1 /* $NetBSD: ieee80211_output.c,v 1.48 2008/06/19 23:13:10 dyoung Exp $ */ 2 /*- 3 * Copyright (c) 2001 Atsushi Onoe 4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * Alternatively, this software may be distributed under the terms of the 19 * GNU General Public License ("GPL") version 2 as published by the Free 20 * Software Foundation. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 #ifdef __FreeBSD__ 36 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.34 2005/08/10 16:22:29 sam Exp $"); 37 #endif 38 #ifdef __NetBSD__ 39 __KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.48 2008/06/19 23:13:10 dyoung Exp $"); 40 #endif 41 42 #include "opt_inet.h" 43 44 #ifdef __NetBSD__ 45 #include "bpfilter.h" 46 #endif /* __NetBSD__ */ 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/mbuf.h> 51 #include <sys/kernel.h> 52 #include <sys/endian.h> 53 #include <sys/errno.h> 54 #include <sys/proc.h> 55 #include <sys/sysctl.h> 56 57 #include <net/if.h> 58 #include <net/if_llc.h> 59 #include <net/if_media.h> 60 #include <net/if_arp.h> 61 #include <net/if_ether.h> 62 #include <net/if_llc.h> 63 #include <net/if_vlanvar.h> 64 65 #include <net80211/ieee80211_netbsd.h> 66 #include <net80211/ieee80211_var.h> 67 68 #if NBPFILTER > 0 69 #include <net/bpf.h> 70 #endif 71 72 #ifdef INET 73 #include <netinet/in.h> 74 #include <netinet/in_systm.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <net/if_ether.h> 78 #endif 79 80 static int ieee80211_fragment(struct ieee80211com *, struct mbuf *, 81 u_int hdrsize, u_int ciphdrsize, u_int mtu); 82 83 #ifdef IEEE80211_DEBUG 84 /* 85 * Decide if an outbound management frame should be 86 * printed when debugging is enabled. This filters some 87 * of the less interesting frames that come frequently 88 * (e.g. beacons). 89 */ 90 static __inline int 91 doprint(struct ieee80211com *ic, int subtype) 92 { 93 switch (subtype) { 94 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 95 return (ic->ic_opmode == IEEE80211_M_IBSS); 96 } 97 return 1; 98 } 99 #endif 100 101 /* 102 * Set the direction field and address fields of an outgoing 103 * non-QoS frame. Note this should be called early on in 104 * constructing a frame as it sets i_fc[1]; other bits can 105 * then be or'd in. 106 */ 107 static void 108 ieee80211_send_setup(struct ieee80211com *ic, 109 struct ieee80211_node *ni, 110 struct ieee80211_frame *wh, 111 int type, 112 const u_int8_t sa[IEEE80211_ADDR_LEN], 113 const u_int8_t da[IEEE80211_ADDR_LEN], 114 const u_int8_t bssid[IEEE80211_ADDR_LEN]) 115 { 116 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 117 118 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 119 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 120 switch (ic->ic_opmode) { 121 case IEEE80211_M_STA: 122 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 123 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 124 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 125 IEEE80211_ADDR_COPY(wh->i_addr3, da); 126 break; 127 case IEEE80211_M_IBSS: 128 case IEEE80211_M_AHDEMO: 129 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 130 IEEE80211_ADDR_COPY(wh->i_addr1, da); 131 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 132 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 133 break; 134 case IEEE80211_M_HOSTAP: 135 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 136 IEEE80211_ADDR_COPY(wh->i_addr1, da); 137 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 138 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 139 break; 140 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 141 break; 142 } 143 } else { 144 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 145 IEEE80211_ADDR_COPY(wh->i_addr1, da); 146 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 147 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 148 } 149 *(u_int16_t *)&wh->i_dur[0] = 0; 150 /* NB: use non-QoS tid */ 151 *(u_int16_t *)&wh->i_seq[0] = 152 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 153 ni->ni_txseqs[0]++; 154 #undef WH4 155 } 156 157 /* 158 * Send a management frame to the specified node. The node pointer 159 * must have a reference as the pointer will be passed to the driver 160 * and potentially held for a long time. If the frame is successfully 161 * dispatched to the driver, then it is responsible for freeing the 162 * reference (and potentially free'ing up any associated storage). 163 */ 164 static int 165 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni, 166 struct mbuf *m, int type, int timer) 167 { 168 struct ifnet *ifp = ic->ic_ifp; 169 struct ieee80211_frame *wh; 170 171 IASSERT(ni != NULL, ("null node")); 172 173 /* 174 * Yech, hack alert! We want to pass the node down to the 175 * driver's start routine. If we don't do so then the start 176 * routine must immediately look it up again and that can 177 * cause a lock order reversal if, for example, this frame 178 * is being sent because the station is being timedout and 179 * the frame being sent is a DEAUTH message. We could stick 180 * this in an m_tag and tack that on to the mbuf. However 181 * that's rather expensive to do for every frame so instead 182 * we stuff it in the rcvif field since outbound frames do 183 * not (presently) use this. 184 */ 185 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 186 if (m == NULL) 187 return ENOMEM; 188 #ifdef __FreeBSD__ 189 KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null")); 190 #endif 191 m->m_pkthdr.rcvif = (void *)ni; 192 193 wh = mtod(m, struct ieee80211_frame *); 194 ieee80211_send_setup(ic, ni, wh, 195 IEEE80211_FC0_TYPE_MGT | type, 196 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); 197 if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) { 198 m->m_flags &= ~M_LINK0; 199 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 200 "[%s] encrypting frame (%s)\n", 201 ether_sprintf(wh->i_addr1), __func__); 202 wh->i_fc[1] |= IEEE80211_FC1_WEP; 203 } 204 #ifdef IEEE80211_DEBUG 205 /* avoid printing too many frames */ 206 if ((ieee80211_msg_debug(ic) && doprint(ic, type)) || 207 ieee80211_msg_dumppkts(ic)) { 208 printf("[%s] send %s on channel %u\n", 209 ether_sprintf(wh->i_addr1), 210 ieee80211_mgt_subtype_name[ 211 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 212 IEEE80211_FC0_SUBTYPE_SHIFT], 213 ieee80211_chan2ieee(ic, ic->ic_curchan)); 214 } 215 #endif 216 IEEE80211_NODE_STAT(ni, tx_mgmt); 217 IF_ENQUEUE(&ic->ic_mgtq, m); 218 if (timer) { 219 /* 220 * Set the mgt frame timeout. 221 */ 222 ic->ic_mgt_timer = timer; 223 ifp->if_timer = 1; 224 } 225 (*ifp->if_start)(ifp); 226 return 0; 227 } 228 229 /* 230 * Send a null data frame to the specified node. 231 * 232 * NB: the caller is assumed to have setup a node reference 233 * for use; this is necessary to deal with a race condition 234 * when probing for inactive stations. 235 */ 236 int 237 ieee80211_send_nulldata(struct ieee80211_node *ni) 238 { 239 struct ieee80211com *ic = ni->ni_ic; 240 struct ifnet *ifp = ic->ic_ifp; 241 struct mbuf *m; 242 struct ieee80211_frame *wh; 243 244 MGETHDR(m, M_NOWAIT, MT_HEADER); 245 if (m == NULL) { 246 /* XXX debug msg */ 247 ic->ic_stats.is_tx_nobuf++; 248 ieee80211_unref_node(&ni); 249 return ENOMEM; 250 } 251 m->m_pkthdr.rcvif = (void *) ni; 252 253 wh = mtod(m, struct ieee80211_frame *); 254 ieee80211_send_setup(ic, ni, wh, 255 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 256 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); 257 /* NB: power management bit is never sent by an AP */ 258 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 259 ic->ic_opmode != IEEE80211_M_HOSTAP) 260 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 261 m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame); 262 263 IEEE80211_NODE_STAT(ni, tx_data); 264 265 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 266 "[%s] send null data frame on channel %u, pwr mgt %s\n", 267 ether_sprintf(ni->ni_macaddr), 268 ieee80211_chan2ieee(ic, ic->ic_curchan), 269 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 270 271 IF_ENQUEUE(&ic->ic_mgtq, m); /* cheat */ 272 (*ifp->if_start)(ifp); 273 274 return 0; 275 } 276 277 /* 278 * Assign priority to a frame based on any vlan tag assigned 279 * to the station and/or any Diffserv setting in an IP header. 280 * Finally, if an ACM policy is setup (in station mode) it's 281 * applied. 282 */ 283 int 284 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni) 285 { 286 int v_wme_ac, d_wme_ac, ac; 287 #ifdef INET 288 struct ether_header *eh; 289 #endif 290 291 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 292 ac = WME_AC_BE; 293 goto done; 294 } 295 296 /* 297 * If node has a vlan tag then all traffic 298 * to it must have a matching tag. 299 */ 300 v_wme_ac = 0; 301 if (ni->ni_vlan != 0) { 302 /* XXX used to check ec_nvlans. */ 303 struct m_tag *mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL); 304 if (mtag == NULL) { 305 IEEE80211_NODE_STAT(ni, tx_novlantag); 306 return 1; 307 } 308 if (EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag)) != 309 EVL_VLANOFTAG(ni->ni_vlan)) { 310 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 311 return 1; 312 } 313 /* map vlan priority to AC */ 314 switch (EVL_PRIOFTAG(ni->ni_vlan)) { 315 case 1: 316 case 2: 317 v_wme_ac = WME_AC_BK; 318 break; 319 case 0: 320 case 3: 321 v_wme_ac = WME_AC_BE; 322 break; 323 case 4: 324 case 5: 325 v_wme_ac = WME_AC_VI; 326 break; 327 case 6: 328 case 7: 329 v_wme_ac = WME_AC_VO; 330 break; 331 } 332 } 333 334 #ifdef INET 335 eh = mtod(m, struct ether_header *); 336 if (eh->ether_type == htons(ETHERTYPE_IP)) { 337 const struct ip *ip = (struct ip *) 338 (mtod(m, u_int8_t *) + sizeof (*eh)); 339 /* 340 * IP frame, map the TOS field. 341 */ 342 switch (ip->ip_tos) { 343 case 0x08: 344 case 0x20: 345 d_wme_ac = WME_AC_BK; /* background */ 346 break; 347 case 0x28: 348 case 0xa0: 349 d_wme_ac = WME_AC_VI; /* video */ 350 break; 351 case 0x30: /* voice */ 352 case 0xe0: 353 case 0x88: /* XXX UPSD */ 354 case 0xb8: 355 d_wme_ac = WME_AC_VO; 356 break; 357 default: 358 d_wme_ac = WME_AC_BE; 359 break; 360 } 361 } else { 362 #endif /* INET */ 363 d_wme_ac = WME_AC_BE; 364 #ifdef INET 365 } 366 #endif 367 /* 368 * Use highest priority AC. 369 */ 370 if (v_wme_ac > d_wme_ac) 371 ac = v_wme_ac; 372 else 373 ac = d_wme_ac; 374 375 /* 376 * Apply ACM policy. 377 */ 378 if (ic->ic_opmode == IEEE80211_M_STA) { 379 static const int acmap[4] = { 380 WME_AC_BK, /* WME_AC_BE */ 381 WME_AC_BK, /* WME_AC_BK */ 382 WME_AC_BE, /* WME_AC_VI */ 383 WME_AC_VI, /* WME_AC_VO */ 384 }; 385 while (ac != WME_AC_BK && 386 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 387 ac = acmap[ac]; 388 } 389 done: 390 M_WME_SETAC(m, ac); 391 return 0; 392 } 393 394 /* 395 * Insure there is sufficient contiguous space to encapsulate the 396 * 802.11 data frame. If room isn't already there, arrange for it. 397 * Drivers and cipher modules assume we have done the necessary work 398 * and fail rudely if they don't find the space they need. 399 */ 400 static struct mbuf * 401 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize, 402 struct ieee80211_key *key, struct mbuf *m) 403 { 404 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 405 int needed_space = hdrsize; 406 int wlen = 0; 407 408 if (key != NULL) { 409 /* XXX belongs in crypto code? */ 410 needed_space += key->wk_cipher->ic_header; 411 /* XXX frags */ 412 } 413 /* 414 * We know we are called just before stripping an Ethernet 415 * header and prepending an LLC header. This means we know 416 * there will be 417 * sizeof(struct ether_header) - sizeof(struct llc) 418 * bytes recovered to which we need additional space for the 419 * 802.11 header and any crypto header. 420 */ 421 /* XXX check trailing space and copy instead? */ 422 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 423 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 424 if (n == NULL) { 425 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 426 "%s: cannot expand storage\n", __func__); 427 ic->ic_stats.is_tx_nobuf++; 428 m_freem(m); 429 return NULL; 430 } 431 IASSERT(needed_space <= MHLEN, 432 ("not enough room, need %u got %zu\n", needed_space, MHLEN)); 433 /* 434 * Setup new mbuf to have leading space to prepend the 435 * 802.11 header and any crypto header bits that are 436 * required (the latter are added when the driver calls 437 * back to ieee80211_crypto_encap to do crypto encapsulation). 438 */ 439 /* NB: must be first 'cuz it clobbers m_data */ 440 M_MOVE_PKTHDR(n, m); 441 n->m_len = 0; /* NB: m_gethdr does not set */ 442 n->m_data += needed_space; 443 /* 444 * Pull up Ethernet header to create the expected layout. 445 * We could use m_pullup but that's overkill (i.e. we don't 446 * need the actual data) and it cannot fail so do it inline 447 * for speed. 448 */ 449 /* NB: struct ether_header is known to be contiguous */ 450 n->m_len += sizeof(struct ether_header); 451 m->m_len -= sizeof(struct ether_header); 452 m->m_data += sizeof(struct ether_header); 453 /* 454 * Replace the head of the chain. 455 */ 456 n->m_next = m; 457 m = n; 458 } else { 459 /* We will overwrite the ethernet header in the 460 * 802.11 encapsulation stage. Make sure that it 461 * is writable. 462 */ 463 wlen = sizeof(struct ether_header); 464 } 465 466 /* 467 * If we're going to s/w encrypt the mbuf chain make sure it is 468 * writable. 469 */ 470 if (key != NULL && (key->wk_flags & IEEE80211_KEY_SWCRYPT) != 0) 471 wlen = M_COPYALL; 472 473 if (wlen != 0 && m_makewritable(&m, 0, wlen, M_DONTWAIT) != 0) { 474 m_freem(m); 475 return NULL; 476 } 477 return m; 478 #undef TO_BE_RECLAIMED 479 } 480 481 /* 482 * Return the transmit key to use in sending a unicast frame. 483 * If a unicast key is set we use that. When no unicast key is set 484 * we fall back to the default transmit key. 485 */ 486 static __inline struct ieee80211_key * 487 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni) 488 { 489 if (IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)) { 490 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 491 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 492 return NULL; 493 return &ic->ic_nw_keys[ic->ic_def_txkey]; 494 } else { 495 return &ni->ni_ucastkey; 496 } 497 } 498 499 /* 500 * Return the transmit key to use in sending a multicast frame. 501 * Multicast traffic always uses the group key which is installed as 502 * the default tx key. 503 */ 504 static __inline struct ieee80211_key * 505 ieee80211_crypto_getmcastkey(struct ieee80211com *ic, 506 struct ieee80211_node *ni) 507 { 508 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 509 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 510 return NULL; 511 return &ic->ic_nw_keys[ic->ic_def_txkey]; 512 } 513 514 /* 515 * Encapsulate an outbound data frame. The mbuf chain is updated. 516 * If an error is encountered NULL is returned. The caller is required 517 * to provide a node reference and pullup the ethernet header in the 518 * first mbuf. 519 */ 520 struct mbuf * 521 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m, 522 struct ieee80211_node *ni) 523 { 524 struct ether_header eh; 525 struct ieee80211_frame *wh; 526 struct ieee80211_key *key; 527 struct llc *llc; 528 int hdrsize, datalen, addqos, txfrag; 529 530 IASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 531 memcpy(&eh, mtod(m, void *), sizeof(struct ether_header)); 532 533 /* 534 * Insure space for additional headers. First identify 535 * transmit key to use in calculating any buffer adjustments 536 * required. This is also used below to do privacy 537 * encapsulation work. Then calculate the 802.11 header 538 * size and any padding required by the driver. 539 * 540 * Note key may be NULL if we fall back to the default 541 * transmit key and that is not set. In that case the 542 * buffer may not be expanded as needed by the cipher 543 * routines, but they will/should discard it. 544 */ 545 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 546 if (ic->ic_opmode == IEEE80211_M_STA || 547 !IEEE80211_IS_MULTICAST(eh.ether_dhost)) 548 key = ieee80211_crypto_getucastkey(ic, ni); 549 else 550 key = ieee80211_crypto_getmcastkey(ic, ni); 551 if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) { 552 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO, 553 "[%s] no default transmit key (%s) deftxkey %u\n", 554 ether_sprintf(eh.ether_dhost), __func__, 555 ic->ic_def_txkey); 556 ic->ic_stats.is_tx_nodefkey++; 557 } 558 } else 559 key = NULL; 560 /* XXX 4-address format */ 561 /* 562 * XXX Some ap's don't handle QoS-encapsulated EAPOL 563 * frames so suppress use. This may be an issue if other 564 * ap's require all data frames to be QoS-encapsulated 565 * once negotiated in which case we'll need to make this 566 * configurable. 567 */ 568 addqos = (ni->ni_flags & IEEE80211_NODE_QOS) && 569 eh.ether_type != htons(ETHERTYPE_PAE); 570 if (addqos) 571 hdrsize = sizeof(struct ieee80211_qosframe); 572 else 573 hdrsize = sizeof(struct ieee80211_frame); 574 if (ic->ic_flags & IEEE80211_F_DATAPAD) 575 hdrsize = roundup(hdrsize, sizeof(u_int32_t)); 576 m = ieee80211_mbuf_adjust(ic, hdrsize, key, m); 577 if (m == NULL) { 578 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 579 goto bad; 580 } 581 582 /* NB: this could be optimized because of ieee80211_mbuf_adjust */ 583 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 584 llc = mtod(m, struct llc *); 585 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 586 llc->llc_control = LLC_UI; 587 llc->llc_snap.org_code[0] = 0; 588 llc->llc_snap.org_code[1] = 0; 589 llc->llc_snap.org_code[2] = 0; 590 llc->llc_snap.ether_type = eh.ether_type; 591 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 592 593 M_PREPEND(m, hdrsize, M_DONTWAIT); 594 if (m == NULL) { 595 ic->ic_stats.is_tx_nobuf++; 596 goto bad; 597 } 598 wh = mtod(m, struct ieee80211_frame *); 599 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 600 *(u_int16_t *)wh->i_dur = 0; 601 switch (ic->ic_opmode) { 602 case IEEE80211_M_STA: 603 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 604 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 605 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 606 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 607 break; 608 case IEEE80211_M_IBSS: 609 case IEEE80211_M_AHDEMO: 610 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 611 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 612 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 613 /* 614 * NB: always use the bssid from ic_bss as the 615 * neighbor's may be stale after an ibss merge 616 */ 617 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid); 618 break; 619 case IEEE80211_M_HOSTAP: 620 #ifndef IEEE80211_NO_HOSTAP 621 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 622 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 623 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 624 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 625 #endif /* !IEEE80211_NO_HOSTAP */ 626 break; 627 case IEEE80211_M_MONITOR: 628 goto bad; 629 } 630 if (m->m_flags & M_MORE_DATA) 631 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 632 if (addqos) { 633 struct ieee80211_qosframe *qwh = 634 (struct ieee80211_qosframe *) wh; 635 int ac, tid; 636 637 ac = M_WME_GETAC(m); 638 /* map from access class/queue to 11e header priorty value */ 639 tid = WME_AC_TO_TID(ac); 640 qwh->i_qos[0] = tid & IEEE80211_QOS_TID; 641 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 642 qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S; 643 qwh->i_qos[1] = 0; 644 qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 645 646 *(u_int16_t *)wh->i_seq = 647 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT); 648 ni->ni_txseqs[tid]++; 649 } else { 650 *(u_int16_t *)wh->i_seq = 651 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 652 ni->ni_txseqs[0]++; 653 } 654 /* check if xmit fragmentation is required */ 655 txfrag = (m->m_pkthdr.len > ic->ic_fragthreshold && 656 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 657 (m->m_flags & M_FF) == 0); /* NB: don't fragment ff's */ 658 if (key != NULL) { 659 /* 660 * IEEE 802.1X: send EAPOL frames always in the clear. 661 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 662 */ 663 if (eh.ether_type != htons(ETHERTYPE_PAE) || 664 ((ic->ic_flags & IEEE80211_F_WPA) && 665 (ic->ic_opmode == IEEE80211_M_STA ? 666 !IEEE80211_KEY_UNDEFINED(*key) : 667 !IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)))) { 668 wh->i_fc[1] |= IEEE80211_FC1_WEP; 669 if (!ieee80211_crypto_enmic(ic, key, m, txfrag)) { 670 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 671 "[%s] enmic failed, discard frame\n", 672 ether_sprintf(eh.ether_dhost)); 673 ic->ic_stats.is_crypto_enmicfail++; 674 goto bad; 675 } 676 } 677 } 678 if (txfrag && !ieee80211_fragment(ic, m, hdrsize, 679 key != NULL ? key->wk_cipher->ic_header : 0, ic->ic_fragthreshold)) 680 goto bad; 681 682 IEEE80211_NODE_STAT(ni, tx_data); 683 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 684 685 return m; 686 bad: 687 if (m != NULL) 688 m_freem(m); 689 return NULL; 690 } 691 692 /* 693 * Arguments in: 694 * 695 * paylen: payload length (no FCS, no WEP header) 696 * 697 * hdrlen: header length 698 * 699 * rate: MSDU speed, units 500kb/s 700 * 701 * flags: IEEE80211_F_SHPREAMBLE (use short preamble), 702 * IEEE80211_F_SHSLOT (use short slot length) 703 * 704 * Arguments out: 705 * 706 * d: 802.11 Duration field for RTS, 707 * 802.11 Duration field for data frame, 708 * PLCP Length for data frame, 709 * residual octets at end of data slot 710 */ 711 static int 712 ieee80211_compute_duration1(int len, int use_ack, uint32_t icflags, int rate, 713 struct ieee80211_duration *d) 714 { 715 int pre, ctsrate; 716 int ack, bitlen, data_dur, remainder; 717 718 /* RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK 719 * DATA reserves medium for SIFS | ACK, 720 * 721 * (XXX or SIFS | ACK | SIFS | DATA | SIFS | ACK, if more fragments) 722 * 723 * XXXMYC: no ACK on multicast/broadcast or control packets 724 */ 725 726 bitlen = len * 8; 727 728 pre = IEEE80211_DUR_DS_SIFS; 729 if ((icflags & IEEE80211_F_SHPREAMBLE) != 0) 730 pre += IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR; 731 else 732 pre += IEEE80211_DUR_DS_LONG_PREAMBLE + IEEE80211_DUR_DS_SLOW_PLCPHDR; 733 734 d->d_residue = 0; 735 data_dur = (bitlen * 2) / rate; 736 remainder = (bitlen * 2) % rate; 737 if (remainder != 0) { 738 d->d_residue = (rate - remainder) / 16; 739 data_dur++; 740 } 741 742 switch (rate) { 743 case 2: /* 1 Mb/s */ 744 case 4: /* 2 Mb/s */ 745 /* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */ 746 ctsrate = 2; 747 break; 748 case 11: /* 5.5 Mb/s */ 749 case 22: /* 11 Mb/s */ 750 case 44: /* 22 Mb/s */ 751 /* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */ 752 ctsrate = 4; 753 break; 754 default: 755 /* TBD */ 756 return -1; 757 } 758 759 d->d_plcp_len = data_dur; 760 761 ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0; 762 763 d->d_rts_dur = 764 pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate + 765 pre + data_dur + 766 ack; 767 768 d->d_data_dur = ack; 769 770 return 0; 771 } 772 773 /* 774 * Arguments in: 775 * 776 * wh: 802.11 header 777 * 778 * paylen: payload length (no FCS, no WEP header) 779 * 780 * rate: MSDU speed, units 500kb/s 781 * 782 * fraglen: fragment length, set to maximum (or higher) for no 783 * fragmentation 784 * 785 * flags: IEEE80211_F_PRIVACY (hardware adds WEP), 786 * IEEE80211_F_SHPREAMBLE (use short preamble), 787 * IEEE80211_F_SHSLOT (use short slot length) 788 * 789 * Arguments out: 790 * 791 * d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields 792 * of first/only fragment 793 * 794 * dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields 795 * of last fragment 796 * 797 * ieee80211_compute_duration assumes crypto-encapsulation, if any, 798 * has already taken place. 799 */ 800 int 801 ieee80211_compute_duration(const struct ieee80211_frame_min *wh, 802 const struct ieee80211_key *wk, int len, 803 uint32_t icflags, int fraglen, int rate, struct ieee80211_duration *d0, 804 struct ieee80211_duration *dn, int *npktp, int debug) 805 { 806 int ack, rc; 807 int cryptolen, /* crypto overhead: header+trailer */ 808 firstlen, /* first fragment's payload + overhead length */ 809 hdrlen, /* header length w/o driver padding */ 810 lastlen, /* last fragment's payload length w/ overhead */ 811 lastlen0, /* last fragment's payload length w/o overhead */ 812 npkt, /* number of fragments */ 813 overlen, /* non-802.11 header overhead per fragment */ 814 paylen; /* payload length w/o overhead */ 815 816 hdrlen = ieee80211_anyhdrsize((const void *)wh); 817 818 /* Account for padding required by the driver. */ 819 if (icflags & IEEE80211_F_DATAPAD) 820 paylen = len - roundup(hdrlen, sizeof(u_int32_t)); 821 else 822 paylen = len - hdrlen; 823 824 overlen = IEEE80211_CRC_LEN; 825 826 if (wk != NULL) { 827 cryptolen = wk->wk_cipher->ic_header + 828 wk->wk_cipher->ic_trailer; 829 paylen -= cryptolen; 830 overlen += cryptolen; 831 } 832 833 npkt = paylen / fraglen; 834 lastlen0 = paylen % fraglen; 835 836 if (npkt == 0) /* no fragments */ 837 lastlen = paylen + overlen; 838 else if (lastlen0 != 0) { /* a short "tail" fragment */ 839 lastlen = lastlen0 + overlen; 840 npkt++; 841 } else /* full-length "tail" fragment */ 842 lastlen = fraglen + overlen; 843 844 if (npktp != NULL) 845 *npktp = npkt; 846 847 if (npkt > 1) 848 firstlen = fraglen + overlen; 849 else 850 firstlen = paylen + overlen; 851 852 if (debug) { 853 printf("%s: npkt %d firstlen %d lastlen0 %d lastlen %d " 854 "fraglen %d overlen %d len %d rate %d icflags %08x\n", 855 __func__, npkt, firstlen, lastlen0, lastlen, fraglen, 856 overlen, len, rate, icflags); 857 } 858 859 ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) && 860 (wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL; 861 862 rc = ieee80211_compute_duration1(firstlen + hdrlen, 863 ack, icflags, rate, d0); 864 if (rc == -1) 865 return rc; 866 867 if (npkt <= 1) { 868 *dn = *d0; 869 return 0; 870 } 871 return ieee80211_compute_duration1(lastlen + hdrlen, ack, icflags, rate, 872 dn); 873 } 874 875 /* 876 * Fragment the frame according to the specified mtu. 877 * The size of the 802.11 header (w/o padding) is provided 878 * so we don't need to recalculate it. We create a new 879 * mbuf for each fragment and chain it through m_nextpkt; 880 * we might be able to optimize this by reusing the original 881 * packet's mbufs but that is significantly more complicated. 882 */ 883 static int 884 ieee80211_fragment(struct ieee80211com *ic, struct mbuf *m0, 885 u_int hdrsize, u_int ciphdrsize, u_int mtu) 886 { 887 struct ieee80211_frame *wh, *whf; 888 struct mbuf *m, *prev, *next; 889 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 890 891 IASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 892 IASSERT(m0->m_pkthdr.len > mtu, 893 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 894 895 wh = mtod(m0, struct ieee80211_frame *); 896 /* NB: mark the first frag; it will be propagated below */ 897 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 898 totalhdrsize = hdrsize + ciphdrsize; 899 fragno = 1; 900 off = mtu - ciphdrsize; 901 remainder = m0->m_pkthdr.len - off; 902 prev = m0; 903 do { 904 fragsize = totalhdrsize + remainder; 905 if (fragsize > mtu) 906 fragsize = mtu; 907 IASSERT(fragsize < MCLBYTES, 908 ("fragment size %u too big!", fragsize)); 909 if (fragsize > MHLEN) 910 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 911 else 912 m = m_gethdr(M_DONTWAIT, MT_DATA); 913 if (m == NULL) 914 goto bad; 915 /* leave room to prepend any cipher header */ 916 m_align(m, fragsize - ciphdrsize); 917 918 /* 919 * Form the header in the fragment. Note that since 920 * we mark the first fragment with the MORE_FRAG bit 921 * it automatically is propagated to each fragment; we 922 * need only clear it on the last fragment (done below). 923 */ 924 whf = mtod(m, struct ieee80211_frame *); 925 memcpy(whf, wh, hdrsize); 926 *(u_int16_t *)&whf->i_seq[0] |= htole16( 927 (fragno & IEEE80211_SEQ_FRAG_MASK) << 928 IEEE80211_SEQ_FRAG_SHIFT); 929 fragno++; 930 931 payload = fragsize - totalhdrsize; 932 /* NB: destination is known to be contiguous */ 933 m_copydata(m0, off, payload, mtod(m, u_int8_t *) + hdrsize); 934 m->m_len = hdrsize + payload; 935 m->m_pkthdr.len = hdrsize + payload; 936 m->m_flags |= M_FRAG; 937 938 /* chain up the fragment */ 939 prev->m_nextpkt = m; 940 prev = m; 941 942 /* deduct fragment just formed */ 943 remainder -= payload; 944 off += payload; 945 } while (remainder != 0); 946 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 947 948 /* strip first mbuf now that everything has been copied */ 949 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 950 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 951 952 ic->ic_stats.is_tx_fragframes++; 953 ic->ic_stats.is_tx_frags += fragno-1; 954 955 return 1; 956 bad: 957 /* reclaim fragments but leave original frame for caller to free */ 958 for (m = m0->m_nextpkt; m != NULL; m = next) { 959 next = m->m_nextpkt; 960 m->m_nextpkt = NULL; /* XXX paranoid */ 961 m_freem(m); 962 } 963 m0->m_nextpkt = NULL; 964 return 0; 965 } 966 967 /* 968 * Add a supported rates element id to a frame. 969 */ 970 static u_int8_t * 971 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs) 972 { 973 int nrates; 974 975 *frm++ = IEEE80211_ELEMID_RATES; 976 nrates = rs->rs_nrates; 977 if (nrates > IEEE80211_RATE_SIZE) 978 nrates = IEEE80211_RATE_SIZE; 979 *frm++ = nrates; 980 memcpy(frm, rs->rs_rates, nrates); 981 return frm + nrates; 982 } 983 984 /* 985 * Add an extended supported rates element id to a frame. 986 */ 987 static u_int8_t * 988 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs) 989 { 990 /* 991 * Add an extended supported rates element if operating in 11g mode. 992 */ 993 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 994 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 995 *frm++ = IEEE80211_ELEMID_XRATES; 996 *frm++ = nrates; 997 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 998 frm += nrates; 999 } 1000 return frm; 1001 } 1002 1003 /* 1004 * Add an ssid elemet to a frame. 1005 */ 1006 static u_int8_t * 1007 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len) 1008 { 1009 *frm++ = IEEE80211_ELEMID_SSID; 1010 *frm++ = len; 1011 memcpy(frm, ssid, len); 1012 return frm + len; 1013 } 1014 1015 /* 1016 * Add an erp element to a frame. 1017 */ 1018 static u_int8_t * 1019 ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic) 1020 { 1021 u_int8_t erp; 1022 1023 *frm++ = IEEE80211_ELEMID_ERP; 1024 *frm++ = 1; 1025 erp = 0; 1026 if (ic->ic_nonerpsta != 0) 1027 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1028 if (ic->ic_flags & IEEE80211_F_USEPROT) 1029 erp |= IEEE80211_ERP_USE_PROTECTION; 1030 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1031 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1032 *frm++ = erp; 1033 return frm; 1034 } 1035 1036 static u_int8_t * 1037 ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie) 1038 { 1039 #define WPA_OUI_BYTES 0x00, 0x50, 0xf2 1040 #define ADDSHORT(frm, v) do { \ 1041 frm[0] = (v) & 0xff; \ 1042 frm[1] = (v) >> 8; \ 1043 frm += 2; \ 1044 } while (0) 1045 #define ADDSELECTOR(frm, sel) do { \ 1046 memcpy(frm, sel, 4); \ 1047 frm += 4; \ 1048 } while (0) 1049 static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE }; 1050 static const u_int8_t cipher_suite[][4] = { 1051 { WPA_OUI_BYTES, WPA_CSE_WEP40 }, /* NB: 40-bit */ 1052 { WPA_OUI_BYTES, WPA_CSE_TKIP }, 1053 { 0x00, 0x00, 0x00, 0x00 }, /* XXX WRAP */ 1054 { WPA_OUI_BYTES, WPA_CSE_CCMP }, 1055 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ 1056 { WPA_OUI_BYTES, WPA_CSE_NULL }, 1057 }; 1058 static const u_int8_t wep104_suite[4] = 1059 { WPA_OUI_BYTES, WPA_CSE_WEP104 }; 1060 static const u_int8_t key_mgt_unspec[4] = 1061 { WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC }; 1062 static const u_int8_t key_mgt_psk[4] = 1063 { WPA_OUI_BYTES, WPA_ASE_8021X_PSK }; 1064 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; 1065 u_int8_t *frm = ie; 1066 u_int8_t *selcnt; 1067 1068 *frm++ = IEEE80211_ELEMID_VENDOR; 1069 *frm++ = 0; /* length filled in below */ 1070 memcpy(frm, oui, sizeof(oui)); /* WPA OUI */ 1071 frm += sizeof(oui); 1072 ADDSHORT(frm, WPA_VERSION); 1073 1074 /* XXX filter out CKIP */ 1075 1076 /* multicast cipher */ 1077 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && 1078 rsn->rsn_mcastkeylen >= 13) 1079 ADDSELECTOR(frm, wep104_suite); 1080 else 1081 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); 1082 1083 /* unicast cipher list */ 1084 selcnt = frm; 1085 ADDSHORT(frm, 0); /* selector count */ 1086 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) { 1087 selcnt[0]++; 1088 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); 1089 } 1090 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) { 1091 selcnt[0]++; 1092 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); 1093 } 1094 1095 /* authenticator selector list */ 1096 selcnt = frm; 1097 ADDSHORT(frm, 0); /* selector count */ 1098 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { 1099 selcnt[0]++; 1100 ADDSELECTOR(frm, key_mgt_unspec); 1101 } 1102 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { 1103 selcnt[0]++; 1104 ADDSELECTOR(frm, key_mgt_psk); 1105 } 1106 1107 /* optional capabilities */ 1108 if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH) 1109 ADDSHORT(frm, rsn->rsn_caps); 1110 1111 /* calculate element length */ 1112 ie[1] = frm - ie - 2; 1113 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), 1114 ("WPA IE too big, %u > %zu", 1115 ie[1]+2, sizeof(struct ieee80211_ie_wpa))); 1116 return frm; 1117 #undef ADDSHORT 1118 #undef ADDSELECTOR 1119 #undef WPA_OUI_BYTES 1120 } 1121 1122 static u_int8_t * 1123 ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie) 1124 { 1125 #define RSN_OUI_BYTES 0x00, 0x0f, 0xac 1126 #define ADDSHORT(frm, v) do { \ 1127 frm[0] = (v) & 0xff; \ 1128 frm[1] = (v) >> 8; \ 1129 frm += 2; \ 1130 } while (0) 1131 #define ADDSELECTOR(frm, sel) do { \ 1132 memcpy(frm, sel, 4); \ 1133 frm += 4; \ 1134 } while (0) 1135 static const u_int8_t cipher_suite[][4] = { 1136 { RSN_OUI_BYTES, RSN_CSE_WEP40 }, /* NB: 40-bit */ 1137 { RSN_OUI_BYTES, RSN_CSE_TKIP }, 1138 { RSN_OUI_BYTES, RSN_CSE_WRAP }, 1139 { RSN_OUI_BYTES, RSN_CSE_CCMP }, 1140 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ 1141 { RSN_OUI_BYTES, RSN_CSE_NULL }, 1142 }; 1143 static const u_int8_t wep104_suite[4] = 1144 { RSN_OUI_BYTES, RSN_CSE_WEP104 }; 1145 static const u_int8_t key_mgt_unspec[4] = 1146 { RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC }; 1147 static const u_int8_t key_mgt_psk[4] = 1148 { RSN_OUI_BYTES, RSN_ASE_8021X_PSK }; 1149 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; 1150 u_int8_t *frm = ie; 1151 u_int8_t *selcnt; 1152 1153 *frm++ = IEEE80211_ELEMID_RSN; 1154 *frm++ = 0; /* length filled in below */ 1155 ADDSHORT(frm, RSN_VERSION); 1156 1157 /* XXX filter out CKIP */ 1158 1159 /* multicast cipher */ 1160 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && 1161 rsn->rsn_mcastkeylen >= 13) 1162 ADDSELECTOR(frm, wep104_suite); 1163 else 1164 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); 1165 1166 /* unicast cipher list */ 1167 selcnt = frm; 1168 ADDSHORT(frm, 0); /* selector count */ 1169 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) { 1170 selcnt[0]++; 1171 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); 1172 } 1173 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) { 1174 selcnt[0]++; 1175 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); 1176 } 1177 1178 /* authenticator selector list */ 1179 selcnt = frm; 1180 ADDSHORT(frm, 0); /* selector count */ 1181 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { 1182 selcnt[0]++; 1183 ADDSELECTOR(frm, key_mgt_unspec); 1184 } 1185 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { 1186 selcnt[0]++; 1187 ADDSELECTOR(frm, key_mgt_psk); 1188 } 1189 1190 /* optional capabilities */ 1191 ADDSHORT(frm, rsn->rsn_caps); 1192 /* XXX PMKID */ 1193 1194 /* calculate element length */ 1195 ie[1] = frm - ie - 2; 1196 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), 1197 ("RSN IE too big, %u > %zu", 1198 ie[1]+2, sizeof(struct ieee80211_ie_wpa))); 1199 return frm; 1200 #undef ADDSELECTOR 1201 #undef ADDSHORT 1202 #undef RSN_OUI_BYTES 1203 } 1204 1205 /* 1206 * Add a WPA/RSN element to a frame. 1207 */ 1208 static u_int8_t * 1209 ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic) 1210 { 1211 1212 IASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!")); 1213 if (ic->ic_flags & IEEE80211_F_WPA2) 1214 frm = ieee80211_setup_rsn_ie(ic, frm); 1215 if (ic->ic_flags & IEEE80211_F_WPA1) 1216 frm = ieee80211_setup_wpa_ie(ic, frm); 1217 return frm; 1218 } 1219 1220 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1221 /* 1222 * Add a WME information element to a frame. 1223 */ 1224 static u_int8_t * 1225 ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme) 1226 { 1227 static const struct ieee80211_wme_info info = { 1228 .wme_id = IEEE80211_ELEMID_VENDOR, 1229 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1230 .wme_oui = { WME_OUI_BYTES }, 1231 .wme_type = WME_OUI_TYPE, 1232 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1233 .wme_version = WME_VERSION, 1234 .wme_info = 0, 1235 }; 1236 memcpy(frm, &info, sizeof(info)); 1237 return frm + sizeof(info); 1238 } 1239 1240 /* 1241 * Add a WME parameters element to a frame. 1242 */ 1243 static u_int8_t * 1244 ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme) 1245 { 1246 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1247 #define ADDSHORT(frm, v) do { \ 1248 frm[0] = (v) & 0xff; \ 1249 frm[1] = (v) >> 8; \ 1250 frm += 2; \ 1251 } while (0) 1252 /* NB: this works 'cuz a param has an info at the front */ 1253 static const struct ieee80211_wme_info param = { 1254 .wme_id = IEEE80211_ELEMID_VENDOR, 1255 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1256 .wme_oui = { WME_OUI_BYTES }, 1257 .wme_type = WME_OUI_TYPE, 1258 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1259 .wme_version = WME_VERSION, 1260 }; 1261 int i; 1262 1263 memcpy(frm, ¶m, sizeof(param)); 1264 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1265 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1266 *frm++ = 0; /* reserved field */ 1267 for (i = 0; i < WME_NUM_AC; i++) { 1268 const struct wmeParams *ac = 1269 &wme->wme_bssChanParams.cap_wmeParams[i]; 1270 *frm++ = SM(i, WME_PARAM_ACI) 1271 | SM(ac->wmep_acm, WME_PARAM_ACM) 1272 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1273 ; 1274 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1275 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1276 ; 1277 ADDSHORT(frm, ac->wmep_txopLimit); 1278 } 1279 return frm; 1280 #undef SM 1281 #undef ADDSHORT 1282 } 1283 #undef WME_OUI_BYTES 1284 1285 /* 1286 * Send a probe request frame with the specified ssid 1287 * and any optional information element data. 1288 */ 1289 int 1290 ieee80211_send_probereq(struct ieee80211_node *ni, 1291 const u_int8_t sa[IEEE80211_ADDR_LEN], 1292 const u_int8_t da[IEEE80211_ADDR_LEN], 1293 const u_int8_t bssid[IEEE80211_ADDR_LEN], 1294 const u_int8_t *ssid, size_t ssidlen, 1295 const void *optie, size_t optielen) 1296 { 1297 struct ieee80211com *ic = ni->ni_ic; 1298 enum ieee80211_phymode mode; 1299 struct ieee80211_frame *wh; 1300 struct mbuf *m; 1301 u_int8_t *frm; 1302 1303 /* 1304 * Hold a reference on the node so it doesn't go away until after 1305 * the xmit is complete all the way in the driver. On error we 1306 * will remove our reference. 1307 */ 1308 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, 1309 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1310 __func__, __LINE__, 1311 ni, ether_sprintf(ni->ni_macaddr), 1312 ieee80211_node_refcnt(ni)+1); 1313 ieee80211_ref_node(ni); 1314 1315 /* 1316 * prreq frame format 1317 * [tlv] ssid 1318 * [tlv] supported rates 1319 * [tlv] extended supported rates 1320 * [tlv] user-specified ie's 1321 */ 1322 m = ieee80211_getmgtframe(&frm, 1323 2 + IEEE80211_NWID_LEN 1324 + 2 + IEEE80211_RATE_SIZE 1325 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1326 + (optie != NULL ? optielen : 0) 1327 ); 1328 if (m == NULL) { 1329 ic->ic_stats.is_tx_nobuf++; 1330 ieee80211_free_node(ni); 1331 return ENOMEM; 1332 } 1333 1334 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 1335 mode = ieee80211_chan2mode(ic, ic->ic_curchan); 1336 frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]); 1337 frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]); 1338 1339 if (optie != NULL) { 1340 memcpy(frm, optie, optielen); 1341 frm += optielen; 1342 } 1343 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1344 1345 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 1346 if (m == NULL) 1347 return ENOMEM; 1348 IASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null")); 1349 m->m_pkthdr.rcvif = (void *)ni; 1350 1351 wh = mtod(m, struct ieee80211_frame *); 1352 ieee80211_send_setup(ic, ni, wh, 1353 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 1354 sa, da, bssid); 1355 /* XXX power management? */ 1356 1357 IEEE80211_NODE_STAT(ni, tx_probereq); 1358 IEEE80211_NODE_STAT(ni, tx_mgmt); 1359 1360 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 1361 "[%s] send probe req on channel %u\n", 1362 ether_sprintf(wh->i_addr1), 1363 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1364 1365 IF_ENQUEUE(&ic->ic_mgtq, m); 1366 (*ic->ic_ifp->if_start)(ic->ic_ifp); 1367 return 0; 1368 } 1369 1370 /* 1371 * Send a management frame. The node is for the destination (or ic_bss 1372 * when in station mode). Nodes other than ic_bss have their reference 1373 * count bumped to reflect our use for an indeterminant time. 1374 */ 1375 int 1376 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni, 1377 int type, int arg) 1378 { 1379 #define senderr(_x, _v) do { ic->ic_stats._v++; ret = _x; goto bad; } while (0) 1380 struct mbuf *m; 1381 u_int8_t *frm; 1382 u_int16_t capinfo; 1383 int has_challenge, is_shared_key, ret, timer, status; 1384 1385 IASSERT(ni != NULL, ("null node")); 1386 1387 /* 1388 * Hold a reference on the node so it doesn't go away until after 1389 * the xmit is complete all the way in the driver. On error we 1390 * will remove our reference. 1391 */ 1392 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, 1393 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1394 __func__, __LINE__, 1395 ni, ether_sprintf(ni->ni_macaddr), 1396 ieee80211_node_refcnt(ni)+1); 1397 ieee80211_ref_node(ni); 1398 1399 timer = 0; 1400 switch (type) { 1401 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 1402 /* 1403 * probe response frame format 1404 * [8] time stamp 1405 * [2] beacon interval 1406 * [2] cabability information 1407 * [tlv] ssid 1408 * [tlv] supported rates 1409 * [tlv] parameter set (FH/DS) 1410 * [tlv] parameter set (IBSS) 1411 * [tlv] extended rate phy (ERP) 1412 * [tlv] extended supported rates 1413 * [tlv] WPA 1414 * [tlv] WME (optional) 1415 */ 1416 m = ieee80211_getmgtframe(&frm, 1417 8 1418 + sizeof(u_int16_t) 1419 + sizeof(u_int16_t) 1420 + 2 + IEEE80211_NWID_LEN 1421 + 2 + IEEE80211_RATE_SIZE 1422 + 7 /* max(7,3) */ 1423 + 6 1424 + 3 1425 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1426 /* XXX !WPA1+WPA2 fits w/o a cluster */ 1427 + (ic->ic_flags & IEEE80211_F_WPA ? 1428 2*sizeof(struct ieee80211_ie_wpa) : 0) 1429 + sizeof(struct ieee80211_wme_param) 1430 ); 1431 if (m == NULL) 1432 senderr(ENOMEM, is_tx_nobuf); 1433 1434 memset(frm, 0, 8); /* timestamp should be filled later */ 1435 frm += 8; 1436 *(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval); 1437 frm += 2; 1438 if (ic->ic_opmode == IEEE80211_M_IBSS) 1439 capinfo = IEEE80211_CAPINFO_IBSS; 1440 else 1441 capinfo = IEEE80211_CAPINFO_ESS; 1442 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1443 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1444 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1445 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1446 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1447 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1448 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1449 *(u_int16_t *)frm = htole16(capinfo); 1450 frm += 2; 1451 1452 frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid, 1453 ic->ic_bss->ni_esslen); 1454 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1455 1456 if (ic->ic_phytype == IEEE80211_T_FH) { 1457 *frm++ = IEEE80211_ELEMID_FHPARMS; 1458 *frm++ = 5; 1459 *frm++ = ni->ni_fhdwell & 0x00ff; 1460 *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff; 1461 *frm++ = IEEE80211_FH_CHANSET( 1462 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1463 *frm++ = IEEE80211_FH_CHANPAT( 1464 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1465 *frm++ = ni->ni_fhindex; 1466 } else { 1467 *frm++ = IEEE80211_ELEMID_DSPARMS; 1468 *frm++ = 1; 1469 *frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan); 1470 } 1471 1472 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1473 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1474 *frm++ = 2; 1475 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1476 } 1477 if (ic->ic_flags & IEEE80211_F_WPA) 1478 frm = ieee80211_add_wpa(frm, ic); 1479 if (ic->ic_curmode == IEEE80211_MODE_11G) 1480 frm = ieee80211_add_erp(frm, ic); 1481 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1482 if (ic->ic_flags & IEEE80211_F_WME) 1483 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1484 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1485 break; 1486 1487 case IEEE80211_FC0_SUBTYPE_AUTH: 1488 status = arg >> 16; 1489 arg &= 0xffff; 1490 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 1491 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 1492 ni->ni_challenge != NULL); 1493 1494 /* 1495 * Deduce whether we're doing open authentication or 1496 * shared key authentication. We do the latter if 1497 * we're in the middle of a shared key authentication 1498 * handshake or if we're initiating an authentication 1499 * request and configured to use shared key. 1500 */ 1501 is_shared_key = has_challenge || 1502 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 1503 (arg == IEEE80211_AUTH_SHARED_REQUEST && 1504 ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED); 1505 1506 m = ieee80211_getmgtframe(&frm, 1507 3 * sizeof(u_int16_t) 1508 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 1509 sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0) 1510 ); 1511 if (m == NULL) 1512 senderr(ENOMEM, is_tx_nobuf); 1513 1514 ((u_int16_t *)frm)[0] = 1515 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 1516 : htole16(IEEE80211_AUTH_ALG_OPEN); 1517 ((u_int16_t *)frm)[1] = htole16(arg); /* sequence number */ 1518 ((u_int16_t *)frm)[2] = htole16(status);/* status */ 1519 1520 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 1521 ((u_int16_t *)frm)[3] = 1522 htole16((IEEE80211_CHALLENGE_LEN << 8) | 1523 IEEE80211_ELEMID_CHALLENGE); 1524 memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge, 1525 IEEE80211_CHALLENGE_LEN); 1526 m->m_pkthdr.len = m->m_len = 1527 4 * sizeof(u_int16_t) + IEEE80211_CHALLENGE_LEN; 1528 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 1529 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 1530 "[%s] request encrypt frame (%s)\n", 1531 ether_sprintf(ni->ni_macaddr), __func__); 1532 m->m_flags |= M_LINK0; /* WEP-encrypt, please */ 1533 } 1534 } else 1535 m->m_pkthdr.len = m->m_len = 3 * sizeof(u_int16_t); 1536 1537 /* XXX not right for shared key */ 1538 if (status == IEEE80211_STATUS_SUCCESS) 1539 IEEE80211_NODE_STAT(ni, tx_auth); 1540 else 1541 IEEE80211_NODE_STAT(ni, tx_auth_fail); 1542 1543 if (ic->ic_opmode == IEEE80211_M_STA) 1544 timer = IEEE80211_TRANS_WAIT; 1545 break; 1546 1547 case IEEE80211_FC0_SUBTYPE_DEAUTH: 1548 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 1549 "[%s] send station deauthenticate (reason %d)\n", 1550 ether_sprintf(ni->ni_macaddr), arg); 1551 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t)); 1552 if (m == NULL) 1553 senderr(ENOMEM, is_tx_nobuf); 1554 *(u_int16_t *)frm = htole16(arg); /* reason */ 1555 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t); 1556 1557 IEEE80211_NODE_STAT(ni, tx_deauth); 1558 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 1559 1560 ieee80211_node_unauthorize(ni); /* port closed */ 1561 break; 1562 1563 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 1564 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 1565 /* 1566 * asreq frame format 1567 * [2] capability information 1568 * [2] listen interval 1569 * [6*] current AP address (reassoc only) 1570 * [tlv] ssid 1571 * [tlv] supported rates 1572 * [tlv] extended supported rates 1573 * [tlv] WME 1574 * [tlv] user-specified ie's 1575 */ 1576 m = ieee80211_getmgtframe(&frm, 1577 sizeof(u_int16_t) 1578 + sizeof(u_int16_t) 1579 + IEEE80211_ADDR_LEN 1580 + 2 + IEEE80211_NWID_LEN 1581 + 2 + IEEE80211_RATE_SIZE 1582 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1583 + sizeof(struct ieee80211_wme_info) 1584 + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0) 1585 ); 1586 if (m == NULL) 1587 senderr(ENOMEM, is_tx_nobuf); 1588 1589 capinfo = 0; 1590 if (ic->ic_opmode == IEEE80211_M_IBSS) 1591 capinfo |= IEEE80211_CAPINFO_IBSS; 1592 else /* IEEE80211_M_STA */ 1593 capinfo |= IEEE80211_CAPINFO_ESS; 1594 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1595 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1596 /* 1597 * NB: Some 11a AP's reject the request when 1598 * short premable is set. 1599 */ 1600 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1601 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1602 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1603 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) && 1604 (ic->ic_caps & IEEE80211_C_SHSLOT)) 1605 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1606 *(u_int16_t *)frm = htole16(capinfo); 1607 frm += 2; 1608 1609 *(u_int16_t *)frm = htole16(ic->ic_lintval); 1610 frm += 2; 1611 1612 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 1613 IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid); 1614 frm += IEEE80211_ADDR_LEN; 1615 } 1616 1617 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 1618 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1619 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1620 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) 1621 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 1622 if (ic->ic_opt_ie != NULL) { 1623 memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len); 1624 frm += ic->ic_opt_ie_len; 1625 } 1626 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1627 1628 timer = IEEE80211_TRANS_WAIT; 1629 break; 1630 1631 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 1632 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 1633 /* 1634 * asreq frame format 1635 * [2] capability information 1636 * [2] status 1637 * [2] association ID 1638 * [tlv] supported rates 1639 * [tlv] extended supported rates 1640 * [tlv] WME (if enabled and STA enabled) 1641 */ 1642 m = ieee80211_getmgtframe(&frm, 1643 sizeof(u_int16_t) 1644 + sizeof(u_int16_t) 1645 + sizeof(u_int16_t) 1646 + 2 + IEEE80211_RATE_SIZE 1647 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1648 + sizeof(struct ieee80211_wme_param) 1649 ); 1650 if (m == NULL) 1651 senderr(ENOMEM, is_tx_nobuf); 1652 1653 capinfo = IEEE80211_CAPINFO_ESS; 1654 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1655 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1656 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1657 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1658 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1659 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1660 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1661 *(u_int16_t *)frm = htole16(capinfo); 1662 frm += 2; 1663 1664 *(u_int16_t *)frm = htole16(arg); /* status */ 1665 frm += 2; 1666 1667 if (arg == IEEE80211_STATUS_SUCCESS) { 1668 *(u_int16_t *)frm = htole16(ni->ni_associd); 1669 IEEE80211_NODE_STAT(ni, tx_assoc); 1670 } else 1671 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 1672 frm += 2; 1673 1674 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1675 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1676 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) 1677 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1678 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1679 break; 1680 1681 case IEEE80211_FC0_SUBTYPE_DISASSOC: 1682 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC, 1683 "[%s] send station disassociate (reason %d)\n", 1684 ether_sprintf(ni->ni_macaddr), arg); 1685 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t)); 1686 if (m == NULL) 1687 senderr(ENOMEM, is_tx_nobuf); 1688 *(u_int16_t *)frm = htole16(arg); /* reason */ 1689 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t); 1690 1691 IEEE80211_NODE_STAT(ni, tx_disassoc); 1692 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 1693 break; 1694 1695 default: 1696 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1697 "[%s] invalid mgmt frame type %u\n", 1698 ether_sprintf(ni->ni_macaddr), type); 1699 senderr(EINVAL, is_tx_unknownmgt); 1700 /* NOTREACHED */ 1701 } 1702 ret = ieee80211_mgmt_output(ic, ni, m, type, timer); 1703 if (ret != 0) { 1704 bad: 1705 ieee80211_free_node(ni); 1706 } 1707 return ret; 1708 #undef senderr 1709 } 1710 1711 /* 1712 * Allocate a beacon frame and fillin the appropriate bits. 1713 */ 1714 struct mbuf * 1715 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni, 1716 struct ieee80211_beacon_offsets *bo) 1717 { 1718 struct ifnet *ifp = ic->ic_ifp; 1719 struct ieee80211_frame *wh; 1720 struct mbuf *m; 1721 int pktlen; 1722 u_int8_t *frm, *efrm; 1723 u_int16_t capinfo; 1724 struct ieee80211_rateset *rs; 1725 1726 /* 1727 * beacon frame format 1728 * [8] time stamp 1729 * [2] beacon interval 1730 * [2] cabability information 1731 * [tlv] ssid 1732 * [tlv] supported rates 1733 * [3] parameter set (DS) 1734 * [tlv] parameter set (IBSS/TIM) 1735 * [tlv] extended rate phy (ERP) 1736 * [tlv] extended supported rates 1737 * [tlv] WME parameters 1738 * [tlv] WPA/RSN parameters 1739 * XXX Vendor-specific OIDs (e.g. Atheros) 1740 * NB: we allocate the max space required for the TIM bitmap. 1741 */ 1742 rs = &ni->ni_rates; 1743 pktlen = 8 /* time stamp */ 1744 + sizeof(u_int16_t) /* beacon interval */ 1745 + sizeof(u_int16_t) /* capabilities */ 1746 + 2 + ni->ni_esslen /* ssid */ 1747 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 1748 + 2 + 1 /* DS parameters */ 1749 + 2 + 4 + ic->ic_tim_len /* DTIM/IBSSPARMS */ 1750 + 2 + 1 /* ERP */ 1751 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1752 + (ic->ic_caps & IEEE80211_C_WME ? /* WME */ 1753 sizeof(struct ieee80211_wme_param) : 0) 1754 + (ic->ic_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 1755 2*sizeof(struct ieee80211_ie_wpa) : 0) 1756 ; 1757 m = ieee80211_getmgtframe(&frm, pktlen); 1758 if (m == NULL) { 1759 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1760 "%s: cannot get buf; size %u\n", __func__, pktlen); 1761 ic->ic_stats.is_tx_nobuf++; 1762 return NULL; 1763 } 1764 1765 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 1766 frm += 8; 1767 *(u_int16_t *)frm = htole16(ni->ni_intval); 1768 frm += 2; 1769 if (ic->ic_opmode == IEEE80211_M_IBSS) 1770 capinfo = IEEE80211_CAPINFO_IBSS; 1771 else 1772 capinfo = IEEE80211_CAPINFO_ESS; 1773 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1774 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1775 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1776 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 1777 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1778 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1779 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1780 bo->bo_caps = (u_int16_t *)frm; 1781 *(u_int16_t *)frm = htole16(capinfo); 1782 frm += 2; 1783 *frm++ = IEEE80211_ELEMID_SSID; 1784 if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) { 1785 *frm++ = ni->ni_esslen; 1786 memcpy(frm, ni->ni_essid, ni->ni_esslen); 1787 frm += ni->ni_esslen; 1788 } else 1789 *frm++ = 0; 1790 frm = ieee80211_add_rates(frm, rs); 1791 if (ic->ic_curmode != IEEE80211_MODE_FH) { 1792 *frm++ = IEEE80211_ELEMID_DSPARMS; 1793 *frm++ = 1; 1794 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 1795 } 1796 bo->bo_tim = frm; 1797 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1798 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1799 *frm++ = 2; 1800 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1801 bo->bo_tim_len = 0; 1802 } else { 1803 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 1804 1805 tie->tim_ie = IEEE80211_ELEMID_TIM; 1806 tie->tim_len = 4; /* length */ 1807 tie->tim_count = 0; /* DTIM count */ 1808 tie->tim_period = ic->ic_dtim_period; /* DTIM period */ 1809 tie->tim_bitctl = 0; /* bitmap control */ 1810 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 1811 frm += sizeof(struct ieee80211_tim_ie); 1812 bo->bo_tim_len = 1; 1813 } 1814 bo->bo_trailer = frm; 1815 if (ic->ic_flags & IEEE80211_F_WME) { 1816 bo->bo_wme = frm; 1817 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1818 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; 1819 } 1820 if (ic->ic_flags & IEEE80211_F_WPA) 1821 frm = ieee80211_add_wpa(frm, ic); 1822 if (ic->ic_curmode == IEEE80211_MODE_11G) 1823 frm = ieee80211_add_erp(frm, ic); 1824 efrm = ieee80211_add_xrates(frm, rs); 1825 bo->bo_trailer_len = efrm - bo->bo_trailer; 1826 m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *); 1827 1828 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 1829 IASSERT(m != NULL, ("no space for 802.11 header?")); 1830 wh = mtod(m, struct ieee80211_frame *); 1831 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 1832 IEEE80211_FC0_SUBTYPE_BEACON; 1833 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1834 *(u_int16_t *)wh->i_dur = 0; 1835 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 1836 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 1837 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 1838 *(u_int16_t *)wh->i_seq = 0; 1839 1840 return m; 1841 } 1842 1843 /* 1844 * Update the dynamic parts of a beacon frame based on the current state. 1845 */ 1846 int 1847 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni, 1848 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) 1849 { 1850 int len_changed = 0; 1851 u_int16_t capinfo; 1852 1853 IEEE80211_BEACON_LOCK(ic); 1854 /* XXX faster to recalculate entirely or just changes? */ 1855 if (ic->ic_opmode == IEEE80211_M_IBSS) 1856 capinfo = IEEE80211_CAPINFO_IBSS; 1857 else 1858 capinfo = IEEE80211_CAPINFO_ESS; 1859 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1860 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1861 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1862 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 1863 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1864 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1865 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1866 *bo->bo_caps = htole16(capinfo); 1867 1868 if (ic->ic_flags & IEEE80211_F_WME) { 1869 struct ieee80211_wme_state *wme = &ic->ic_wme; 1870 1871 /* 1872 * Check for agressive mode change. When there is 1873 * significant high priority traffic in the BSS 1874 * throttle back BE traffic by using conservative 1875 * parameters. Otherwise BE uses agressive params 1876 * to optimize performance of legacy/non-QoS traffic. 1877 */ 1878 if (wme->wme_flags & WME_F_AGGRMODE) { 1879 if (wme->wme_hipri_traffic > 1880 wme->wme_hipri_switch_thresh) { 1881 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, 1882 "%s: traffic %u, disable aggressive mode\n", 1883 __func__, wme->wme_hipri_traffic); 1884 wme->wme_flags &= ~WME_F_AGGRMODE; 1885 ieee80211_wme_updateparams_locked(ic); 1886 wme->wme_hipri_traffic = 1887 wme->wme_hipri_switch_hysteresis; 1888 } else 1889 wme->wme_hipri_traffic = 0; 1890 } else { 1891 if (wme->wme_hipri_traffic <= 1892 wme->wme_hipri_switch_thresh) { 1893 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, 1894 "%s: traffic %u, enable aggressive mode\n", 1895 __func__, wme->wme_hipri_traffic); 1896 wme->wme_flags |= WME_F_AGGRMODE; 1897 ieee80211_wme_updateparams_locked(ic); 1898 wme->wme_hipri_traffic = 0; 1899 } else 1900 wme->wme_hipri_traffic = 1901 wme->wme_hipri_switch_hysteresis; 1902 } 1903 if (ic->ic_flags & IEEE80211_F_WMEUPDATE) { 1904 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 1905 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; 1906 } 1907 } 1908 1909 #ifndef IEEE80211_NO_HOSTAP 1910 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/ 1911 struct ieee80211_tim_ie *tie = 1912 (struct ieee80211_tim_ie *) bo->bo_tim; 1913 if (ic->ic_flags & IEEE80211_F_TIMUPDATE) { 1914 u_int timlen, timoff, i; 1915 /* 1916 * ATIM/DTIM needs updating. If it fits in the 1917 * current space allocated then just copy in the 1918 * new bits. Otherwise we need to move any trailing 1919 * data to make room. Note that we know there is 1920 * contiguous space because ieee80211_beacon_allocate 1921 * insures there is space in the mbuf to write a 1922 * maximal-size virtual bitmap (based on ic_max_aid). 1923 */ 1924 /* 1925 * Calculate the bitmap size and offset, copy any 1926 * trailer out of the way, and then copy in the 1927 * new bitmap and update the information element. 1928 * Note that the tim bitmap must contain at least 1929 * one byte and any offset must be even. 1930 */ 1931 if (ic->ic_ps_pending != 0) { 1932 timoff = 128; /* impossibly large */ 1933 for (i = 0; i < ic->ic_tim_len; i++) 1934 if (ic->ic_tim_bitmap[i]) { 1935 timoff = i &~ 1; 1936 break; 1937 } 1938 IASSERT(timoff != 128, ("tim bitmap empty!")); 1939 for (i = ic->ic_tim_len-1; i >= timoff; i--) 1940 if (ic->ic_tim_bitmap[i]) 1941 break; 1942 timlen = 1 + (i - timoff); 1943 } else { 1944 timoff = 0; 1945 timlen = 1; 1946 } 1947 if (timlen != bo->bo_tim_len) { 1948 /* copy up/down trailer */ 1949 ovbcopy(bo->bo_trailer, tie->tim_bitmap+timlen, 1950 bo->bo_trailer_len); 1951 bo->bo_trailer = tie->tim_bitmap+timlen; 1952 bo->bo_wme = bo->bo_trailer; 1953 bo->bo_tim_len = timlen; 1954 1955 /* update information element */ 1956 tie->tim_len = 3 + timlen; 1957 tie->tim_bitctl = timoff; 1958 len_changed = 1; 1959 } 1960 memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff, 1961 bo->bo_tim_len); 1962 1963 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE; 1964 1965 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, 1966 "%s: TIM updated, pending %u, off %u, len %u\n", 1967 __func__, ic->ic_ps_pending, timoff, timlen); 1968 } 1969 /* count down DTIM period */ 1970 if (tie->tim_count == 0) 1971 tie->tim_count = tie->tim_period - 1; 1972 else 1973 tie->tim_count--; 1974 /* update state for buffered multicast frames on DTIM */ 1975 if (mcast && (tie->tim_count == 1 || tie->tim_period == 1)) 1976 tie->tim_bitctl |= 1; 1977 else 1978 tie->tim_bitctl &= ~1; 1979 } 1980 #endif /* !IEEE80211_NO_HOSTAP */ 1981 IEEE80211_BEACON_UNLOCK(ic); 1982 1983 return len_changed; 1984 } 1985 1986 /* 1987 * Save an outbound packet for a node in power-save sleep state. 1988 * The new packet is placed on the node's saved queue, and the TIM 1989 * is changed, if necessary. 1990 */ 1991 void 1992 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni, 1993 struct mbuf *m) 1994 { 1995 int qlen, age; 1996 1997 IEEE80211_NODE_SAVEQ_LOCK(ni); 1998 if (IF_QFULL(&ni->ni_savedq)) { 1999 IF_DROP(&ni->ni_savedq); 2000 IEEE80211_NODE_SAVEQ_UNLOCK(ni); 2001 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 2002 "[%s] pwr save q overflow, drops %d (size %d)\n", 2003 ether_sprintf(ni->ni_macaddr), 2004 ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE); 2005 #ifdef IEEE80211_DEBUG 2006 if (ieee80211_msg_dumppkts(ic)) 2007 ieee80211_dump_pkt(mtod(m, void *), m->m_len, -1, -1); 2008 #endif 2009 m_freem(m); 2010 return; 2011 } 2012 /* 2013 * Tag the frame with it's expiry time and insert 2014 * it in the queue. The aging interval is 4 times 2015 * the listen interval specified by the station. 2016 * Frames that sit around too long are reclaimed 2017 * using this information. 2018 */ 2019 /* XXX handle overflow? */ 2020 age = ((ni->ni_intval * ic->ic_bintval) << 2) / 1024; /* TU -> secs */ 2021 _IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age); 2022 IEEE80211_NODE_SAVEQ_UNLOCK(ni); 2023 2024 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, 2025 "[%s] save frame with age %d, %u now queued\n", 2026 ether_sprintf(ni->ni_macaddr), age, qlen); 2027 2028 if (qlen == 1) 2029 ic->ic_set_tim(ni, 1); 2030 } 2031