 0, wlen, M_DONTWAIT) != 0) { 465 m_freem(m); 466 return NULL; 467 } 468 return m; 469 #undef TO_BE_RECLAIMED 470 } 471 472 /* 473 * Return the transmit key to use in sending a unicast frame. 474 * If a unicast key is set we use that. When no unicast key is set 475 * we fall back to the default transmit key. 476 */ 477 static __inline struct ieee80211_key * 478 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni) 479 { 480 if (IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)) { 481 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 482 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 483 return NULL; 484 return &ic->ic_nw_keys[ic->ic_def_txkey]; 485 } else { 486 return &ni->ni_ucastkey; 487 } 488 } 489 490 /* 491 * Return the transmit key to use in sending a multicast frame. 492 * Multicast traffic always uses the group key which is installed as 493 * the default tx key. 494 */ 495 static __inline struct ieee80211_key * 496 ieee80211_crypto_getmcastkey(struct ieee80211com *ic, struct ieee80211_node *ni) 497 { 498 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 499 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 500 return NULL; 501 return &ic->ic_nw_keys[ic->ic_def_txkey]; 502 } 503 504 /* 505 * Encapsulate an outbound data frame. The mbuf chain is updated. 506 * If an error is encountered NULL is returned. The caller is required 507 * to provide a node reference and pullup the ethernet header in the 508 * first mbuf. 509 */ 510 struct mbuf * 511 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m, 512 struct ieee80211_node *ni) 513 { 514 struct ether_header eh; 515 struct ieee80211_frame *wh; 516 struct ieee80211_key *key; 517 struct llc *llc; 518 int hdrsize, datalen, addqos; 519 520 IASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 521 memcpy(&eh, mtod(m, caddr_t), sizeof(struct ether_header)); 522 523 /* 524 * Insure space for additional headers. First identify 525 * transmit key to use in calculating any buffer adjustments 526 * required. This is also used below to do privacy 527 * encapsulation work. Then calculate the 802.11 header 528 * size and any padding required by the driver. 529 * 530 * Note key may be NULL if we fall back to the default 531 * transmit key and that is not set. In that case the 532 * buffer may not be expanded as needed by the cipher 533 * routines, but they will/should discard it. 534 */ 535 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 536 if (ic->ic_opmode == IEEE80211_M_STA || 537 !IEEE80211_IS_MULTICAST(eh.ether_dhost)) 538 key = ieee80211_crypto_getucastkey(ic, ni); 539 else 540 key = ieee80211_crypto_getmcastkey(ic, ni); 541 if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) { 542 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO, 543 "[%s] no default transmit key (%s) deftxkey %u\n", 544 ether_sprintf(eh.ether_dhost), __func__, 545 ic->ic_def_txkey); 546 ic->ic_stats.is_tx_nodefkey++; 547 } 548 } else 549 key = NULL; 550 /* XXX 4-address format */ 551 /* 552 * XXX Some ap's don't handle QoS-encapsulated EAPOL 553 * frames so suppress use. This may be an issue if other 554 * ap's require all data frames to be QoS-encapsulated 555 * once negotiated in which case we'll need to make this 556 * configurable. 557 */ 558 addqos = (ni->ni_flags & IEEE80211_NODE_QOS) && 559 eh.ether_type != htons(ETHERTYPE_PAE); 560 if (addqos) 561 hdrsize = sizeof(struct ieee80211_qosframe); 562 else 563 hdrsize = sizeof(struct ieee80211_frame); 564 if (ic->ic_flags & IEEE80211_F_DATAPAD) 565 hdrsize = roundup(hdrsize, sizeof(u_int32_t)); 566 m = ieee80211_mbuf_adjust(ic, hdrsize, key, m); 567 if (m == NULL) { 568 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 569 goto bad; 570 } 571 572 /* NB: this could be optimized because of ieee80211_mbuf_adjust */ 573 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 574 llc = mtod(m, struct llc *); 575 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 576 llc->llc_control = LLC_UI; 577 llc->llc_snap.org_code[0] = 0; 578 llc->llc_snap.org_code[1] = 0; 579 llc->llc_snap.org_code[2] = 0; 580 llc->llc_snap.ether_type = eh.ether_type; 581 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 582 583 M_PREPEND(m, hdrsize, M_DONTWAIT); 584 if (m == NULL) { 585 ic->ic_stats.is_tx_nobuf++; 586 goto bad; 587 } 588 wh = mtod(m, struct ieee80211_frame *); 589 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 590 *(u_int16_t *)wh->i_dur = 0; 591 switch (ic->ic_opmode) { 592 case IEEE80211_M_STA: 593 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 594 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 595 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 596 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 597 break; 598 case IEEE80211_M_IBSS: 599 case IEEE80211_M_AHDEMO: 600 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 601 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 602 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 603 /* 604 * NB: always use the bssid from ic_bss as the 605 * neighbor's may be stale after an ibss merge 606 */ 607 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid); 608 break; 609 case IEEE80211_M_HOSTAP: 610 #ifndef IEEE80211_NO_HOSTAP 611 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 612 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 613 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 614 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 615 #endif /* !IEEE80211_NO_HOSTAP */ 616 break; 617 case IEEE80211_M_MONITOR: 618 goto bad; 619 } 620 if (m->m_flags & M_MORE_DATA) 621 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 622 if (addqos) { 623 struct ieee80211_qosframe *qwh = 624 (struct ieee80211_qosframe *) wh; 625 int ac, tid; 626 627 ac = M_WME_GETAC(m); 628 /* map from access class/queue to 11e header priorty value */ 629 tid = WME_AC_TO_TID(ac); 630 qwh->i_qos[0] = tid & IEEE80211_QOS_TID; 631 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 632 qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S; 633 qwh->i_qos[1] = 0; 634 qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 635 636 *(u_int16_t *)wh->i_seq = 637 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT); 638 ni->ni_txseqs[tid]++; 639 } else { 640 *(u_int16_t *)wh->i_seq = 641 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 642 ni->ni_txseqs[0]++; 643 } 644 if (key != NULL) { 645 /* 646 * IEEE 802.1X: send EAPOL frames always in the clear. 647 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 648 */ 649 if (eh.ether_type != htons(ETHERTYPE_PAE) || 650 ((ic->ic_flags & IEEE80211_F_WPA) && 651 (ic->ic_opmode == IEEE80211_M_STA ? 652 !IEEE80211_KEY_UNDEFINED(*key) : 653 !IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)))) { 654 wh->i_fc[1] |= IEEE80211_FC1_WEP; 655 /* XXX do fragmentation */ 656 if (!ieee80211_crypto_enmic(ic, key, m, 0)) { 657 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 658 "[%s] enmic failed, discard frame\n", 659 ether_sprintf(eh.ether_dhost)); 660 ic->ic_stats.is_crypto_enmicfail++; 661 goto bad; 662 } 663 } 664 } 665 666 IEEE80211_NODE_STAT(ni, tx_data); 667 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 668 669 return m; 670 bad: 671 if (m != NULL) 672 m_freem(m); 673 return NULL; 674 } 675 676 /* 677 * Arguments in: 678 * 679 * paylen: payload length (no FCS, no WEP header) 680 * 681 * hdrlen: header length 682 * 683 * rate: MSDU speed, units 500kb/s 684 * 685 * flags: IEEE80211_F_SHPREAMBLE (use short preamble), 686 * IEEE80211_F_SHSLOT (use short slot length) 687 * 688 * Arguments out: 689 * 690 * d: 802.11 Duration field for RTS, 691 * 802.11 Duration field for data frame, 692 * PLCP Length for data frame, 693 * residual octets at end of data slot 694 */ 695 static int 696 ieee80211_compute_duration1(int len, int use_ack, uint32_t flags, int rate, 697 struct ieee80211_duration *d) 698 { 699 int pre, ctsrate; 700 int ack, bitlen, data_dur, remainder; 701 702 /* RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK 703 * DATA reserves medium for SIFS | ACK 704 * 705 * XXXMYC: no ACK on multicast/broadcast or control packets 706 */ 707 708 bitlen = len * 8; 709 710 pre = IEEE80211_DUR_DS_SIFS; 711 if ((flags & IEEE80211_F_SHPREAMBLE) != 0) 712 pre += IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR; 713 else 714 pre += IEEE80211_DUR_DS_LONG_PREAMBLE + IEEE80211_DUR_DS_SLOW_PLCPHDR; 715 716 d->d_residue = 0; 717 data_dur = (bitlen * 2) / rate; 718 remainder = (bitlen * 2) % rate; 719 if (remainder != 0) { 720 d->d_residue = (rate - remainder) / 16; 721 data_dur++; 722 } 723 724 switch (rate) { 725 case 2: /* 1 Mb/s */ 726 case 4: /* 2 Mb/s */ 727 /* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */ 728 ctsrate = 2; 729 break; 730 case 11: /* 5.5 Mb/s */ 731 case 22: /* 11 Mb/s */ 732 case 44: /* 22 Mb/s */ 733 /* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */ 734 ctsrate = 4; 735 break; 736 default: 737 /* TBD */ 738 return -1; 739 } 740 741 d->d_plcp_len = data_dur; 742 743 ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0; 744 745 d->d_rts_dur = 746 pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate + 747 pre + data_dur + 748 ack; 749 750 d->d_data_dur = ack; 751 752 return 0; 753 } 754 755 /* 756 * Arguments in: 757 * 758 * wh: 802.11 header 759 * 760 * paylen: payload length (no FCS, no WEP header) 761 * 762 * rate: MSDU speed, units 500kb/s 763 * 764 * fraglen: fragment length, set to maximum (or higher) for no 765 * fragmentation 766 * 767 * flags: IEEE80211_F_PRIVACY (hardware adds WEP), 768 * IEEE80211_F_SHPREAMBLE (use short preamble), 769 * IEEE80211_F_SHSLOT (use short slot length) 770 * 771 * Arguments out: 772 * 773 * d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields 774 * of first/only fragment 775 * 776 * dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields 777 * of last fragment 778 */ 779 int 780 ieee80211_compute_duration(struct ieee80211_frame_min *wh, int len, 781 uint32_t flags, int fraglen, int rate, struct ieee80211_duration *d0, 782 struct ieee80211_duration *dn, int *npktp, int debug) 783 { 784 int ack, rc; 785 int firstlen, hdrlen, lastlen, lastlen0, npkt, overlen, paylen; 786 787 if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS) 788 hdrlen = sizeof(struct ieee80211_frame_addr4); 789 else 790 hdrlen = sizeof(struct ieee80211_frame); 791 792 paylen = len - hdrlen; 793 794 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) { 795 /* XXX assumes the packet is already WEP encapsulated */ 796 paylen -= IEEE80211_WEP_TOTLEN; 797 overlen = IEEE80211_WEP_TOTLEN + IEEE80211_CRC_LEN; 798 } else 799 overlen = IEEE80211_CRC_LEN; 800 801 npkt = paylen / fraglen; 802 lastlen0 = paylen % fraglen; 803 804 if (npkt == 0) /* no fragments */ 805 lastlen = paylen + overlen; 806 else if (lastlen0 != 0) { /* a short "tail" fragment */ 807 lastlen = lastlen0 + overlen; 808 npkt++; 809 } else /* full-length "tail" fragment */ 810 lastlen = fraglen + overlen; 811 812 if (npktp != NULL) 813 *npktp = npkt; 814 815 if (npkt > 1) 816 firstlen = fraglen + overlen; 817 else 818 firstlen = paylen + overlen; 819 820 if (debug) { 821 printf("%s: npkt %d firstlen %d lastlen0 %d lastlen %d " 822 "fraglen %d overlen %d len %d rate %d flags %08x\n", 823 __func__, npkt, firstlen, lastlen0, lastlen, fraglen, 824 overlen, len, rate, flags); 825 } 826 827 ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) && 828 (wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL; 829 830 rc = ieee80211_compute_duration1(firstlen + hdrlen, 831 ack, flags, rate, d0); 832 if (rc == -1) 833 return rc; 834 835 if (npkt <= 1) { 836 *dn = *d0; 837 return 0; 838 } 839 return ieee80211_compute_duration1(lastlen + hdrlen, ack, flags, rate, 840 dn); 841 } 842 843 /* 844 * Add a supported rates element id to a frame. 845 */ 846 static u_int8_t * 847 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs) 848 { 849 int nrates; 850 851 *frm++ = IEEE80211_ELEMID_RATES; 852 nrates = rs->rs_nrates; 853 if (nrates > IEEE80211_RATE_SIZE) 854 nrates = IEEE80211_RATE_SIZE; 855 *frm++ = nrates; 856 memcpy(frm, rs->rs_rates, nrates); 857 return frm + nrates; 858 } 859 860 /* 861 * Add an extended supported rates element id to a frame. 862 */ 863 static u_int8_t * 864 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs) 865 { 866 /* 867 * Add an extended supported rates element if operating in 11g mode. 868 */ 869 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 870 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 871 *frm++ = IEEE80211_ELEMID_XRATES; 872 *frm++ = nrates; 873 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 874 frm += nrates; 875 } 876 return frm; 877 } 878 879 /* 880 * Add an ssid elemet to a frame. 881 */ 882 static u_int8_t * 883 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len) 884 { 885 *frm++ = IEEE80211_ELEMID_SSID; 886 *frm++ = len; 887 memcpy(frm, ssid, len); 888 return frm + len; 889 } 890 891 /* 892 * Add an erp element to a frame. 893 */ 894 static u_int8_t * 895 ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic) 896 { 897 u_int8_t erp; 898 899 *frm++ = IEEE80211_ELEMID_ERP; 900 *frm++ = 1; 901 erp = 0; 902 if (ic->ic_nonerpsta != 0) 903 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 904 if (ic->ic_flags & IEEE80211_F_USEPROT) 905 erp |= IEEE80211_ERP_USE_PROTECTION; 906 if (ic->ic_flags & IEEE80211_F_USEBARKER) 907 erp |= IEEE80211_ERP_LONG_PREAMBLE; 908 *frm++ = erp; 909 return frm; 910 } 911 912 static u_int8_t * 913 ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie) 914 { 915 #define WPA_OUI_BYTES 0x00, 0x50, 0xf2 916 #define ADDSHORT(frm, v) do { \ 917 frm[0] = (v) & 0xff; \ 918 frm[1] = (v) >> 8; \ 919 frm += 2; \ 920 } while (0) 921 #define ADDSELECTOR(frm, sel) do { \ 922 memcpy(frm, sel, 4); \ 923 frm += 4; \ 924 } while (0) 925 static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE }; 926 static const u_int8_t cipher_suite[][4] = { 927 { WPA_OUI_BYTES, WPA_CSE_WEP40 }, /* NB: 40-bit */ 928 { WPA_OUI_BYTES, WPA_CSE_TKIP }, 929 { 0x00, 0x00, 0x00, 0x00 }, /* XXX WRAP */ 930 { WPA_OUI_BYTES, WPA_CSE_CCMP }, 931 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ 932 { WPA_OUI_BYTES, WPA_CSE_NULL }, 933 }; 934 static const u_int8_t wep104_suite[4] = 935 { WPA_OUI_BYTES, WPA_CSE_WEP104 }; 936 static const u_int8_t key_mgt_unspec[4] = 937 { WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC }; 938 static const u_int8_t key_mgt_psk[4] = 939 { WPA_OUI_BYTES, WPA_ASE_8021X_PSK }; 940 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; 941 u_int8_t *frm = ie; 942 u_int8_t *selcnt; 943 944 *frm++ = IEEE80211_ELEMID_VENDOR; 945 *frm++ = 0; /* length filled in below */ 946 memcpy(frm, oui, sizeof(oui)); /* WPA OUI */ 947 frm += sizeof(oui); 948 ADDSHORT(frm, WPA_VERSION); 949 950 /* XXX filter out CKIP */ 951 952 /* multicast cipher */ 953 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && 954 rsn->rsn_mcastkeylen >= 13) 955 ADDSELECTOR(frm, wep104_suite); 956 else 957 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); 958 959 /* unicast cipher list */ 960 selcnt = frm; 961 ADDSHORT(frm, 0); /* selector count */ 962 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) { 963 selcnt[0]++; 964 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); 965 } 966 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) { 967 selcnt[0]++; 968 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); 969 } 970 971 /* authenticator selector list */ 972 selcnt = frm; 973 ADDSHORT(frm, 0); /* selector count */ 974 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { 975 selcnt[0]++; 976 ADDSELECTOR(frm, key_mgt_unspec); 977 } 978 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { 979 selcnt[0]++; 980 ADDSELECTOR(frm, key_mgt_psk); 981 } 982 983 /* optional capabilities */ 984 if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH) 985 ADDSHORT(frm, rsn->rsn_caps); 986 987 /* calculate element length */ 988 ie[1] = frm - ie - 2; 989 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), 990 ("WPA IE too big, %u > %zu", 991 ie[1]+2, sizeof(struct ieee80211_ie_wpa))); 992 return frm; 993 #undef ADDSHORT 994 #undef ADDSELECTOR 995 #undef WPA_OUI_BYTES 996 } 997 998 static u_int8_t * 999 ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie) 1000 { 1001 #define RSN_OUI_BYTES 0x00, 0x0f, 0xac 1002 #define ADDSHORT(frm, v) do { \ 1003 frm[0] = (v) & 0xff; \ 1004 frm[1] = (v) >> 8; \ 1005 frm += 2; \ 1006 } while (0) 1007 #define ADDSELECTOR(frm, sel) do { \ 1008 memcpy(frm, sel, 4); \ 1009 frm += 4; \ 1010 } while (0) 1011 static const u_int8_t cipher_suite[][4] = { 1012 { RSN_OUI_BYTES, RSN_CSE_WEP40 }, /* NB: 40-bit */ 1013 { RSN_OUI_BYTES, RSN_CSE_TKIP }, 1014 { RSN_OUI_BYTES, RSN_CSE_WRAP }, 1015 { RSN_OUI_BYTES, RSN_CSE_CCMP }, 1016 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ 1017 { RSN_OUI_BYTES, RSN_CSE_NULL }, 1018 }; 1019 static const u_int8_t wep104_suite[4] = 1020 { RSN_OUI_BYTES, RSN_CSE_WEP104 }; 1021 static const u_int8_t key_mgt_unspec[4] = 1022 { RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC }; 1023 static const u_int8_t key_mgt_psk[4] = 1024 { RSN_OUI_BYTES, RSN_ASE_8021X_PSK }; 1025 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; 1026 u_int8_t *frm = ie; 1027 u_int8_t *selcnt; 1028 1029 *frm++ = IEEE80211_ELEMID_RSN; 1030 *frm++ = 0; /* length filled in below */ 1031 ADDSHORT(frm, RSN_VERSION); 1032 1033 /* XXX filter out CKIP */ 1034 1035 /* multicast cipher */ 1036 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && 1037 rsn->rsn_mcastkeylen >= 13) 1038 ADDSELECTOR(frm, wep104_suite); 1039 else 1040 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); 1041 1042 /* unicast cipher list */ 1043 selcnt = frm; 1044 ADDSHORT(frm, 0); /* selector count */ 1045 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) { 1046 selcnt[0]++; 1047 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); 1048 } 1049 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) { 1050 selcnt[0]++; 1051 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); 1052 } 1053 1054 /* authenticator selector list */ 1055 selcnt = frm; 1056 ADDSHORT(frm, 0); /* selector count */ 1057 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { 1058 selcnt[0]++; 1059 ADDSELECTOR(frm, key_mgt_unspec); 1060 } 1061 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { 1062 selcnt[0]++; 1063 ADDSELECTOR(frm, key_mgt_psk); 1064 } 1065 1066 /* optional capabilities */ 1067 ADDSHORT(frm, rsn->rsn_caps); 1068 /* XXX PMKID */ 1069 1070 /* calculate element length */ 1071 ie[1] = frm - ie - 2; 1072 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), 1073 ("RSN IE too big, %u > %zu", 1074 ie[1]+2, sizeof(struct ieee80211_ie_wpa))); 1075 return frm; 1076 #undef ADDSELECTOR 1077 #undef ADDSHORT 1078 #undef RSN_OUI_BYTES 1079 } 1080 1081 /* 1082 * Add a WPA/RSN element to a frame. 1083 */ 1084 static u_int8_t * 1085 ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic) 1086 { 1087 1088 IASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!")); 1089 if (ic->ic_flags & IEEE80211_F_WPA2) 1090 frm = ieee80211_setup_rsn_ie(ic, frm); 1091 if (ic->ic_flags & IEEE80211_F_WPA1) 1092 frm = ieee80211_setup_wpa_ie(ic, frm); 1093 return frm; 1094 } 1095 1096 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1097 /* 1098 * Add a WME information element to a frame. 1099 */ 1100 static u_int8_t * 1101 ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme) 1102 { 1103 static const struct ieee80211_wme_info info = { 1104 .wme_id = IEEE80211_ELEMID_VENDOR, 1105 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1106 .wme_oui = { WME_OUI_BYTES }, 1107 .wme_type = WME_OUI_TYPE, 1108 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1109 .wme_version = WME_VERSION, 1110 .wme_info = 0, 1111 }; 1112 memcpy(frm, &info, sizeof(info)); 1113 return frm + sizeof(info); 1114 } 1115 1116 /* 1117 * Add a WME parameters element to a frame. 1118 */ 1119 static u_int8_t * 1120 ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme) 1121 { 1122 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1123 #define ADDSHORT(frm, v) do { \ 1124 frm[0] = (v) & 0xff; \ 1125 frm[1] = (v) >> 8; \ 1126 frm += 2; \ 1127 } while (0) 1128 /* NB: this works 'cuz a param has an info at the front */ 1129 static const struct ieee80211_wme_info param = { 1130 .wme_id = IEEE80211_ELEMID_VENDOR, 1131 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1132 .wme_oui = { WME_OUI_BYTES }, 1133 .wme_type = WME_OUI_TYPE, 1134 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1135 .wme_version = WME_VERSION, 1136 }; 1137 int i; 1138 1139 memcpy(frm, ¶m, sizeof(param)); 1140 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1141 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1142 *frm++ = 0; /* reserved field */ 1143 for (i = 0; i < WME_NUM_AC; i++) { 1144 const struct wmeParams *ac = 1145 &wme->wme_bssChanParams.cap_wmeParams[i]; 1146 *frm++ = SM(i, WME_PARAM_ACI) 1147 | SM(ac->wmep_acm, WME_PARAM_ACM) 1148 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1149 ; 1150 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1151 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1152 ; 1153 ADDSHORT(frm, ac->wmep_txopLimit); 1154 } 1155 return frm; 1156 #undef SM 1157 #undef ADDSHORT 1158 } 1159 #undef WME_OUI_BYTES 1160 1161 /* 1162 * Send a probe request frame with the specified ssid 1163 * and any optional information element data. 1164 */ 1165 int 1166 ieee80211_send_probereq(struct ieee80211_node *ni, 1167 const u_int8_t sa[IEEE80211_ADDR_LEN], 1168 const u_int8_t da[IEEE80211_ADDR_LEN], 1169 const u_int8_t bssid[IEEE80211_ADDR_LEN], 1170 const u_int8_t *ssid, size_t ssidlen, 1171 const void *optie, size_t optielen) 1172 { 1173 struct ieee80211com *ic = ni->ni_ic; 1174 enum ieee80211_phymode mode; 1175 struct ieee80211_frame *wh; 1176 struct mbuf *m; 1177 u_int8_t *frm; 1178 1179 /* 1180 * Hold a reference on the node so it doesn't go away until after 1181 * the xmit is complete all the way in the driver. On error we 1182 * will remove our reference. 1183 */ 1184 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, 1185 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1186 __func__, __LINE__, 1187 ni, ether_sprintf(ni->ni_macaddr), 1188 ieee80211_node_refcnt(ni)+1); 1189 ieee80211_ref_node(ni); 1190 1191 /* 1192 * prreq frame format 1193 * [tlv] ssid 1194 * [tlv] supported rates 1195 * [tlv] extended supported rates 1196 * [tlv] user-specified ie's 1197 */ 1198 m = ieee80211_getmgtframe(&frm, 1199 2 + IEEE80211_NWID_LEN 1200 + 2 + IEEE80211_RATE_SIZE 1201 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1202 + (optie != NULL ? optielen : 0) 1203 ); 1204 if (m == NULL) { 1205 ic->ic_stats.is_tx_nobuf++; 1206 ieee80211_free_node(ni); 1207 return ENOMEM; 1208 } 1209 1210 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 1211 mode = ieee80211_chan2mode(ic, ic->ic_curchan); 1212 frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]); 1213 frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]); 1214 1215 if (optie != NULL) { 1216 memcpy(frm, optie, optielen); 1217 frm += optielen; 1218 } 1219 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1220 1221 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 1222 if (m == NULL) 1223 return ENOMEM; 1224 IASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null")); 1225 m->m_pkthdr.rcvif = (void *)ni; 1226 1227 wh = mtod(m, struct ieee80211_frame *); 1228 ieee80211_send_setup(ic, ni, wh, 1229 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 1230 sa, da, bssid); 1231 /* XXX power management? */ 1232 1233 IEEE80211_NODE_STAT(ni, tx_probereq); 1234 IEEE80211_NODE_STAT(ni, tx_mgmt); 1235 1236 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 1237 "[%s] send probe req on channel %u\n", 1238 ether_sprintf(wh->i_addr1), 1239 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1240 1241 IF_ENQUEUE(&ic->ic_mgtq, m); 1242 (*ic->ic_ifp->if_start)(ic->ic_ifp); 1243 return 0; 1244 } 1245 1246 /* 1247 * Send a management frame. The node is for the destination (or ic_bss 1248 * when in station mode). Nodes other than ic_bss have their reference 1249 * count bumped to reflect our use for an indeterminant time. 1250 */ 1251 int 1252 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni, 1253 int type, int arg) 1254 { 1255 #define senderr(_x, _v) do { ic->ic_stats._v++; ret = _x; goto bad; } while (0) 1256 struct mbuf *m; 1257 u_int8_t *frm; 1258 u_int16_t capinfo; 1259 int has_challenge, is_shared_key, ret, timer, status; 1260 1261 IASSERT(ni != NULL, ("null node")); 1262 1263 /* 1264 * Hold a reference on the node so it doesn't go away until after 1265 * the xmit is complete all the way in the driver. On error we 1266 * will remove our reference. 1267 */ 1268 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, 1269 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1270 __func__, __LINE__, 1271 ni, ether_sprintf(ni->ni_macaddr), 1272 ieee80211_node_refcnt(ni)+1); 1273 ieee80211_ref_node(ni); 1274 1275 timer = 0; 1276 switch (type) { 1277 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 1278 /* 1279 * probe response frame format 1280 * [8] time stamp 1281 * [2] beacon interval 1282 * [2] cabability information 1283 * [tlv] ssid 1284 * [tlv] supported rates 1285 * [tlv] parameter set (FH/DS) 1286 * [tlv] parameter set (IBSS) 1287 * [tlv] extended rate phy (ERP) 1288 * [tlv] extended supported rates 1289 * [tlv] WPA 1290 * [tlv] WME (optional) 1291 */ 1292 m = ieee80211_getmgtframe(&frm, 1293 8 1294 + sizeof(u_int16_t) 1295 + sizeof(u_int16_t) 1296 + 2 + IEEE80211_NWID_LEN 1297 + 2 + IEEE80211_RATE_SIZE 1298 + 7 /* max(7,3) */ 1299 + 6 1300 + 3 1301 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1302 /* XXX !WPA1+WPA2 fits w/o a cluster */ 1303 + (ic->ic_flags & IEEE80211_F_WPA ? 1304 2*sizeof(struct ieee80211_ie_wpa) : 0) 1305 + sizeof(struct ieee80211_wme_param) 1306 ); 1307 if (m == NULL) 1308 senderr(ENOMEM, is_tx_nobuf); 1309 1310 memset(frm, 0, 8); /* timestamp should be filled later */ 1311 frm += 8; 1312 *(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval); 1313 frm += 2; 1314 if (ic->ic_opmode == IEEE80211_M_IBSS) 1315 capinfo = IEEE80211_CAPINFO_IBSS; 1316 else 1317 capinfo = IEEE80211_CAPINFO_ESS; 1318 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1319 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1320 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1321 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1322 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1323 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1324 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1325 *(u_int16_t *)frm = htole16(capinfo); 1326 frm += 2; 1327 1328 frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid, 1329 ic->ic_bss->ni_esslen); 1330 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1331 1332 if (ic->ic_phytype == IEEE80211_T_FH) { 1333 *frm++ = IEEE80211_ELEMID_FHPARMS; 1334 *frm++ = 5; 1335 *frm++ = ni->ni_fhdwell & 0x00ff; 1336 *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff; 1337 *frm++ = IEEE80211_FH_CHANSET( 1338 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1339 *frm++ = IEEE80211_FH_CHANPAT( 1340 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1341 *frm++ = ni->ni_fhindex; 1342 } else { 1343 *frm++ = IEEE80211_ELEMID_DSPARMS; 1344 *frm++ = 1; 1345 *frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan); 1346 } 1347 1348 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1349 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1350 *frm++ = 2; 1351 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1352 } 1353 if (ic->ic_flags & IEEE80211_F_WPA) 1354 frm = ieee80211_add_wpa(frm, ic); 1355 if (ic->ic_curmode == IEEE80211_MODE_11G) 1356 frm = ieee80211_add_erp(frm, ic); 1357 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1358 if (ic->ic_flags & IEEE80211_F_WME) 1359 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1360 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1361 break; 1362 1363 case IEEE80211_FC0_SUBTYPE_AUTH: 1364 status = arg >> 16; 1365 arg &= 0xffff; 1366 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 1367 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 1368 ni->ni_challenge != NULL); 1369 1370 /* 1371 * Deduce whether we're doing open authentication or 1372 * shared key authentication. We do the latter if 1373 * we're in the middle of a shared key authentication 1374 * handshake or if we're initiating an authentication 1375 * request and configured to use shared key. 1376 */ 1377 is_shared_key = has_challenge || 1378 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 1379 (arg == IEEE80211_AUTH_SHARED_REQUEST && 1380 ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED); 1381 1382 m = ieee80211_getmgtframe(&frm, 1383 3 * sizeof(u_int16_t) 1384 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 1385 sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0) 1386 ); 1387 if (m == NULL) 1388 senderr(ENOMEM, is_tx_nobuf); 1389 1390 ((u_int16_t *)frm)[0] = 1391 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 1392 : htole16(IEEE80211_AUTH_ALG_OPEN); 1393 ((u_int16_t *)frm)[1] = htole16(arg); /* sequence number */ 1394 ((u_int16_t *)frm)[2] = htole16(status);/* status */ 1395 1396 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 1397 ((u_int16_t *)frm)[3] = 1398 htole16((IEEE80211_CHALLENGE_LEN << 8) | 1399 IEEE80211_ELEMID_CHALLENGE); 1400 memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge, 1401 IEEE80211_CHALLENGE_LEN); 1402 m->m_pkthdr.len = m->m_len = 1403 4 * sizeof(u_int16_t) + IEEE80211_CHALLENGE_LEN; 1404 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 1405 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 1406 "[%s] request encrypt frame (%s)\n", 1407 ether_sprintf(ni->ni_macaddr), __func__); 1408 m->m_flags |= M_LINK0; /* WEP-encrypt, please */ 1409 } 1410 } else 1411 m->m_pkthdr.len = m->m_len = 3 * sizeof(u_int16_t); 1412 1413 /* XXX not right for shared key */ 1414 if (status == IEEE80211_STATUS_SUCCESS) 1415 IEEE80211_NODE_STAT(ni, tx_auth); 1416 else 1417 IEEE80211_NODE_STAT(ni, tx_auth_fail); 1418 1419 if (ic->ic_opmode == IEEE80211_M_STA) 1420 timer = IEEE80211_TRANS_WAIT; 1421 break; 1422 1423 case IEEE80211_FC0_SUBTYPE_DEAUTH: 1424 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 1425 "[%s] send station deauthenticate (reason %d)\n", 1426 ether_sprintf(ni->ni_macaddr), arg); 1427 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t)); 1428 if (m == NULL) 1429 senderr(ENOMEM, is_tx_nobuf); 1430 *(u_int16_t *)frm = htole16(arg); /* reason */ 1431 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t); 1432 1433 IEEE80211_NODE_STAT(ni, tx_deauth); 1434 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 1435 1436 ieee80211_node_unauthorize(ni); /* port closed */ 1437 break; 1438 1439 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 1440 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 1441 /* 1442 * asreq frame format 1443 * [2] capability information 1444 * [2] listen interval 1445 * [6*] current AP address (reassoc only) 1446 * [tlv] ssid 1447 * [tlv] supported rates 1448 * [tlv] extended supported rates 1449 * [tlv] WME 1450 * [tlv] user-specified ie's 1451 */ 1452 m = ieee80211_getmgtframe(&frm, 1453 sizeof(u_int16_t) 1454 + sizeof(u_int16_t) 1455 + IEEE80211_ADDR_LEN 1456 + 2 + IEEE80211_NWID_LEN 1457 + 2 + IEEE80211_RATE_SIZE 1458 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1459 + sizeof(struct ieee80211_wme_info) 1460 + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0) 1461 ); 1462 if (m == NULL) 1463 senderr(ENOMEM, is_tx_nobuf); 1464 1465 capinfo = 0; 1466 if (ic->ic_opmode == IEEE80211_M_IBSS) 1467 capinfo |= IEEE80211_CAPINFO_IBSS; 1468 else /* IEEE80211_M_STA */ 1469 capinfo |= IEEE80211_CAPINFO_ESS; 1470 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1471 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1472 /* 1473 * NB: Some 11a AP's reject the request when 1474 * short premable is set. 1475 */ 1476 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1477 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1478 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1479 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) && 1480 (ic->ic_caps & IEEE80211_C_SHSLOT)) 1481 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1482 *(u_int16_t *)frm = htole16(capinfo); 1483 frm += 2; 1484 1485 *(u_int16_t *)frm = htole16(ic->ic_lintval); 1486 frm += 2; 1487 1488 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 1489 IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid); 1490 frm += IEEE80211_ADDR_LEN; 1491 } 1492 1493 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 1494 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1495 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1496 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) 1497 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 1498 if (ic->ic_opt_ie != NULL) { 1499 memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len); 1500 frm += ic->ic_opt_ie_len; 1501 } 1502 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1503 1504 timer = IEEE80211_TRANS_WAIT; 1505 break; 1506 1507 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 1508 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 1509 /* 1510 * asreq frame format 1511 * [2] capability information 1512 * [2] status 1513 * [2] association ID 1514 * [tlv] supported rates 1515 * [tlv] extended supported rates 1516 * [tlv] WME (if enabled and STA enabled) 1517 */ 1518 m = ieee80211_getmgtframe(&frm, 1519 sizeof(u_int16_t) 1520 + sizeof(u_int16_t) 1521 + sizeof(u_int16_t) 1522 + 2 + IEEE80211_RATE_SIZE 1523 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1524 + sizeof(struct ieee80211_wme_param) 1525 ); 1526 if (m == NULL) 1527 senderr(ENOMEM, is_tx_nobuf); 1528 1529 capinfo = IEEE80211_CAPINFO_ESS; 1530 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1531 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1532 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1533 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1534 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1535 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1536 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1537 *(u_int16_t *)frm = htole16(capinfo); 1538 frm += 2; 1539 1540 *(u_int16_t *)frm = htole16(arg); /* status */ 1541 frm += 2; 1542 1543 if (arg == IEEE80211_STATUS_SUCCESS) { 1544 *(u_int16_t *)frm = htole16(ni->ni_associd); 1545 IEEE80211_NODE_STAT(ni, tx_assoc); 1546 } else 1547 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 1548 frm += 2; 1549 1550 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1551 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1552 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) 1553 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1554 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1555 break; 1556 1557 case IEEE80211_FC0_SUBTYPE_DISASSOC: 1558 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC, 1559 "[%s] send station disassociate (reason %d)\n", 1560 ether_sprintf(ni->ni_macaddr), arg); 1561 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t)); 1562 if (m == NULL) 1563 senderr(ENOMEM, is_tx_nobuf); 1564 *(u_int16_t *)frm = htole16(arg); /* reason */ 1565 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t); 1566 1567 IEEE80211_NODE_STAT(ni, tx_disassoc); 1568 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 1569 break; 1570 1571 default: 1572 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1573 "[%s] invalid mgmt frame type %u\n", 1574 ether_sprintf(ni->ni_macaddr), type); 1575 senderr(EINVAL, is_tx_unknownmgt); 1576 /* NOTREACHED */ 1577 } 1578 1579 ret = ieee80211_mgmt_output(ic, ni, m, type); 1580 if (ret == 0) { 1581 if (timer) 1582 ic->ic_mgt_timer = timer; 1583 } else { 1584 bad: 1585 ieee80211_free_node(ni); 1586 } 1587 return ret; 1588 #undef senderr 1589 } 1590 1591 /* 1592 * Allocate a beacon frame and fillin the appropriate bits. 1593 */ 1594 struct mbuf * 1595 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni, 1596 struct ieee80211_beacon_offsets *bo) 1597 { 1598 struct ifnet *ifp = ic->ic_ifp; 1599 struct ieee80211_frame *wh; 1600 struct mbuf *m; 1601 int pktlen; 1602 u_int8_t *frm, *efrm; 1603 u_int16_t capinfo; 1604 struct ieee80211_rateset *rs; 1605 1606 /* 1607 * beacon frame format 1608 * [8] time stamp 1609 * [2] beacon interval 1610 * [2] cabability information 1611 * [tlv] ssid 1612 * [tlv] supported rates 1613 * [3] parameter set (DS) 1614 * [tlv] parameter set (IBSS/TIM) 1615 * [tlv] extended rate phy (ERP) 1616 * [tlv] extended supported rates 1617 * [tlv] WME parameters 1618 * [tlv] WPA/RSN parameters 1619 * XXX Vendor-specific OIDs (e.g. Atheros) 1620 * NB: we allocate the max space required for the TIM bitmap. 1621 */ 1622 rs = &ni->ni_rates; 1623 pktlen = 8 /* time stamp */ 1624 + sizeof(u_int16_t) /* beacon interval */ 1625 + sizeof(u_int16_t) /* capabilities */ 1626 + 2 + ni->ni_esslen /* ssid */ 1627 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 1628 + 2 + 1 /* DS parameters */ 1629 + 2 + 4 + ic->ic_tim_len /* DTIM/IBSSPARMS */ 1630 + 2 + 1 /* ERP */ 1631 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1632 + (ic->ic_caps & IEEE80211_C_WME ? /* WME */ 1633 sizeof(struct ieee80211_wme_param) : 0) 1634 + (ic->ic_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 1635 2*sizeof(struct ieee80211_ie_wpa) : 0) 1636 ; 1637 m = ieee80211_getmgtframe(&frm, pktlen); 1638 if (m == NULL) { 1639 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1640 "%s: cannot get buf; size %u\n", __func__, pktlen); 1641 ic->ic_stats.is_tx_nobuf++; 1642 return NULL; 1643 } 1644 1645 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 1646 frm += 8; 1647 *(u_int16_t *)frm = htole16(ni->ni_intval); 1648 frm += 2; 1649 if (ic->ic_opmode == IEEE80211_M_IBSS) 1650 capinfo = IEEE80211_CAPINFO_IBSS; 1651 else 1652 capinfo = IEEE80211_CAPINFO_ESS; 1653 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1654 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1655 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1656 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 1657 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1658 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1659 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1660 bo->bo_caps = (u_int16_t *)frm; 1661 *(u_int16_t *)frm = htole16(capinfo); 1662 frm += 2; 1663 *frm++ = IEEE80211_ELEMID_SSID; 1664 if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) { 1665 *frm++ = ni->ni_esslen; 1666 memcpy(frm, ni->ni_essid, ni->ni_esslen); 1667 frm += ni->ni_esslen; 1668 } else 1669 *frm++ = 0; 1670 frm = ieee80211_add_rates(frm, rs); 1671 if (ic->ic_curmode != IEEE80211_MODE_FH) { 1672 *frm++ = IEEE80211_ELEMID_DSPARMS; 1673 *frm++ = 1; 1674 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 1675 } 1676 bo->bo_tim = frm; 1677 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1678 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1679 *frm++ = 2; 1680 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1681 bo->bo_tim_len = 0; 1682 } else { 1683 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 1684 1685 tie->tim_ie = IEEE80211_ELEMID_TIM; 1686 tie->tim_len = 4; /* length */ 1687 tie->tim_count = 0; /* DTIM count */ 1688 tie->tim_period = ic->ic_dtim_period; /* DTIM period */ 1689 tie->tim_bitctl = 0; /* bitmap control */ 1690 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 1691 frm += sizeof(struct ieee80211_tim_ie); 1692 bo->bo_tim_len = 1; 1693 } 1694 bo->bo_trailer = frm; 1695 if (ic->ic_flags & IEEE80211_F_WME) { 1696 bo->bo_wme = frm; 1697 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1698 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; 1699 } 1700 if (ic->ic_flags & IEEE80211_F_WPA) 1701 frm = ieee80211_add_wpa(frm, ic); 1702 if (ic->ic_curmode == IEEE80211_MODE_11G) 1703 frm = ieee80211_add_erp(frm, ic); 1704 efrm = ieee80211_add_xrates(frm, rs); 1705 bo->bo_trailer_len = efrm - bo->bo_trailer; 1706 m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *); 1707 1708 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 1709 IASSERT(m != NULL, ("no space for 802.11 header?")); 1710 wh = mtod(m, struct ieee80211_frame *); 1711 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 1712 IEEE80211_FC0_SUBTYPE_BEACON; 1713 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1714 *(u_int16_t *)wh->i_dur = 0; 1715 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 1716 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 1717 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 1718 *(u_int16_t *)wh->i_seq = 0; 1719 1720 return m; 1721 } 1722 1723 /* 1724 * Update the dynamic parts of a beacon frame based on the current state. 1725 */ 1726 int 1727 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni, 1728 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) 1729 { 1730 int len_changed = 0; 1731 u_int16_t capinfo; 1732 1733 IEEE80211_BEACON_LOCK(ic); 1734 /* XXX faster to recalculate entirely or just changes? */ 1735 if (ic->ic_opmode == IEEE80211_M_IBSS) 1736 capinfo = IEEE80211_CAPINFO_IBSS; 1737 else 1738 capinfo = IEEE80211_CAPINFO_ESS; 1739 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1740 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1741 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1742 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 1743 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1744 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1745 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1746 *bo->bo_caps = htole16(capinfo); 1747 1748 if (ic->ic_flags & IEEE80211_F_WME) { 1749 struct ieee80211_wme_state *wme = &ic->ic_wme; 1750 1751 /* 1752 * Check for agressive mode change. When there is 1753 * significant high priority traffic in the BSS 1754 * throttle back BE traffic by using conservative 1755 * parameters. Otherwise BE uses agressive params 1756 * to optimize performance of legacy/non-QoS traffic. 1757 */ 1758 if (wme->wme_flags & WME_F_AGGRMODE) { 1759 if (wme->wme_hipri_traffic > 1760 wme->wme_hipri_switch_thresh) { 1761 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, 1762 "%s: traffic %u, disable aggressive mode\n", 1763 __func__, wme->wme_hipri_traffic); 1764 wme->wme_flags &= ~WME_F_AGGRMODE; 1765 ieee80211_wme_updateparams_locked(ic); 1766 wme->wme_hipri_traffic = 1767 wme->wme_hipri_switch_hysteresis; 1768 } else 1769 wme->wme_hipri_traffic = 0; 1770 } else { 1771 if (wme->wme_hipri_traffic <= 1772 wme->wme_hipri_switch_thresh) { 1773 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, 1774 "%s: traffic %u, enable aggressive mode\n", 1775 __func__, wme->wme_hipri_traffic); 1776 wme->wme_flags |= WME_F_AGGRMODE; 1777 ieee80211_wme_updateparams_locked(ic); 1778 wme->wme_hipri_traffic = 0; 1779 } else 1780 wme->wme_hipri_traffic = 1781 wme->wme_hipri_switch_hysteresis; 1782 } 1783 if (ic->ic_flags & IEEE80211_F_WMEUPDATE) { 1784 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 1785 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; 1786 } 1787 } 1788 1789 #ifndef IEEE80211_NO_HOSTAP 1790 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/ 1791 struct ieee80211_tim_ie *tie = 1792 (struct ieee80211_tim_ie *) bo->bo_tim; 1793 if (ic->ic_flags & IEEE80211_F_TIMUPDATE) { 1794 u_int timlen, timoff, i; 1795 /* 1796 * ATIM/DTIM needs updating. If it fits in the 1797 * current space allocated then just copy in the 1798 * new bits. Otherwise we need to move any trailing 1799 * data to make room. Note that we know there is 1800 * contiguous space because ieee80211_beacon_allocate 1801 * insures there is space in the mbuf to write a 1802 * maximal-size virtual bitmap (based on ic_max_aid). 1803 */ 1804 /* 1805 * Calculate the bitmap size and offset, copy any 1806 * trailer out of the way, and then copy in the 1807 * new bitmap and update the information element. 1808 * Note that the tim bitmap must contain at least 1809 * one byte and any offset must be even. 1810 */ 1811 if (ic->ic_ps_pending != 0) { 1812 timoff = 128; /* impossibly large */ 1813 for (i = 0; i < ic->ic_tim_len; i++) 1814 if (ic->ic_tim_bitmap[i]) { 1815 timoff = i &~ 1; 1816 break; 1817 } 1818 IASSERT(timoff != 128, ("tim bitmap empty!")); 1819 for (i = ic->ic_tim_len-1; i >= timoff; i--) 1820 if (ic->ic_tim_bitmap[i]) 1821 break; 1822 timlen = 1 + (i - timoff); 1823 } else { 1824 timoff = 0; 1825 timlen = 1; 1826 } 1827 if (timlen != bo->bo_tim_len) { 1828 /* copy up/down trailer */ 1829 ovbcopy(bo->bo_trailer, tie->tim_bitmap+timlen, 1830 bo->bo_trailer_len); 1831 bo->bo_trailer = tie->tim_bitmap+timlen; 1832 bo->bo_wme = bo->bo_trailer; 1833 bo->bo_tim_len = timlen; 1834 1835 /* update information element */ 1836 tie->tim_len = 3 + timlen; 1837 tie->tim_bitctl = timoff; 1838 len_changed = 1; 1839 } 1840 memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff, 1841 bo->bo_tim_len); 1842 1843 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE; 1844 1845 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, 1846 "%s: TIM updated, pending %u, off %u, len %u\n", 1847 __func__, ic->ic_ps_pending, timoff, timlen); 1848 } 1849 /* count down DTIM period */ 1850 if (tie->tim_count == 0) 1851 tie->tim_count = tie->tim_period - 1; 1852 else 1853 tie->tim_count--; 1854 /* update state for buffered multicast frames on DTIM */ 1855 if (mcast && (tie->tim_count == 1 || tie->tim_period == 1)) 1856 tie->tim_bitctl |= 1; 1857 else 1858 tie->tim_bitctl &= ~1; 1859 } 1860 #endif /* !IEEE80211_NO_HOSTAP */ 1861 IEEE80211_BEACON_UNLOCK(ic); 1862 1863 return len_changed; 1864 } 1865 1866 /* 1867 * Save an outbound packet for a node in power-save sleep state. 1868 * The new packet is placed on the node's saved queue, and the TIM 1869 * is changed, if necessary. 1870 */ 1871 void 1872 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni, 1873 struct mbuf *m) 1874 { 1875 int qlen, age; 1876 1877 IEEE80211_NODE_SAVEQ_LOCK(ni); 1878 if (IF_QFULL(&ni->ni_savedq)) { 1879 IF_DROP(&ni->ni_savedq); 1880 IEEE80211_NODE_SAVEQ_UNLOCK(ni); 1881 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1882 "[%s] pwr save q overflow, drops %d (size %d)\n", 1883 ether_sprintf(ni->ni_macaddr), 1884 ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE); 1885 #ifdef IEEE80211_DEBUG 1886 if (ieee80211_msg_dumppkts(ic)) 1887 ieee80211_dump_pkt(mtod(m, caddr_t), m->m_len, -1, -1); 1888 #endif 1889 m_freem(m); 1890 return; 1891 } 1892 /* 1893 * Tag the frame with it's expiry time and insert 1894 * it in the queue. The aging interval is 4 times 1895 * the listen interval specified by the station. 1896 * Frames that sit around too long are reclaimed 1897 * using this information. 1898 */ 1899 /* XXX handle overflow? */ 1900 age = ((ni->ni_intval * ic->ic_bintval) << 2) / 1024; /* TU -> secs */ 1901 _IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age); 1902 IEEE80211_NODE_SAVEQ_UNLOCK(ni); 1903 1904 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, 1905 "[%s] save frame with age %d, %u now queued\n", 1906 ether_sprintf(ni->ni_macaddr), age, qlen); 1907 1908 if (qlen == 1) 1909 ic->ic_set_tim(ni, 1); 1910 } 1911