1 /* $NetBSD: ieee80211_output.c,v 1.53 2015/08/24 22:21:26 pooka Exp $ */ 2 /*- 3 * Copyright (c) 2001 Atsushi Onoe 4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * Alternatively, this software may be distributed under the terms of the 19 * GNU General Public License ("GPL") version 2 as published by the Free 20 * Software Foundation. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 #ifdef __FreeBSD__ 36 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.34 2005/08/10 16:22:29 sam Exp $"); 37 #endif 38 #ifdef __NetBSD__ 39 __KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.53 2015/08/24 22:21:26 pooka Exp $"); 40 #endif 41 42 #ifdef _KERNEL_OPT 43 #include "opt_inet.h" 44 #endif 45 46 #ifdef __NetBSD__ 47 #endif /* __NetBSD__ */ 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/mbuf.h> 52 #include <sys/kernel.h> 53 #include <sys/endian.h> 54 #include <sys/errno.h> 55 #include <sys/proc.h> 56 #include <sys/sysctl.h> 57 58 #include <net/if.h> 59 #include <net/if_llc.h> 60 #include <net/if_media.h> 61 #include <net/if_arp.h> 62 #include <net/if_ether.h> 63 #include <net/if_llc.h> 64 #include <net/if_vlanvar.h> 65 66 #include <net80211/ieee80211_netbsd.h> 67 #include <net80211/ieee80211_var.h> 68 69 #include <net/bpf.h> 70 71 #ifdef INET 72 #include <netinet/in.h> 73 #include <netinet/in_systm.h> 74 #include <netinet/in_var.h> 75 #include <netinet/ip.h> 76 #include <net/if_ether.h> 77 #endif 78 79 static int ieee80211_fragment(struct ieee80211com *, struct mbuf *, 80 u_int hdrsize, u_int ciphdrsize, u_int mtu); 81 82 #ifdef IEEE80211_DEBUG 83 /* 84 * Decide if an outbound management frame should be 85 * printed when debugging is enabled. This filters some 86 * of the less interesting frames that come frequently 87 * (e.g. beacons). 88 */ 89 static __inline int 90 doprint(struct ieee80211com *ic, int subtype) 91 { 92 switch (subtype) { 93 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 94 return (ic->ic_opmode == IEEE80211_M_IBSS); 95 } 96 return 1; 97 } 98 #endif 99 100 /* 101 * Set the direction field and address fields of an outgoing 102 * non-QoS frame. Note this should be called early on in 103 * constructing a frame as it sets i_fc[1]; other bits can 104 * then be or'd in. 105 */ 106 static void 107 ieee80211_send_setup(struct ieee80211com *ic, 108 struct ieee80211_node *ni, 109 struct ieee80211_frame *wh, 110 int type, 111 const u_int8_t sa[IEEE80211_ADDR_LEN], 112 const u_int8_t da[IEEE80211_ADDR_LEN], 113 const u_int8_t bssid[IEEE80211_ADDR_LEN]) 114 { 115 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 116 117 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 118 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 119 switch (ic->ic_opmode) { 120 case IEEE80211_M_STA: 121 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 122 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 123 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 124 IEEE80211_ADDR_COPY(wh->i_addr3, da); 125 break; 126 case IEEE80211_M_IBSS: 127 case IEEE80211_M_AHDEMO: 128 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 129 IEEE80211_ADDR_COPY(wh->i_addr1, da); 130 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 131 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 132 break; 133 case IEEE80211_M_HOSTAP: 134 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 135 IEEE80211_ADDR_COPY(wh->i_addr1, da); 136 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 137 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 138 break; 139 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 140 break; 141 } 142 } else { 143 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 144 IEEE80211_ADDR_COPY(wh->i_addr1, da); 145 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 146 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 147 } 148 *(u_int16_t *)&wh->i_dur[0] = 0; 149 /* NB: use non-QoS tid */ 150 *(u_int16_t *)&wh->i_seq[0] = 151 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 152 ni->ni_txseqs[0]++; 153 #undef WH4 154 } 155 156 /* 157 * Send a management frame to the specified node. The node pointer 158 * must have a reference as the pointer will be passed to the driver 159 * and potentially held for a long time. If the frame is successfully 160 * dispatched to the driver, then it is responsible for freeing the 161 * reference (and potentially free'ing up any associated storage). 162 */ 163 static int 164 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni, 165 struct mbuf *m, int type, int timer) 166 { 167 struct ifnet *ifp = ic->ic_ifp; 168 struct ieee80211_frame *wh; 169 170 IASSERT(ni != NULL, ("null node")); 171 172 /* 173 * Yech, hack alert! We want to pass the node down to the 174 * driver's start routine. If we don't do so then the start 175 * routine must immediately look it up again and that can 176 * cause a lock order reversal if, for example, this frame 177 * is being sent because the station is being timedout and 178 * the frame being sent is a DEAUTH message. We could stick 179 * this in an m_tag and tack that on to the mbuf. However 180 * that's rather expensive to do for every frame so instead 181 * we stuff it in the rcvif field since outbound frames do 182 * not (presently) use this. 183 */ 184 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 185 if (m == NULL) 186 return ENOMEM; 187 #ifdef __FreeBSD__ 188 KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null")); 189 #endif 190 m->m_pkthdr.rcvif = (void *)ni; 191 192 wh = mtod(m, struct ieee80211_frame *); 193 ieee80211_send_setup(ic, ni, wh, 194 IEEE80211_FC0_TYPE_MGT | type, 195 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); 196 if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) { 197 m->m_flags &= ~M_LINK0; 198 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 199 "[%s] encrypting frame (%s)\n", 200 ether_sprintf(wh->i_addr1), __func__); 201 wh->i_fc[1] |= IEEE80211_FC1_WEP; 202 } 203 #ifdef IEEE80211_DEBUG 204 /* avoid printing too many frames */ 205 if ((ieee80211_msg_debug(ic) && doprint(ic, type)) || 206 ieee80211_msg_dumppkts(ic)) { 207 printf("[%s] send %s on channel %u\n", 208 ether_sprintf(wh->i_addr1), 209 ieee80211_mgt_subtype_name[ 210 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 211 IEEE80211_FC0_SUBTYPE_SHIFT], 212 ieee80211_chan2ieee(ic, ic->ic_curchan)); 213 } 214 #endif 215 IEEE80211_NODE_STAT(ni, tx_mgmt); 216 IF_ENQUEUE(&ic->ic_mgtq, m); 217 if (timer) { 218 /* 219 * Set the mgt frame timeout. 220 */ 221 ic->ic_mgt_timer = timer; 222 ifp->if_timer = 1; 223 } 224 (*ifp->if_start)(ifp); 225 return 0; 226 } 227 228 /* 229 * Send a null data frame to the specified node. 230 * 231 * NB: the caller is assumed to have setup a node reference 232 * for use; this is necessary to deal with a race condition 233 * when probing for inactive stations. 234 */ 235 int 236 ieee80211_send_nulldata(struct ieee80211_node *ni) 237 { 238 struct ieee80211com *ic = ni->ni_ic; 239 struct ifnet *ifp = ic->ic_ifp; 240 struct mbuf *m; 241 struct ieee80211_frame *wh; 242 243 MGETHDR(m, M_NOWAIT, MT_HEADER); 244 if (m == NULL) { 245 /* XXX debug msg */ 246 ic->ic_stats.is_tx_nobuf++; 247 ieee80211_unref_node(&ni); 248 return ENOMEM; 249 } 250 m->m_pkthdr.rcvif = (void *) ni; 251 252 wh = mtod(m, struct ieee80211_frame *); 253 ieee80211_send_setup(ic, ni, wh, 254 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 255 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); 256 /* NB: power management bit is never sent by an AP */ 257 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 258 ic->ic_opmode != IEEE80211_M_HOSTAP) 259 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 260 m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame); 261 262 IEEE80211_NODE_STAT(ni, tx_data); 263 264 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 265 "[%s] send null data frame on channel %u, pwr mgt %s\n", 266 ether_sprintf(ni->ni_macaddr), 267 ieee80211_chan2ieee(ic, ic->ic_curchan), 268 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 269 270 IF_ENQUEUE(&ic->ic_mgtq, m); /* cheat */ 271 (*ifp->if_start)(ifp); 272 273 return 0; 274 } 275 276 /* 277 * Assign priority to a frame based on any vlan tag assigned 278 * to the station and/or any Diffserv setting in an IP header. 279 * Finally, if an ACM policy is setup (in station mode) it's 280 * applied. 281 */ 282 int 283 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni) 284 { 285 int v_wme_ac, d_wme_ac, ac; 286 #ifdef INET 287 struct ether_header *eh; 288 #endif 289 290 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 291 ac = WME_AC_BE; 292 goto done; 293 } 294 295 /* 296 * If node has a vlan tag then all traffic 297 * to it must have a matching tag. 298 */ 299 v_wme_ac = 0; 300 if (ni->ni_vlan != 0) { 301 /* XXX used to check ec_nvlans. */ 302 struct m_tag *mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL); 303 if (mtag == NULL) { 304 IEEE80211_NODE_STAT(ni, tx_novlantag); 305 return 1; 306 } 307 if (EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag)) != 308 EVL_VLANOFTAG(ni->ni_vlan)) { 309 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 310 return 1; 311 } 312 /* map vlan priority to AC */ 313 switch (EVL_PRIOFTAG(ni->ni_vlan)) { 314 case 1: 315 case 2: 316 v_wme_ac = WME_AC_BK; 317 break; 318 case 0: 319 case 3: 320 v_wme_ac = WME_AC_BE; 321 break; 322 case 4: 323 case 5: 324 v_wme_ac = WME_AC_VI; 325 break; 326 case 6: 327 case 7: 328 v_wme_ac = WME_AC_VO; 329 break; 330 } 331 } 332 333 #ifdef INET 334 eh = mtod(m, struct ether_header *); 335 if (eh->ether_type == htons(ETHERTYPE_IP)) { 336 const struct ip *ip = (struct ip *) 337 (mtod(m, u_int8_t *) + sizeof (*eh)); 338 /* 339 * IP frame, map the TOS field. 340 */ 341 switch (ip->ip_tos) { 342 case 0x08: 343 case 0x20: 344 d_wme_ac = WME_AC_BK; /* background */ 345 break; 346 case 0x28: 347 case 0xa0: 348 d_wme_ac = WME_AC_VI; /* video */ 349 break; 350 case 0x30: /* voice */ 351 case 0xe0: 352 case 0x88: /* XXX UPSD */ 353 case 0xb8: 354 d_wme_ac = WME_AC_VO; 355 break; 356 default: 357 d_wme_ac = WME_AC_BE; 358 break; 359 } 360 } else { 361 #endif /* INET */ 362 d_wme_ac = WME_AC_BE; 363 #ifdef INET 364 } 365 #endif 366 /* 367 * Use highest priority AC. 368 */ 369 if (v_wme_ac > d_wme_ac) 370 ac = v_wme_ac; 371 else 372 ac = d_wme_ac; 373 374 /* 375 * Apply ACM policy. 376 */ 377 if (ic->ic_opmode == IEEE80211_M_STA) { 378 static const int acmap[4] = { 379 WME_AC_BK, /* WME_AC_BE */ 380 WME_AC_BK, /* WME_AC_BK */ 381 WME_AC_BE, /* WME_AC_VI */ 382 WME_AC_VI, /* WME_AC_VO */ 383 }; 384 while (ac != WME_AC_BK && 385 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 386 ac = acmap[ac]; 387 } 388 done: 389 M_WME_SETAC(m, ac); 390 return 0; 391 } 392 393 /* 394 * Insure there is sufficient contiguous space to encapsulate the 395 * 802.11 data frame. If room isn't already there, arrange for it. 396 * Drivers and cipher modules assume we have done the necessary work 397 * and fail rudely if they don't find the space they need. 398 */ 399 static struct mbuf * 400 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize, 401 struct ieee80211_key *key, struct mbuf *m) 402 { 403 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 404 int needed_space = hdrsize; 405 int wlen = 0; 406 407 if (key != NULL) { 408 /* XXX belongs in crypto code? */ 409 needed_space += key->wk_cipher->ic_header; 410 /* XXX frags */ 411 } 412 /* 413 * We know we are called just before stripping an Ethernet 414 * header and prepending an LLC header. This means we know 415 * there will be 416 * sizeof(struct ether_header) - sizeof(struct llc) 417 * bytes recovered to which we need additional space for the 418 * 802.11 header and any crypto header. 419 */ 420 /* XXX check trailing space and copy instead? */ 421 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 422 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 423 if (n == NULL) { 424 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 425 "%s: cannot expand storage\n", __func__); 426 ic->ic_stats.is_tx_nobuf++; 427 m_freem(m); 428 return NULL; 429 } 430 IASSERT(needed_space <= MHLEN, 431 ("not enough room, need %u got %zu\n", needed_space, MHLEN)); 432 /* 433 * Setup new mbuf to have leading space to prepend the 434 * 802.11 header and any crypto header bits that are 435 * required (the latter are added when the driver calls 436 * back to ieee80211_crypto_encap to do crypto encapsulation). 437 */ 438 /* NB: must be first 'cuz it clobbers m_data */ 439 M_MOVE_PKTHDR(n, m); 440 n->m_len = 0; /* NB: m_gethdr does not set */ 441 n->m_data += needed_space; 442 /* 443 * Pull up Ethernet header to create the expected layout. 444 * We could use m_pullup but that's overkill (i.e. we don't 445 * need the actual data) and it cannot fail so do it inline 446 * for speed. 447 */ 448 /* NB: struct ether_header is known to be contiguous */ 449 n->m_len += sizeof(struct ether_header); 450 m->m_len -= sizeof(struct ether_header); 451 m->m_data += sizeof(struct ether_header); 452 /* 453 * Replace the head of the chain. 454 */ 455 n->m_next = m; 456 m = n; 457 } else { 458 /* We will overwrite the ethernet header in the 459 * 802.11 encapsulation stage. Make sure that it 460 * is writable. 461 */ 462 wlen = sizeof(struct ether_header); 463 } 464 465 /* 466 * If we're going to s/w encrypt the mbuf chain make sure it is 467 * writable. 468 */ 469 if (key != NULL && (key->wk_flags & IEEE80211_KEY_SWCRYPT) != 0) 470 wlen = M_COPYALL; 471 472 if (wlen != 0 && m_makewritable(&m, 0, wlen, M_DONTWAIT) != 0) { 473 m_freem(m); 474 return NULL; 475 } 476 return m; 477 #undef TO_BE_RECLAIMED 478 } 479 480 /* 481 * Return the transmit key to use in sending a unicast frame. 482 * If a unicast key is set we use that. When no unicast key is set 483 * we fall back to the default transmit key. 484 */ 485 static __inline struct ieee80211_key * 486 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni) 487 { 488 if (IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)) { 489 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 490 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 491 return NULL; 492 return &ic->ic_nw_keys[ic->ic_def_txkey]; 493 } else { 494 return &ni->ni_ucastkey; 495 } 496 } 497 498 /* 499 * Return the transmit key to use in sending a multicast frame. 500 * Multicast traffic always uses the group key which is installed as 501 * the default tx key. 502 */ 503 static __inline struct ieee80211_key * 504 ieee80211_crypto_getmcastkey(struct ieee80211com *ic, 505 struct ieee80211_node *ni) 506 { 507 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 508 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 509 return NULL; 510 return &ic->ic_nw_keys[ic->ic_def_txkey]; 511 } 512 513 /* 514 * Encapsulate an outbound data frame. The mbuf chain is updated. 515 * If an error is encountered NULL is returned. The caller is required 516 * to provide a node reference and pullup the ethernet header in the 517 * first mbuf. 518 */ 519 struct mbuf * 520 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m, 521 struct ieee80211_node *ni) 522 { 523 struct ether_header eh; 524 struct ieee80211_frame *wh; 525 struct ieee80211_key *key; 526 struct llc *llc; 527 int hdrsize, datalen, addqos, txfrag; 528 529 IASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 530 memcpy(&eh, mtod(m, void *), sizeof(struct ether_header)); 531 532 /* 533 * Insure space for additional headers. First identify 534 * transmit key to use in calculating any buffer adjustments 535 * required. This is also used below to do privacy 536 * encapsulation work. Then calculate the 802.11 header 537 * size and any padding required by the driver. 538 * 539 * Note key may be NULL if we fall back to the default 540 * transmit key and that is not set. In that case the 541 * buffer may not be expanded as needed by the cipher 542 * routines, but they will/should discard it. 543 */ 544 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 545 if (ic->ic_opmode == IEEE80211_M_STA || 546 !IEEE80211_IS_MULTICAST(eh.ether_dhost)) 547 key = ieee80211_crypto_getucastkey(ic, ni); 548 else 549 key = ieee80211_crypto_getmcastkey(ic, ni); 550 if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) { 551 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO, 552 "[%s] no default transmit key (%s) deftxkey %u\n", 553 ether_sprintf(eh.ether_dhost), __func__, 554 ic->ic_def_txkey); 555 ic->ic_stats.is_tx_nodefkey++; 556 } 557 } else 558 key = NULL; 559 /* XXX 4-address format */ 560 /* 561 * XXX Some ap's don't handle QoS-encapsulated EAPOL 562 * frames so suppress use. This may be an issue if other 563 * ap's require all data frames to be QoS-encapsulated 564 * once negotiated in which case we'll need to make this 565 * configurable. 566 */ 567 addqos = (ni->ni_flags & IEEE80211_NODE_QOS) && 568 eh.ether_type != htons(ETHERTYPE_PAE); 569 if (addqos) 570 hdrsize = sizeof(struct ieee80211_qosframe); 571 else 572 hdrsize = sizeof(struct ieee80211_frame); 573 if (ic->ic_flags & IEEE80211_F_DATAPAD) 574 hdrsize = roundup(hdrsize, sizeof(u_int32_t)); 575 m = ieee80211_mbuf_adjust(ic, hdrsize, key, m); 576 if (m == NULL) { 577 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 578 goto bad; 579 } 580 581 /* NB: this could be optimized because of ieee80211_mbuf_adjust */ 582 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 583 llc = mtod(m, struct llc *); 584 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 585 llc->llc_control = LLC_UI; 586 llc->llc_snap.org_code[0] = 0; 587 llc->llc_snap.org_code[1] = 0; 588 llc->llc_snap.org_code[2] = 0; 589 llc->llc_snap.ether_type = eh.ether_type; 590 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 591 592 M_PREPEND(m, hdrsize, M_DONTWAIT); 593 if (m == NULL) { 594 ic->ic_stats.is_tx_nobuf++; 595 goto bad; 596 } 597 wh = mtod(m, struct ieee80211_frame *); 598 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 599 *(u_int16_t *)wh->i_dur = 0; 600 switch (ic->ic_opmode) { 601 case IEEE80211_M_STA: 602 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 603 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 604 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 605 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 606 break; 607 case IEEE80211_M_IBSS: 608 case IEEE80211_M_AHDEMO: 609 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 610 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 611 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 612 /* 613 * NB: always use the bssid from ic_bss as the 614 * neighbor's may be stale after an ibss merge 615 */ 616 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid); 617 break; 618 case IEEE80211_M_HOSTAP: 619 #ifndef IEEE80211_NO_HOSTAP 620 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 621 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 622 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 623 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 624 #endif /* !IEEE80211_NO_HOSTAP */ 625 break; 626 case IEEE80211_M_MONITOR: 627 goto bad; 628 } 629 if (m->m_flags & M_MORE_DATA) 630 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 631 if (addqos) { 632 struct ieee80211_qosframe *qwh = 633 (struct ieee80211_qosframe *) wh; 634 int ac, tid; 635 636 ac = M_WME_GETAC(m); 637 /* map from access class/queue to 11e header priorty value */ 638 tid = WME_AC_TO_TID(ac); 639 qwh->i_qos[0] = tid & IEEE80211_QOS_TID; 640 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 641 qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S; 642 qwh->i_qos[1] = 0; 643 qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 644 645 *(u_int16_t *)wh->i_seq = 646 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT); 647 ni->ni_txseqs[tid]++; 648 } else { 649 *(u_int16_t *)wh->i_seq = 650 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 651 ni->ni_txseqs[0]++; 652 } 653 /* check if xmit fragmentation is required */ 654 txfrag = (m->m_pkthdr.len > ic->ic_fragthreshold && 655 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 656 (m->m_flags & M_FF) == 0); /* NB: don't fragment ff's */ 657 if (key != NULL) { 658 /* 659 * IEEE 802.1X: send EAPOL frames always in the clear. 660 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 661 */ 662 if (eh.ether_type != htons(ETHERTYPE_PAE) || 663 ((ic->ic_flags & IEEE80211_F_WPA) && 664 (ic->ic_opmode == IEEE80211_M_STA ? 665 !IEEE80211_KEY_UNDEFINED(*key) : 666 !IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)))) { 667 wh->i_fc[1] |= IEEE80211_FC1_WEP; 668 if (!ieee80211_crypto_enmic(ic, key, m, txfrag)) { 669 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 670 "[%s] enmic failed, discard frame\n", 671 ether_sprintf(eh.ether_dhost)); 672 ic->ic_stats.is_crypto_enmicfail++; 673 goto bad; 674 } 675 } 676 } 677 if (txfrag && !ieee80211_fragment(ic, m, hdrsize, 678 key != NULL ? key->wk_cipher->ic_header : 0, ic->ic_fragthreshold)) 679 goto bad; 680 681 IEEE80211_NODE_STAT(ni, tx_data); 682 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 683 684 return m; 685 bad: 686 if (m != NULL) 687 m_freem(m); 688 return NULL; 689 } 690 691 /* 692 * Arguments in: 693 * 694 * paylen: payload length (no FCS, no WEP header) 695 * 696 * hdrlen: header length 697 * 698 * rate: MSDU speed, units 500kb/s 699 * 700 * flags: IEEE80211_F_SHPREAMBLE (use short preamble), 701 * IEEE80211_F_SHSLOT (use short slot length) 702 * 703 * Arguments out: 704 * 705 * d: 802.11 Duration field for RTS, 706 * 802.11 Duration field for data frame, 707 * PLCP Length for data frame, 708 * residual octets at end of data slot 709 */ 710 static int 711 ieee80211_compute_duration1(int len, int use_ack, uint32_t icflags, int rate, 712 struct ieee80211_duration *d) 713 { 714 int pre, ctsrate; 715 int ack, bitlen, data_dur, remainder; 716 717 /* RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK 718 * DATA reserves medium for SIFS | ACK, 719 * 720 * (XXX or SIFS | ACK | SIFS | DATA | SIFS | ACK, if more fragments) 721 * 722 * XXXMYC: no ACK on multicast/broadcast or control packets 723 */ 724 725 bitlen = len * 8; 726 727 pre = IEEE80211_DUR_DS_SIFS; 728 if ((icflags & IEEE80211_F_SHPREAMBLE) != 0) 729 pre += IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR; 730 else 731 pre += IEEE80211_DUR_DS_LONG_PREAMBLE + IEEE80211_DUR_DS_SLOW_PLCPHDR; 732 733 d->d_residue = 0; 734 data_dur = (bitlen * 2) / rate; 735 remainder = (bitlen * 2) % rate; 736 if (remainder != 0) { 737 d->d_residue = (rate - remainder) / 16; 738 data_dur++; 739 } 740 741 switch (rate) { 742 case 2: /* 1 Mb/s */ 743 case 4: /* 2 Mb/s */ 744 /* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */ 745 ctsrate = 2; 746 break; 747 case 11: /* 5.5 Mb/s */ 748 case 22: /* 11 Mb/s */ 749 case 44: /* 22 Mb/s */ 750 /* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */ 751 ctsrate = 4; 752 break; 753 default: 754 /* TBD */ 755 return -1; 756 } 757 758 d->d_plcp_len = data_dur; 759 760 ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0; 761 762 d->d_rts_dur = 763 pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate + 764 pre + data_dur + 765 ack; 766 767 d->d_data_dur = ack; 768 769 return 0; 770 } 771 772 /* 773 * Arguments in: 774 * 775 * wh: 802.11 header 776 * 777 * paylen: payload length (no FCS, no WEP header) 778 * 779 * rate: MSDU speed, units 500kb/s 780 * 781 * fraglen: fragment length, set to maximum (or higher) for no 782 * fragmentation 783 * 784 * flags: IEEE80211_F_PRIVACY (hardware adds WEP), 785 * IEEE80211_F_SHPREAMBLE (use short preamble), 786 * IEEE80211_F_SHSLOT (use short slot length) 787 * 788 * Arguments out: 789 * 790 * d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields 791 * of first/only fragment 792 * 793 * dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields 794 * of last fragment 795 * 796 * ieee80211_compute_duration assumes crypto-encapsulation, if any, 797 * has already taken place. 798 */ 799 int 800 ieee80211_compute_duration(const struct ieee80211_frame_min *wh, 801 const struct ieee80211_key *wk, int len, 802 uint32_t icflags, int fraglen, int rate, struct ieee80211_duration *d0, 803 struct ieee80211_duration *dn, int *npktp, int debug) 804 { 805 int ack, rc; 806 int cryptolen, /* crypto overhead: header+trailer */ 807 firstlen, /* first fragment's payload + overhead length */ 808 hdrlen, /* header length w/o driver padding */ 809 lastlen, /* last fragment's payload length w/ overhead */ 810 lastlen0, /* last fragment's payload length w/o overhead */ 811 npkt, /* number of fragments */ 812 overlen, /* non-802.11 header overhead per fragment */ 813 paylen; /* payload length w/o overhead */ 814 815 hdrlen = ieee80211_anyhdrsize((const void *)wh); 816 817 /* Account for padding required by the driver. */ 818 if (icflags & IEEE80211_F_DATAPAD) 819 paylen = len - roundup(hdrlen, sizeof(u_int32_t)); 820 else 821 paylen = len - hdrlen; 822 823 overlen = IEEE80211_CRC_LEN; 824 825 if (wk != NULL) { 826 cryptolen = wk->wk_cipher->ic_header + 827 wk->wk_cipher->ic_trailer; 828 paylen -= cryptolen; 829 overlen += cryptolen; 830 } 831 832 npkt = paylen / fraglen; 833 lastlen0 = paylen % fraglen; 834 835 if (npkt == 0) /* no fragments */ 836 lastlen = paylen + overlen; 837 else if (lastlen0 != 0) { /* a short "tail" fragment */ 838 lastlen = lastlen0 + overlen; 839 npkt++; 840 } else /* full-length "tail" fragment */ 841 lastlen = fraglen + overlen; 842 843 if (npktp != NULL) 844 *npktp = npkt; 845 846 if (npkt > 1) 847 firstlen = fraglen + overlen; 848 else 849 firstlen = paylen + overlen; 850 851 if (debug) { 852 printf("%s: npkt %d firstlen %d lastlen0 %d lastlen %d " 853 "fraglen %d overlen %d len %d rate %d icflags %08x\n", 854 __func__, npkt, firstlen, lastlen0, lastlen, fraglen, 855 overlen, len, rate, icflags); 856 } 857 858 ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) && 859 (wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL; 860 861 rc = ieee80211_compute_duration1(firstlen + hdrlen, 862 ack, icflags, rate, d0); 863 if (rc == -1) 864 return rc; 865 866 if (npkt <= 1) { 867 *dn = *d0; 868 return 0; 869 } 870 return ieee80211_compute_duration1(lastlen + hdrlen, ack, icflags, rate, 871 dn); 872 } 873 874 /* 875 * Fragment the frame according to the specified mtu. 876 * The size of the 802.11 header (w/o padding) is provided 877 * so we don't need to recalculate it. We create a new 878 * mbuf for each fragment and chain it through m_nextpkt; 879 * we might be able to optimize this by reusing the original 880 * packet's mbufs but that is significantly more complicated. 881 */ 882 static int 883 ieee80211_fragment(struct ieee80211com *ic, struct mbuf *m0, 884 u_int hdrsize, u_int ciphdrsize, u_int mtu) 885 { 886 struct ieee80211_frame *wh, *whf; 887 struct mbuf *m, *prev, *next; 888 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 889 890 IASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 891 IASSERT(m0->m_pkthdr.len > mtu, 892 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 893 894 wh = mtod(m0, struct ieee80211_frame *); 895 /* NB: mark the first frag; it will be propagated below */ 896 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 897 totalhdrsize = hdrsize + ciphdrsize; 898 fragno = 1; 899 off = mtu - ciphdrsize; 900 remainder = m0->m_pkthdr.len - off; 901 prev = m0; 902 do { 903 fragsize = totalhdrsize + remainder; 904 if (fragsize > mtu) 905 fragsize = mtu; 906 IASSERT(fragsize < MCLBYTES, 907 ("fragment size %u too big!", fragsize)); 908 if (fragsize > MHLEN) 909 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 910 else 911 m = m_gethdr(M_DONTWAIT, MT_DATA); 912 if (m == NULL) 913 goto bad; 914 /* leave room to prepend any cipher header */ 915 m_align(m, fragsize - ciphdrsize); 916 917 /* 918 * Form the header in the fragment. Note that since 919 * we mark the first fragment with the MORE_FRAG bit 920 * it automatically is propagated to each fragment; we 921 * need only clear it on the last fragment (done below). 922 */ 923 whf = mtod(m, struct ieee80211_frame *); 924 memcpy(whf, wh, hdrsize); 925 *(u_int16_t *)&whf->i_seq[0] |= htole16( 926 (fragno & IEEE80211_SEQ_FRAG_MASK) << 927 IEEE80211_SEQ_FRAG_SHIFT); 928 fragno++; 929 930 payload = fragsize - totalhdrsize; 931 /* NB: destination is known to be contiguous */ 932 m_copydata(m0, off, payload, mtod(m, u_int8_t *) + hdrsize); 933 m->m_len = hdrsize + payload; 934 m->m_pkthdr.len = hdrsize + payload; 935 m->m_flags |= M_FRAG; 936 937 /* chain up the fragment */ 938 prev->m_nextpkt = m; 939 prev = m; 940 941 /* deduct fragment just formed */ 942 remainder -= payload; 943 off += payload; 944 } while (remainder != 0); 945 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 946 947 /* strip first mbuf now that everything has been copied */ 948 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 949 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 950 951 ic->ic_stats.is_tx_fragframes++; 952 ic->ic_stats.is_tx_frags += fragno-1; 953 954 return 1; 955 bad: 956 /* reclaim fragments but leave original frame for caller to free */ 957 for (m = m0->m_nextpkt; m != NULL; m = next) { 958 next = m->m_nextpkt; 959 m->m_nextpkt = NULL; /* XXX paranoid */ 960 m_freem(m); 961 } 962 m0->m_nextpkt = NULL; 963 return 0; 964 } 965 966 /* 967 * Add a supported rates element id to a frame. 968 */ 969 static u_int8_t * 970 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs) 971 { 972 int nrates; 973 974 *frm++ = IEEE80211_ELEMID_RATES; 975 nrates = rs->rs_nrates; 976 if (nrates > IEEE80211_RATE_SIZE) 977 nrates = IEEE80211_RATE_SIZE; 978 *frm++ = nrates; 979 memcpy(frm, rs->rs_rates, nrates); 980 return frm + nrates; 981 } 982 983 /* 984 * Add an extended supported rates element id to a frame. 985 */ 986 static u_int8_t * 987 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs) 988 { 989 /* 990 * Add an extended supported rates element if operating in 11g mode. 991 */ 992 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 993 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 994 *frm++ = IEEE80211_ELEMID_XRATES; 995 *frm++ = nrates; 996 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 997 frm += nrates; 998 } 999 return frm; 1000 } 1001 1002 /* 1003 * Add an ssid elemet to a frame. 1004 */ 1005 static u_int8_t * 1006 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len) 1007 { 1008 *frm++ = IEEE80211_ELEMID_SSID; 1009 *frm++ = len; 1010 memcpy(frm, ssid, len); 1011 return frm + len; 1012 } 1013 1014 /* 1015 * Add an erp element to a frame. 1016 */ 1017 static u_int8_t * 1018 ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic) 1019 { 1020 u_int8_t erp; 1021 1022 *frm++ = IEEE80211_ELEMID_ERP; 1023 *frm++ = 1; 1024 erp = 0; 1025 if (ic->ic_nonerpsta != 0) 1026 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1027 if (ic->ic_flags & IEEE80211_F_USEPROT) 1028 erp |= IEEE80211_ERP_USE_PROTECTION; 1029 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1030 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1031 *frm++ = erp; 1032 return frm; 1033 } 1034 1035 static u_int8_t * 1036 ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie) 1037 { 1038 #define WPA_OUI_BYTES 0x00, 0x50, 0xf2 1039 #define ADDSHORT(frm, v) do { \ 1040 frm[0] = (v) & 0xff; \ 1041 frm[1] = (v) >> 8; \ 1042 frm += 2; \ 1043 } while (0) 1044 #define ADDSELECTOR(frm, sel) do { \ 1045 memcpy(frm, sel, 4); \ 1046 frm += 4; \ 1047 } while (0) 1048 static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE }; 1049 static const u_int8_t cipher_suite[][4] = { 1050 { WPA_OUI_BYTES, WPA_CSE_WEP40 }, /* NB: 40-bit */ 1051 { WPA_OUI_BYTES, WPA_CSE_TKIP }, 1052 { 0x00, 0x00, 0x00, 0x00 }, /* XXX WRAP */ 1053 { WPA_OUI_BYTES, WPA_CSE_CCMP }, 1054 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ 1055 { WPA_OUI_BYTES, WPA_CSE_NULL }, 1056 }; 1057 static const u_int8_t wep104_suite[4] = 1058 { WPA_OUI_BYTES, WPA_CSE_WEP104 }; 1059 static const u_int8_t key_mgt_unspec[4] = 1060 { WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC }; 1061 static const u_int8_t key_mgt_psk[4] = 1062 { WPA_OUI_BYTES, WPA_ASE_8021X_PSK }; 1063 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; 1064 u_int8_t *frm = ie; 1065 u_int8_t *selcnt; 1066 1067 *frm++ = IEEE80211_ELEMID_VENDOR; 1068 *frm++ = 0; /* length filled in below */ 1069 memcpy(frm, oui, sizeof(oui)); /* WPA OUI */ 1070 frm += sizeof(oui); 1071 ADDSHORT(frm, WPA_VERSION); 1072 1073 /* XXX filter out CKIP */ 1074 1075 /* multicast cipher */ 1076 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && 1077 rsn->rsn_mcastkeylen >= 13) 1078 ADDSELECTOR(frm, wep104_suite); 1079 else 1080 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); 1081 1082 /* unicast cipher list */ 1083 selcnt = frm; 1084 ADDSHORT(frm, 0); /* selector count */ 1085 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) { 1086 selcnt[0]++; 1087 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); 1088 } 1089 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) { 1090 selcnt[0]++; 1091 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); 1092 } 1093 1094 /* authenticator selector list */ 1095 selcnt = frm; 1096 ADDSHORT(frm, 0); /* selector count */ 1097 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { 1098 selcnt[0]++; 1099 ADDSELECTOR(frm, key_mgt_unspec); 1100 } 1101 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { 1102 selcnt[0]++; 1103 ADDSELECTOR(frm, key_mgt_psk); 1104 } 1105 1106 /* optional capabilities */ 1107 if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH) 1108 ADDSHORT(frm, rsn->rsn_caps); 1109 1110 /* calculate element length */ 1111 ie[1] = frm - ie - 2; 1112 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), 1113 ("WPA IE too big, %u > %zu", 1114 ie[1]+2, sizeof(struct ieee80211_ie_wpa))); 1115 return frm; 1116 #undef ADDSHORT 1117 #undef ADDSELECTOR 1118 #undef WPA_OUI_BYTES 1119 } 1120 1121 static u_int8_t * 1122 ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie) 1123 { 1124 #define RSN_OUI_BYTES 0x00, 0x0f, 0xac 1125 #define ADDSHORT(frm, v) do { \ 1126 frm[0] = (v) & 0xff; \ 1127 frm[1] = (v) >> 8; \ 1128 frm += 2; \ 1129 } while (0) 1130 #define ADDSELECTOR(frm, sel) do { \ 1131 memcpy(frm, sel, 4); \ 1132 frm += 4; \ 1133 } while (0) 1134 static const u_int8_t cipher_suite[][4] = { 1135 { RSN_OUI_BYTES, RSN_CSE_WEP40 }, /* NB: 40-bit */ 1136 { RSN_OUI_BYTES, RSN_CSE_TKIP }, 1137 { RSN_OUI_BYTES, RSN_CSE_WRAP }, 1138 { RSN_OUI_BYTES, RSN_CSE_CCMP }, 1139 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ 1140 { RSN_OUI_BYTES, RSN_CSE_NULL }, 1141 }; 1142 static const u_int8_t wep104_suite[4] = 1143 { RSN_OUI_BYTES, RSN_CSE_WEP104 }; 1144 static const u_int8_t key_mgt_unspec[4] = 1145 { RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC }; 1146 static const u_int8_t key_mgt_psk[4] = 1147 { RSN_OUI_BYTES, RSN_ASE_8021X_PSK }; 1148 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; 1149 u_int8_t *frm = ie; 1150 u_int8_t *selcnt; 1151 1152 *frm++ = IEEE80211_ELEMID_RSN; 1153 *frm++ = 0; /* length filled in below */ 1154 ADDSHORT(frm, RSN_VERSION); 1155 1156 /* XXX filter out CKIP */ 1157 1158 /* multicast cipher */ 1159 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && 1160 rsn->rsn_mcastkeylen >= 13) 1161 ADDSELECTOR(frm, wep104_suite); 1162 else 1163 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); 1164 1165 /* unicast cipher list */ 1166 selcnt = frm; 1167 ADDSHORT(frm, 0); /* selector count */ 1168 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) { 1169 selcnt[0]++; 1170 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); 1171 } 1172 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) { 1173 selcnt[0]++; 1174 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); 1175 } 1176 1177 /* authenticator selector list */ 1178 selcnt = frm; 1179 ADDSHORT(frm, 0); /* selector count */ 1180 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { 1181 selcnt[0]++; 1182 ADDSELECTOR(frm, key_mgt_unspec); 1183 } 1184 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { 1185 selcnt[0]++; 1186 ADDSELECTOR(frm, key_mgt_psk); 1187 } 1188 1189 /* optional capabilities */ 1190 ADDSHORT(frm, rsn->rsn_caps); 1191 /* XXX PMKID */ 1192 1193 /* calculate element length */ 1194 ie[1] = frm - ie - 2; 1195 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), 1196 ("RSN IE too big, %u > %zu", 1197 ie[1]+2, sizeof(struct ieee80211_ie_wpa))); 1198 return frm; 1199 #undef ADDSELECTOR 1200 #undef ADDSHORT 1201 #undef RSN_OUI_BYTES 1202 } 1203 1204 /* 1205 * Add a WPA/RSN element to a frame. 1206 */ 1207 static u_int8_t * 1208 ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic) 1209 { 1210 1211 IASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!")); 1212 if (ic->ic_flags & IEEE80211_F_WPA2) 1213 frm = ieee80211_setup_rsn_ie(ic, frm); 1214 if (ic->ic_flags & IEEE80211_F_WPA1) 1215 frm = ieee80211_setup_wpa_ie(ic, frm); 1216 return frm; 1217 } 1218 1219 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1220 /* 1221 * Add a WME information element to a frame. 1222 */ 1223 static u_int8_t * 1224 ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme) 1225 { 1226 static const struct ieee80211_wme_info info = { 1227 .wme_id = IEEE80211_ELEMID_VENDOR, 1228 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1229 .wme_oui = { WME_OUI_BYTES }, 1230 .wme_type = WME_OUI_TYPE, 1231 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1232 .wme_version = WME_VERSION, 1233 .wme_info = 0, 1234 }; 1235 memcpy(frm, &info, sizeof(info)); 1236 return frm + sizeof(info); 1237 } 1238 1239 /* 1240 * Add a WME parameters element to a frame. 1241 */ 1242 static u_int8_t * 1243 ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme) 1244 { 1245 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1246 #define ADDSHORT(frm, v) do { \ 1247 frm[0] = (v) & 0xff; \ 1248 frm[1] = (v) >> 8; \ 1249 frm += 2; \ 1250 } while (0) 1251 /* NB: this works 'cuz a param has an info at the front */ 1252 static const struct ieee80211_wme_info param = { 1253 .wme_id = IEEE80211_ELEMID_VENDOR, 1254 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1255 .wme_oui = { WME_OUI_BYTES }, 1256 .wme_type = WME_OUI_TYPE, 1257 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1258 .wme_version = WME_VERSION, 1259 }; 1260 int i; 1261 1262 memcpy(frm, ¶m, sizeof(param)); 1263 frm += offsetof(struct ieee80211_wme_info, wme_info); 1264 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1265 *frm++ = 0; /* reserved field */ 1266 for (i = 0; i < WME_NUM_AC; i++) { 1267 const struct wmeParams *ac = 1268 &wme->wme_bssChanParams.cap_wmeParams[i]; 1269 *frm++ = SM(i, WME_PARAM_ACI) 1270 | SM(ac->wmep_acm, WME_PARAM_ACM) 1271 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1272 ; 1273 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1274 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1275 ; 1276 ADDSHORT(frm, ac->wmep_txopLimit); 1277 } 1278 return frm; 1279 #undef SM 1280 #undef ADDSHORT 1281 } 1282 #undef WME_OUI_BYTES 1283 1284 /* 1285 * Send a probe request frame with the specified ssid 1286 * and any optional information element data. 1287 */ 1288 int 1289 ieee80211_send_probereq(struct ieee80211_node *ni, 1290 const u_int8_t sa[IEEE80211_ADDR_LEN], 1291 const u_int8_t da[IEEE80211_ADDR_LEN], 1292 const u_int8_t bssid[IEEE80211_ADDR_LEN], 1293 const u_int8_t *ssid, size_t ssidlen, 1294 const void *optie, size_t optielen) 1295 { 1296 struct ieee80211com *ic = ni->ni_ic; 1297 enum ieee80211_phymode mode; 1298 struct ieee80211_frame *wh; 1299 struct mbuf *m; 1300 u_int8_t *frm; 1301 1302 /* 1303 * Hold a reference on the node so it doesn't go away until after 1304 * the xmit is complete all the way in the driver. On error we 1305 * will remove our reference. 1306 */ 1307 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, 1308 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1309 __func__, __LINE__, 1310 ni, ether_sprintf(ni->ni_macaddr), 1311 ieee80211_node_refcnt(ni)+1); 1312 ieee80211_ref_node(ni); 1313 1314 /* 1315 * prreq frame format 1316 * [tlv] ssid 1317 * [tlv] supported rates 1318 * [tlv] extended supported rates 1319 * [tlv] user-specified ie's 1320 */ 1321 m = ieee80211_getmgtframe(&frm, 1322 2 + IEEE80211_NWID_LEN 1323 + 2 + IEEE80211_RATE_SIZE 1324 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1325 + (optie != NULL ? optielen : 0) 1326 ); 1327 if (m == NULL) { 1328 ic->ic_stats.is_tx_nobuf++; 1329 ieee80211_free_node(ni); 1330 return ENOMEM; 1331 } 1332 1333 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 1334 mode = ieee80211_chan2mode(ic, ic->ic_curchan); 1335 frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]); 1336 frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]); 1337 1338 if (optie != NULL) { 1339 memcpy(frm, optie, optielen); 1340 frm += optielen; 1341 } 1342 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1343 1344 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 1345 if (m == NULL) 1346 return ENOMEM; 1347 IASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null")); 1348 m->m_pkthdr.rcvif = (void *)ni; 1349 1350 wh = mtod(m, struct ieee80211_frame *); 1351 ieee80211_send_setup(ic, ni, wh, 1352 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 1353 sa, da, bssid); 1354 /* XXX power management? */ 1355 1356 IEEE80211_NODE_STAT(ni, tx_probereq); 1357 IEEE80211_NODE_STAT(ni, tx_mgmt); 1358 1359 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 1360 "[%s] send probe req on channel %u\n", 1361 ether_sprintf(wh->i_addr1), 1362 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1363 1364 IF_ENQUEUE(&ic->ic_mgtq, m); 1365 (*ic->ic_ifp->if_start)(ic->ic_ifp); 1366 return 0; 1367 } 1368 1369 /* 1370 * Send a management frame. The node is for the destination (or ic_bss 1371 * when in station mode). Nodes other than ic_bss have their reference 1372 * count bumped to reflect our use for an indeterminant time. 1373 */ 1374 int 1375 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni, 1376 int type, int arg) 1377 { 1378 #define senderr(_x, _v) do { ic->ic_stats._v++; ret = _x; goto bad; } while (0) 1379 struct mbuf *m; 1380 u_int8_t *frm; 1381 u_int16_t capinfo; 1382 int has_challenge, is_shared_key, ret, timer, status; 1383 1384 IASSERT(ni != NULL, ("null node")); 1385 1386 /* 1387 * Hold a reference on the node so it doesn't go away until after 1388 * the xmit is complete all the way in the driver. On error we 1389 * will remove our reference. 1390 */ 1391 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, 1392 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1393 __func__, __LINE__, 1394 ni, ether_sprintf(ni->ni_macaddr), 1395 ieee80211_node_refcnt(ni)+1); 1396 ieee80211_ref_node(ni); 1397 1398 timer = 0; 1399 switch (type) { 1400 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 1401 /* 1402 * probe response frame format 1403 * [8] time stamp 1404 * [2] beacon interval 1405 * [2] cabability information 1406 * [tlv] ssid 1407 * [tlv] supported rates 1408 * [tlv] parameter set (FH/DS) 1409 * [tlv] parameter set (IBSS) 1410 * [tlv] extended rate phy (ERP) 1411 * [tlv] extended supported rates 1412 * [tlv] WPA 1413 * [tlv] WME (optional) 1414 */ 1415 m = ieee80211_getmgtframe(&frm, 1416 8 1417 + sizeof(u_int16_t) 1418 + sizeof(u_int16_t) 1419 + 2 + IEEE80211_NWID_LEN 1420 + 2 + IEEE80211_RATE_SIZE 1421 + 7 /* max(7,3) */ 1422 + 6 1423 + 3 1424 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1425 /* XXX !WPA1+WPA2 fits w/o a cluster */ 1426 + (ic->ic_flags & IEEE80211_F_WPA ? 1427 2*sizeof(struct ieee80211_ie_wpa) : 0) 1428 + sizeof(struct ieee80211_wme_param) 1429 ); 1430 if (m == NULL) 1431 senderr(ENOMEM, is_tx_nobuf); 1432 1433 memset(frm, 0, 8); /* timestamp should be filled later */ 1434 frm += 8; 1435 *(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval); 1436 frm += 2; 1437 if (ic->ic_opmode == IEEE80211_M_IBSS) 1438 capinfo = IEEE80211_CAPINFO_IBSS; 1439 else 1440 capinfo = IEEE80211_CAPINFO_ESS; 1441 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1442 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1443 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1444 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1445 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1446 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1447 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1448 *(u_int16_t *)frm = htole16(capinfo); 1449 frm += 2; 1450 1451 frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid, 1452 ic->ic_bss->ni_esslen); 1453 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1454 1455 if (ic->ic_phytype == IEEE80211_T_FH) { 1456 *frm++ = IEEE80211_ELEMID_FHPARMS; 1457 *frm++ = 5; 1458 *frm++ = ni->ni_fhdwell & 0x00ff; 1459 *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff; 1460 *frm++ = IEEE80211_FH_CHANSET( 1461 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1462 *frm++ = IEEE80211_FH_CHANPAT( 1463 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1464 *frm++ = ni->ni_fhindex; 1465 } else { 1466 *frm++ = IEEE80211_ELEMID_DSPARMS; 1467 *frm++ = 1; 1468 *frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan); 1469 } 1470 1471 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1472 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1473 *frm++ = 2; 1474 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1475 } 1476 if (ic->ic_flags & IEEE80211_F_WPA) 1477 frm = ieee80211_add_wpa(frm, ic); 1478 if (ic->ic_curmode == IEEE80211_MODE_11G) 1479 frm = ieee80211_add_erp(frm, ic); 1480 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1481 if (ic->ic_flags & IEEE80211_F_WME) 1482 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1483 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1484 break; 1485 1486 case IEEE80211_FC0_SUBTYPE_AUTH: 1487 status = arg >> 16; 1488 arg &= 0xffff; 1489 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 1490 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 1491 ni->ni_challenge != NULL); 1492 1493 /* 1494 * Deduce whether we're doing open authentication or 1495 * shared key authentication. We do the latter if 1496 * we're in the middle of a shared key authentication 1497 * handshake or if we're initiating an authentication 1498 * request and configured to use shared key. 1499 */ 1500 is_shared_key = has_challenge || 1501 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 1502 (arg == IEEE80211_AUTH_SHARED_REQUEST && 1503 ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED); 1504 1505 m = ieee80211_getmgtframe(&frm, 1506 3 * sizeof(u_int16_t) 1507 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 1508 sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0) 1509 ); 1510 if (m == NULL) 1511 senderr(ENOMEM, is_tx_nobuf); 1512 1513 ((u_int16_t *)frm)[0] = 1514 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 1515 : htole16(IEEE80211_AUTH_ALG_OPEN); 1516 ((u_int16_t *)frm)[1] = htole16(arg); /* sequence number */ 1517 ((u_int16_t *)frm)[2] = htole16(status);/* status */ 1518 1519 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 1520 ((u_int16_t *)frm)[3] = 1521 htole16((IEEE80211_CHALLENGE_LEN << 8) | 1522 IEEE80211_ELEMID_CHALLENGE); 1523 memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge, 1524 IEEE80211_CHALLENGE_LEN); 1525 m->m_pkthdr.len = m->m_len = 1526 4 * sizeof(u_int16_t) + IEEE80211_CHALLENGE_LEN; 1527 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 1528 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 1529 "[%s] request encrypt frame (%s)\n", 1530 ether_sprintf(ni->ni_macaddr), __func__); 1531 m->m_flags |= M_LINK0; /* WEP-encrypt, please */ 1532 } 1533 } else 1534 m->m_pkthdr.len = m->m_len = 3 * sizeof(u_int16_t); 1535 1536 /* XXX not right for shared key */ 1537 if (status == IEEE80211_STATUS_SUCCESS) 1538 IEEE80211_NODE_STAT(ni, tx_auth); 1539 else 1540 IEEE80211_NODE_STAT(ni, tx_auth_fail); 1541 1542 if (ic->ic_opmode == IEEE80211_M_STA) 1543 timer = IEEE80211_TRANS_WAIT; 1544 break; 1545 1546 case IEEE80211_FC0_SUBTYPE_DEAUTH: 1547 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 1548 "[%s] send station deauthenticate (reason %d)\n", 1549 ether_sprintf(ni->ni_macaddr), arg); 1550 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t)); 1551 if (m == NULL) 1552 senderr(ENOMEM, is_tx_nobuf); 1553 *(u_int16_t *)frm = htole16(arg); /* reason */ 1554 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t); 1555 1556 IEEE80211_NODE_STAT(ni, tx_deauth); 1557 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 1558 1559 ieee80211_node_unauthorize(ni); /* port closed */ 1560 break; 1561 1562 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 1563 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 1564 /* 1565 * asreq frame format 1566 * [2] capability information 1567 * [2] listen interval 1568 * [6*] current AP address (reassoc only) 1569 * [tlv] ssid 1570 * [tlv] supported rates 1571 * [tlv] extended supported rates 1572 * [tlv] WME 1573 * [tlv] user-specified ie's 1574 */ 1575 m = ieee80211_getmgtframe(&frm, 1576 sizeof(u_int16_t) 1577 + sizeof(u_int16_t) 1578 + IEEE80211_ADDR_LEN 1579 + 2 + IEEE80211_NWID_LEN 1580 + 2 + IEEE80211_RATE_SIZE 1581 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1582 + sizeof(struct ieee80211_wme_info) 1583 + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0) 1584 ); 1585 if (m == NULL) 1586 senderr(ENOMEM, is_tx_nobuf); 1587 1588 capinfo = 0; 1589 if (ic->ic_opmode == IEEE80211_M_IBSS) 1590 capinfo |= IEEE80211_CAPINFO_IBSS; 1591 else /* IEEE80211_M_STA */ 1592 capinfo |= IEEE80211_CAPINFO_ESS; 1593 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1594 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1595 /* 1596 * NB: Some 11a AP's reject the request when 1597 * short premable is set. 1598 */ 1599 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1600 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1601 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1602 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) && 1603 (ic->ic_caps & IEEE80211_C_SHSLOT)) 1604 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1605 *(u_int16_t *)frm = htole16(capinfo); 1606 frm += 2; 1607 1608 *(u_int16_t *)frm = htole16(ic->ic_lintval); 1609 frm += 2; 1610 1611 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 1612 IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid); 1613 frm += IEEE80211_ADDR_LEN; 1614 } 1615 1616 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 1617 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1618 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1619 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) 1620 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 1621 if (ic->ic_opt_ie != NULL) { 1622 memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len); 1623 frm += ic->ic_opt_ie_len; 1624 } 1625 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1626 1627 timer = IEEE80211_TRANS_WAIT; 1628 break; 1629 1630 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 1631 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 1632 /* 1633 * asreq frame format 1634 * [2] capability information 1635 * [2] status 1636 * [2] association ID 1637 * [tlv] supported rates 1638 * [tlv] extended supported rates 1639 * [tlv] WME (if enabled and STA enabled) 1640 */ 1641 m = ieee80211_getmgtframe(&frm, 1642 sizeof(u_int16_t) 1643 + sizeof(u_int16_t) 1644 + sizeof(u_int16_t) 1645 + 2 + IEEE80211_RATE_SIZE 1646 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1647 + sizeof(struct ieee80211_wme_param) 1648 ); 1649 if (m == NULL) 1650 senderr(ENOMEM, is_tx_nobuf); 1651 1652 capinfo = IEEE80211_CAPINFO_ESS; 1653 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1654 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1655 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1656 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1657 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1658 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1659 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1660 *(u_int16_t *)frm = htole16(capinfo); 1661 frm += 2; 1662 1663 *(u_int16_t *)frm = htole16(arg); /* status */ 1664 frm += 2; 1665 1666 if (arg == IEEE80211_STATUS_SUCCESS) { 1667 *(u_int16_t *)frm = htole16(ni->ni_associd); 1668 IEEE80211_NODE_STAT(ni, tx_assoc); 1669 } else 1670 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 1671 frm += 2; 1672 1673 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1674 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1675 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) 1676 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1677 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1678 break; 1679 1680 case IEEE80211_FC0_SUBTYPE_DISASSOC: 1681 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC, 1682 "[%s] send station disassociate (reason %d)\n", 1683 ether_sprintf(ni->ni_macaddr), arg); 1684 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t)); 1685 if (m == NULL) 1686 senderr(ENOMEM, is_tx_nobuf); 1687 *(u_int16_t *)frm = htole16(arg); /* reason */ 1688 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t); 1689 1690 IEEE80211_NODE_STAT(ni, tx_disassoc); 1691 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 1692 break; 1693 1694 default: 1695 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1696 "[%s] invalid mgmt frame type %u\n", 1697 ether_sprintf(ni->ni_macaddr), type); 1698 senderr(EINVAL, is_tx_unknownmgt); 1699 /* NOTREACHED */ 1700 } 1701 ret = ieee80211_mgmt_output(ic, ni, m, type, timer); 1702 if (ret != 0) { 1703 bad: 1704 ieee80211_free_node(ni); 1705 } 1706 return ret; 1707 #undef senderr 1708 } 1709 1710 /* 1711 * Build a RTS (Request To Send) control frame. 1712 */ 1713 struct mbuf * 1714 ieee80211_get_rts(struct ieee80211com *ic, const struct ieee80211_frame *wh, 1715 uint16_t dur) 1716 { 1717 struct ieee80211_frame_rts *rts; 1718 struct mbuf *m; 1719 1720 MGETHDR(m, M_DONTWAIT, MT_DATA); 1721 if (m == NULL) 1722 return NULL; 1723 1724 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 1725 1726 rts = mtod(m, struct ieee80211_frame_rts *); 1727 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | 1728 IEEE80211_FC0_SUBTYPE_RTS; 1729 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1730 *(uint16_t *)rts->i_dur = htole16(dur); 1731 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1); 1732 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2); 1733 1734 return m; 1735 } 1736 1737 /* 1738 * Build a CTS-to-self (Clear To Send) control frame. 1739 */ 1740 struct mbuf * 1741 ieee80211_get_cts_to_self(struct ieee80211com *ic, uint16_t dur) 1742 { 1743 struct ieee80211_frame_cts *cts; 1744 struct mbuf *m; 1745 1746 MGETHDR(m, M_DONTWAIT, MT_DATA); 1747 if (m == NULL) 1748 return NULL; 1749 1750 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 1751 1752 cts = mtod(m, struct ieee80211_frame_cts *); 1753 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | 1754 IEEE80211_FC0_SUBTYPE_CTS; 1755 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1756 *(uint16_t *)cts->i_dur = htole16(dur); 1757 IEEE80211_ADDR_COPY(cts->i_ra, ic->ic_myaddr); 1758 1759 return m; 1760 } 1761 1762 /* 1763 * Allocate a beacon frame and fillin the appropriate bits. 1764 */ 1765 struct mbuf * 1766 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni, 1767 struct ieee80211_beacon_offsets *bo) 1768 { 1769 struct ifnet *ifp = ic->ic_ifp; 1770 struct ieee80211_frame *wh; 1771 struct mbuf *m; 1772 int pktlen; 1773 u_int8_t *frm, *efrm; 1774 u_int16_t capinfo; 1775 struct ieee80211_rateset *rs; 1776 1777 /* 1778 * beacon frame format 1779 * [8] time stamp 1780 * [2] beacon interval 1781 * [2] cabability information 1782 * [tlv] ssid 1783 * [tlv] supported rates 1784 * [3] parameter set (DS) 1785 * [tlv] parameter set (IBSS/TIM) 1786 * [tlv] extended rate phy (ERP) 1787 * [tlv] extended supported rates 1788 * [tlv] WME parameters 1789 * [tlv] WPA/RSN parameters 1790 * XXX Vendor-specific OIDs (e.g. Atheros) 1791 * NB: we allocate the max space required for the TIM bitmap. 1792 */ 1793 rs = &ni->ni_rates; 1794 pktlen = 8 /* time stamp */ 1795 + sizeof(u_int16_t) /* beacon interval */ 1796 + sizeof(u_int16_t) /* capabilities */ 1797 + 2 + ni->ni_esslen /* ssid */ 1798 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 1799 + 2 + 1 /* DS parameters */ 1800 + 2 + 4 + ic->ic_tim_len /* DTIM/IBSSPARMS */ 1801 + 2 + 1 /* ERP */ 1802 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1803 + (ic->ic_caps & IEEE80211_C_WME ? /* WME */ 1804 sizeof(struct ieee80211_wme_param) : 0) 1805 + (ic->ic_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 1806 2*sizeof(struct ieee80211_ie_wpa) : 0) 1807 ; 1808 m = ieee80211_getmgtframe(&frm, pktlen); 1809 if (m == NULL) { 1810 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1811 "%s: cannot get buf; size %u\n", __func__, pktlen); 1812 ic->ic_stats.is_tx_nobuf++; 1813 return NULL; 1814 } 1815 1816 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 1817 frm += 8; 1818 *(u_int16_t *)frm = htole16(ni->ni_intval); 1819 frm += 2; 1820 if (ic->ic_opmode == IEEE80211_M_IBSS) 1821 capinfo = IEEE80211_CAPINFO_IBSS; 1822 else 1823 capinfo = IEEE80211_CAPINFO_ESS; 1824 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1825 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1826 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1827 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 1828 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1829 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1830 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1831 bo->bo_caps = (u_int16_t *)frm; 1832 *(u_int16_t *)frm = htole16(capinfo); 1833 frm += 2; 1834 *frm++ = IEEE80211_ELEMID_SSID; 1835 if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) { 1836 *frm++ = ni->ni_esslen; 1837 memcpy(frm, ni->ni_essid, ni->ni_esslen); 1838 frm += ni->ni_esslen; 1839 } else 1840 *frm++ = 0; 1841 frm = ieee80211_add_rates(frm, rs); 1842 if (ic->ic_curmode != IEEE80211_MODE_FH) { 1843 *frm++ = IEEE80211_ELEMID_DSPARMS; 1844 *frm++ = 1; 1845 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 1846 } 1847 bo->bo_tim = frm; 1848 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1849 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1850 *frm++ = 2; 1851 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1852 bo->bo_tim_len = 0; 1853 } else { 1854 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 1855 1856 tie->tim_ie = IEEE80211_ELEMID_TIM; 1857 tie->tim_len = 4; /* length */ 1858 tie->tim_count = 0; /* DTIM count */ 1859 tie->tim_period = ic->ic_dtim_period; /* DTIM period */ 1860 tie->tim_bitctl = 0; /* bitmap control */ 1861 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 1862 frm += sizeof(struct ieee80211_tim_ie); 1863 bo->bo_tim_len = 1; 1864 } 1865 bo->bo_trailer = frm; 1866 if (ic->ic_flags & IEEE80211_F_WME) { 1867 bo->bo_wme = frm; 1868 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1869 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; 1870 } 1871 if (ic->ic_flags & IEEE80211_F_WPA) 1872 frm = ieee80211_add_wpa(frm, ic); 1873 if (ic->ic_curmode == IEEE80211_MODE_11G) 1874 frm = ieee80211_add_erp(frm, ic); 1875 efrm = ieee80211_add_xrates(frm, rs); 1876 bo->bo_trailer_len = efrm - bo->bo_trailer; 1877 m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *); 1878 1879 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 1880 IASSERT(m != NULL, ("no space for 802.11 header?")); 1881 wh = mtod(m, struct ieee80211_frame *); 1882 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 1883 IEEE80211_FC0_SUBTYPE_BEACON; 1884 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1885 *(u_int16_t *)wh->i_dur = 0; 1886 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 1887 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 1888 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 1889 *(u_int16_t *)wh->i_seq = 0; 1890 1891 return m; 1892 } 1893 1894 /* 1895 * Update the dynamic parts of a beacon frame based on the current state. 1896 */ 1897 int 1898 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni, 1899 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) 1900 { 1901 int len_changed = 0; 1902 u_int16_t capinfo; 1903 1904 IEEE80211_BEACON_LOCK(ic); 1905 /* XXX faster to recalculate entirely or just changes? */ 1906 if (ic->ic_opmode == IEEE80211_M_IBSS) 1907 capinfo = IEEE80211_CAPINFO_IBSS; 1908 else 1909 capinfo = IEEE80211_CAPINFO_ESS; 1910 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1911 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1912 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1913 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 1914 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1915 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1916 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1917 *bo->bo_caps = htole16(capinfo); 1918 1919 if (ic->ic_flags & IEEE80211_F_WME) { 1920 struct ieee80211_wme_state *wme = &ic->ic_wme; 1921 1922 /* 1923 * Check for agressive mode change. When there is 1924 * significant high priority traffic in the BSS 1925 * throttle back BE traffic by using conservative 1926 * parameters. Otherwise BE uses agressive params 1927 * to optimize performance of legacy/non-QoS traffic. 1928 */ 1929 if (wme->wme_flags & WME_F_AGGRMODE) { 1930 if (wme->wme_hipri_traffic > 1931 wme->wme_hipri_switch_thresh) { 1932 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, 1933 "%s: traffic %u, disable aggressive mode\n", 1934 __func__, wme->wme_hipri_traffic); 1935 wme->wme_flags &= ~WME_F_AGGRMODE; 1936 ieee80211_wme_updateparams_locked(ic); 1937 wme->wme_hipri_traffic = 1938 wme->wme_hipri_switch_hysteresis; 1939 } else 1940 wme->wme_hipri_traffic = 0; 1941 } else { 1942 if (wme->wme_hipri_traffic <= 1943 wme->wme_hipri_switch_thresh) { 1944 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, 1945 "%s: traffic %u, enable aggressive mode\n", 1946 __func__, wme->wme_hipri_traffic); 1947 wme->wme_flags |= WME_F_AGGRMODE; 1948 ieee80211_wme_updateparams_locked(ic); 1949 wme->wme_hipri_traffic = 0; 1950 } else 1951 wme->wme_hipri_traffic = 1952 wme->wme_hipri_switch_hysteresis; 1953 } 1954 if (ic->ic_flags & IEEE80211_F_WMEUPDATE) { 1955 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 1956 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; 1957 } 1958 } 1959 1960 #ifndef IEEE80211_NO_HOSTAP 1961 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/ 1962 struct ieee80211_tim_ie *tie = 1963 (struct ieee80211_tim_ie *) bo->bo_tim; 1964 if (ic->ic_flags & IEEE80211_F_TIMUPDATE) { 1965 u_int timlen, timoff, i; 1966 /* 1967 * ATIM/DTIM needs updating. If it fits in the 1968 * current space allocated then just copy in the 1969 * new bits. Otherwise we need to move any trailing 1970 * data to make room. Note that we know there is 1971 * contiguous space because ieee80211_beacon_allocate 1972 * insures there is space in the mbuf to write a 1973 * maximal-size virtual bitmap (based on ic_max_aid). 1974 */ 1975 /* 1976 * Calculate the bitmap size and offset, copy any 1977 * trailer out of the way, and then copy in the 1978 * new bitmap and update the information element. 1979 * Note that the tim bitmap must contain at least 1980 * one byte and any offset must be even. 1981 */ 1982 if (ic->ic_ps_pending != 0) { 1983 timoff = 128; /* impossibly large */ 1984 for (i = 0; i < ic->ic_tim_len; i++) 1985 if (ic->ic_tim_bitmap[i]) { 1986 timoff = i &~ 1; 1987 break; 1988 } 1989 IASSERT(timoff != 128, ("tim bitmap empty!")); 1990 for (i = ic->ic_tim_len-1; i >= timoff; i--) 1991 if (ic->ic_tim_bitmap[i]) 1992 break; 1993 timlen = 1 + (i - timoff); 1994 } else { 1995 timoff = 0; 1996 timlen = 1; 1997 } 1998 if (timlen != bo->bo_tim_len) { 1999 /* copy up/down trailer */ 2000 ovbcopy(bo->bo_trailer, tie->tim_bitmap+timlen, 2001 bo->bo_trailer_len); 2002 bo->bo_trailer = tie->tim_bitmap+timlen; 2003 bo->bo_wme = bo->bo_trailer; 2004 bo->bo_tim_len = timlen; 2005 2006 /* update information element */ 2007 tie->tim_len = 3 + timlen; 2008 tie->tim_bitctl = timoff; 2009 len_changed = 1; 2010 } 2011 memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff, 2012 bo->bo_tim_len); 2013 2014 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE; 2015 2016 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, 2017 "%s: TIM updated, pending %u, off %u, len %u\n", 2018 __func__, ic->ic_ps_pending, timoff, timlen); 2019 } 2020 /* count down DTIM period */ 2021 if (tie->tim_count == 0) 2022 tie->tim_count = tie->tim_period - 1; 2023 else 2024 tie->tim_count--; 2025 /* update state for buffered multicast frames on DTIM */ 2026 if (mcast && (tie->tim_count == 1 || tie->tim_period == 1)) 2027 tie->tim_bitctl |= 1; 2028 else 2029 tie->tim_bitctl &= ~1; 2030 } 2031 #endif /* !IEEE80211_NO_HOSTAP */ 2032 IEEE80211_BEACON_UNLOCK(ic); 2033 2034 return len_changed; 2035 } 2036 2037 /* 2038 * Save an outbound packet for a node in power-save sleep state. 2039 * The new packet is placed on the node's saved queue, and the TIM 2040 * is changed, if necessary. 2041 */ 2042 void 2043 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni, 2044 struct mbuf *m) 2045 { 2046 int qlen, age; 2047 2048 IEEE80211_NODE_SAVEQ_LOCK(ni); 2049 if (IF_QFULL(&ni->ni_savedq)) { 2050 IF_DROP(&ni->ni_savedq); 2051 IEEE80211_NODE_SAVEQ_UNLOCK(ni); 2052 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 2053 "[%s] pwr save q overflow, drops %d (size %d)\n", 2054 ether_sprintf(ni->ni_macaddr), 2055 ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE); 2056 #ifdef IEEE80211_DEBUG 2057 if (ieee80211_msg_dumppkts(ic)) 2058 ieee80211_dump_pkt(mtod(m, void *), m->m_len, -1, -1); 2059 #endif 2060 m_freem(m); 2061 return; 2062 } 2063 /* 2064 * Tag the frame with its expiry time and insert 2065 * it in the queue. The aging interval is 4 times 2066 * the listen interval specified by the station. 2067 * Frames that sit around too long are reclaimed 2068 * using this information. 2069 */ 2070 /* XXX handle overflow? */ 2071 age = ((ni->ni_intval * ic->ic_bintval) << 2) / 1024; /* TU -> secs */ 2072 _IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age); 2073 IEEE80211_NODE_SAVEQ_UNLOCK(ni); 2074 2075 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, 2076 "[%s] save frame with age %d, %u now queued\n", 2077 ether_sprintf(ni->ni_macaddr), age, qlen); 2078 2079 if (qlen == 1) 2080 ic->ic_set_tim(ni, 1); 2081 } 2082