1 /* $NetBSD: ieee80211_output.c,v 1.41 2005/12/29 21:08:26 dyoung Exp $ */ 2 /*- 3 * Copyright (c) 2001 Atsushi Onoe 4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * Alternatively, this software may be distributed under the terms of the 19 * GNU General Public License ("GPL") version 2 as published by the Free 20 * Software Foundation. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 #ifdef __FreeBSD__ 36 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.34 2005/08/10 16:22:29 sam Exp $"); 37 #endif 38 #ifdef __NetBSD__ 39 __KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.41 2005/12/29 21:08:26 dyoung Exp $"); 40 #endif 41 42 #include "opt_inet.h" 43 44 #ifdef __NetBSD__ 45 #include "bpfilter.h" 46 #endif /* __NetBSD__ */ 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/mbuf.h> 51 #include <sys/kernel.h> 52 #include <sys/endian.h> 53 #include <sys/errno.h> 54 #include <sys/proc.h> 55 #include <sys/sysctl.h> 56 57 #include <net/if.h> 58 #include <net/if_llc.h> 59 #include <net/if_media.h> 60 #include <net/if_arp.h> 61 #include <net/if_ether.h> 62 #include <net/if_llc.h> 63 #include <net/if_vlanvar.h> 64 65 #include <net80211/ieee80211_netbsd.h> 66 #include <net80211/ieee80211_var.h> 67 68 #if NBPFILTER > 0 69 #include <net/bpf.h> 70 #endif 71 72 #ifdef INET 73 #include <netinet/in.h> 74 #include <netinet/in_systm.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <net/if_ether.h> 78 #endif 79 80 #ifdef IEEE80211_DEBUG 81 /* 82 * Decide if an outbound management frame should be 83 * printed when debugging is enabled. This filters some 84 * of the less interesting frames that come frequently 85 * (e.g. beacons). 86 */ 87 static __inline int 88 doprint(struct ieee80211com *ic, int subtype) 89 { 90 switch (subtype) { 91 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 92 return (ic->ic_opmode == IEEE80211_M_IBSS); 93 } 94 return 1; 95 } 96 #endif 97 98 /* 99 * Set the direction field and address fields of an outgoing 100 * non-QoS frame. Note this should be called early on in 101 * constructing a frame as it sets i_fc[1]; other bits can 102 * then be or'd in. 103 */ 104 static void 105 ieee80211_send_setup(struct ieee80211com *ic, 106 struct ieee80211_node *ni, 107 struct ieee80211_frame *wh, 108 int type, 109 const u_int8_t sa[IEEE80211_ADDR_LEN], 110 const u_int8_t da[IEEE80211_ADDR_LEN], 111 const u_int8_t bssid[IEEE80211_ADDR_LEN]) 112 { 113 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 114 115 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 116 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 117 switch (ic->ic_opmode) { 118 case IEEE80211_M_STA: 119 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 120 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 121 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 122 IEEE80211_ADDR_COPY(wh->i_addr3, da); 123 break; 124 case IEEE80211_M_IBSS: 125 case IEEE80211_M_AHDEMO: 126 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 127 IEEE80211_ADDR_COPY(wh->i_addr1, da); 128 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 129 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 130 break; 131 case IEEE80211_M_HOSTAP: 132 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 133 IEEE80211_ADDR_COPY(wh->i_addr1, da); 134 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 135 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 136 break; 137 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 138 break; 139 } 140 } else { 141 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 142 IEEE80211_ADDR_COPY(wh->i_addr1, da); 143 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 144 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 145 } 146 *(u_int16_t *)&wh->i_dur[0] = 0; 147 /* NB: use non-QoS tid */ 148 *(u_int16_t *)&wh->i_seq[0] = 149 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 150 ni->ni_txseqs[0]++; 151 #undef WH4 152 } 153 154 /* 155 * Send a management frame to the specified node. The node pointer 156 * must have a reference as the pointer will be passed to the driver 157 * and potentially held for a long time. If the frame is successfully 158 * dispatched to the driver, then it is responsible for freeing the 159 * reference (and potentially free'ing up any associated storage). 160 */ 161 static int 162 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni, 163 struct mbuf *m, int type) 164 { 165 struct ifnet *ifp = ic->ic_ifp; 166 struct ieee80211_frame *wh; 167 168 IASSERT(ni != NULL, ("null node")); 169 170 /* 171 * Yech, hack alert! We want to pass the node down to the 172 * driver's start routine. If we don't do so then the start 173 * routine must immediately look it up again and that can 174 * cause a lock order reversal if, for example, this frame 175 * is being sent because the station is being timedout and 176 * the frame being sent is a DEAUTH message. We could stick 177 * this in an m_tag and tack that on to the mbuf. However 178 * that's rather expensive to do for every frame so instead 179 * we stuff it in the rcvif field since outbound frames do 180 * not (presently) use this. 181 */ 182 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 183 if (m == NULL) 184 return ENOMEM; 185 #ifdef __FreeBSD__ 186 KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null")); 187 #endif 188 m->m_pkthdr.rcvif = (void *)ni; 189 190 wh = mtod(m, struct ieee80211_frame *); 191 ieee80211_send_setup(ic, ni, wh, 192 IEEE80211_FC0_TYPE_MGT | type, 193 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); 194 if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) { 195 m->m_flags &= ~M_LINK0; 196 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 197 "[%s] encrypting frame (%s)\n", 198 ether_sprintf(wh->i_addr1), __func__); 199 wh->i_fc[1] |= IEEE80211_FC1_WEP; 200 } 201 #ifdef IEEE80211_DEBUG 202 /* avoid printing too many frames */ 203 if ((ieee80211_msg_debug(ic) && doprint(ic, type)) || 204 ieee80211_msg_dumppkts(ic)) { 205 printf("[%s] send %s on channel %u\n", 206 ether_sprintf(wh->i_addr1), 207 ieee80211_mgt_subtype_name[ 208 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 209 IEEE80211_FC0_SUBTYPE_SHIFT], 210 ieee80211_chan2ieee(ic, ic->ic_curchan)); 211 } 212 #endif 213 IEEE80211_NODE_STAT(ni, tx_mgmt); 214 IF_ENQUEUE(&ic->ic_mgtq, m); 215 ifp->if_timer = 1; 216 (*ifp->if_start)(ifp); 217 return 0; 218 } 219 220 /* 221 * Send a null data frame to the specified node. 222 * 223 * NB: the caller is assumed to have setup a node reference 224 * for use; this is necessary to deal with a race condition 225 * when probing for inactive stations. 226 */ 227 int 228 ieee80211_send_nulldata(struct ieee80211_node *ni) 229 { 230 struct ieee80211com *ic = ni->ni_ic; 231 struct ifnet *ifp = ic->ic_ifp; 232 struct mbuf *m; 233 struct ieee80211_frame *wh; 234 235 MGETHDR(m, M_NOWAIT, MT_HEADER); 236 if (m == NULL) { 237 /* XXX debug msg */ 238 ic->ic_stats.is_tx_nobuf++; 239 ieee80211_unref_node(&ni); 240 return ENOMEM; 241 } 242 m->m_pkthdr.rcvif = (void *) ni; 243 244 wh = mtod(m, struct ieee80211_frame *); 245 ieee80211_send_setup(ic, ni, wh, 246 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 247 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); 248 /* NB: power management bit is never sent by an AP */ 249 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 250 ic->ic_opmode != IEEE80211_M_HOSTAP) 251 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 252 m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame); 253 254 IEEE80211_NODE_STAT(ni, tx_data); 255 256 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 257 "[%s] send null data frame on channel %u, pwr mgt %s\n", 258 ether_sprintf(ni->ni_macaddr), 259 ieee80211_chan2ieee(ic, ic->ic_curchan), 260 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 261 262 IF_ENQUEUE(&ic->ic_mgtq, m); /* cheat */ 263 (*ifp->if_start)(ifp); 264 265 return 0; 266 } 267 268 /* 269 * Assign priority to a frame based on any vlan tag assigned 270 * to the station and/or any Diffserv setting in an IP header. 271 * Finally, if an ACM policy is setup (in station mode) it's 272 * applied. 273 */ 274 int 275 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni) 276 { 277 int v_wme_ac, d_wme_ac, ac; 278 #ifdef INET 279 struct ether_header *eh; 280 #endif 281 282 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 283 ac = WME_AC_BE; 284 goto done; 285 } 286 287 /* 288 * If node has a vlan tag then all traffic 289 * to it must have a matching tag. 290 */ 291 v_wme_ac = 0; 292 if (ni->ni_vlan != 0) { 293 /* XXX used to check ec_nvlans. */ 294 struct m_tag *mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL); 295 if (mtag == NULL) { 296 IEEE80211_NODE_STAT(ni, tx_novlantag); 297 return 1; 298 } 299 if (EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag)) != 300 EVL_VLANOFTAG(ni->ni_vlan)) { 301 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 302 return 1; 303 } 304 /* map vlan priority to AC */ 305 switch (EVL_PRIOFTAG(ni->ni_vlan)) { 306 case 1: 307 case 2: 308 v_wme_ac = WME_AC_BK; 309 break; 310 case 0: 311 case 3: 312 v_wme_ac = WME_AC_BE; 313 break; 314 case 4: 315 case 5: 316 v_wme_ac = WME_AC_VI; 317 break; 318 case 6: 319 case 7: 320 v_wme_ac = WME_AC_VO; 321 break; 322 } 323 } 324 325 #ifdef INET 326 eh = mtod(m, struct ether_header *); 327 if (eh->ether_type == htons(ETHERTYPE_IP)) { 328 const struct ip *ip = (struct ip *) 329 (mtod(m, u_int8_t *) + sizeof (*eh)); 330 /* 331 * IP frame, map the TOS field. 332 */ 333 switch (ip->ip_tos) { 334 case 0x08: 335 case 0x20: 336 d_wme_ac = WME_AC_BK; /* background */ 337 break; 338 case 0x28: 339 case 0xa0: 340 d_wme_ac = WME_AC_VI; /* video */ 341 break; 342 case 0x30: /* voice */ 343 case 0xe0: 344 case 0x88: /* XXX UPSD */ 345 case 0xb8: 346 d_wme_ac = WME_AC_VO; 347 break; 348 default: 349 d_wme_ac = WME_AC_BE; 350 break; 351 } 352 } else { 353 #endif /* INET */ 354 d_wme_ac = WME_AC_BE; 355 #ifdef INET 356 } 357 #endif 358 /* 359 * Use highest priority AC. 360 */ 361 if (v_wme_ac > d_wme_ac) 362 ac = v_wme_ac; 363 else 364 ac = d_wme_ac; 365 366 /* 367 * Apply ACM policy. 368 */ 369 if (ic->ic_opmode == IEEE80211_M_STA) { 370 static const int acmap[4] = { 371 WME_AC_BK, /* WME_AC_BE */ 372 WME_AC_BK, /* WME_AC_BK */ 373 WME_AC_BE, /* WME_AC_VI */ 374 WME_AC_VI, /* WME_AC_VO */ 375 }; 376 while (ac != WME_AC_BK && 377 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 378 ac = acmap[ac]; 379 } 380 done: 381 M_WME_SETAC(m, ac); 382 return 0; 383 } 384 385 /* 386 * Insure there is sufficient contiguous space to encapsulate the 387 * 802.11 data frame. If room isn't already there, arrange for it. 388 * Drivers and cipher modules assume we have done the necessary work 389 * and fail rudely if they don't find the space they need. 390 */ 391 static struct mbuf * 392 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize, 393 struct ieee80211_key *key, struct mbuf *m) 394 { 395 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 396 int needed_space = hdrsize; 397 int wlen = 0; 398 399 if (key != NULL) { 400 /* XXX belongs in crypto code? */ 401 needed_space += key->wk_cipher->ic_header; 402 /* XXX frags */ 403 } 404 /* 405 * We know we are called just before stripping an Ethernet 406 * header and prepending an LLC header. This means we know 407 * there will be 408 * sizeof(struct ether_header) - sizeof(struct llc) 409 * bytes recovered to which we need additional space for the 410 * 802.11 header and any crypto header. 411 */ 412 /* XXX check trailing space and copy instead? */ 413 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 414 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 415 if (n == NULL) { 416 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 417 "%s: cannot expand storage\n", __func__); 418 ic->ic_stats.is_tx_nobuf++; 419 m_freem(m); 420 return NULL; 421 } 422 IASSERT(needed_space <= MHLEN, 423 ("not enough room, need %u got %zu\n", needed_space, MHLEN)); 424 /* 425 * Setup new mbuf to have leading space to prepend the 426 * 802.11 header and any crypto header bits that are 427 * required (the latter are added when the driver calls 428 * back to ieee80211_crypto_encap to do crypto encapsulation). 429 */ 430 /* NB: must be first 'cuz it clobbers m_data */ 431 M_MOVE_PKTHDR(n, m); 432 n->m_len = 0; /* NB: m_gethdr does not set */ 433 n->m_data += needed_space; 434 /* 435 * Pull up Ethernet header to create the expected layout. 436 * We could use m_pullup but that's overkill (i.e. we don't 437 * need the actual data) and it cannot fail so do it inline 438 * for speed. 439 */ 440 /* NB: struct ether_header is known to be contiguous */ 441 n->m_len += sizeof(struct ether_header); 442 m->m_len -= sizeof(struct ether_header); 443 m->m_data += sizeof(struct ether_header); 444 /* 445 * Replace the head of the chain. 446 */ 447 n->m_next = m; 448 m = n; 449 } else { 450 /* We will overwrite the ethernet header in the 451 * 802.11 encapsulation stage. Make sure that it 452 * is writable. 453 */ 454 wlen = sizeof(struct ether_header); 455 } 456 457 /* 458 * If we're going to s/w encrypt the mbuf chain make sure it is 459 * writable. 460 */ 461 if (key != NULL && (key->wk_flags & IEEE80211_KEY_SWCRYPT) != 0) 462 wlen = M_COPYALL; 463 464 if (wlen != 0 && m_makewritable(&m, 0, wlen, M_DONTWAIT) != 0) { 465 m_freem(m); 466 return NULL; 467 } 468 return m; 469 #undef TO_BE_RECLAIMED 470 } 471 472 /* 473 * Return the transmit key to use in sending a unicast frame. 474 * If a unicast key is set we use that. When no unicast key is set 475 * we fall back to the default transmit key. 476 */ 477 static __inline struct ieee80211_key * 478 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni) 479 { 480 if (IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)) { 481 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 482 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 483 return NULL; 484 return &ic->ic_nw_keys[ic->ic_def_txkey]; 485 } else { 486 return &ni->ni_ucastkey; 487 } 488 } 489 490 /* 491 * Return the transmit key to use in sending a multicast frame. 492 * Multicast traffic always uses the group key which is installed as 493 * the default tx key. 494 */ 495 static __inline struct ieee80211_key * 496 ieee80211_crypto_getmcastkey(struct ieee80211com *ic, struct ieee80211_node *ni) 497 { 498 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 499 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 500 return NULL; 501 return &ic->ic_nw_keys[ic->ic_def_txkey]; 502 } 503 504 /* 505 * Encapsulate an outbound data frame. The mbuf chain is updated. 506 * If an error is encountered NULL is returned. The caller is required 507 * to provide a node reference and pullup the ethernet header in the 508 * first mbuf. 509 */ 510 struct mbuf * 511 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m, 512 struct ieee80211_node *ni) 513 { 514 struct ether_header eh; 515 struct ieee80211_frame *wh; 516 struct ieee80211_key *key; 517 struct llc *llc; 518 int hdrsize, datalen, addqos; 519 520 IASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 521 memcpy(&eh, mtod(m, caddr_t), sizeof(struct ether_header)); 522 523 /* 524 * Insure space for additional headers. First identify 525 * transmit key to use in calculating any buffer adjustments 526 * required. This is also used below to do privacy 527 * encapsulation work. Then calculate the 802.11 header 528 * size and any padding required by the driver. 529 * 530 * Note key may be NULL if we fall back to the default 531 * transmit key and that is not set. In that case the 532 * buffer may not be expanded as needed by the cipher 533 * routines, but they will/should discard it. 534 */ 535 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 536 if (ic->ic_opmode == IEEE80211_M_STA || 537 !IEEE80211_IS_MULTICAST(eh.ether_dhost)) 538 key = ieee80211_crypto_getucastkey(ic, ni); 539 else 540 key = ieee80211_crypto_getmcastkey(ic, ni); 541 if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) { 542 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO, 543 "[%s] no default transmit key (%s) deftxkey %u\n", 544 ether_sprintf(eh.ether_dhost), __func__, 545 ic->ic_def_txkey); 546 ic->ic_stats.is_tx_nodefkey++; 547 } 548 } else 549 key = NULL; 550 /* XXX 4-address format */ 551 /* 552 * XXX Some ap's don't handle QoS-encapsulated EAPOL 553 * frames so suppress use. This may be an issue if other 554 * ap's require all data frames to be QoS-encapsulated 555 * once negotiated in which case we'll need to make this 556 * configurable. 557 */ 558 addqos = (ni->ni_flags & IEEE80211_NODE_QOS) && 559 eh.ether_type != htons(ETHERTYPE_PAE); 560 if (addqos) 561 hdrsize = sizeof(struct ieee80211_qosframe); 562 else 563 hdrsize = sizeof(struct ieee80211_frame); 564 if (ic->ic_flags & IEEE80211_F_DATAPAD) 565 hdrsize = roundup(hdrsize, sizeof(u_int32_t)); 566 m = ieee80211_mbuf_adjust(ic, hdrsize, key, m); 567 if (m == NULL) { 568 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 569 goto bad; 570 } 571 572 /* NB: this could be optimized because of ieee80211_mbuf_adjust */ 573 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 574 llc = mtod(m, struct llc *); 575 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 576 llc->llc_control = LLC_UI; 577 llc->llc_snap.org_code[0] = 0; 578 llc->llc_snap.org_code[1] = 0; 579 llc->llc_snap.org_code[2] = 0; 580 llc->llc_snap.ether_type = eh.ether_type; 581 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 582 583 M_PREPEND(m, hdrsize, M_DONTWAIT); 584 if (m == NULL) { 585 ic->ic_stats.is_tx_nobuf++; 586 goto bad; 587 } 588 wh = mtod(m, struct ieee80211_frame *); 589 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 590 *(u_int16_t *)wh->i_dur = 0; 591 switch (ic->ic_opmode) { 592 case IEEE80211_M_STA: 593 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 594 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 595 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 596 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 597 break; 598 case IEEE80211_M_IBSS: 599 case IEEE80211_M_AHDEMO: 600 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 601 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 602 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 603 /* 604 * NB: always use the bssid from ic_bss as the 605 * neighbor's may be stale after an ibss merge 606 */ 607 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid); 608 break; 609 case IEEE80211_M_HOSTAP: 610 #ifndef IEEE80211_NO_HOSTAP 611 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 612 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 613 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 614 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 615 #endif /* !IEEE80211_NO_HOSTAP */ 616 break; 617 case IEEE80211_M_MONITOR: 618 goto bad; 619 } 620 if (m->m_flags & M_MORE_DATA) 621 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 622 if (addqos) { 623 struct ieee80211_qosframe *qwh = 624 (struct ieee80211_qosframe *) wh; 625 int ac, tid; 626 627 ac = M_WME_GETAC(m); 628 /* map from access class/queue to 11e header priorty value */ 629 tid = WME_AC_TO_TID(ac); 630 qwh->i_qos[0] = tid & IEEE80211_QOS_TID; 631 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 632 qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S; 633 qwh->i_qos[1] = 0; 634 qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 635 636 *(u_int16_t *)wh->i_seq = 637 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT); 638 ni->ni_txseqs[tid]++; 639 } else { 640 *(u_int16_t *)wh->i_seq = 641 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 642 ni->ni_txseqs[0]++; 643 } 644 if (key != NULL) { 645 /* 646 * IEEE 802.1X: send EAPOL frames always in the clear. 647 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 648 */ 649 if (eh.ether_type != htons(ETHERTYPE_PAE) || 650 ((ic->ic_flags & IEEE80211_F_WPA) && 651 (ic->ic_opmode == IEEE80211_M_STA ? 652 !IEEE80211_KEY_UNDEFINED(*key) : 653 !IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)))) { 654 wh->i_fc[1] |= IEEE80211_FC1_WEP; 655 /* XXX do fragmentation */ 656 if (!ieee80211_crypto_enmic(ic, key, m, 0)) { 657 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 658 "[%s] enmic failed, discard frame\n", 659 ether_sprintf(eh.ether_dhost)); 660 ic->ic_stats.is_crypto_enmicfail++; 661 goto bad; 662 } 663 } 664 } 665 666 IEEE80211_NODE_STAT(ni, tx_data); 667 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 668 669 return m; 670 bad: 671 if (m != NULL) 672 m_freem(m); 673 return NULL; 674 } 675 676 /* 677 * Arguments in: 678 * 679 * paylen: payload length (no FCS, no WEP header) 680 * 681 * hdrlen: header length 682 * 683 * rate: MSDU speed, units 500kb/s 684 * 685 * flags: IEEE80211_F_SHPREAMBLE (use short preamble), 686 * IEEE80211_F_SHSLOT (use short slot length) 687 * 688 * Arguments out: 689 * 690 * d: 802.11 Duration field for RTS, 691 * 802.11 Duration field for data frame, 692 * PLCP Length for data frame, 693 * residual octets at end of data slot 694 */ 695 static int 696 ieee80211_compute_duration1(int len, int use_ack, uint32_t icflags, int rate, 697 struct ieee80211_duration *d) 698 { 699 int pre, ctsrate; 700 int ack, bitlen, data_dur, remainder; 701 702 /* RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK 703 * DATA reserves medium for SIFS | ACK 704 * 705 * XXXMYC: no ACK on multicast/broadcast or control packets 706 */ 707 708 bitlen = len * 8; 709 710 pre = IEEE80211_DUR_DS_SIFS; 711 if ((icflags & IEEE80211_F_SHPREAMBLE) != 0) 712 pre += IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR; 713 else 714 pre += IEEE80211_DUR_DS_LONG_PREAMBLE + IEEE80211_DUR_DS_SLOW_PLCPHDR; 715 716 d->d_residue = 0; 717 data_dur = (bitlen * 2) / rate; 718 remainder = (bitlen * 2) % rate; 719 if (remainder != 0) { 720 d->d_residue = (rate - remainder) / 16; 721 data_dur++; 722 } 723 724 switch (rate) { 725 case 2: /* 1 Mb/s */ 726 case 4: /* 2 Mb/s */ 727 /* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */ 728 ctsrate = 2; 729 break; 730 case 11: /* 5.5 Mb/s */ 731 case 22: /* 11 Mb/s */ 732 case 44: /* 22 Mb/s */ 733 /* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */ 734 ctsrate = 4; 735 break; 736 default: 737 /* TBD */ 738 return -1; 739 } 740 741 d->d_plcp_len = data_dur; 742 743 ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0; 744 745 d->d_rts_dur = 746 pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate + 747 pre + data_dur + 748 ack; 749 750 d->d_data_dur = ack; 751 752 return 0; 753 } 754 755 /* 756 * Arguments in: 757 * 758 * wh: 802.11 header 759 * 760 * paylen: payload length (no FCS, no WEP header) 761 * 762 * rate: MSDU speed, units 500kb/s 763 * 764 * fraglen: fragment length, set to maximum (or higher) for no 765 * fragmentation 766 * 767 * flags: IEEE80211_F_PRIVACY (hardware adds WEP), 768 * IEEE80211_F_SHPREAMBLE (use short preamble), 769 * IEEE80211_F_SHSLOT (use short slot length) 770 * 771 * Arguments out: 772 * 773 * d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields 774 * of first/only fragment 775 * 776 * dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields 777 * of last fragment 778 * 779 * ieee80211_compute_duration assumes crypto-encapsulation, if any, 780 * has already taken place. 781 */ 782 int 783 ieee80211_compute_duration(const struct ieee80211_frame_min *wh, 784 const struct ieee80211_key *wk, int len, 785 uint32_t icflags, int fraglen, int rate, struct ieee80211_duration *d0, 786 struct ieee80211_duration *dn, int *npktp, int debug) 787 { 788 int ack, rc; 789 int firstlen, /* first fragment's payload + overhead length */ 790 hdrlen, /* header length w/o driver padding */ 791 lastlen, /* last fragment's payload length w/ overhead */ 792 lastlen0, /* last fragment's payload length w/o overhead */ 793 npkt, /* number of fragments */ 794 overlen, /* non-802.11 header overhead per fragment */ 795 paylen; /* payload length w/o overhead */ 796 797 hdrlen = ieee80211_anyhdrsize((const void *)wh); 798 799 /* Account for padding required by the driver. */ 800 if (icflags & IEEE80211_F_DATAPAD) 801 paylen = len - roundup(hdrlen, sizeof(u_int32_t)); 802 else 803 paylen = len - hdrlen; 804 805 overlen = IEEE80211_CRC_LEN; 806 807 if (wk != NULL) { 808 paylen -= wk->wk_cipher->ic_header; 809 overlen += wk->wk_cipher->ic_header; 810 } 811 812 npkt = paylen / fraglen; 813 lastlen0 = paylen % fraglen; 814 815 if (npkt == 0) /* no fragments */ 816 lastlen = paylen + overlen; 817 else if (lastlen0 != 0) { /* a short "tail" fragment */ 818 lastlen = lastlen0 + overlen; 819 npkt++; 820 } else /* full-length "tail" fragment */ 821 lastlen = fraglen + overlen; 822 823 if (npktp != NULL) 824 *npktp = npkt; 825 826 if (npkt > 1) 827 firstlen = fraglen + overlen; 828 else 829 firstlen = paylen + overlen; 830 831 if (debug) { 832 printf("%s: npkt %d firstlen %d lastlen0 %d lastlen %d " 833 "fraglen %d overlen %d len %d rate %d icflags %08x\n", 834 __func__, npkt, firstlen, lastlen0, lastlen, fraglen, 835 overlen, len, rate, icflags); 836 } 837 838 ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) && 839 (wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL; 840 841 rc = ieee80211_compute_duration1(firstlen + hdrlen, 842 ack, icflags, rate, d0); 843 if (rc == -1) 844 return rc; 845 846 if (npkt <= 1) { 847 *dn = *d0; 848 return 0; 849 } 850 return ieee80211_compute_duration1(lastlen + hdrlen, ack, icflags, rate, 851 dn); 852 } 853 854 /* 855 * Add a supported rates element id to a frame. 856 */ 857 static u_int8_t * 858 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs) 859 { 860 int nrates; 861 862 *frm++ = IEEE80211_ELEMID_RATES; 863 nrates = rs->rs_nrates; 864 if (nrates > IEEE80211_RATE_SIZE) 865 nrates = IEEE80211_RATE_SIZE; 866 *frm++ = nrates; 867 memcpy(frm, rs->rs_rates, nrates); 868 return frm + nrates; 869 } 870 871 /* 872 * Add an extended supported rates element id to a frame. 873 */ 874 static u_int8_t * 875 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs) 876 { 877 /* 878 * Add an extended supported rates element if operating in 11g mode. 879 */ 880 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 881 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 882 *frm++ = IEEE80211_ELEMID_XRATES; 883 *frm++ = nrates; 884 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 885 frm += nrates; 886 } 887 return frm; 888 } 889 890 /* 891 * Add an ssid elemet to a frame. 892 */ 893 static u_int8_t * 894 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len) 895 { 896 *frm++ = IEEE80211_ELEMID_SSID; 897 *frm++ = len; 898 memcpy(frm, ssid, len); 899 return frm + len; 900 } 901 902 /* 903 * Add an erp element to a frame. 904 */ 905 static u_int8_t * 906 ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic) 907 { 908 u_int8_t erp; 909 910 *frm++ = IEEE80211_ELEMID_ERP; 911 *frm++ = 1; 912 erp = 0; 913 if (ic->ic_nonerpsta != 0) 914 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 915 if (ic->ic_flags & IEEE80211_F_USEPROT) 916 erp |= IEEE80211_ERP_USE_PROTECTION; 917 if (ic->ic_flags & IEEE80211_F_USEBARKER) 918 erp |= IEEE80211_ERP_LONG_PREAMBLE; 919 *frm++ = erp; 920 return frm; 921 } 922 923 static u_int8_t * 924 ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie) 925 { 926 #define WPA_OUI_BYTES 0x00, 0x50, 0xf2 927 #define ADDSHORT(frm, v) do { \ 928 frm[0] = (v) & 0xff; \ 929 frm[1] = (v) >> 8; \ 930 frm += 2; \ 931 } while (0) 932 #define ADDSELECTOR(frm, sel) do { \ 933 memcpy(frm, sel, 4); \ 934 frm += 4; \ 935 } while (0) 936 static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE }; 937 static const u_int8_t cipher_suite[][4] = { 938 { WPA_OUI_BYTES, WPA_CSE_WEP40 }, /* NB: 40-bit */ 939 { WPA_OUI_BYTES, WPA_CSE_TKIP }, 940 { 0x00, 0x00, 0x00, 0x00 }, /* XXX WRAP */ 941 { WPA_OUI_BYTES, WPA_CSE_CCMP }, 942 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ 943 { WPA_OUI_BYTES, WPA_CSE_NULL }, 944 }; 945 static const u_int8_t wep104_suite[4] = 946 { WPA_OUI_BYTES, WPA_CSE_WEP104 }; 947 static const u_int8_t key_mgt_unspec[4] = 948 { WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC }; 949 static const u_int8_t key_mgt_psk[4] = 950 { WPA_OUI_BYTES, WPA_ASE_8021X_PSK }; 951 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; 952 u_int8_t *frm = ie; 953 u_int8_t *selcnt; 954 955 *frm++ = IEEE80211_ELEMID_VENDOR; 956 *frm++ = 0; /* length filled in below */ 957 memcpy(frm, oui, sizeof(oui)); /* WPA OUI */ 958 frm += sizeof(oui); 959 ADDSHORT(frm, WPA_VERSION); 960 961 /* XXX filter out CKIP */ 962 963 /* multicast cipher */ 964 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && 965 rsn->rsn_mcastkeylen >= 13) 966 ADDSELECTOR(frm, wep104_suite); 967 else 968 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); 969 970 /* unicast cipher list */ 971 selcnt = frm; 972 ADDSHORT(frm, 0); /* selector count */ 973 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) { 974 selcnt[0]++; 975 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); 976 } 977 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) { 978 selcnt[0]++; 979 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); 980 } 981 982 /* authenticator selector list */ 983 selcnt = frm; 984 ADDSHORT(frm, 0); /* selector count */ 985 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { 986 selcnt[0]++; 987 ADDSELECTOR(frm, key_mgt_unspec); 988 } 989 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { 990 selcnt[0]++; 991 ADDSELECTOR(frm, key_mgt_psk); 992 } 993 994 /* optional capabilities */ 995 if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH) 996 ADDSHORT(frm, rsn->rsn_caps); 997 998 /* calculate element length */ 999 ie[1] = frm - ie - 2; 1000 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), 1001 ("WPA IE too big, %u > %zu", 1002 ie[1]+2, sizeof(struct ieee80211_ie_wpa))); 1003 return frm; 1004 #undef ADDSHORT 1005 #undef ADDSELECTOR 1006 #undef WPA_OUI_BYTES 1007 } 1008 1009 static u_int8_t * 1010 ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie) 1011 { 1012 #define RSN_OUI_BYTES 0x00, 0x0f, 0xac 1013 #define ADDSHORT(frm, v) do { \ 1014 frm[0] = (v) & 0xff; \ 1015 frm[1] = (v) >> 8; \ 1016 frm += 2; \ 1017 } while (0) 1018 #define ADDSELECTOR(frm, sel) do { \ 1019 memcpy(frm, sel, 4); \ 1020 frm += 4; \ 1021 } while (0) 1022 static const u_int8_t cipher_suite[][4] = { 1023 { RSN_OUI_BYTES, RSN_CSE_WEP40 }, /* NB: 40-bit */ 1024 { RSN_OUI_BYTES, RSN_CSE_TKIP }, 1025 { RSN_OUI_BYTES, RSN_CSE_WRAP }, 1026 { RSN_OUI_BYTES, RSN_CSE_CCMP }, 1027 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ 1028 { RSN_OUI_BYTES, RSN_CSE_NULL }, 1029 }; 1030 static const u_int8_t wep104_suite[4] = 1031 { RSN_OUI_BYTES, RSN_CSE_WEP104 }; 1032 static const u_int8_t key_mgt_unspec[4] = 1033 { RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC }; 1034 static const u_int8_t key_mgt_psk[4] = 1035 { RSN_OUI_BYTES, RSN_ASE_8021X_PSK }; 1036 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; 1037 u_int8_t *frm = ie; 1038 u_int8_t *selcnt; 1039 1040 *frm++ = IEEE80211_ELEMID_RSN; 1041 *frm++ = 0; /* length filled in below */ 1042 ADDSHORT(frm, RSN_VERSION); 1043 1044 /* XXX filter out CKIP */ 1045 1046 /* multicast cipher */ 1047 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && 1048 rsn->rsn_mcastkeylen >= 13) 1049 ADDSELECTOR(frm, wep104_suite); 1050 else 1051 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); 1052 1053 /* unicast cipher list */ 1054 selcnt = frm; 1055 ADDSHORT(frm, 0); /* selector count */ 1056 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) { 1057 selcnt[0]++; 1058 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); 1059 } 1060 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) { 1061 selcnt[0]++; 1062 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); 1063 } 1064 1065 /* authenticator selector list */ 1066 selcnt = frm; 1067 ADDSHORT(frm, 0); /* selector count */ 1068 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { 1069 selcnt[0]++; 1070 ADDSELECTOR(frm, key_mgt_unspec); 1071 } 1072 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { 1073 selcnt[0]++; 1074 ADDSELECTOR(frm, key_mgt_psk); 1075 } 1076 1077 /* optional capabilities */ 1078 ADDSHORT(frm, rsn->rsn_caps); 1079 /* XXX PMKID */ 1080 1081 /* calculate element length */ 1082 ie[1] = frm - ie - 2; 1083 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), 1084 ("RSN IE too big, %u > %zu", 1085 ie[1]+2, sizeof(struct ieee80211_ie_wpa))); 1086 return frm; 1087 #undef ADDSELECTOR 1088 #undef ADDSHORT 1089 #undef RSN_OUI_BYTES 1090 } 1091 1092 /* 1093 * Add a WPA/RSN element to a frame. 1094 */ 1095 static u_int8_t * 1096 ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic) 1097 { 1098 1099 IASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!")); 1100 if (ic->ic_flags & IEEE80211_F_WPA2) 1101 frm = ieee80211_setup_rsn_ie(ic, frm); 1102 if (ic->ic_flags & IEEE80211_F_WPA1) 1103 frm = ieee80211_setup_wpa_ie(ic, frm); 1104 return frm; 1105 } 1106 1107 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1108 /* 1109 * Add a WME information element to a frame. 1110 */ 1111 static u_int8_t * 1112 ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme) 1113 { 1114 static const struct ieee80211_wme_info info = { 1115 .wme_id = IEEE80211_ELEMID_VENDOR, 1116 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1117 .wme_oui = { WME_OUI_BYTES }, 1118 .wme_type = WME_OUI_TYPE, 1119 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1120 .wme_version = WME_VERSION, 1121 .wme_info = 0, 1122 }; 1123 memcpy(frm, &info, sizeof(info)); 1124 return frm + sizeof(info); 1125 } 1126 1127 /* 1128 * Add a WME parameters element to a frame. 1129 */ 1130 static u_int8_t * 1131 ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme) 1132 { 1133 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1134 #define ADDSHORT(frm, v) do { \ 1135 frm[0] = (v) & 0xff; \ 1136 frm[1] = (v) >> 8; \ 1137 frm += 2; \ 1138 } while (0) 1139 /* NB: this works 'cuz a param has an info at the front */ 1140 static const struct ieee80211_wme_info param = { 1141 .wme_id = IEEE80211_ELEMID_VENDOR, 1142 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1143 .wme_oui = { WME_OUI_BYTES }, 1144 .wme_type = WME_OUI_TYPE, 1145 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1146 .wme_version = WME_VERSION, 1147 }; 1148 int i; 1149 1150 memcpy(frm, ¶m, sizeof(param)); 1151 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1152 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1153 *frm++ = 0; /* reserved field */ 1154 for (i = 0; i < WME_NUM_AC; i++) { 1155 const struct wmeParams *ac = 1156 &wme->wme_bssChanParams.cap_wmeParams[i]; 1157 *frm++ = SM(i, WME_PARAM_ACI) 1158 | SM(ac->wmep_acm, WME_PARAM_ACM) 1159 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1160 ; 1161 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1162 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1163 ; 1164 ADDSHORT(frm, ac->wmep_txopLimit); 1165 } 1166 return frm; 1167 #undef SM 1168 #undef ADDSHORT 1169 } 1170 #undef WME_OUI_BYTES 1171 1172 /* 1173 * Send a probe request frame with the specified ssid 1174 * and any optional information element data. 1175 */ 1176 int 1177 ieee80211_send_probereq(struct ieee80211_node *ni, 1178 const u_int8_t sa[IEEE80211_ADDR_LEN], 1179 const u_int8_t da[IEEE80211_ADDR_LEN], 1180 const u_int8_t bssid[IEEE80211_ADDR_LEN], 1181 const u_int8_t *ssid, size_t ssidlen, 1182 const void *optie, size_t optielen) 1183 { 1184 struct ieee80211com *ic = ni->ni_ic; 1185 enum ieee80211_phymode mode; 1186 struct ieee80211_frame *wh; 1187 struct mbuf *m; 1188 u_int8_t *frm; 1189 1190 /* 1191 * Hold a reference on the node so it doesn't go away until after 1192 * the xmit is complete all the way in the driver. On error we 1193 * will remove our reference. 1194 */ 1195 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, 1196 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1197 __func__, __LINE__, 1198 ni, ether_sprintf(ni->ni_macaddr), 1199 ieee80211_node_refcnt(ni)+1); 1200 ieee80211_ref_node(ni); 1201 1202 /* 1203 * prreq frame format 1204 * [tlv] ssid 1205 * [tlv] supported rates 1206 * [tlv] extended supported rates 1207 * [tlv] user-specified ie's 1208 */ 1209 m = ieee80211_getmgtframe(&frm, 1210 2 + IEEE80211_NWID_LEN 1211 + 2 + IEEE80211_RATE_SIZE 1212 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1213 + (optie != NULL ? optielen : 0) 1214 ); 1215 if (m == NULL) { 1216 ic->ic_stats.is_tx_nobuf++; 1217 ieee80211_free_node(ni); 1218 return ENOMEM; 1219 } 1220 1221 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 1222 mode = ieee80211_chan2mode(ic, ic->ic_curchan); 1223 frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]); 1224 frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]); 1225 1226 if (optie != NULL) { 1227 memcpy(frm, optie, optielen); 1228 frm += optielen; 1229 } 1230 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1231 1232 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 1233 if (m == NULL) 1234 return ENOMEM; 1235 IASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null")); 1236 m->m_pkthdr.rcvif = (void *)ni; 1237 1238 wh = mtod(m, struct ieee80211_frame *); 1239 ieee80211_send_setup(ic, ni, wh, 1240 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 1241 sa, da, bssid); 1242 /* XXX power management? */ 1243 1244 IEEE80211_NODE_STAT(ni, tx_probereq); 1245 IEEE80211_NODE_STAT(ni, tx_mgmt); 1246 1247 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 1248 "[%s] send probe req on channel %u\n", 1249 ether_sprintf(wh->i_addr1), 1250 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1251 1252 IF_ENQUEUE(&ic->ic_mgtq, m); 1253 (*ic->ic_ifp->if_start)(ic->ic_ifp); 1254 return 0; 1255 } 1256 1257 /* 1258 * Send a management frame. The node is for the destination (or ic_bss 1259 * when in station mode). Nodes other than ic_bss have their reference 1260 * count bumped to reflect our use for an indeterminant time. 1261 */ 1262 int 1263 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni, 1264 int type, int arg) 1265 { 1266 #define senderr(_x, _v) do { ic->ic_stats._v++; ret = _x; goto bad; } while (0) 1267 struct mbuf *m; 1268 u_int8_t *frm; 1269 u_int16_t capinfo; 1270 int has_challenge, is_shared_key, ret, timer, status; 1271 1272 IASSERT(ni != NULL, ("null node")); 1273 1274 /* 1275 * Hold a reference on the node so it doesn't go away until after 1276 * the xmit is complete all the way in the driver. On error we 1277 * will remove our reference. 1278 */ 1279 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, 1280 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1281 __func__, __LINE__, 1282 ni, ether_sprintf(ni->ni_macaddr), 1283 ieee80211_node_refcnt(ni)+1); 1284 ieee80211_ref_node(ni); 1285 1286 timer = 0; 1287 switch (type) { 1288 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 1289 /* 1290 * probe response frame format 1291 * [8] time stamp 1292 * [2] beacon interval 1293 * [2] cabability information 1294 * [tlv] ssid 1295 * [tlv] supported rates 1296 * [tlv] parameter set (FH/DS) 1297 * [tlv] parameter set (IBSS) 1298 * [tlv] extended rate phy (ERP) 1299 * [tlv] extended supported rates 1300 * [tlv] WPA 1301 * [tlv] WME (optional) 1302 */ 1303 m = ieee80211_getmgtframe(&frm, 1304 8 1305 + sizeof(u_int16_t) 1306 + sizeof(u_int16_t) 1307 + 2 + IEEE80211_NWID_LEN 1308 + 2 + IEEE80211_RATE_SIZE 1309 + 7 /* max(7,3) */ 1310 + 6 1311 + 3 1312 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1313 /* XXX !WPA1+WPA2 fits w/o a cluster */ 1314 + (ic->ic_flags & IEEE80211_F_WPA ? 1315 2*sizeof(struct ieee80211_ie_wpa) : 0) 1316 + sizeof(struct ieee80211_wme_param) 1317 ); 1318 if (m == NULL) 1319 senderr(ENOMEM, is_tx_nobuf); 1320 1321 memset(frm, 0, 8); /* timestamp should be filled later */ 1322 frm += 8; 1323 *(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval); 1324 frm += 2; 1325 if (ic->ic_opmode == IEEE80211_M_IBSS) 1326 capinfo = IEEE80211_CAPINFO_IBSS; 1327 else 1328 capinfo = IEEE80211_CAPINFO_ESS; 1329 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1330 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1331 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1332 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1333 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1334 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1335 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1336 *(u_int16_t *)frm = htole16(capinfo); 1337 frm += 2; 1338 1339 frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid, 1340 ic->ic_bss->ni_esslen); 1341 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1342 1343 if (ic->ic_phytype == IEEE80211_T_FH) { 1344 *frm++ = IEEE80211_ELEMID_FHPARMS; 1345 *frm++ = 5; 1346 *frm++ = ni->ni_fhdwell & 0x00ff; 1347 *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff; 1348 *frm++ = IEEE80211_FH_CHANSET( 1349 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1350 *frm++ = IEEE80211_FH_CHANPAT( 1351 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1352 *frm++ = ni->ni_fhindex; 1353 } else { 1354 *frm++ = IEEE80211_ELEMID_DSPARMS; 1355 *frm++ = 1; 1356 *frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan); 1357 } 1358 1359 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1360 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1361 *frm++ = 2; 1362 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1363 } 1364 if (ic->ic_flags & IEEE80211_F_WPA) 1365 frm = ieee80211_add_wpa(frm, ic); 1366 if (ic->ic_curmode == IEEE80211_MODE_11G) 1367 frm = ieee80211_add_erp(frm, ic); 1368 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1369 if (ic->ic_flags & IEEE80211_F_WME) 1370 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1371 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1372 break; 1373 1374 case IEEE80211_FC0_SUBTYPE_AUTH: 1375 status = arg >> 16; 1376 arg &= 0xffff; 1377 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 1378 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 1379 ni->ni_challenge != NULL); 1380 1381 /* 1382 * Deduce whether we're doing open authentication or 1383 * shared key authentication. We do the latter if 1384 * we're in the middle of a shared key authentication 1385 * handshake or if we're initiating an authentication 1386 * request and configured to use shared key. 1387 */ 1388 is_shared_key = has_challenge || 1389 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 1390 (arg == IEEE80211_AUTH_SHARED_REQUEST && 1391 ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED); 1392 1393 m = ieee80211_getmgtframe(&frm, 1394 3 * sizeof(u_int16_t) 1395 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 1396 sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0) 1397 ); 1398 if (m == NULL) 1399 senderr(ENOMEM, is_tx_nobuf); 1400 1401 ((u_int16_t *)frm)[0] = 1402 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 1403 : htole16(IEEE80211_AUTH_ALG_OPEN); 1404 ((u_int16_t *)frm)[1] = htole16(arg); /* sequence number */ 1405 ((u_int16_t *)frm)[2] = htole16(status);/* status */ 1406 1407 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 1408 ((u_int16_t *)frm)[3] = 1409 htole16((IEEE80211_CHALLENGE_LEN << 8) | 1410 IEEE80211_ELEMID_CHALLENGE); 1411 memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge, 1412 IEEE80211_CHALLENGE_LEN); 1413 m->m_pkthdr.len = m->m_len = 1414 4 * sizeof(u_int16_t) + IEEE80211_CHALLENGE_LEN; 1415 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 1416 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 1417 "[%s] request encrypt frame (%s)\n", 1418 ether_sprintf(ni->ni_macaddr), __func__); 1419 m->m_flags |= M_LINK0; /* WEP-encrypt, please */ 1420 } 1421 } else 1422 m->m_pkthdr.len = m->m_len = 3 * sizeof(u_int16_t); 1423 1424 /* XXX not right for shared key */ 1425 if (status == IEEE80211_STATUS_SUCCESS) 1426 IEEE80211_NODE_STAT(ni, tx_auth); 1427 else 1428 IEEE80211_NODE_STAT(ni, tx_auth_fail); 1429 1430 if (ic->ic_opmode == IEEE80211_M_STA) 1431 timer = IEEE80211_TRANS_WAIT; 1432 break; 1433 1434 case IEEE80211_FC0_SUBTYPE_DEAUTH: 1435 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 1436 "[%s] send station deauthenticate (reason %d)\n", 1437 ether_sprintf(ni->ni_macaddr), arg); 1438 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t)); 1439 if (m == NULL) 1440 senderr(ENOMEM, is_tx_nobuf); 1441 *(u_int16_t *)frm = htole16(arg); /* reason */ 1442 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t); 1443 1444 IEEE80211_NODE_STAT(ni, tx_deauth); 1445 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 1446 1447 ieee80211_node_unauthorize(ni); /* port closed */ 1448 break; 1449 1450 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 1451 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 1452 /* 1453 * asreq frame format 1454 * [2] capability information 1455 * [2] listen interval 1456 * [6*] current AP address (reassoc only) 1457 * [tlv] ssid 1458 * [tlv] supported rates 1459 * [tlv] extended supported rates 1460 * [tlv] WME 1461 * [tlv] user-specified ie's 1462 */ 1463 m = ieee80211_getmgtframe(&frm, 1464 sizeof(u_int16_t) 1465 + sizeof(u_int16_t) 1466 + IEEE80211_ADDR_LEN 1467 + 2 + IEEE80211_NWID_LEN 1468 + 2 + IEEE80211_RATE_SIZE 1469 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1470 + sizeof(struct ieee80211_wme_info) 1471 + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0) 1472 ); 1473 if (m == NULL) 1474 senderr(ENOMEM, is_tx_nobuf); 1475 1476 capinfo = 0; 1477 if (ic->ic_opmode == IEEE80211_M_IBSS) 1478 capinfo |= IEEE80211_CAPINFO_IBSS; 1479 else /* IEEE80211_M_STA */ 1480 capinfo |= IEEE80211_CAPINFO_ESS; 1481 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1482 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1483 /* 1484 * NB: Some 11a AP's reject the request when 1485 * short premable is set. 1486 */ 1487 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1488 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1489 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1490 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) && 1491 (ic->ic_caps & IEEE80211_C_SHSLOT)) 1492 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1493 *(u_int16_t *)frm = htole16(capinfo); 1494 frm += 2; 1495 1496 *(u_int16_t *)frm = htole16(ic->ic_lintval); 1497 frm += 2; 1498 1499 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 1500 IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid); 1501 frm += IEEE80211_ADDR_LEN; 1502 } 1503 1504 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 1505 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1506 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1507 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) 1508 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 1509 if (ic->ic_opt_ie != NULL) { 1510 memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len); 1511 frm += ic->ic_opt_ie_len; 1512 } 1513 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1514 1515 timer = IEEE80211_TRANS_WAIT; 1516 break; 1517 1518 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 1519 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 1520 /* 1521 * asreq frame format 1522 * [2] capability information 1523 * [2] status 1524 * [2] association ID 1525 * [tlv] supported rates 1526 * [tlv] extended supported rates 1527 * [tlv] WME (if enabled and STA enabled) 1528 */ 1529 m = ieee80211_getmgtframe(&frm, 1530 sizeof(u_int16_t) 1531 + sizeof(u_int16_t) 1532 + sizeof(u_int16_t) 1533 + 2 + IEEE80211_RATE_SIZE 1534 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1535 + sizeof(struct ieee80211_wme_param) 1536 ); 1537 if (m == NULL) 1538 senderr(ENOMEM, is_tx_nobuf); 1539 1540 capinfo = IEEE80211_CAPINFO_ESS; 1541 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1542 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1543 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1544 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1545 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1546 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1547 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1548 *(u_int16_t *)frm = htole16(capinfo); 1549 frm += 2; 1550 1551 *(u_int16_t *)frm = htole16(arg); /* status */ 1552 frm += 2; 1553 1554 if (arg == IEEE80211_STATUS_SUCCESS) { 1555 *(u_int16_t *)frm = htole16(ni->ni_associd); 1556 IEEE80211_NODE_STAT(ni, tx_assoc); 1557 } else 1558 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 1559 frm += 2; 1560 1561 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1562 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1563 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) 1564 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1565 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1566 break; 1567 1568 case IEEE80211_FC0_SUBTYPE_DISASSOC: 1569 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC, 1570 "[%s] send station disassociate (reason %d)\n", 1571 ether_sprintf(ni->ni_macaddr), arg); 1572 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t)); 1573 if (m == NULL) 1574 senderr(ENOMEM, is_tx_nobuf); 1575 *(u_int16_t *)frm = htole16(arg); /* reason */ 1576 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t); 1577 1578 IEEE80211_NODE_STAT(ni, tx_disassoc); 1579 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 1580 break; 1581 1582 default: 1583 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1584 "[%s] invalid mgmt frame type %u\n", 1585 ether_sprintf(ni->ni_macaddr), type); 1586 senderr(EINVAL, is_tx_unknownmgt); 1587 /* NOTREACHED */ 1588 } 1589 1590 ret = ieee80211_mgmt_output(ic, ni, m, type); 1591 if (ret == 0) { 1592 if (timer) 1593 ic->ic_mgt_timer = timer; 1594 } else { 1595 bad: 1596 ieee80211_free_node(ni); 1597 } 1598 return ret; 1599 #undef senderr 1600 } 1601 1602 /* 1603 * Allocate a beacon frame and fillin the appropriate bits. 1604 */ 1605 struct mbuf * 1606 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni, 1607 struct ieee80211_beacon_offsets *bo) 1608 { 1609 struct ifnet *ifp = ic->ic_ifp; 1610 struct ieee80211_frame *wh; 1611 struct mbuf *m; 1612 int pktlen; 1613 u_int8_t *frm, *efrm; 1614 u_int16_t capinfo; 1615 struct ieee80211_rateset *rs; 1616 1617 /* 1618 * beacon frame format 1619 * [8] time stamp 1620 * [2] beacon interval 1621 * [2] cabability information 1622 * [tlv] ssid 1623 * [tlv] supported rates 1624 * [3] parameter set (DS) 1625 * [tlv] parameter set (IBSS/TIM) 1626 * [tlv] extended rate phy (ERP) 1627 * [tlv] extended supported rates 1628 * [tlv] WME parameters 1629 * [tlv] WPA/RSN parameters 1630 * XXX Vendor-specific OIDs (e.g. Atheros) 1631 * NB: we allocate the max space required for the TIM bitmap. 1632 */ 1633 rs = &ni->ni_rates; 1634 pktlen = 8 /* time stamp */ 1635 + sizeof(u_int16_t) /* beacon interval */ 1636 + sizeof(u_int16_t) /* capabilities */ 1637 + 2 + ni->ni_esslen /* ssid */ 1638 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 1639 + 2 + 1 /* DS parameters */ 1640 + 2 + 4 + ic->ic_tim_len /* DTIM/IBSSPARMS */ 1641 + 2 + 1 /* ERP */ 1642 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1643 + (ic->ic_caps & IEEE80211_C_WME ? /* WME */ 1644 sizeof(struct ieee80211_wme_param) : 0) 1645 + (ic->ic_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 1646 2*sizeof(struct ieee80211_ie_wpa) : 0) 1647 ; 1648 m = ieee80211_getmgtframe(&frm, pktlen); 1649 if (m == NULL) { 1650 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1651 "%s: cannot get buf; size %u\n", __func__, pktlen); 1652 ic->ic_stats.is_tx_nobuf++; 1653 return NULL; 1654 } 1655 1656 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 1657 frm += 8; 1658 *(u_int16_t *)frm = htole16(ni->ni_intval); 1659 frm += 2; 1660 if (ic->ic_opmode == IEEE80211_M_IBSS) 1661 capinfo = IEEE80211_CAPINFO_IBSS; 1662 else 1663 capinfo = IEEE80211_CAPINFO_ESS; 1664 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1665 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1666 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1667 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 1668 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1669 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1670 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1671 bo->bo_caps = (u_int16_t *)frm; 1672 *(u_int16_t *)frm = htole16(capinfo); 1673 frm += 2; 1674 *frm++ = IEEE80211_ELEMID_SSID; 1675 if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) { 1676 *frm++ = ni->ni_esslen; 1677 memcpy(frm, ni->ni_essid, ni->ni_esslen); 1678 frm += ni->ni_esslen; 1679 } else 1680 *frm++ = 0; 1681 frm = ieee80211_add_rates(frm, rs); 1682 if (ic->ic_curmode != IEEE80211_MODE_FH) { 1683 *frm++ = IEEE80211_ELEMID_DSPARMS; 1684 *frm++ = 1; 1685 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 1686 } 1687 bo->bo_tim = frm; 1688 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1689 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1690 *frm++ = 2; 1691 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1692 bo->bo_tim_len = 0; 1693 } else { 1694 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 1695 1696 tie->tim_ie = IEEE80211_ELEMID_TIM; 1697 tie->tim_len = 4; /* length */ 1698 tie->tim_count = 0; /* DTIM count */ 1699 tie->tim_period = ic->ic_dtim_period; /* DTIM period */ 1700 tie->tim_bitctl = 0; /* bitmap control */ 1701 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 1702 frm += sizeof(struct ieee80211_tim_ie); 1703 bo->bo_tim_len = 1; 1704 } 1705 bo->bo_trailer = frm; 1706 if (ic->ic_flags & IEEE80211_F_WME) { 1707 bo->bo_wme = frm; 1708 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1709 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; 1710 } 1711 if (ic->ic_flags & IEEE80211_F_WPA) 1712 frm = ieee80211_add_wpa(frm, ic); 1713 if (ic->ic_curmode == IEEE80211_MODE_11G) 1714 frm = ieee80211_add_erp(frm, ic); 1715 efrm = ieee80211_add_xrates(frm, rs); 1716 bo->bo_trailer_len = efrm - bo->bo_trailer; 1717 m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *); 1718 1719 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 1720 IASSERT(m != NULL, ("no space for 802.11 header?")); 1721 wh = mtod(m, struct ieee80211_frame *); 1722 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 1723 IEEE80211_FC0_SUBTYPE_BEACON; 1724 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1725 *(u_int16_t *)wh->i_dur = 0; 1726 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 1727 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 1728 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 1729 *(u_int16_t *)wh->i_seq = 0; 1730 1731 return m; 1732 } 1733 1734 /* 1735 * Update the dynamic parts of a beacon frame based on the current state. 1736 */ 1737 int 1738 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni, 1739 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) 1740 { 1741 int len_changed = 0; 1742 u_int16_t capinfo; 1743 1744 IEEE80211_BEACON_LOCK(ic); 1745 /* XXX faster to recalculate entirely or just changes? */ 1746 if (ic->ic_opmode == IEEE80211_M_IBSS) 1747 capinfo = IEEE80211_CAPINFO_IBSS; 1748 else 1749 capinfo = IEEE80211_CAPINFO_ESS; 1750 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1751 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1752 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1753 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 1754 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1755 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1756 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1757 *bo->bo_caps = htole16(capinfo); 1758 1759 if (ic->ic_flags & IEEE80211_F_WME) { 1760 struct ieee80211_wme_state *wme = &ic->ic_wme; 1761 1762 /* 1763 * Check for agressive mode change. When there is 1764 * significant high priority traffic in the BSS 1765 * throttle back BE traffic by using conservative 1766 * parameters. Otherwise BE uses agressive params 1767 * to optimize performance of legacy/non-QoS traffic. 1768 */ 1769 if (wme->wme_flags & WME_F_AGGRMODE) { 1770 if (wme->wme_hipri_traffic > 1771 wme->wme_hipri_switch_thresh) { 1772 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, 1773 "%s: traffic %u, disable aggressive mode\n", 1774 __func__, wme->wme_hipri_traffic); 1775 wme->wme_flags &= ~WME_F_AGGRMODE; 1776 ieee80211_wme_updateparams_locked(ic); 1777 wme->wme_hipri_traffic = 1778 wme->wme_hipri_switch_hysteresis; 1779 } else 1780 wme->wme_hipri_traffic = 0; 1781 } else { 1782 if (wme->wme_hipri_traffic <= 1783 wme->wme_hipri_switch_thresh) { 1784 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, 1785 "%s: traffic %u, enable aggressive mode\n", 1786 __func__, wme->wme_hipri_traffic); 1787 wme->wme_flags |= WME_F_AGGRMODE; 1788 ieee80211_wme_updateparams_locked(ic); 1789 wme->wme_hipri_traffic = 0; 1790 } else 1791 wme->wme_hipri_traffic = 1792 wme->wme_hipri_switch_hysteresis; 1793 } 1794 if (ic->ic_flags & IEEE80211_F_WMEUPDATE) { 1795 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 1796 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; 1797 } 1798 } 1799 1800 #ifndef IEEE80211_NO_HOSTAP 1801 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/ 1802 struct ieee80211_tim_ie *tie = 1803 (struct ieee80211_tim_ie *) bo->bo_tim; 1804 if (ic->ic_flags & IEEE80211_F_TIMUPDATE) { 1805 u_int timlen, timoff, i; 1806 /* 1807 * ATIM/DTIM needs updating. If it fits in the 1808 * current space allocated then just copy in the 1809 * new bits. Otherwise we need to move any trailing 1810 * data to make room. Note that we know there is 1811 * contiguous space because ieee80211_beacon_allocate 1812 * insures there is space in the mbuf to write a 1813 * maximal-size virtual bitmap (based on ic_max_aid). 1814 */ 1815 /* 1816 * Calculate the bitmap size and offset, copy any 1817 * trailer out of the way, and then copy in the 1818 * new bitmap and update the information element. 1819 * Note that the tim bitmap must contain at least 1820 * one byte and any offset must be even. 1821 */ 1822 if (ic->ic_ps_pending != 0) { 1823 timoff = 128; /* impossibly large */ 1824 for (i = 0; i < ic->ic_tim_len; i++) 1825 if (ic->ic_tim_bitmap[i]) { 1826 timoff = i &~ 1; 1827 break; 1828 } 1829 IASSERT(timoff != 128, ("tim bitmap empty!")); 1830 for (i = ic->ic_tim_len-1; i >= timoff; i--) 1831 if (ic->ic_tim_bitmap[i]) 1832 break; 1833 timlen = 1 + (i - timoff); 1834 } else { 1835 timoff = 0; 1836 timlen = 1; 1837 } 1838 if (timlen != bo->bo_tim_len) { 1839 /* copy up/down trailer */ 1840 ovbcopy(bo->bo_trailer, tie->tim_bitmap+timlen, 1841 bo->bo_trailer_len); 1842 bo->bo_trailer = tie->tim_bitmap+timlen; 1843 bo->bo_wme = bo->bo_trailer; 1844 bo->bo_tim_len = timlen; 1845 1846 /* update information element */ 1847 tie->tim_len = 3 + timlen; 1848 tie->tim_bitctl = timoff; 1849 len_changed = 1; 1850 } 1851 memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff, 1852 bo->bo_tim_len); 1853 1854 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE; 1855 1856 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, 1857 "%s: TIM updated, pending %u, off %u, len %u\n", 1858 __func__, ic->ic_ps_pending, timoff, timlen); 1859 } 1860 /* count down DTIM period */ 1861 if (tie->tim_count == 0) 1862 tie->tim_count = tie->tim_period - 1; 1863 else 1864 tie->tim_count--; 1865 /* update state for buffered multicast frames on DTIM */ 1866 if (mcast && (tie->tim_count == 1 || tie->tim_period == 1)) 1867 tie->tim_bitctl |= 1; 1868 else 1869 tie->tim_bitctl &= ~1; 1870 } 1871 #endif /* !IEEE80211_NO_HOSTAP */ 1872 IEEE80211_BEACON_UNLOCK(ic); 1873 1874 return len_changed; 1875 } 1876 1877 /* 1878 * Save an outbound packet for a node in power-save sleep state. 1879 * The new packet is placed on the node's saved queue, and the TIM 1880 * is changed, if necessary. 1881 */ 1882 void 1883 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni, 1884 struct mbuf *m) 1885 { 1886 int qlen, age; 1887 1888 IEEE80211_NODE_SAVEQ_LOCK(ni); 1889 if (IF_QFULL(&ni->ni_savedq)) { 1890 IF_DROP(&ni->ni_savedq); 1891 IEEE80211_NODE_SAVEQ_UNLOCK(ni); 1892 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1893 "[%s] pwr save q overflow, drops %d (size %d)\n", 1894 ether_sprintf(ni->ni_macaddr), 1895 ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE); 1896 #ifdef IEEE80211_DEBUG 1897 if (ieee80211_msg_dumppkts(ic)) 1898 ieee80211_dump_pkt(mtod(m, caddr_t), m->m_len, -1, -1); 1899 #endif 1900 m_freem(m); 1901 return; 1902 } 1903 /* 1904 * Tag the frame with it's expiry time and insert 1905 * it in the queue. The aging interval is 4 times 1906 * the listen interval specified by the station. 1907 * Frames that sit around too long are reclaimed 1908 * using this information. 1909 */ 1910 /* XXX handle overflow? */ 1911 age = ((ni->ni_intval * ic->ic_bintval) << 2) / 1024; /* TU -> secs */ 1912 _IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age); 1913 IEEE80211_NODE_SAVEQ_UNLOCK(ni); 1914 1915 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, 1916 "[%s] save frame with age %d, %u now queued\n", 1917 ether_sprintf(ni->ni_macaddr), age, qlen); 1918 1919 if (qlen == 1) 1920 ic->ic_set_tim(ni, 1); 1921 } 1922