1 /* $NetBSD: ieee80211_output.c,v 1.49 2010/01/19 22:08:17 pooka Exp $ */ 2 /*- 3 * Copyright (c) 2001 Atsushi Onoe 4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * Alternatively, this software may be distributed under the terms of the 19 * GNU General Public License ("GPL") version 2 as published by the Free 20 * Software Foundation. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 #ifdef __FreeBSD__ 36 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.34 2005/08/10 16:22:29 sam Exp $"); 37 #endif 38 #ifdef __NetBSD__ 39 __KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.49 2010/01/19 22:08:17 pooka Exp $"); 40 #endif 41 42 #include "opt_inet.h" 43 44 #ifdef __NetBSD__ 45 #endif /* __NetBSD__ */ 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/mbuf.h> 50 #include <sys/kernel.h> 51 #include <sys/endian.h> 52 #include <sys/errno.h> 53 #include <sys/proc.h> 54 #include <sys/sysctl.h> 55 56 #include <net/if.h> 57 #include <net/if_llc.h> 58 #include <net/if_media.h> 59 #include <net/if_arp.h> 60 #include <net/if_ether.h> 61 #include <net/if_llc.h> 62 #include <net/if_vlanvar.h> 63 64 #include <net80211/ieee80211_netbsd.h> 65 #include <net80211/ieee80211_var.h> 66 67 #include <net/bpf.h> 68 69 #ifdef INET 70 #include <netinet/in.h> 71 #include <netinet/in_systm.h> 72 #include <netinet/in_var.h> 73 #include <netinet/ip.h> 74 #include <net/if_ether.h> 75 #endif 76 77 static int ieee80211_fragment(struct ieee80211com *, struct mbuf *, 78 u_int hdrsize, u_int ciphdrsize, u_int mtu); 79 80 #ifdef IEEE80211_DEBUG 81 /* 82 * Decide if an outbound management frame should be 83 * printed when debugging is enabled. This filters some 84 * of the less interesting frames that come frequently 85 * (e.g. beacons). 86 */ 87 static __inline int 88 doprint(struct ieee80211com *ic, int subtype) 89 { 90 switch (subtype) { 91 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 92 return (ic->ic_opmode == IEEE80211_M_IBSS); 93 } 94 return 1; 95 } 96 #endif 97 98 /* 99 * Set the direction field and address fields of an outgoing 100 * non-QoS frame. Note this should be called early on in 101 * constructing a frame as it sets i_fc[1]; other bits can 102 * then be or'd in. 103 */ 104 static void 105 ieee80211_send_setup(struct ieee80211com *ic, 106 struct ieee80211_node *ni, 107 struct ieee80211_frame *wh, 108 int type, 109 const u_int8_t sa[IEEE80211_ADDR_LEN], 110 const u_int8_t da[IEEE80211_ADDR_LEN], 111 const u_int8_t bssid[IEEE80211_ADDR_LEN]) 112 { 113 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 114 115 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 116 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 117 switch (ic->ic_opmode) { 118 case IEEE80211_M_STA: 119 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 120 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 121 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 122 IEEE80211_ADDR_COPY(wh->i_addr3, da); 123 break; 124 case IEEE80211_M_IBSS: 125 case IEEE80211_M_AHDEMO: 126 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 127 IEEE80211_ADDR_COPY(wh->i_addr1, da); 128 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 129 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 130 break; 131 case IEEE80211_M_HOSTAP: 132 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 133 IEEE80211_ADDR_COPY(wh->i_addr1, da); 134 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 135 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 136 break; 137 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 138 break; 139 } 140 } else { 141 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 142 IEEE80211_ADDR_COPY(wh->i_addr1, da); 143 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 144 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 145 } 146 *(u_int16_t *)&wh->i_dur[0] = 0; 147 /* NB: use non-QoS tid */ 148 *(u_int16_t *)&wh->i_seq[0] = 149 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 150 ni->ni_txseqs[0]++; 151 #undef WH4 152 } 153 154 /* 155 * Send a management frame to the specified node. The node pointer 156 * must have a reference as the pointer will be passed to the driver 157 * and potentially held for a long time. If the frame is successfully 158 * dispatched to the driver, then it is responsible for freeing the 159 * reference (and potentially free'ing up any associated storage). 160 */ 161 static int 162 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni, 163 struct mbuf *m, int type, int timer) 164 { 165 struct ifnet *ifp = ic->ic_ifp; 166 struct ieee80211_frame *wh; 167 168 IASSERT(ni != NULL, ("null node")); 169 170 /* 171 * Yech, hack alert! We want to pass the node down to the 172 * driver's start routine. If we don't do so then the start 173 * routine must immediately look it up again and that can 174 * cause a lock order reversal if, for example, this frame 175 * is being sent because the station is being timedout and 176 * the frame being sent is a DEAUTH message. We could stick 177 * this in an m_tag and tack that on to the mbuf. However 178 * that's rather expensive to do for every frame so instead 179 * we stuff it in the rcvif field since outbound frames do 180 * not (presently) use this. 181 */ 182 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 183 if (m == NULL) 184 return ENOMEM; 185 #ifdef __FreeBSD__ 186 KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null")); 187 #endif 188 m->m_pkthdr.rcvif = (void *)ni; 189 190 wh = mtod(m, struct ieee80211_frame *); 191 ieee80211_send_setup(ic, ni, wh, 192 IEEE80211_FC0_TYPE_MGT | type, 193 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); 194 if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) { 195 m->m_flags &= ~M_LINK0; 196 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 197 "[%s] encrypting frame (%s)\n", 198 ether_sprintf(wh->i_addr1), __func__); 199 wh->i_fc[1] |= IEEE80211_FC1_WEP; 200 } 201 #ifdef IEEE80211_DEBUG 202 /* avoid printing too many frames */ 203 if ((ieee80211_msg_debug(ic) && doprint(ic, type)) || 204 ieee80211_msg_dumppkts(ic)) { 205 printf("[%s] send %s on channel %u\n", 206 ether_sprintf(wh->i_addr1), 207 ieee80211_mgt_subtype_name[ 208 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 209 IEEE80211_FC0_SUBTYPE_SHIFT], 210 ieee80211_chan2ieee(ic, ic->ic_curchan)); 211 } 212 #endif 213 IEEE80211_NODE_STAT(ni, tx_mgmt); 214 IF_ENQUEUE(&ic->ic_mgtq, m); 215 if (timer) { 216 /* 217 * Set the mgt frame timeout. 218 */ 219 ic->ic_mgt_timer = timer; 220 ifp->if_timer = 1; 221 } 222 (*ifp->if_start)(ifp); 223 return 0; 224 } 225 226 /* 227 * Send a null data frame to the specified node. 228 * 229 * NB: the caller is assumed to have setup a node reference 230 * for use; this is necessary to deal with a race condition 231 * when probing for inactive stations. 232 */ 233 int 234 ieee80211_send_nulldata(struct ieee80211_node *ni) 235 { 236 struct ieee80211com *ic = ni->ni_ic; 237 struct ifnet *ifp = ic->ic_ifp; 238 struct mbuf *m; 239 struct ieee80211_frame *wh; 240 241 MGETHDR(m, M_NOWAIT, MT_HEADER); 242 if (m == NULL) { 243 /* XXX debug msg */ 244 ic->ic_stats.is_tx_nobuf++; 245 ieee80211_unref_node(&ni); 246 return ENOMEM; 247 } 248 m->m_pkthdr.rcvif = (void *) ni; 249 250 wh = mtod(m, struct ieee80211_frame *); 251 ieee80211_send_setup(ic, ni, wh, 252 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 253 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); 254 /* NB: power management bit is never sent by an AP */ 255 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 256 ic->ic_opmode != IEEE80211_M_HOSTAP) 257 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 258 m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame); 259 260 IEEE80211_NODE_STAT(ni, tx_data); 261 262 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 263 "[%s] send null data frame on channel %u, pwr mgt %s\n", 264 ether_sprintf(ni->ni_macaddr), 265 ieee80211_chan2ieee(ic, ic->ic_curchan), 266 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 267 268 IF_ENQUEUE(&ic->ic_mgtq, m); /* cheat */ 269 (*ifp->if_start)(ifp); 270 271 return 0; 272 } 273 274 /* 275 * Assign priority to a frame based on any vlan tag assigned 276 * to the station and/or any Diffserv setting in an IP header. 277 * Finally, if an ACM policy is setup (in station mode) it's 278 * applied. 279 */ 280 int 281 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni) 282 { 283 int v_wme_ac, d_wme_ac, ac; 284 #ifdef INET 285 struct ether_header *eh; 286 #endif 287 288 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 289 ac = WME_AC_BE; 290 goto done; 291 } 292 293 /* 294 * If node has a vlan tag then all traffic 295 * to it must have a matching tag. 296 */ 297 v_wme_ac = 0; 298 if (ni->ni_vlan != 0) { 299 /* XXX used to check ec_nvlans. */ 300 struct m_tag *mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL); 301 if (mtag == NULL) { 302 IEEE80211_NODE_STAT(ni, tx_novlantag); 303 return 1; 304 } 305 if (EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag)) != 306 EVL_VLANOFTAG(ni->ni_vlan)) { 307 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 308 return 1; 309 } 310 /* map vlan priority to AC */ 311 switch (EVL_PRIOFTAG(ni->ni_vlan)) { 312 case 1: 313 case 2: 314 v_wme_ac = WME_AC_BK; 315 break; 316 case 0: 317 case 3: 318 v_wme_ac = WME_AC_BE; 319 break; 320 case 4: 321 case 5: 322 v_wme_ac = WME_AC_VI; 323 break; 324 case 6: 325 case 7: 326 v_wme_ac = WME_AC_VO; 327 break; 328 } 329 } 330 331 #ifdef INET 332 eh = mtod(m, struct ether_header *); 333 if (eh->ether_type == htons(ETHERTYPE_IP)) { 334 const struct ip *ip = (struct ip *) 335 (mtod(m, u_int8_t *) + sizeof (*eh)); 336 /* 337 * IP frame, map the TOS field. 338 */ 339 switch (ip->ip_tos) { 340 case 0x08: 341 case 0x20: 342 d_wme_ac = WME_AC_BK; /* background */ 343 break; 344 case 0x28: 345 case 0xa0: 346 d_wme_ac = WME_AC_VI; /* video */ 347 break; 348 case 0x30: /* voice */ 349 case 0xe0: 350 case 0x88: /* XXX UPSD */ 351 case 0xb8: 352 d_wme_ac = WME_AC_VO; 353 break; 354 default: 355 d_wme_ac = WME_AC_BE; 356 break; 357 } 358 } else { 359 #endif /* INET */ 360 d_wme_ac = WME_AC_BE; 361 #ifdef INET 362 } 363 #endif 364 /* 365 * Use highest priority AC. 366 */ 367 if (v_wme_ac > d_wme_ac) 368 ac = v_wme_ac; 369 else 370 ac = d_wme_ac; 371 372 /* 373 * Apply ACM policy. 374 */ 375 if (ic->ic_opmode == IEEE80211_M_STA) { 376 static const int acmap[4] = { 377 WME_AC_BK, /* WME_AC_BE */ 378 WME_AC_BK, /* WME_AC_BK */ 379 WME_AC_BE, /* WME_AC_VI */ 380 WME_AC_VI, /* WME_AC_VO */ 381 }; 382 while (ac != WME_AC_BK && 383 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 384 ac = acmap[ac]; 385 } 386 done: 387 M_WME_SETAC(m, ac); 388 return 0; 389 } 390 391 /* 392 * Insure there is sufficient contiguous space to encapsulate the 393 * 802.11 data frame. If room isn't already there, arrange for it. 394 * Drivers and cipher modules assume we have done the necessary work 395 * and fail rudely if they don't find the space they need. 396 */ 397 static struct mbuf * 398 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize, 399 struct ieee80211_key *key, struct mbuf *m) 400 { 401 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 402 int needed_space = hdrsize; 403 int wlen = 0; 404 405 if (key != NULL) { 406 /* XXX belongs in crypto code? */ 407 needed_space += key->wk_cipher->ic_header; 408 /* XXX frags */ 409 } 410 /* 411 * We know we are called just before stripping an Ethernet 412 * header and prepending an LLC header. This means we know 413 * there will be 414 * sizeof(struct ether_header) - sizeof(struct llc) 415 * bytes recovered to which we need additional space for the 416 * 802.11 header and any crypto header. 417 */ 418 /* XXX check trailing space and copy instead? */ 419 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 420 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 421 if (n == NULL) { 422 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 423 "%s: cannot expand storage\n", __func__); 424 ic->ic_stats.is_tx_nobuf++; 425 m_freem(m); 426 return NULL; 427 } 428 IASSERT(needed_space <= MHLEN, 429 ("not enough room, need %u got %zu\n", needed_space, MHLEN)); 430 /* 431 * Setup new mbuf to have leading space to prepend the 432 * 802.11 header and any crypto header bits that are 433 * required (the latter are added when the driver calls 434 * back to ieee80211_crypto_encap to do crypto encapsulation). 435 */ 436 /* NB: must be first 'cuz it clobbers m_data */ 437 M_MOVE_PKTHDR(n, m); 438 n->m_len = 0; /* NB: m_gethdr does not set */ 439 n->m_data += needed_space; 440 /* 441 * Pull up Ethernet header to create the expected layout. 442 * We could use m_pullup but that's overkill (i.e. we don't 443 * need the actual data) and it cannot fail so do it inline 444 * for speed. 445 */ 446 /* NB: struct ether_header is known to be contiguous */ 447 n->m_len += sizeof(struct ether_header); 448 m->m_len -= sizeof(struct ether_header); 449 m->m_data += sizeof(struct ether_header); 450 /* 451 * Replace the head of the chain. 452 */ 453 n->m_next = m; 454 m = n; 455 } else { 456 /* We will overwrite the ethernet header in the 457 * 802.11 encapsulation stage. Make sure that it 458 * is writable. 459 */ 460 wlen = sizeof(struct ether_header); 461 } 462 463 /* 464 * If we're going to s/w encrypt the mbuf chain make sure it is 465 * writable. 466 */ 467 if (key != NULL && (key->wk_flags & IEEE80211_KEY_SWCRYPT) != 0) 468 wlen = M_COPYALL; 469 470 if (wlen != 0 && m_makewritable(&m, 0, wlen, M_DONTWAIT) != 0) { 471 m_freem(m); 472 return NULL; 473 } 474 return m; 475 #undef TO_BE_RECLAIMED 476 } 477 478 /* 479 * Return the transmit key to use in sending a unicast frame. 480 * If a unicast key is set we use that. When no unicast key is set 481 * we fall back to the default transmit key. 482 */ 483 static __inline struct ieee80211_key * 484 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni) 485 { 486 if (IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)) { 487 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 488 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 489 return NULL; 490 return &ic->ic_nw_keys[ic->ic_def_txkey]; 491 } else { 492 return &ni->ni_ucastkey; 493 } 494 } 495 496 /* 497 * Return the transmit key to use in sending a multicast frame. 498 * Multicast traffic always uses the group key which is installed as 499 * the default tx key. 500 */ 501 static __inline struct ieee80211_key * 502 ieee80211_crypto_getmcastkey(struct ieee80211com *ic, 503 struct ieee80211_node *ni) 504 { 505 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 506 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 507 return NULL; 508 return &ic->ic_nw_keys[ic->ic_def_txkey]; 509 } 510 511 /* 512 * Encapsulate an outbound data frame. The mbuf chain is updated. 513 * If an error is encountered NULL is returned. The caller is required 514 * to provide a node reference and pullup the ethernet header in the 515 * first mbuf. 516 */ 517 struct mbuf * 518 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m, 519 struct ieee80211_node *ni) 520 { 521 struct ether_header eh; 522 struct ieee80211_frame *wh; 523 struct ieee80211_key *key; 524 struct llc *llc; 525 int hdrsize, datalen, addqos, txfrag; 526 527 IASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 528 memcpy(&eh, mtod(m, void *), sizeof(struct ether_header)); 529 530 /* 531 * Insure space for additional headers. First identify 532 * transmit key to use in calculating any buffer adjustments 533 * required. This is also used below to do privacy 534 * encapsulation work. Then calculate the 802.11 header 535 * size and any padding required by the driver. 536 * 537 * Note key may be NULL if we fall back to the default 538 * transmit key and that is not set. In that case the 539 * buffer may not be expanded as needed by the cipher 540 * routines, but they will/should discard it. 541 */ 542 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 543 if (ic->ic_opmode == IEEE80211_M_STA || 544 !IEEE80211_IS_MULTICAST(eh.ether_dhost)) 545 key = ieee80211_crypto_getucastkey(ic, ni); 546 else 547 key = ieee80211_crypto_getmcastkey(ic, ni); 548 if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) { 549 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO, 550 "[%s] no default transmit key (%s) deftxkey %u\n", 551 ether_sprintf(eh.ether_dhost), __func__, 552 ic->ic_def_txkey); 553 ic->ic_stats.is_tx_nodefkey++; 554 } 555 } else 556 key = NULL; 557 /* XXX 4-address format */ 558 /* 559 * XXX Some ap's don't handle QoS-encapsulated EAPOL 560 * frames so suppress use. This may be an issue if other 561 * ap's require all data frames to be QoS-encapsulated 562 * once negotiated in which case we'll need to make this 563 * configurable. 564 */ 565 addqos = (ni->ni_flags & IEEE80211_NODE_QOS) && 566 eh.ether_type != htons(ETHERTYPE_PAE); 567 if (addqos) 568 hdrsize = sizeof(struct ieee80211_qosframe); 569 else 570 hdrsize = sizeof(struct ieee80211_frame); 571 if (ic->ic_flags & IEEE80211_F_DATAPAD) 572 hdrsize = roundup(hdrsize, sizeof(u_int32_t)); 573 m = ieee80211_mbuf_adjust(ic, hdrsize, key, m); 574 if (m == NULL) { 575 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 576 goto bad; 577 } 578 579 /* NB: this could be optimized because of ieee80211_mbuf_adjust */ 580 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 581 llc = mtod(m, struct llc *); 582 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 583 llc->llc_control = LLC_UI; 584 llc->llc_snap.org_code[0] = 0; 585 llc->llc_snap.org_code[1] = 0; 586 llc->llc_snap.org_code[2] = 0; 587 llc->llc_snap.ether_type = eh.ether_type; 588 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 589 590 M_PREPEND(m, hdrsize, M_DONTWAIT); 591 if (m == NULL) { 592 ic->ic_stats.is_tx_nobuf++; 593 goto bad; 594 } 595 wh = mtod(m, struct ieee80211_frame *); 596 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 597 *(u_int16_t *)wh->i_dur = 0; 598 switch (ic->ic_opmode) { 599 case IEEE80211_M_STA: 600 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 601 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 602 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 603 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 604 break; 605 case IEEE80211_M_IBSS: 606 case IEEE80211_M_AHDEMO: 607 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 608 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 609 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 610 /* 611 * NB: always use the bssid from ic_bss as the 612 * neighbor's may be stale after an ibss merge 613 */ 614 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid); 615 break; 616 case IEEE80211_M_HOSTAP: 617 #ifndef IEEE80211_NO_HOSTAP 618 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 619 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 620 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 621 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 622 #endif /* !IEEE80211_NO_HOSTAP */ 623 break; 624 case IEEE80211_M_MONITOR: 625 goto bad; 626 } 627 if (m->m_flags & M_MORE_DATA) 628 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 629 if (addqos) { 630 struct ieee80211_qosframe *qwh = 631 (struct ieee80211_qosframe *) wh; 632 int ac, tid; 633 634 ac = M_WME_GETAC(m); 635 /* map from access class/queue to 11e header priorty value */ 636 tid = WME_AC_TO_TID(ac); 637 qwh->i_qos[0] = tid & IEEE80211_QOS_TID; 638 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 639 qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S; 640 qwh->i_qos[1] = 0; 641 qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 642 643 *(u_int16_t *)wh->i_seq = 644 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT); 645 ni->ni_txseqs[tid]++; 646 } else { 647 *(u_int16_t *)wh->i_seq = 648 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 649 ni->ni_txseqs[0]++; 650 } 651 /* check if xmit fragmentation is required */ 652 txfrag = (m->m_pkthdr.len > ic->ic_fragthreshold && 653 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 654 (m->m_flags & M_FF) == 0); /* NB: don't fragment ff's */ 655 if (key != NULL) { 656 /* 657 * IEEE 802.1X: send EAPOL frames always in the clear. 658 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 659 */ 660 if (eh.ether_type != htons(ETHERTYPE_PAE) || 661 ((ic->ic_flags & IEEE80211_F_WPA) && 662 (ic->ic_opmode == IEEE80211_M_STA ? 663 !IEEE80211_KEY_UNDEFINED(*key) : 664 !IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)))) { 665 wh->i_fc[1] |= IEEE80211_FC1_WEP; 666 if (!ieee80211_crypto_enmic(ic, key, m, txfrag)) { 667 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 668 "[%s] enmic failed, discard frame\n", 669 ether_sprintf(eh.ether_dhost)); 670 ic->ic_stats.is_crypto_enmicfail++; 671 goto bad; 672 } 673 } 674 } 675 if (txfrag && !ieee80211_fragment(ic, m, hdrsize, 676 key != NULL ? key->wk_cipher->ic_header : 0, ic->ic_fragthreshold)) 677 goto bad; 678 679 IEEE80211_NODE_STAT(ni, tx_data); 680 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 681 682 return m; 683 bad: 684 if (m != NULL) 685 m_freem(m); 686 return NULL; 687 } 688 689 /* 690 * Arguments in: 691 * 692 * paylen: payload length (no FCS, no WEP header) 693 * 694 * hdrlen: header length 695 * 696 * rate: MSDU speed, units 500kb/s 697 * 698 * flags: IEEE80211_F_SHPREAMBLE (use short preamble), 699 * IEEE80211_F_SHSLOT (use short slot length) 700 * 701 * Arguments out: 702 * 703 * d: 802.11 Duration field for RTS, 704 * 802.11 Duration field for data frame, 705 * PLCP Length for data frame, 706 * residual octets at end of data slot 707 */ 708 static int 709 ieee80211_compute_duration1(int len, int use_ack, uint32_t icflags, int rate, 710 struct ieee80211_duration *d) 711 { 712 int pre, ctsrate; 713 int ack, bitlen, data_dur, remainder; 714 715 /* RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK 716 * DATA reserves medium for SIFS | ACK, 717 * 718 * (XXX or SIFS | ACK | SIFS | DATA | SIFS | ACK, if more fragments) 719 * 720 * XXXMYC: no ACK on multicast/broadcast or control packets 721 */ 722 723 bitlen = len * 8; 724 725 pre = IEEE80211_DUR_DS_SIFS; 726 if ((icflags & IEEE80211_F_SHPREAMBLE) != 0) 727 pre += IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR; 728 else 729 pre += IEEE80211_DUR_DS_LONG_PREAMBLE + IEEE80211_DUR_DS_SLOW_PLCPHDR; 730 731 d->d_residue = 0; 732 data_dur = (bitlen * 2) / rate; 733 remainder = (bitlen * 2) % rate; 734 if (remainder != 0) { 735 d->d_residue = (rate - remainder) / 16; 736 data_dur++; 737 } 738 739 switch (rate) { 740 case 2: /* 1 Mb/s */ 741 case 4: /* 2 Mb/s */ 742 /* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */ 743 ctsrate = 2; 744 break; 745 case 11: /* 5.5 Mb/s */ 746 case 22: /* 11 Mb/s */ 747 case 44: /* 22 Mb/s */ 748 /* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */ 749 ctsrate = 4; 750 break; 751 default: 752 /* TBD */ 753 return -1; 754 } 755 756 d->d_plcp_len = data_dur; 757 758 ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0; 759 760 d->d_rts_dur = 761 pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate + 762 pre + data_dur + 763 ack; 764 765 d->d_data_dur = ack; 766 767 return 0; 768 } 769 770 /* 771 * Arguments in: 772 * 773 * wh: 802.11 header 774 * 775 * paylen: payload length (no FCS, no WEP header) 776 * 777 * rate: MSDU speed, units 500kb/s 778 * 779 * fraglen: fragment length, set to maximum (or higher) for no 780 * fragmentation 781 * 782 * flags: IEEE80211_F_PRIVACY (hardware adds WEP), 783 * IEEE80211_F_SHPREAMBLE (use short preamble), 784 * IEEE80211_F_SHSLOT (use short slot length) 785 * 786 * Arguments out: 787 * 788 * d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields 789 * of first/only fragment 790 * 791 * dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields 792 * of last fragment 793 * 794 * ieee80211_compute_duration assumes crypto-encapsulation, if any, 795 * has already taken place. 796 */ 797 int 798 ieee80211_compute_duration(const struct ieee80211_frame_min *wh, 799 const struct ieee80211_key *wk, int len, 800 uint32_t icflags, int fraglen, int rate, struct ieee80211_duration *d0, 801 struct ieee80211_duration *dn, int *npktp, int debug) 802 { 803 int ack, rc; 804 int cryptolen, /* crypto overhead: header+trailer */ 805 firstlen, /* first fragment's payload + overhead length */ 806 hdrlen, /* header length w/o driver padding */ 807 lastlen, /* last fragment's payload length w/ overhead */ 808 lastlen0, /* last fragment's payload length w/o overhead */ 809 npkt, /* number of fragments */ 810 overlen, /* non-802.11 header overhead per fragment */ 811 paylen; /* payload length w/o overhead */ 812 813 hdrlen = ieee80211_anyhdrsize((const void *)wh); 814 815 /* Account for padding required by the driver. */ 816 if (icflags & IEEE80211_F_DATAPAD) 817 paylen = len - roundup(hdrlen, sizeof(u_int32_t)); 818 else 819 paylen = len - hdrlen; 820 821 overlen = IEEE80211_CRC_LEN; 822 823 if (wk != NULL) { 824 cryptolen = wk->wk_cipher->ic_header + 825 wk->wk_cipher->ic_trailer; 826 paylen -= cryptolen; 827 overlen += cryptolen; 828 } 829 830 npkt = paylen / fraglen; 831 lastlen0 = paylen % fraglen; 832 833 if (npkt == 0) /* no fragments */ 834 lastlen = paylen + overlen; 835 else if (lastlen0 != 0) { /* a short "tail" fragment */ 836 lastlen = lastlen0 + overlen; 837 npkt++; 838 } else /* full-length "tail" fragment */ 839 lastlen = fraglen + overlen; 840 841 if (npktp != NULL) 842 *npktp = npkt; 843 844 if (npkt > 1) 845 firstlen = fraglen + overlen; 846 else 847 firstlen = paylen + overlen; 848 849 if (debug) { 850 printf("%s: npkt %d firstlen %d lastlen0 %d lastlen %d " 851 "fraglen %d overlen %d len %d rate %d icflags %08x\n", 852 __func__, npkt, firstlen, lastlen0, lastlen, fraglen, 853 overlen, len, rate, icflags); 854 } 855 856 ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) && 857 (wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL; 858 859 rc = ieee80211_compute_duration1(firstlen + hdrlen, 860 ack, icflags, rate, d0); 861 if (rc == -1) 862 return rc; 863 864 if (npkt <= 1) { 865 *dn = *d0; 866 return 0; 867 } 868 return ieee80211_compute_duration1(lastlen + hdrlen, ack, icflags, rate, 869 dn); 870 } 871 872 /* 873 * Fragment the frame according to the specified mtu. 874 * The size of the 802.11 header (w/o padding) is provided 875 * so we don't need to recalculate it. We create a new 876 * mbuf for each fragment and chain it through m_nextpkt; 877 * we might be able to optimize this by reusing the original 878 * packet's mbufs but that is significantly more complicated. 879 */ 880 static int 881 ieee80211_fragment(struct ieee80211com *ic, struct mbuf *m0, 882 u_int hdrsize, u_int ciphdrsize, u_int mtu) 883 { 884 struct ieee80211_frame *wh, *whf; 885 struct mbuf *m, *prev, *next; 886 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 887 888 IASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 889 IASSERT(m0->m_pkthdr.len > mtu, 890 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 891 892 wh = mtod(m0, struct ieee80211_frame *); 893 /* NB: mark the first frag; it will be propagated below */ 894 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 895 totalhdrsize = hdrsize + ciphdrsize; 896 fragno = 1; 897 off = mtu - ciphdrsize; 898 remainder = m0->m_pkthdr.len - off; 899 prev = m0; 900 do { 901 fragsize = totalhdrsize + remainder; 902 if (fragsize > mtu) 903 fragsize = mtu; 904 IASSERT(fragsize < MCLBYTES, 905 ("fragment size %u too big!", fragsize)); 906 if (fragsize > MHLEN) 907 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 908 else 909 m = m_gethdr(M_DONTWAIT, MT_DATA); 910 if (m == NULL) 911 goto bad; 912 /* leave room to prepend any cipher header */ 913 m_align(m, fragsize - ciphdrsize); 914 915 /* 916 * Form the header in the fragment. Note that since 917 * we mark the first fragment with the MORE_FRAG bit 918 * it automatically is propagated to each fragment; we 919 * need only clear it on the last fragment (done below). 920 */ 921 whf = mtod(m, struct ieee80211_frame *); 922 memcpy(whf, wh, hdrsize); 923 *(u_int16_t *)&whf->i_seq[0] |= htole16( 924 (fragno & IEEE80211_SEQ_FRAG_MASK) << 925 IEEE80211_SEQ_FRAG_SHIFT); 926 fragno++; 927 928 payload = fragsize - totalhdrsize; 929 /* NB: destination is known to be contiguous */ 930 m_copydata(m0, off, payload, mtod(m, u_int8_t *) + hdrsize); 931 m->m_len = hdrsize + payload; 932 m->m_pkthdr.len = hdrsize + payload; 933 m->m_flags |= M_FRAG; 934 935 /* chain up the fragment */ 936 prev->m_nextpkt = m; 937 prev = m; 938 939 /* deduct fragment just formed */ 940 remainder -= payload; 941 off += payload; 942 } while (remainder != 0); 943 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 944 945 /* strip first mbuf now that everything has been copied */ 946 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 947 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 948 949 ic->ic_stats.is_tx_fragframes++; 950 ic->ic_stats.is_tx_frags += fragno-1; 951 952 return 1; 953 bad: 954 /* reclaim fragments but leave original frame for caller to free */ 955 for (m = m0->m_nextpkt; m != NULL; m = next) { 956 next = m->m_nextpkt; 957 m->m_nextpkt = NULL; /* XXX paranoid */ 958 m_freem(m); 959 } 960 m0->m_nextpkt = NULL; 961 return 0; 962 } 963 964 /* 965 * Add a supported rates element id to a frame. 966 */ 967 static u_int8_t * 968 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs) 969 { 970 int nrates; 971 972 *frm++ = IEEE80211_ELEMID_RATES; 973 nrates = rs->rs_nrates; 974 if (nrates > IEEE80211_RATE_SIZE) 975 nrates = IEEE80211_RATE_SIZE; 976 *frm++ = nrates; 977 memcpy(frm, rs->rs_rates, nrates); 978 return frm + nrates; 979 } 980 981 /* 982 * Add an extended supported rates element id to a frame. 983 */ 984 static u_int8_t * 985 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs) 986 { 987 /* 988 * Add an extended supported rates element if operating in 11g mode. 989 */ 990 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 991 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 992 *frm++ = IEEE80211_ELEMID_XRATES; 993 *frm++ = nrates; 994 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 995 frm += nrates; 996 } 997 return frm; 998 } 999 1000 /* 1001 * Add an ssid elemet to a frame. 1002 */ 1003 static u_int8_t * 1004 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len) 1005 { 1006 *frm++ = IEEE80211_ELEMID_SSID; 1007 *frm++ = len; 1008 memcpy(frm, ssid, len); 1009 return frm + len; 1010 } 1011 1012 /* 1013 * Add an erp element to a frame. 1014 */ 1015 static u_int8_t * 1016 ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic) 1017 { 1018 u_int8_t erp; 1019 1020 *frm++ = IEEE80211_ELEMID_ERP; 1021 *frm++ = 1; 1022 erp = 0; 1023 if (ic->ic_nonerpsta != 0) 1024 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1025 if (ic->ic_flags & IEEE80211_F_USEPROT) 1026 erp |= IEEE80211_ERP_USE_PROTECTION; 1027 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1028 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1029 *frm++ = erp; 1030 return frm; 1031 } 1032 1033 static u_int8_t * 1034 ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie) 1035 { 1036 #define WPA_OUI_BYTES 0x00, 0x50, 0xf2 1037 #define ADDSHORT(frm, v) do { \ 1038 frm[0] = (v) & 0xff; \ 1039 frm[1] = (v) >> 8; \ 1040 frm += 2; \ 1041 } while (0) 1042 #define ADDSELECTOR(frm, sel) do { \ 1043 memcpy(frm, sel, 4); \ 1044 frm += 4; \ 1045 } while (0) 1046 static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE }; 1047 static const u_int8_t cipher_suite[][4] = { 1048 { WPA_OUI_BYTES, WPA_CSE_WEP40 }, /* NB: 40-bit */ 1049 { WPA_OUI_BYTES, WPA_CSE_TKIP }, 1050 { 0x00, 0x00, 0x00, 0x00 }, /* XXX WRAP */ 1051 { WPA_OUI_BYTES, WPA_CSE_CCMP }, 1052 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ 1053 { WPA_OUI_BYTES, WPA_CSE_NULL }, 1054 }; 1055 static const u_int8_t wep104_suite[4] = 1056 { WPA_OUI_BYTES, WPA_CSE_WEP104 }; 1057 static const u_int8_t key_mgt_unspec[4] = 1058 { WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC }; 1059 static const u_int8_t key_mgt_psk[4] = 1060 { WPA_OUI_BYTES, WPA_ASE_8021X_PSK }; 1061 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; 1062 u_int8_t *frm = ie; 1063 u_int8_t *selcnt; 1064 1065 *frm++ = IEEE80211_ELEMID_VENDOR; 1066 *frm++ = 0; /* length filled in below */ 1067 memcpy(frm, oui, sizeof(oui)); /* WPA OUI */ 1068 frm += sizeof(oui); 1069 ADDSHORT(frm, WPA_VERSION); 1070 1071 /* XXX filter out CKIP */ 1072 1073 /* multicast cipher */ 1074 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && 1075 rsn->rsn_mcastkeylen >= 13) 1076 ADDSELECTOR(frm, wep104_suite); 1077 else 1078 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); 1079 1080 /* unicast cipher list */ 1081 selcnt = frm; 1082 ADDSHORT(frm, 0); /* selector count */ 1083 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) { 1084 selcnt[0]++; 1085 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); 1086 } 1087 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) { 1088 selcnt[0]++; 1089 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); 1090 } 1091 1092 /* authenticator selector list */ 1093 selcnt = frm; 1094 ADDSHORT(frm, 0); /* selector count */ 1095 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { 1096 selcnt[0]++; 1097 ADDSELECTOR(frm, key_mgt_unspec); 1098 } 1099 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { 1100 selcnt[0]++; 1101 ADDSELECTOR(frm, key_mgt_psk); 1102 } 1103 1104 /* optional capabilities */ 1105 if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH) 1106 ADDSHORT(frm, rsn->rsn_caps); 1107 1108 /* calculate element length */ 1109 ie[1] = frm - ie - 2; 1110 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), 1111 ("WPA IE too big, %u > %zu", 1112 ie[1]+2, sizeof(struct ieee80211_ie_wpa))); 1113 return frm; 1114 #undef ADDSHORT 1115 #undef ADDSELECTOR 1116 #undef WPA_OUI_BYTES 1117 } 1118 1119 static u_int8_t * 1120 ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie) 1121 { 1122 #define RSN_OUI_BYTES 0x00, 0x0f, 0xac 1123 #define ADDSHORT(frm, v) do { \ 1124 frm[0] = (v) & 0xff; \ 1125 frm[1] = (v) >> 8; \ 1126 frm += 2; \ 1127 } while (0) 1128 #define ADDSELECTOR(frm, sel) do { \ 1129 memcpy(frm, sel, 4); \ 1130 frm += 4; \ 1131 } while (0) 1132 static const u_int8_t cipher_suite[][4] = { 1133 { RSN_OUI_BYTES, RSN_CSE_WEP40 }, /* NB: 40-bit */ 1134 { RSN_OUI_BYTES, RSN_CSE_TKIP }, 1135 { RSN_OUI_BYTES, RSN_CSE_WRAP }, 1136 { RSN_OUI_BYTES, RSN_CSE_CCMP }, 1137 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ 1138 { RSN_OUI_BYTES, RSN_CSE_NULL }, 1139 }; 1140 static const u_int8_t wep104_suite[4] = 1141 { RSN_OUI_BYTES, RSN_CSE_WEP104 }; 1142 static const u_int8_t key_mgt_unspec[4] = 1143 { RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC }; 1144 static const u_int8_t key_mgt_psk[4] = 1145 { RSN_OUI_BYTES, RSN_ASE_8021X_PSK }; 1146 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; 1147 u_int8_t *frm = ie; 1148 u_int8_t *selcnt; 1149 1150 *frm++ = IEEE80211_ELEMID_RSN; 1151 *frm++ = 0; /* length filled in below */ 1152 ADDSHORT(frm, RSN_VERSION); 1153 1154 /* XXX filter out CKIP */ 1155 1156 /* multicast cipher */ 1157 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && 1158 rsn->rsn_mcastkeylen >= 13) 1159 ADDSELECTOR(frm, wep104_suite); 1160 else 1161 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); 1162 1163 /* unicast cipher list */ 1164 selcnt = frm; 1165 ADDSHORT(frm, 0); /* selector count */ 1166 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) { 1167 selcnt[0]++; 1168 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); 1169 } 1170 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) { 1171 selcnt[0]++; 1172 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); 1173 } 1174 1175 /* authenticator selector list */ 1176 selcnt = frm; 1177 ADDSHORT(frm, 0); /* selector count */ 1178 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { 1179 selcnt[0]++; 1180 ADDSELECTOR(frm, key_mgt_unspec); 1181 } 1182 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { 1183 selcnt[0]++; 1184 ADDSELECTOR(frm, key_mgt_psk); 1185 } 1186 1187 /* optional capabilities */ 1188 ADDSHORT(frm, rsn->rsn_caps); 1189 /* XXX PMKID */ 1190 1191 /* calculate element length */ 1192 ie[1] = frm - ie - 2; 1193 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), 1194 ("RSN IE too big, %u > %zu", 1195 ie[1]+2, sizeof(struct ieee80211_ie_wpa))); 1196 return frm; 1197 #undef ADDSELECTOR 1198 #undef ADDSHORT 1199 #undef RSN_OUI_BYTES 1200 } 1201 1202 /* 1203 * Add a WPA/RSN element to a frame. 1204 */ 1205 static u_int8_t * 1206 ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic) 1207 { 1208 1209 IASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!")); 1210 if (ic->ic_flags & IEEE80211_F_WPA2) 1211 frm = ieee80211_setup_rsn_ie(ic, frm); 1212 if (ic->ic_flags & IEEE80211_F_WPA1) 1213 frm = ieee80211_setup_wpa_ie(ic, frm); 1214 return frm; 1215 } 1216 1217 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1218 /* 1219 * Add a WME information element to a frame. 1220 */ 1221 static u_int8_t * 1222 ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme) 1223 { 1224 static const struct ieee80211_wme_info info = { 1225 .wme_id = IEEE80211_ELEMID_VENDOR, 1226 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1227 .wme_oui = { WME_OUI_BYTES }, 1228 .wme_type = WME_OUI_TYPE, 1229 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1230 .wme_version = WME_VERSION, 1231 .wme_info = 0, 1232 }; 1233 memcpy(frm, &info, sizeof(info)); 1234 return frm + sizeof(info); 1235 } 1236 1237 /* 1238 * Add a WME parameters element to a frame. 1239 */ 1240 static u_int8_t * 1241 ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme) 1242 { 1243 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1244 #define ADDSHORT(frm, v) do { \ 1245 frm[0] = (v) & 0xff; \ 1246 frm[1] = (v) >> 8; \ 1247 frm += 2; \ 1248 } while (0) 1249 /* NB: this works 'cuz a param has an info at the front */ 1250 static const struct ieee80211_wme_info param = { 1251 .wme_id = IEEE80211_ELEMID_VENDOR, 1252 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1253 .wme_oui = { WME_OUI_BYTES }, 1254 .wme_type = WME_OUI_TYPE, 1255 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1256 .wme_version = WME_VERSION, 1257 }; 1258 int i; 1259 1260 memcpy(frm, ¶m, sizeof(param)); 1261 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1262 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1263 *frm++ = 0; /* reserved field */ 1264 for (i = 0; i < WME_NUM_AC; i++) { 1265 const struct wmeParams *ac = 1266 &wme->wme_bssChanParams.cap_wmeParams[i]; 1267 *frm++ = SM(i, WME_PARAM_ACI) 1268 | SM(ac->wmep_acm, WME_PARAM_ACM) 1269 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1270 ; 1271 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1272 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1273 ; 1274 ADDSHORT(frm, ac->wmep_txopLimit); 1275 } 1276 return frm; 1277 #undef SM 1278 #undef ADDSHORT 1279 } 1280 #undef WME_OUI_BYTES 1281 1282 /* 1283 * Send a probe request frame with the specified ssid 1284 * and any optional information element data. 1285 */ 1286 int 1287 ieee80211_send_probereq(struct ieee80211_node *ni, 1288 const u_int8_t sa[IEEE80211_ADDR_LEN], 1289 const u_int8_t da[IEEE80211_ADDR_LEN], 1290 const u_int8_t bssid[IEEE80211_ADDR_LEN], 1291 const u_int8_t *ssid, size_t ssidlen, 1292 const void *optie, size_t optielen) 1293 { 1294 struct ieee80211com *ic = ni->ni_ic; 1295 enum ieee80211_phymode mode; 1296 struct ieee80211_frame *wh; 1297 struct mbuf *m; 1298 u_int8_t *frm; 1299 1300 /* 1301 * Hold a reference on the node so it doesn't go away until after 1302 * the xmit is complete all the way in the driver. On error we 1303 * will remove our reference. 1304 */ 1305 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, 1306 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1307 __func__, __LINE__, 1308 ni, ether_sprintf(ni->ni_macaddr), 1309 ieee80211_node_refcnt(ni)+1); 1310 ieee80211_ref_node(ni); 1311 1312 /* 1313 * prreq frame format 1314 * [tlv] ssid 1315 * [tlv] supported rates 1316 * [tlv] extended supported rates 1317 * [tlv] user-specified ie's 1318 */ 1319 m = ieee80211_getmgtframe(&frm, 1320 2 + IEEE80211_NWID_LEN 1321 + 2 + IEEE80211_RATE_SIZE 1322 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1323 + (optie != NULL ? optielen : 0) 1324 ); 1325 if (m == NULL) { 1326 ic->ic_stats.is_tx_nobuf++; 1327 ieee80211_free_node(ni); 1328 return ENOMEM; 1329 } 1330 1331 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 1332 mode = ieee80211_chan2mode(ic, ic->ic_curchan); 1333 frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]); 1334 frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]); 1335 1336 if (optie != NULL) { 1337 memcpy(frm, optie, optielen); 1338 frm += optielen; 1339 } 1340 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1341 1342 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 1343 if (m == NULL) 1344 return ENOMEM; 1345 IASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null")); 1346 m->m_pkthdr.rcvif = (void *)ni; 1347 1348 wh = mtod(m, struct ieee80211_frame *); 1349 ieee80211_send_setup(ic, ni, wh, 1350 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 1351 sa, da, bssid); 1352 /* XXX power management? */ 1353 1354 IEEE80211_NODE_STAT(ni, tx_probereq); 1355 IEEE80211_NODE_STAT(ni, tx_mgmt); 1356 1357 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 1358 "[%s] send probe req on channel %u\n", 1359 ether_sprintf(wh->i_addr1), 1360 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1361 1362 IF_ENQUEUE(&ic->ic_mgtq, m); 1363 (*ic->ic_ifp->if_start)(ic->ic_ifp); 1364 return 0; 1365 } 1366 1367 /* 1368 * Send a management frame. The node is for the destination (or ic_bss 1369 * when in station mode). Nodes other than ic_bss have their reference 1370 * count bumped to reflect our use for an indeterminant time. 1371 */ 1372 int 1373 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni, 1374 int type, int arg) 1375 { 1376 #define senderr(_x, _v) do { ic->ic_stats._v++; ret = _x; goto bad; } while (0) 1377 struct mbuf *m; 1378 u_int8_t *frm; 1379 u_int16_t capinfo; 1380 int has_challenge, is_shared_key, ret, timer, status; 1381 1382 IASSERT(ni != NULL, ("null node")); 1383 1384 /* 1385 * Hold a reference on the node so it doesn't go away until after 1386 * the xmit is complete all the way in the driver. On error we 1387 * will remove our reference. 1388 */ 1389 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, 1390 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1391 __func__, __LINE__, 1392 ni, ether_sprintf(ni->ni_macaddr), 1393 ieee80211_node_refcnt(ni)+1); 1394 ieee80211_ref_node(ni); 1395 1396 timer = 0; 1397 switch (type) { 1398 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 1399 /* 1400 * probe response frame format 1401 * [8] time stamp 1402 * [2] beacon interval 1403 * [2] cabability information 1404 * [tlv] ssid 1405 * [tlv] supported rates 1406 * [tlv] parameter set (FH/DS) 1407 * [tlv] parameter set (IBSS) 1408 * [tlv] extended rate phy (ERP) 1409 * [tlv] extended supported rates 1410 * [tlv] WPA 1411 * [tlv] WME (optional) 1412 */ 1413 m = ieee80211_getmgtframe(&frm, 1414 8 1415 + sizeof(u_int16_t) 1416 + sizeof(u_int16_t) 1417 + 2 + IEEE80211_NWID_LEN 1418 + 2 + IEEE80211_RATE_SIZE 1419 + 7 /* max(7,3) */ 1420 + 6 1421 + 3 1422 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1423 /* XXX !WPA1+WPA2 fits w/o a cluster */ 1424 + (ic->ic_flags & IEEE80211_F_WPA ? 1425 2*sizeof(struct ieee80211_ie_wpa) : 0) 1426 + sizeof(struct ieee80211_wme_param) 1427 ); 1428 if (m == NULL) 1429 senderr(ENOMEM, is_tx_nobuf); 1430 1431 memset(frm, 0, 8); /* timestamp should be filled later */ 1432 frm += 8; 1433 *(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval); 1434 frm += 2; 1435 if (ic->ic_opmode == IEEE80211_M_IBSS) 1436 capinfo = IEEE80211_CAPINFO_IBSS; 1437 else 1438 capinfo = IEEE80211_CAPINFO_ESS; 1439 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1440 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1441 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1442 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1443 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1444 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1445 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1446 *(u_int16_t *)frm = htole16(capinfo); 1447 frm += 2; 1448 1449 frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid, 1450 ic->ic_bss->ni_esslen); 1451 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1452 1453 if (ic->ic_phytype == IEEE80211_T_FH) { 1454 *frm++ = IEEE80211_ELEMID_FHPARMS; 1455 *frm++ = 5; 1456 *frm++ = ni->ni_fhdwell & 0x00ff; 1457 *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff; 1458 *frm++ = IEEE80211_FH_CHANSET( 1459 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1460 *frm++ = IEEE80211_FH_CHANPAT( 1461 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1462 *frm++ = ni->ni_fhindex; 1463 } else { 1464 *frm++ = IEEE80211_ELEMID_DSPARMS; 1465 *frm++ = 1; 1466 *frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan); 1467 } 1468 1469 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1470 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1471 *frm++ = 2; 1472 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1473 } 1474 if (ic->ic_flags & IEEE80211_F_WPA) 1475 frm = ieee80211_add_wpa(frm, ic); 1476 if (ic->ic_curmode == IEEE80211_MODE_11G) 1477 frm = ieee80211_add_erp(frm, ic); 1478 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1479 if (ic->ic_flags & IEEE80211_F_WME) 1480 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1481 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1482 break; 1483 1484 case IEEE80211_FC0_SUBTYPE_AUTH: 1485 status = arg >> 16; 1486 arg &= 0xffff; 1487 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 1488 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 1489 ni->ni_challenge != NULL); 1490 1491 /* 1492 * Deduce whether we're doing open authentication or 1493 * shared key authentication. We do the latter if 1494 * we're in the middle of a shared key authentication 1495 * handshake or if we're initiating an authentication 1496 * request and configured to use shared key. 1497 */ 1498 is_shared_key = has_challenge || 1499 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 1500 (arg == IEEE80211_AUTH_SHARED_REQUEST && 1501 ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED); 1502 1503 m = ieee80211_getmgtframe(&frm, 1504 3 * sizeof(u_int16_t) 1505 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 1506 sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0) 1507 ); 1508 if (m == NULL) 1509 senderr(ENOMEM, is_tx_nobuf); 1510 1511 ((u_int16_t *)frm)[0] = 1512 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 1513 : htole16(IEEE80211_AUTH_ALG_OPEN); 1514 ((u_int16_t *)frm)[1] = htole16(arg); /* sequence number */ 1515 ((u_int16_t *)frm)[2] = htole16(status);/* status */ 1516 1517 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 1518 ((u_int16_t *)frm)[3] = 1519 htole16((IEEE80211_CHALLENGE_LEN << 8) | 1520 IEEE80211_ELEMID_CHALLENGE); 1521 memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge, 1522 IEEE80211_CHALLENGE_LEN); 1523 m->m_pkthdr.len = m->m_len = 1524 4 * sizeof(u_int16_t) + IEEE80211_CHALLENGE_LEN; 1525 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 1526 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 1527 "[%s] request encrypt frame (%s)\n", 1528 ether_sprintf(ni->ni_macaddr), __func__); 1529 m->m_flags |= M_LINK0; /* WEP-encrypt, please */ 1530 } 1531 } else 1532 m->m_pkthdr.len = m->m_len = 3 * sizeof(u_int16_t); 1533 1534 /* XXX not right for shared key */ 1535 if (status == IEEE80211_STATUS_SUCCESS) 1536 IEEE80211_NODE_STAT(ni, tx_auth); 1537 else 1538 IEEE80211_NODE_STAT(ni, tx_auth_fail); 1539 1540 if (ic->ic_opmode == IEEE80211_M_STA) 1541 timer = IEEE80211_TRANS_WAIT; 1542 break; 1543 1544 case IEEE80211_FC0_SUBTYPE_DEAUTH: 1545 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 1546 "[%s] send station deauthenticate (reason %d)\n", 1547 ether_sprintf(ni->ni_macaddr), arg); 1548 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t)); 1549 if (m == NULL) 1550 senderr(ENOMEM, is_tx_nobuf); 1551 *(u_int16_t *)frm = htole16(arg); /* reason */ 1552 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t); 1553 1554 IEEE80211_NODE_STAT(ni, tx_deauth); 1555 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 1556 1557 ieee80211_node_unauthorize(ni); /* port closed */ 1558 break; 1559 1560 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 1561 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 1562 /* 1563 * asreq frame format 1564 * [2] capability information 1565 * [2] listen interval 1566 * [6*] current AP address (reassoc only) 1567 * [tlv] ssid 1568 * [tlv] supported rates 1569 * [tlv] extended supported rates 1570 * [tlv] WME 1571 * [tlv] user-specified ie's 1572 */ 1573 m = ieee80211_getmgtframe(&frm, 1574 sizeof(u_int16_t) 1575 + sizeof(u_int16_t) 1576 + IEEE80211_ADDR_LEN 1577 + 2 + IEEE80211_NWID_LEN 1578 + 2 + IEEE80211_RATE_SIZE 1579 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1580 + sizeof(struct ieee80211_wme_info) 1581 + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0) 1582 ); 1583 if (m == NULL) 1584 senderr(ENOMEM, is_tx_nobuf); 1585 1586 capinfo = 0; 1587 if (ic->ic_opmode == IEEE80211_M_IBSS) 1588 capinfo |= IEEE80211_CAPINFO_IBSS; 1589 else /* IEEE80211_M_STA */ 1590 capinfo |= IEEE80211_CAPINFO_ESS; 1591 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1592 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1593 /* 1594 * NB: Some 11a AP's reject the request when 1595 * short premable is set. 1596 */ 1597 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1598 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1599 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1600 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) && 1601 (ic->ic_caps & IEEE80211_C_SHSLOT)) 1602 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1603 *(u_int16_t *)frm = htole16(capinfo); 1604 frm += 2; 1605 1606 *(u_int16_t *)frm = htole16(ic->ic_lintval); 1607 frm += 2; 1608 1609 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 1610 IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid); 1611 frm += IEEE80211_ADDR_LEN; 1612 } 1613 1614 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 1615 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1616 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1617 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) 1618 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 1619 if (ic->ic_opt_ie != NULL) { 1620 memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len); 1621 frm += ic->ic_opt_ie_len; 1622 } 1623 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1624 1625 timer = IEEE80211_TRANS_WAIT; 1626 break; 1627 1628 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 1629 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 1630 /* 1631 * asreq frame format 1632 * [2] capability information 1633 * [2] status 1634 * [2] association ID 1635 * [tlv] supported rates 1636 * [tlv] extended supported rates 1637 * [tlv] WME (if enabled and STA enabled) 1638 */ 1639 m = ieee80211_getmgtframe(&frm, 1640 sizeof(u_int16_t) 1641 + sizeof(u_int16_t) 1642 + sizeof(u_int16_t) 1643 + 2 + IEEE80211_RATE_SIZE 1644 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1645 + sizeof(struct ieee80211_wme_param) 1646 ); 1647 if (m == NULL) 1648 senderr(ENOMEM, is_tx_nobuf); 1649 1650 capinfo = IEEE80211_CAPINFO_ESS; 1651 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1652 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1653 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1654 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1655 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1656 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1657 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1658 *(u_int16_t *)frm = htole16(capinfo); 1659 frm += 2; 1660 1661 *(u_int16_t *)frm = htole16(arg); /* status */ 1662 frm += 2; 1663 1664 if (arg == IEEE80211_STATUS_SUCCESS) { 1665 *(u_int16_t *)frm = htole16(ni->ni_associd); 1666 IEEE80211_NODE_STAT(ni, tx_assoc); 1667 } else 1668 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 1669 frm += 2; 1670 1671 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1672 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1673 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) 1674 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1675 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1676 break; 1677 1678 case IEEE80211_FC0_SUBTYPE_DISASSOC: 1679 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC, 1680 "[%s] send station disassociate (reason %d)\n", 1681 ether_sprintf(ni->ni_macaddr), arg); 1682 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t)); 1683 if (m == NULL) 1684 senderr(ENOMEM, is_tx_nobuf); 1685 *(u_int16_t *)frm = htole16(arg); /* reason */ 1686 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t); 1687 1688 IEEE80211_NODE_STAT(ni, tx_disassoc); 1689 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 1690 break; 1691 1692 default: 1693 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1694 "[%s] invalid mgmt frame type %u\n", 1695 ether_sprintf(ni->ni_macaddr), type); 1696 senderr(EINVAL, is_tx_unknownmgt); 1697 /* NOTREACHED */ 1698 } 1699 ret = ieee80211_mgmt_output(ic, ni, m, type, timer); 1700 if (ret != 0) { 1701 bad: 1702 ieee80211_free_node(ni); 1703 } 1704 return ret; 1705 #undef senderr 1706 } 1707 1708 /* 1709 * Allocate a beacon frame and fillin the appropriate bits. 1710 */ 1711 struct mbuf * 1712 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni, 1713 struct ieee80211_beacon_offsets *bo) 1714 { 1715 struct ifnet *ifp = ic->ic_ifp; 1716 struct ieee80211_frame *wh; 1717 struct mbuf *m; 1718 int pktlen; 1719 u_int8_t *frm, *efrm; 1720 u_int16_t capinfo; 1721 struct ieee80211_rateset *rs; 1722 1723 /* 1724 * beacon frame format 1725 * [8] time stamp 1726 * [2] beacon interval 1727 * [2] cabability information 1728 * [tlv] ssid 1729 * [tlv] supported rates 1730 * [3] parameter set (DS) 1731 * [tlv] parameter set (IBSS/TIM) 1732 * [tlv] extended rate phy (ERP) 1733 * [tlv] extended supported rates 1734 * [tlv] WME parameters 1735 * [tlv] WPA/RSN parameters 1736 * XXX Vendor-specific OIDs (e.g. Atheros) 1737 * NB: we allocate the max space required for the TIM bitmap. 1738 */ 1739 rs = &ni->ni_rates; 1740 pktlen = 8 /* time stamp */ 1741 + sizeof(u_int16_t) /* beacon interval */ 1742 + sizeof(u_int16_t) /* capabilities */ 1743 + 2 + ni->ni_esslen /* ssid */ 1744 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 1745 + 2 + 1 /* DS parameters */ 1746 + 2 + 4 + ic->ic_tim_len /* DTIM/IBSSPARMS */ 1747 + 2 + 1 /* ERP */ 1748 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1749 + (ic->ic_caps & IEEE80211_C_WME ? /* WME */ 1750 sizeof(struct ieee80211_wme_param) : 0) 1751 + (ic->ic_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 1752 2*sizeof(struct ieee80211_ie_wpa) : 0) 1753 ; 1754 m = ieee80211_getmgtframe(&frm, pktlen); 1755 if (m == NULL) { 1756 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1757 "%s: cannot get buf; size %u\n", __func__, pktlen); 1758 ic->ic_stats.is_tx_nobuf++; 1759 return NULL; 1760 } 1761 1762 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 1763 frm += 8; 1764 *(u_int16_t *)frm = htole16(ni->ni_intval); 1765 frm += 2; 1766 if (ic->ic_opmode == IEEE80211_M_IBSS) 1767 capinfo = IEEE80211_CAPINFO_IBSS; 1768 else 1769 capinfo = IEEE80211_CAPINFO_ESS; 1770 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1771 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1772 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1773 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 1774 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1775 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1776 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1777 bo->bo_caps = (u_int16_t *)frm; 1778 *(u_int16_t *)frm = htole16(capinfo); 1779 frm += 2; 1780 *frm++ = IEEE80211_ELEMID_SSID; 1781 if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) { 1782 *frm++ = ni->ni_esslen; 1783 memcpy(frm, ni->ni_essid, ni->ni_esslen); 1784 frm += ni->ni_esslen; 1785 } else 1786 *frm++ = 0; 1787 frm = ieee80211_add_rates(frm, rs); 1788 if (ic->ic_curmode != IEEE80211_MODE_FH) { 1789 *frm++ = IEEE80211_ELEMID_DSPARMS; 1790 *frm++ = 1; 1791 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 1792 } 1793 bo->bo_tim = frm; 1794 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1795 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1796 *frm++ = 2; 1797 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1798 bo->bo_tim_len = 0; 1799 } else { 1800 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 1801 1802 tie->tim_ie = IEEE80211_ELEMID_TIM; 1803 tie->tim_len = 4; /* length */ 1804 tie->tim_count = 0; /* DTIM count */ 1805 tie->tim_period = ic->ic_dtim_period; /* DTIM period */ 1806 tie->tim_bitctl = 0; /* bitmap control */ 1807 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 1808 frm += sizeof(struct ieee80211_tim_ie); 1809 bo->bo_tim_len = 1; 1810 } 1811 bo->bo_trailer = frm; 1812 if (ic->ic_flags & IEEE80211_F_WME) { 1813 bo->bo_wme = frm; 1814 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1815 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; 1816 } 1817 if (ic->ic_flags & IEEE80211_F_WPA) 1818 frm = ieee80211_add_wpa(frm, ic); 1819 if (ic->ic_curmode == IEEE80211_MODE_11G) 1820 frm = ieee80211_add_erp(frm, ic); 1821 efrm = ieee80211_add_xrates(frm, rs); 1822 bo->bo_trailer_len = efrm - bo->bo_trailer; 1823 m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *); 1824 1825 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 1826 IASSERT(m != NULL, ("no space for 802.11 header?")); 1827 wh = mtod(m, struct ieee80211_frame *); 1828 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 1829 IEEE80211_FC0_SUBTYPE_BEACON; 1830 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1831 *(u_int16_t *)wh->i_dur = 0; 1832 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 1833 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 1834 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 1835 *(u_int16_t *)wh->i_seq = 0; 1836 1837 return m; 1838 } 1839 1840 /* 1841 * Update the dynamic parts of a beacon frame based on the current state. 1842 */ 1843 int 1844 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni, 1845 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) 1846 { 1847 int len_changed = 0; 1848 u_int16_t capinfo; 1849 1850 IEEE80211_BEACON_LOCK(ic); 1851 /* XXX faster to recalculate entirely or just changes? */ 1852 if (ic->ic_opmode == IEEE80211_M_IBSS) 1853 capinfo = IEEE80211_CAPINFO_IBSS; 1854 else 1855 capinfo = IEEE80211_CAPINFO_ESS; 1856 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1857 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1858 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1859 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 1860 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1861 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1862 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1863 *bo->bo_caps = htole16(capinfo); 1864 1865 if (ic->ic_flags & IEEE80211_F_WME) { 1866 struct ieee80211_wme_state *wme = &ic->ic_wme; 1867 1868 /* 1869 * Check for agressive mode change. When there is 1870 * significant high priority traffic in the BSS 1871 * throttle back BE traffic by using conservative 1872 * parameters. Otherwise BE uses agressive params 1873 * to optimize performance of legacy/non-QoS traffic. 1874 */ 1875 if (wme->wme_flags & WME_F_AGGRMODE) { 1876 if (wme->wme_hipri_traffic > 1877 wme->wme_hipri_switch_thresh) { 1878 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, 1879 "%s: traffic %u, disable aggressive mode\n", 1880 __func__, wme->wme_hipri_traffic); 1881 wme->wme_flags &= ~WME_F_AGGRMODE; 1882 ieee80211_wme_updateparams_locked(ic); 1883 wme->wme_hipri_traffic = 1884 wme->wme_hipri_switch_hysteresis; 1885 } else 1886 wme->wme_hipri_traffic = 0; 1887 } else { 1888 if (wme->wme_hipri_traffic <= 1889 wme->wme_hipri_switch_thresh) { 1890 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, 1891 "%s: traffic %u, enable aggressive mode\n", 1892 __func__, wme->wme_hipri_traffic); 1893 wme->wme_flags |= WME_F_AGGRMODE; 1894 ieee80211_wme_updateparams_locked(ic); 1895 wme->wme_hipri_traffic = 0; 1896 } else 1897 wme->wme_hipri_traffic = 1898 wme->wme_hipri_switch_hysteresis; 1899 } 1900 if (ic->ic_flags & IEEE80211_F_WMEUPDATE) { 1901 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 1902 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; 1903 } 1904 } 1905 1906 #ifndef IEEE80211_NO_HOSTAP 1907 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/ 1908 struct ieee80211_tim_ie *tie = 1909 (struct ieee80211_tim_ie *) bo->bo_tim; 1910 if (ic->ic_flags & IEEE80211_F_TIMUPDATE) { 1911 u_int timlen, timoff, i; 1912 /* 1913 * ATIM/DTIM needs updating. If it fits in the 1914 * current space allocated then just copy in the 1915 * new bits. Otherwise we need to move any trailing 1916 * data to make room. Note that we know there is 1917 * contiguous space because ieee80211_beacon_allocate 1918 * insures there is space in the mbuf to write a 1919 * maximal-size virtual bitmap (based on ic_max_aid). 1920 */ 1921 /* 1922 * Calculate the bitmap size and offset, copy any 1923 * trailer out of the way, and then copy in the 1924 * new bitmap and update the information element. 1925 * Note that the tim bitmap must contain at least 1926 * one byte and any offset must be even. 1927 */ 1928 if (ic->ic_ps_pending != 0) { 1929 timoff = 128; /* impossibly large */ 1930 for (i = 0; i < ic->ic_tim_len; i++) 1931 if (ic->ic_tim_bitmap[i]) { 1932 timoff = i &~ 1; 1933 break; 1934 } 1935 IASSERT(timoff != 128, ("tim bitmap empty!")); 1936 for (i = ic->ic_tim_len-1; i >= timoff; i--) 1937 if (ic->ic_tim_bitmap[i]) 1938 break; 1939 timlen = 1 + (i - timoff); 1940 } else { 1941 timoff = 0; 1942 timlen = 1; 1943 } 1944 if (timlen != bo->bo_tim_len) { 1945 /* copy up/down trailer */ 1946 ovbcopy(bo->bo_trailer, tie->tim_bitmap+timlen, 1947 bo->bo_trailer_len); 1948 bo->bo_trailer = tie->tim_bitmap+timlen; 1949 bo->bo_wme = bo->bo_trailer; 1950 bo->bo_tim_len = timlen; 1951 1952 /* update information element */ 1953 tie->tim_len = 3 + timlen; 1954 tie->tim_bitctl = timoff; 1955 len_changed = 1; 1956 } 1957 memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff, 1958 bo->bo_tim_len); 1959 1960 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE; 1961 1962 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, 1963 "%s: TIM updated, pending %u, off %u, len %u\n", 1964 __func__, ic->ic_ps_pending, timoff, timlen); 1965 } 1966 /* count down DTIM period */ 1967 if (tie->tim_count == 0) 1968 tie->tim_count = tie->tim_period - 1; 1969 else 1970 tie->tim_count--; 1971 /* update state for buffered multicast frames on DTIM */ 1972 if (mcast && (tie->tim_count == 1 || tie->tim_period == 1)) 1973 tie->tim_bitctl |= 1; 1974 else 1975 tie->tim_bitctl &= ~1; 1976 } 1977 #endif /* !IEEE80211_NO_HOSTAP */ 1978 IEEE80211_BEACON_UNLOCK(ic); 1979 1980 return len_changed; 1981 } 1982 1983 /* 1984 * Save an outbound packet for a node in power-save sleep state. 1985 * The new packet is placed on the node's saved queue, and the TIM 1986 * is changed, if necessary. 1987 */ 1988 void 1989 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni, 1990 struct mbuf *m) 1991 { 1992 int qlen, age; 1993 1994 IEEE80211_NODE_SAVEQ_LOCK(ni); 1995 if (IF_QFULL(&ni->ni_savedq)) { 1996 IF_DROP(&ni->ni_savedq); 1997 IEEE80211_NODE_SAVEQ_UNLOCK(ni); 1998 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1999 "[%s] pwr save q overflow, drops %d (size %d)\n", 2000 ether_sprintf(ni->ni_macaddr), 2001 ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE); 2002 #ifdef IEEE80211_DEBUG 2003 if (ieee80211_msg_dumppkts(ic)) 2004 ieee80211_dump_pkt(mtod(m, void *), m->m_len, -1, -1); 2005 #endif 2006 m_freem(m); 2007 return; 2008 } 2009 /* 2010 * Tag the frame with it's expiry time and insert 2011 * it in the queue. The aging interval is 4 times 2012 * the listen interval specified by the station. 2013 * Frames that sit around too long are reclaimed 2014 * using this information. 2015 */ 2016 /* XXX handle overflow? */ 2017 age = ((ni->ni_intval * ic->ic_bintval) << 2) / 1024; /* TU -> secs */ 2018 _IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age); 2019 IEEE80211_NODE_SAVEQ_UNLOCK(ni); 2020 2021 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, 2022 "[%s] save frame with age %d, %u now queued\n", 2023 ether_sprintf(ni->ni_macaddr), age, qlen); 2024 2025 if (qlen == 1) 2026 ic->ic_set_tim(ni, 1); 2027 } 2028