xref: /netbsd-src/sys/net80211/ieee80211_output.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /*	$NetBSD: ieee80211_output.c,v 1.59 2017/09/26 07:42:06 knakahara Exp $	*/
2 /*-
3  * Copyright (c) 2001 Atsushi Onoe
4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * Alternatively, this software may be distributed under the terms of the
19  * GNU General Public License ("GPL") version 2 as published by the Free
20  * Software Foundation.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 #ifdef __FreeBSD__
36 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.34 2005/08/10 16:22:29 sam Exp $");
37 #endif
38 #ifdef __NetBSD__
39 __KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.59 2017/09/26 07:42:06 knakahara Exp $");
40 #endif
41 
42 #ifdef _KERNEL_OPT
43 #include "opt_inet.h"
44 #endif
45 
46 #ifdef __NetBSD__
47 #endif /* __NetBSD__ */
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/mbuf.h>
52 #include <sys/kernel.h>
53 #include <sys/endian.h>
54 #include <sys/errno.h>
55 #include <sys/proc.h>
56 #include <sys/sysctl.h>
57 
58 #include <net/if.h>
59 #include <net/if_llc.h>
60 #include <net/if_media.h>
61 #include <net/if_arp.h>
62 #include <net/if_ether.h>
63 #include <net/if_llc.h>
64 #include <net/if_vlanvar.h>
65 
66 #include <net80211/ieee80211_netbsd.h>
67 #include <net80211/ieee80211_var.h>
68 
69 #include <net/bpf.h>
70 
71 #ifdef INET
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/in_var.h>
75 #include <netinet/ip.h>
76 #include <net/if_ether.h>
77 #endif
78 
79 static int ieee80211_fragment(struct ieee80211com *, struct mbuf *,
80 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
81 
82 #ifdef IEEE80211_DEBUG
83 /*
84  * Decide if an outbound management frame should be
85  * printed when debugging is enabled.  This filters some
86  * of the less interesting frames that come frequently
87  * (e.g. beacons).
88  */
89 static __inline int
90 doprint(struct ieee80211com *ic, int subtype)
91 {
92 	switch (subtype) {
93 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
94 		return (ic->ic_opmode == IEEE80211_M_IBSS);
95 	}
96 	return 1;
97 }
98 #endif
99 
100 /*
101  * Set the direction field and address fields of an outgoing
102  * non-QoS frame.  Note this should be called early on in
103  * constructing a frame as it sets i_fc[1]; other bits can
104  * then be or'd in.
105  */
106 static void
107 ieee80211_send_setup(struct ieee80211com *ic,
108 	struct ieee80211_node *ni,
109 	struct ieee80211_frame *wh,
110 	int type,
111 	const u_int8_t sa[IEEE80211_ADDR_LEN],
112 	const u_int8_t da[IEEE80211_ADDR_LEN],
113 	const u_int8_t bssid[IEEE80211_ADDR_LEN])
114 {
115 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
116 
117 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
118 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
119 		switch (ic->ic_opmode) {
120 		case IEEE80211_M_STA:
121 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
122 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
123 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
124 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
125 			break;
126 		case IEEE80211_M_IBSS:
127 		case IEEE80211_M_AHDEMO:
128 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
129 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
130 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
131 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
132 			break;
133 		case IEEE80211_M_HOSTAP:
134 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
135 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
136 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
137 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
138 			break;
139 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
140 			break;
141 		}
142 	} else {
143 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
144 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
145 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
146 		IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
147 	}
148 	*(u_int16_t *)&wh->i_dur[0] = 0;
149 	/* NB: use non-QoS tid */
150 	*(u_int16_t *)&wh->i_seq[0] =
151 	    htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
152 	ni->ni_txseqs[0]++;
153 #undef WH4
154 }
155 
156 /*
157  * Send a management frame to the specified node.  The node pointer
158  * must have a reference as the pointer will be passed to the driver
159  * and potentially held for a long time.  If the frame is successfully
160  * dispatched to the driver, then it is responsible for freeing the
161  * reference (and potentially free'ing up any associated storage).
162  */
163 static int
164 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni,
165     struct mbuf *m, int type, int timer)
166 {
167 	struct ifnet *ifp = ic->ic_ifp;
168 	struct ieee80211_frame *wh;
169 
170 	IASSERT(ni != NULL, ("null node"));
171 
172 	/*
173 	 * Yech, hack alert!  We want to pass the node down to the
174 	 * driver's start routine.  If we don't do so then the start
175 	 * routine must immediately look it up again and that can
176 	 * cause a lock order reversal if, for example, this frame
177 	 * is being sent because the station is being timedout and
178 	 * the frame being sent is a DEAUTH message.  We could stick
179 	 * this in an m_tag and tack that on to the mbuf.  However
180 	 * that's rather expensive to do for every frame so instead
181 	 * we stuff it in the rcvif field since outbound frames do
182 	 * not (presently) use this.
183 	 */
184 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
185 	if (m == NULL)
186 		return ENOMEM;
187 	M_SETCTX(m, ni);
188 
189 	wh = mtod(m, struct ieee80211_frame *);
190 	ieee80211_send_setup(ic, ni, wh,
191 		IEEE80211_FC0_TYPE_MGT | type,
192 		ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
193 	if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) {
194 		m->m_flags &= ~M_LINK0;
195 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
196 			"[%s] encrypting frame (%s)\n",
197 			ether_sprintf(wh->i_addr1), __func__);
198 		wh->i_fc[1] |= IEEE80211_FC1_WEP;
199 	}
200 #ifdef IEEE80211_DEBUG
201 	/* avoid printing too many frames */
202 	if ((ieee80211_msg_debug(ic) && doprint(ic, type)) ||
203 	    ieee80211_msg_dumppkts(ic)) {
204 		printf("[%s] send %s on channel %u\n",
205 		    ether_sprintf(wh->i_addr1),
206 		    ieee80211_mgt_subtype_name[
207 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
208 				IEEE80211_FC0_SUBTYPE_SHIFT],
209 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
210 	}
211 #endif
212 	IEEE80211_NODE_STAT(ni, tx_mgmt);
213 	IF_ENQUEUE(&ic->ic_mgtq, m);
214 	if (timer) {
215 		/*
216 		 * Set the mgt frame timeout.
217 		 */
218 		ic->ic_mgt_timer = timer;
219 		ifp->if_timer = 1;
220 	}
221 	if_start_lock(ifp);
222 	return 0;
223 }
224 
225 /*
226  * Send a null data frame to the specified node.
227  *
228  * NB: the caller is assumed to have setup a node reference
229  *     for use; this is necessary to deal with a race condition
230  *     when probing for inactive stations.
231  */
232 int
233 ieee80211_send_nulldata(struct ieee80211_node *ni)
234 {
235 	struct ieee80211com *ic = ni->ni_ic;
236 	struct ifnet *ifp = ic->ic_ifp;
237 	struct mbuf *m;
238 	struct ieee80211_frame *wh;
239 
240 	MGETHDR(m, M_NOWAIT, MT_HEADER);
241 	if (m == NULL) {
242 		/* XXX debug msg */
243 		ic->ic_stats.is_tx_nobuf++;
244 		ieee80211_unref_node(&ni);
245 		return ENOMEM;
246 	}
247 	M_SETCTX(m, ni);
248 
249 	wh = mtod(m, struct ieee80211_frame *);
250 	ieee80211_send_setup(ic, ni, wh,
251 		IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
252 		ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
253 	/* NB: power management bit is never sent by an AP */
254 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
255 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
256 		wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
257 	m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame);
258 
259 	IEEE80211_NODE_STAT(ni, tx_data);
260 
261 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
262 	    "[%s] send null data frame on channel %u, pwr mgt %s\n",
263 	    ether_sprintf(ni->ni_macaddr),
264 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
265 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
266 
267 	IF_ENQUEUE(&ic->ic_mgtq, m);		/* cheat */
268 	if_start_lock(ifp);
269 
270 	return 0;
271 }
272 
273 /*
274  * Assign priority to a frame based on any vlan tag assigned
275  * to the station and/or any Diffserv setting in an IP header.
276  * Finally, if an ACM policy is setup (in station mode) it's
277  * applied.
278  */
279 int
280 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni)
281 {
282 	int v_wme_ac, d_wme_ac, ac;
283 #ifdef INET
284 	struct ether_header *eh;
285 #endif
286 
287 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
288 		ac = WME_AC_BE;
289 		goto done;
290 	}
291 
292 	/*
293 	 * If node has a vlan tag then all traffic
294 	 * to it must have a matching tag.
295 	 */
296 	v_wme_ac = 0;
297 	if (ni->ni_vlan != 0) {
298 		/* XXX used to check ec_nvlans. */
299 		if (!vlan_has_tag(m)) {
300 			IEEE80211_NODE_STAT(ni, tx_novlantag);
301 			return 1;
302 		}
303 		if (EVL_VLANOFTAG(vlan_get_tag(m)) !=
304 		    EVL_VLANOFTAG(ni->ni_vlan)) {
305 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
306 			return 1;
307 		}
308 		/* map vlan priority to AC */
309 		switch (EVL_PRIOFTAG(ni->ni_vlan)) {
310 		case 1:
311 		case 2:
312 			v_wme_ac = WME_AC_BK;
313 			break;
314 		case 0:
315 		case 3:
316 			v_wme_ac = WME_AC_BE;
317 			break;
318 		case 4:
319 		case 5:
320 			v_wme_ac = WME_AC_VI;
321 			break;
322 		case 6:
323 		case 7:
324 			v_wme_ac = WME_AC_VO;
325 			break;
326 		}
327 	}
328 
329 #ifdef INET
330 	eh = mtod(m, struct ether_header *);
331 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
332 		const struct ip *ip = (struct ip *)
333 			(mtod(m, u_int8_t *) + sizeof (*eh));
334 		/*
335 		 * IP frame, map the TOS field.
336 		 */
337 		switch (ip->ip_tos) {
338 		case 0x08:
339 		case 0x20:
340 			d_wme_ac = WME_AC_BK;	/* background */
341 			break;
342 		case 0x28:
343 		case 0xa0:
344 			d_wme_ac = WME_AC_VI;	/* video */
345 			break;
346 		case 0x30:			/* voice */
347 		case 0xe0:
348 		case 0x88:			/* XXX UPSD */
349 		case 0xb8:
350 			d_wme_ac = WME_AC_VO;
351 			break;
352 		default:
353 			d_wme_ac = WME_AC_BE;
354 			break;
355 		}
356 	} else {
357 #endif /* INET */
358 		d_wme_ac = WME_AC_BE;
359 #ifdef INET
360 	}
361 #endif
362 	/*
363 	 * Use highest priority AC.
364 	 */
365 	if (v_wme_ac > d_wme_ac)
366 		ac = v_wme_ac;
367 	else
368 		ac = d_wme_ac;
369 
370 	/*
371 	 * Apply ACM policy.
372 	 */
373 	if (ic->ic_opmode == IEEE80211_M_STA) {
374 		static const int acmap[4] = {
375 			WME_AC_BK,	/* WME_AC_BE */
376 			WME_AC_BK,	/* WME_AC_BK */
377 			WME_AC_BE,	/* WME_AC_VI */
378 			WME_AC_VI,	/* WME_AC_VO */
379 		};
380 		while (ac != WME_AC_BK &&
381 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
382 			ac = acmap[ac];
383 	}
384 done:
385 	M_WME_SETAC(m, ac);
386 	return 0;
387 }
388 
389 /*
390  * Insure there is sufficient contiguous space to encapsulate the
391  * 802.11 data frame.  If room isn't already there, arrange for it.
392  * Drivers and cipher modules assume we have done the necessary work
393  * and fail rudely if they don't find the space they need.
394  */
395 static struct mbuf *
396 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize,
397 	struct ieee80211_key *key, struct mbuf *m)
398 {
399 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
400 	int needed_space = hdrsize;
401 	int wlen = 0;
402 
403 	if (key != NULL) {
404 		/* XXX belongs in crypto code? */
405 		needed_space += key->wk_cipher->ic_header;
406 		/* XXX frags */
407 	}
408 	/*
409 	 * We know we are called just before stripping an Ethernet
410 	 * header and prepending an LLC header.  This means we know
411 	 * there will be
412 	 *	sizeof(struct ether_header) - sizeof(struct llc)
413 	 * bytes recovered to which we need additional space for the
414 	 * 802.11 header and any crypto header.
415 	 */
416 	/* XXX check trailing space and copy instead? */
417 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
418 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
419 		if (n == NULL) {
420 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
421 			    "%s: cannot expand storage\n", __func__);
422 			ic->ic_stats.is_tx_nobuf++;
423 			m_freem(m);
424 			return NULL;
425 		}
426 		IASSERT(needed_space <= MHLEN,
427 		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
428 		/*
429 		 * Setup new mbuf to have leading space to prepend the
430 		 * 802.11 header and any crypto header bits that are
431 		 * required (the latter are added when the driver calls
432 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
433 		 */
434 		/* NB: must be first 'cuz it clobbers m_data */
435 		M_MOVE_PKTHDR(n, m);
436 		n->m_len = 0;			/* NB: m_gethdr does not set */
437 		n->m_data += needed_space;
438 		/*
439 		 * Pull up Ethernet header to create the expected layout.
440 		 * We could use m_pullup but that's overkill (i.e. we don't
441 		 * need the actual data) and it cannot fail so do it inline
442 		 * for speed.
443 		 */
444 		/* NB: struct ether_header is known to be contiguous */
445 		n->m_len += sizeof(struct ether_header);
446 		m->m_len -= sizeof(struct ether_header);
447 		m->m_data += sizeof(struct ether_header);
448 		/*
449 		 * Replace the head of the chain.
450 		 */
451 		n->m_next = m;
452 		m = n;
453 	} else {
454                 /* We will overwrite the ethernet header in the
455                  * 802.11 encapsulation stage.  Make sure that it
456                  * is writable.
457 		 */
458 		wlen = sizeof(struct ether_header);
459 	}
460 
461 	/*
462 	 * If we're going to s/w encrypt the mbuf chain make sure it is
463 	 * writable.
464 	 */
465 	if (key != NULL && (key->wk_flags & IEEE80211_KEY_SWCRYPT) != 0)
466 		wlen = M_COPYALL;
467 
468 	if (wlen != 0 && m_makewritable(&m, 0, wlen, M_DONTWAIT) != 0) {
469 		m_freem(m);
470 		return NULL;
471 	}
472 	return m;
473 #undef TO_BE_RECLAIMED
474 }
475 
476 /*
477  * Return the transmit key to use in sending a unicast frame.
478  * If a unicast key is set we use that.  When no unicast key is set
479  * we fall back to the default transmit key.
480  */
481 static __inline struct ieee80211_key *
482 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
483 {
484 	if (IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)) {
485 		if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
486 		    IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
487 			return NULL;
488 		return &ic->ic_nw_keys[ic->ic_def_txkey];
489 	} else {
490 		return &ni->ni_ucastkey;
491 	}
492 }
493 
494 /*
495  * Return the transmit key to use in sending a multicast frame.
496  * Multicast traffic always uses the group key which is installed as
497  * the default tx key.
498  */
499 static __inline struct ieee80211_key *
500 ieee80211_crypto_getmcastkey(struct ieee80211com *ic,
501     struct ieee80211_node *ni)
502 {
503 	if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
504 	    IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
505 		return NULL;
506 	return &ic->ic_nw_keys[ic->ic_def_txkey];
507 }
508 
509 /*
510  * Encapsulate an outbound data frame.  The mbuf chain is updated.
511  * If an error is encountered NULL is returned.  The caller is required
512  * to provide a node reference and pullup the ethernet header in the
513  * first mbuf.
514  */
515 struct mbuf *
516 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m,
517 	struct ieee80211_node *ni)
518 {
519 	struct ether_header eh;
520 	struct ieee80211_frame *wh;
521 	struct ieee80211_key *key;
522 	struct llc *llc;
523 	int hdrsize, datalen, addqos, txfrag;
524 
525 	IASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
526 	memcpy(&eh, mtod(m, void *), sizeof(struct ether_header));
527 
528 	/*
529 	 * Insure space for additional headers.  First identify
530 	 * transmit key to use in calculating any buffer adjustments
531 	 * required.  This is also used below to do privacy
532 	 * encapsulation work.  Then calculate the 802.11 header
533 	 * size and any padding required by the driver.
534 	 *
535 	 * Note key may be NULL if we fall back to the default
536 	 * transmit key and that is not set.  In that case the
537 	 * buffer may not be expanded as needed by the cipher
538 	 * routines, but they will/should discard it.
539 	 */
540 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
541 		if (ic->ic_opmode == IEEE80211_M_STA ||
542 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost))
543 			key = ieee80211_crypto_getucastkey(ic, ni);
544 		else
545 			key = ieee80211_crypto_getmcastkey(ic, ni);
546 		if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) {
547 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
548 			    "[%s] no default transmit key (%s) deftxkey %u\n",
549 			    ether_sprintf(eh.ether_dhost), __func__,
550 			    ic->ic_def_txkey);
551 			ic->ic_stats.is_tx_nodefkey++;
552 		}
553 	} else
554 		key = NULL;
555 	/* XXX 4-address format */
556 	/*
557 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
558 	 * frames so suppress use.  This may be an issue if other
559 	 * ap's require all data frames to be QoS-encapsulated
560 	 * once negotiated in which case we'll need to make this
561 	 * configurable.
562 	 */
563 	addqos = (ni->ni_flags & IEEE80211_NODE_QOS) &&
564 		 eh.ether_type != htons(ETHERTYPE_PAE);
565 	if (addqos)
566 		hdrsize = sizeof(struct ieee80211_qosframe);
567 	else
568 		hdrsize = sizeof(struct ieee80211_frame);
569 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
570 		hdrsize = roundup(hdrsize, sizeof(u_int32_t));
571 	m = ieee80211_mbuf_adjust(ic, hdrsize, key, m);
572 	if (m == NULL) {
573 		/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
574 		goto bad;
575 	}
576 
577 	/* NB: this could be optimized because of ieee80211_mbuf_adjust */
578 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
579 	llc = mtod(m, struct llc *);
580 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
581 	llc->llc_control = LLC_UI;
582 	llc->llc_snap.org_code[0] = 0;
583 	llc->llc_snap.org_code[1] = 0;
584 	llc->llc_snap.org_code[2] = 0;
585 	llc->llc_snap.ether_type = eh.ether_type;
586 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
587 
588 	M_PREPEND(m, hdrsize, M_DONTWAIT);
589 	if (m == NULL) {
590 		ic->ic_stats.is_tx_nobuf++;
591 		goto bad;
592 	}
593 	wh = mtod(m, struct ieee80211_frame *);
594 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
595 	*(u_int16_t *)wh->i_dur = 0;
596 	switch (ic->ic_opmode) {
597 	case IEEE80211_M_STA:
598 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
599 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
600 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
601 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
602 		break;
603 	case IEEE80211_M_IBSS:
604 	case IEEE80211_M_AHDEMO:
605 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
606 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
607 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
608 		/*
609 		 * NB: always use the bssid from ic_bss as the
610 		 *     neighbor's may be stale after an ibss merge
611 		 */
612 		IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid);
613 		break;
614 	case IEEE80211_M_HOSTAP:
615 #ifndef IEEE80211_NO_HOSTAP
616 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
617 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
618 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
619 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
620 #endif /* !IEEE80211_NO_HOSTAP */
621 		break;
622 	case IEEE80211_M_MONITOR:
623 		goto bad;
624 	}
625 	if (m->m_flags & M_MORE_DATA)
626 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
627 	if (addqos) {
628 		struct ieee80211_qosframe *qwh =
629 			(struct ieee80211_qosframe *) wh;
630 		int ac, tid;
631 
632 		ac = M_WME_GETAC(m);
633 		/* map from access class/queue to 11e header priorty value */
634 		tid = WME_AC_TO_TID(ac);
635 		qwh->i_qos[0] = tid & IEEE80211_QOS_TID;
636 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
637 			qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S;
638 		qwh->i_qos[1] = 0;
639 		qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
640 
641 		*(u_int16_t *)wh->i_seq =
642 		    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
643 		ni->ni_txseqs[tid]++;
644 	} else {
645 		*(u_int16_t *)wh->i_seq =
646 		    htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
647 		ni->ni_txseqs[0]++;
648 	}
649 	/* check if xmit fragmentation is required */
650 	txfrag = (m->m_pkthdr.len > ic->ic_fragthreshold &&
651 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
652 	    (m->m_flags & M_FF) == 0);          /* NB: don't fragment ff's */
653 	if (key != NULL) {
654 		/*
655 		 * IEEE 802.1X: send EAPOL frames always in the clear.
656 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
657 		 */
658 		if (eh.ether_type != htons(ETHERTYPE_PAE) ||
659 		    ((ic->ic_flags & IEEE80211_F_WPA) &&
660 		     (ic->ic_opmode == IEEE80211_M_STA ?
661 		      !IEEE80211_KEY_UNDEFINED(*key) :
662 		      !IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)))) {
663 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
664 			if (!ieee80211_crypto_enmic(ic, key, m, txfrag)) {
665 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
666 				    "[%s] enmic failed, discard frame\n",
667 				    ether_sprintf(eh.ether_dhost));
668 				ic->ic_stats.is_crypto_enmicfail++;
669 				goto bad;
670 			}
671 		}
672 	}
673 	if (txfrag && !ieee80211_fragment(ic, m, hdrsize,
674 	    key != NULL ? key->wk_cipher->ic_header : 0, ic->ic_fragthreshold))
675 		goto bad;
676 
677 	IEEE80211_NODE_STAT(ni, tx_data);
678 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
679 
680 	return m;
681 bad:
682 	if (m != NULL)
683 		m_freem(m);
684 	return NULL;
685 }
686 
687 /*
688  * Arguments in:
689  *
690  * paylen:  payload length (no FCS, no WEP header)
691  *
692  * hdrlen:  header length
693  *
694  * rate:    MSDU speed, units 500kb/s
695  *
696  * flags:   IEEE80211_F_SHPREAMBLE (use short preamble),
697  *          IEEE80211_F_SHSLOT (use short slot length)
698  *
699  * Arguments out:
700  *
701  * d:       802.11 Duration field for RTS,
702  *          802.11 Duration field for data frame,
703  *          PLCP Length for data frame,
704  *          residual octets at end of data slot
705  */
706 static int
707 ieee80211_compute_duration1(int len, int use_ack, uint32_t icflags, int rate,
708     struct ieee80211_duration *d)
709 {
710 	int pre, ctsrate;
711 	int ack, bitlen, data_dur, remainder;
712 
713 	/* RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK
714 	 * DATA reserves medium for SIFS | ACK,
715 	 *
716 	 * (XXX or SIFS | ACK | SIFS | DATA | SIFS | ACK, if more fragments)
717 	 *
718 	 * XXXMYC: no ACK on multicast/broadcast or control packets
719 	 */
720 
721 	bitlen = len * 8;
722 
723 	pre = IEEE80211_DUR_DS_SIFS;
724 	if ((icflags & IEEE80211_F_SHPREAMBLE) != 0)
725 		pre += IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR;
726 	else
727 		pre += IEEE80211_DUR_DS_LONG_PREAMBLE + IEEE80211_DUR_DS_SLOW_PLCPHDR;
728 
729 	d->d_residue = 0;
730 	data_dur = (bitlen * 2) / rate;
731 	remainder = (bitlen * 2) % rate;
732 	if (remainder != 0) {
733 		d->d_residue = (rate - remainder) / 16;
734 		data_dur++;
735 	}
736 
737 	switch (rate) {
738 	case 2:		/* 1 Mb/s */
739 	case 4:		/* 2 Mb/s */
740 		/* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */
741 		ctsrate = 2;
742 		break;
743 	case 11:	/* 5.5 Mb/s */
744 	case 22:	/* 11  Mb/s */
745 	case 44:	/* 22  Mb/s */
746 		/* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */
747 		ctsrate = 4;
748 		break;
749 	default:
750 		/* TBD */
751 		return -1;
752 	}
753 
754 	d->d_plcp_len = data_dur;
755 
756 	ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0;
757 
758 	d->d_rts_dur =
759 	    pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate +
760 	    pre + data_dur +
761 	    ack;
762 
763 	d->d_data_dur = ack;
764 
765 	return 0;
766 }
767 
768 /*
769  * Arguments in:
770  *
771  * wh:      802.11 header
772  *
773  * paylen:  payload length (no FCS, no WEP header)
774  *
775  * rate:    MSDU speed, units 500kb/s
776  *
777  * fraglen: fragment length, set to maximum (or higher) for no
778  *          fragmentation
779  *
780  * flags:   IEEE80211_F_PRIVACY (hardware adds WEP),
781  *          IEEE80211_F_SHPREAMBLE (use short preamble),
782  *          IEEE80211_F_SHSLOT (use short slot length)
783  *
784  * Arguments out:
785  *
786  * d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
787  *     of first/only fragment
788  *
789  * dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
790  *     of last fragment
791  *
792  * ieee80211_compute_duration assumes crypto-encapsulation, if any,
793  * has already taken place.
794  */
795 int
796 ieee80211_compute_duration(const struct ieee80211_frame_min *wh,
797     const struct ieee80211_key *wk, int len,
798     uint32_t icflags, int fraglen, int rate, struct ieee80211_duration *d0,
799     struct ieee80211_duration *dn, int *npktp, int debug)
800 {
801 	int ack, rc;
802 	int cryptolen,	/* crypto overhead: header+trailer */
803 	    firstlen,	/* first fragment's payload + overhead length */
804 	    hdrlen,	/* header length w/o driver padding */
805 	    lastlen,	/* last fragment's payload length w/ overhead */
806 	    lastlen0,	/* last fragment's payload length w/o overhead */
807 	    npkt,	/* number of fragments */
808 	    overlen,	/* non-802.11 header overhead per fragment */
809 	    paylen;	/* payload length w/o overhead */
810 
811 	hdrlen = ieee80211_anyhdrsize((const void *)wh);
812 
813         /* Account for padding required by the driver. */
814 	if (icflags & IEEE80211_F_DATAPAD)
815 		paylen = len - roundup(hdrlen, sizeof(u_int32_t));
816 	else
817 		paylen = len - hdrlen;
818 
819 	overlen = IEEE80211_CRC_LEN;
820 
821 	if (wk != NULL) {
822 		cryptolen = wk->wk_cipher->ic_header +
823 		            wk->wk_cipher->ic_trailer;
824 		paylen -= cryptolen;
825 		overlen += cryptolen;
826 	}
827 
828 	npkt = paylen / fraglen;
829 	lastlen0 = paylen % fraglen;
830 
831 	if (npkt == 0)			/* no fragments */
832 		lastlen = paylen + overlen;
833 	else if (lastlen0 != 0) {	/* a short "tail" fragment */
834 		lastlen = lastlen0 + overlen;
835 		npkt++;
836 	} else				/* full-length "tail" fragment */
837 		lastlen = fraglen + overlen;
838 
839 	if (npktp != NULL)
840 		*npktp = npkt;
841 
842 	if (npkt > 1)
843 		firstlen = fraglen + overlen;
844 	else
845 		firstlen = paylen + overlen;
846 
847 	if (debug) {
848 		printf("%s: npkt %d firstlen %d lastlen0 %d lastlen %d "
849 		    "fraglen %d overlen %d len %d rate %d icflags %08x\n",
850 		    __func__, npkt, firstlen, lastlen0, lastlen, fraglen,
851 		    overlen, len, rate, icflags);
852 	}
853 
854 	ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
855 	    (wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL;
856 
857 	rc = ieee80211_compute_duration1(firstlen + hdrlen,
858 	    ack, icflags, rate, d0);
859 	if (rc == -1)
860 		return rc;
861 
862 	if (npkt <= 1) {
863 		*dn = *d0;
864 		return 0;
865 	}
866 	return ieee80211_compute_duration1(lastlen + hdrlen, ack, icflags, rate,
867 	    dn);
868 }
869 
870 /*
871  * Fragment the frame according to the specified mtu.
872  * The size of the 802.11 header (w/o padding) is provided
873  * so we don't need to recalculate it.  We create a new
874  * mbuf for each fragment and chain it through m_nextpkt;
875  * we might be able to optimize this by reusing the original
876  * packet's mbufs but that is significantly more complicated.
877  */
878 static int
879 ieee80211_fragment(struct ieee80211com *ic, struct mbuf *m0,
880 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
881 {
882 	struct ieee80211_frame *wh, *whf;
883 	struct mbuf *m, *prev, *next;
884 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
885 
886 	IASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
887 	IASSERT(m0->m_pkthdr.len > mtu,
888 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
889 
890 	wh = mtod(m0, struct ieee80211_frame *);
891 	/* NB: mark the first frag; it will be propagated below */
892 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
893 	totalhdrsize = hdrsize + ciphdrsize;
894 	fragno = 1;
895 	off = mtu - ciphdrsize;
896 	remainder = m0->m_pkthdr.len - off;
897 	prev = m0;
898 	do {
899 		fragsize = totalhdrsize + remainder;
900 		if (fragsize > mtu)
901 			fragsize = mtu;
902 		IASSERT(fragsize < MCLBYTES,
903 			("fragment size %u too big!", fragsize));
904 		if (fragsize > MHLEN)
905 			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
906 		else
907 			m = m_gethdr(M_DONTWAIT, MT_DATA);
908 		if (m == NULL)
909 			goto bad;
910 		/* leave room to prepend any cipher header */
911 		m_align(m, fragsize - ciphdrsize);
912 
913 		/*
914 		 * Form the header in the fragment.  Note that since
915 		 * we mark the first fragment with the MORE_FRAG bit
916 		 * it automatically is propagated to each fragment; we
917 		 * need only clear it on the last fragment (done below).
918 		 */
919 		whf = mtod(m, struct ieee80211_frame *);
920 		memcpy(whf, wh, hdrsize);
921 		*(u_int16_t *)&whf->i_seq[0] |= htole16(
922 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
923 				IEEE80211_SEQ_FRAG_SHIFT);
924 		fragno++;
925 
926 		payload = fragsize - totalhdrsize;
927 		/* NB: destination is known to be contiguous */
928 		m_copydata(m0, off, payload, mtod(m, u_int8_t *) + hdrsize);
929 		m->m_len = hdrsize + payload;
930 		m->m_pkthdr.len = hdrsize + payload;
931 		m->m_flags |= M_FRAG;
932 
933 		/* chain up the fragment */
934 		prev->m_nextpkt = m;
935 		prev = m;
936 
937 		/* deduct fragment just formed */
938 		remainder -= payload;
939 		off += payload;
940 	} while (remainder != 0);
941 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
942 
943 	/* strip first mbuf now that everything has been copied */
944 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
945 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
946 
947 	ic->ic_stats.is_tx_fragframes++;
948 	ic->ic_stats.is_tx_frags += fragno-1;
949 
950 	return 1;
951 bad:
952 	/* reclaim fragments but leave original frame for caller to free */
953 	for (m = m0->m_nextpkt; m != NULL; m = next) {
954 		next = m->m_nextpkt;
955 		m->m_nextpkt = NULL;            /* XXX paranoid */
956 		m_freem(m);
957 	}
958 	m0->m_nextpkt = NULL;
959 	return 0;
960 }
961 
962 /*
963  * Add a supported rates element id to a frame.
964  */
965 u_int8_t *
966 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
967 {
968 	int nrates;
969 
970 	*frm++ = IEEE80211_ELEMID_RATES;
971 	nrates = rs->rs_nrates;
972 	if (nrates > IEEE80211_RATE_SIZE)
973 		nrates = IEEE80211_RATE_SIZE;
974 	*frm++ = nrates;
975 	memcpy(frm, rs->rs_rates, nrates);
976 	return frm + nrates;
977 }
978 
979 /*
980  * Add an extended supported rates element id to a frame.
981  */
982 u_int8_t *
983 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
984 {
985 	/*
986 	 * Add an extended supported rates element if operating in 11g mode.
987 	 */
988 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
989 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
990 		*frm++ = IEEE80211_ELEMID_XRATES;
991 		*frm++ = nrates;
992 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
993 		frm += nrates;
994 	}
995 	return frm;
996 }
997 
998 /*
999  * Add an ssid elemet to a frame.
1000  */
1001 u_int8_t *
1002 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
1003 {
1004 	*frm++ = IEEE80211_ELEMID_SSID;
1005 	*frm++ = len;
1006 	memcpy(frm, ssid, len);
1007 	return frm + len;
1008 }
1009 
1010 /*
1011  * Add an erp element to a frame.
1012  */
1013 static u_int8_t *
1014 ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic)
1015 {
1016 	u_int8_t erp;
1017 
1018 	*frm++ = IEEE80211_ELEMID_ERP;
1019 	*frm++ = 1;
1020 	erp = 0;
1021 	if (ic->ic_nonerpsta != 0)
1022 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1023 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1024 		erp |= IEEE80211_ERP_USE_PROTECTION;
1025 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1026 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1027 	*frm++ = erp;
1028 	return frm;
1029 }
1030 
1031 static u_int8_t *
1032 ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie)
1033 {
1034 #define	WPA_OUI_BYTES		0x00, 0x50, 0xf2
1035 #define	ADDSHORT(frm, v) do {			\
1036 	frm[0] = (v) & 0xff;			\
1037 	frm[1] = (v) >> 8;			\
1038 	frm += 2;				\
1039 } while (0)
1040 #define	ADDSELECTOR(frm, sel) do {		\
1041 	memcpy(frm, sel, 4);			\
1042 	frm += 4;				\
1043 } while (0)
1044 	static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE };
1045 	static const u_int8_t cipher_suite[][4] = {
1046 		{ WPA_OUI_BYTES, WPA_CSE_WEP40 },	/* NB: 40-bit */
1047 		{ WPA_OUI_BYTES, WPA_CSE_TKIP },
1048 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX WRAP */
1049 		{ WPA_OUI_BYTES, WPA_CSE_CCMP },
1050 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX CKIP */
1051 		{ WPA_OUI_BYTES, WPA_CSE_NULL },
1052 	};
1053 	static const u_int8_t wep104_suite[4] =
1054 		{ WPA_OUI_BYTES, WPA_CSE_WEP104 };
1055 	static const u_int8_t key_mgt_unspec[4] =
1056 		{ WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC };
1057 	static const u_int8_t key_mgt_psk[4] =
1058 		{ WPA_OUI_BYTES, WPA_ASE_8021X_PSK };
1059 	const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
1060 	u_int8_t *frm = ie;
1061 	u_int8_t *selcnt;
1062 
1063 	*frm++ = IEEE80211_ELEMID_VENDOR;
1064 	*frm++ = 0;				/* length filled in below */
1065 	memcpy(frm, oui, sizeof(oui));		/* WPA OUI */
1066 	frm += sizeof(oui);
1067 	ADDSHORT(frm, WPA_VERSION);
1068 
1069 	/* XXX filter out CKIP */
1070 
1071 	/* multicast cipher */
1072 	if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
1073 	    rsn->rsn_mcastkeylen >= 13)
1074 		ADDSELECTOR(frm, wep104_suite);
1075 	else
1076 		ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
1077 
1078 	/* unicast cipher list */
1079 	selcnt = frm;
1080 	ADDSHORT(frm, 0);			/* selector count */
1081 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
1082 		selcnt[0]++;
1083 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
1084 	}
1085 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
1086 		selcnt[0]++;
1087 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
1088 	}
1089 
1090 	/* authenticator selector list */
1091 	selcnt = frm;
1092 	ADDSHORT(frm, 0);			/* selector count */
1093 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
1094 		selcnt[0]++;
1095 		ADDSELECTOR(frm, key_mgt_unspec);
1096 	}
1097 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
1098 		selcnt[0]++;
1099 		ADDSELECTOR(frm, key_mgt_psk);
1100 	}
1101 
1102 	/* optional capabilities */
1103 	if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH)
1104 		ADDSHORT(frm, rsn->rsn_caps);
1105 
1106 	/* calculate element length */
1107 	ie[1] = frm - ie - 2;
1108 	IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
1109 		("WPA IE too big, %u > %zu",
1110 		ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
1111 	return frm;
1112 #undef ADDSHORT
1113 #undef ADDSELECTOR
1114 #undef WPA_OUI_BYTES
1115 }
1116 
1117 static u_int8_t *
1118 ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie)
1119 {
1120 #define	RSN_OUI_BYTES		0x00, 0x0f, 0xac
1121 #define	ADDSHORT(frm, v) do {			\
1122 	frm[0] = (v) & 0xff;			\
1123 	frm[1] = (v) >> 8;			\
1124 	frm += 2;				\
1125 } while (0)
1126 #define	ADDSELECTOR(frm, sel) do {		\
1127 	memcpy(frm, sel, 4);			\
1128 	frm += 4;				\
1129 } while (0)
1130 	static const u_int8_t cipher_suite[][4] = {
1131 		{ RSN_OUI_BYTES, RSN_CSE_WEP40 },	/* NB: 40-bit */
1132 		{ RSN_OUI_BYTES, RSN_CSE_TKIP },
1133 		{ RSN_OUI_BYTES, RSN_CSE_WRAP },
1134 		{ RSN_OUI_BYTES, RSN_CSE_CCMP },
1135 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX CKIP */
1136 		{ RSN_OUI_BYTES, RSN_CSE_NULL },
1137 	};
1138 	static const u_int8_t wep104_suite[4] =
1139 		{ RSN_OUI_BYTES, RSN_CSE_WEP104 };
1140 	static const u_int8_t key_mgt_unspec[4] =
1141 		{ RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC };
1142 	static const u_int8_t key_mgt_psk[4] =
1143 		{ RSN_OUI_BYTES, RSN_ASE_8021X_PSK };
1144 	const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
1145 	u_int8_t *frm = ie;
1146 	u_int8_t *selcnt;
1147 
1148 	*frm++ = IEEE80211_ELEMID_RSN;
1149 	*frm++ = 0;				/* length filled in below */
1150 	ADDSHORT(frm, RSN_VERSION);
1151 
1152 	/* XXX filter out CKIP */
1153 
1154 	/* multicast cipher */
1155 	if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
1156 	    rsn->rsn_mcastkeylen >= 13)
1157 		ADDSELECTOR(frm, wep104_suite);
1158 	else
1159 		ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
1160 
1161 	/* unicast cipher list */
1162 	selcnt = frm;
1163 	ADDSHORT(frm, 0);			/* selector count */
1164 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
1165 		selcnt[0]++;
1166 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
1167 	}
1168 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
1169 		selcnt[0]++;
1170 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
1171 	}
1172 
1173 	/* authenticator selector list */
1174 	selcnt = frm;
1175 	ADDSHORT(frm, 0);			/* selector count */
1176 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
1177 		selcnt[0]++;
1178 		ADDSELECTOR(frm, key_mgt_unspec);
1179 	}
1180 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
1181 		selcnt[0]++;
1182 		ADDSELECTOR(frm, key_mgt_psk);
1183 	}
1184 
1185 	/* optional capabilities */
1186 	ADDSHORT(frm, rsn->rsn_caps);
1187 	/* XXX PMKID */
1188 
1189 	/* calculate element length */
1190 	ie[1] = frm - ie - 2;
1191 	IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
1192 		("RSN IE too big, %u > %zu",
1193 		ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
1194 	return frm;
1195 #undef ADDSELECTOR
1196 #undef ADDSHORT
1197 #undef RSN_OUI_BYTES
1198 }
1199 
1200 /*
1201  * Add a WPA/RSN element to a frame.
1202  */
1203 u_int8_t *
1204 ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic)
1205 {
1206 
1207 	IASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!"));
1208 	if (ic->ic_flags & IEEE80211_F_WPA2)
1209 		frm = ieee80211_setup_rsn_ie(ic, frm);
1210 	if (ic->ic_flags & IEEE80211_F_WPA1)
1211 		frm = ieee80211_setup_wpa_ie(ic, frm);
1212 	return frm;
1213 }
1214 
1215 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1216 /*
1217  * Add a WME information element to a frame.
1218  */
1219 u_int8_t *
1220 ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme)
1221 {
1222 	static const struct ieee80211_wme_info info = {
1223 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1224 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1225 		.wme_oui	= { WME_OUI_BYTES },
1226 		.wme_type	= WME_OUI_TYPE,
1227 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1228 		.wme_version	= WME_VERSION,
1229 		.wme_info	= 0,
1230 	};
1231 	memcpy(frm, &info, sizeof(info));
1232 	return frm + sizeof(info);
1233 }
1234 
1235 /*
1236  * Add a WME parameters element to a frame.
1237  */
1238 static u_int8_t *
1239 ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme)
1240 {
1241 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1242 #define	ADDSHORT(frm, v) do {			\
1243 	frm[0] = (v) & 0xff;			\
1244 	frm[1] = (v) >> 8;			\
1245 	frm += 2;				\
1246 } while (0)
1247 	/* NB: this works 'cuz a param has an info at the front */
1248 	static const struct ieee80211_wme_info param = {
1249 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1250 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1251 		.wme_oui	= { WME_OUI_BYTES },
1252 		.wme_type	= WME_OUI_TYPE,
1253 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1254 		.wme_version	= WME_VERSION,
1255 	};
1256 	int i;
1257 
1258 	memcpy(frm, &param, sizeof(param));
1259 	frm += offsetof(struct ieee80211_wme_info, wme_info);
1260 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1261 	*frm++ = 0;					/* reserved field */
1262 	for (i = 0; i < WME_NUM_AC; i++) {
1263 		const struct wmeParams *ac =
1264 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1265 		*frm++ = SM(i, WME_PARAM_ACI)
1266 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1267 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1268 		       ;
1269 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1270 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1271 		       ;
1272 		ADDSHORT(frm, ac->wmep_txopLimit);
1273 	}
1274 	return frm;
1275 #undef SM
1276 #undef ADDSHORT
1277 }
1278 #undef WME_OUI_BYTES
1279 
1280 /*
1281  * Send a probe request frame with the specified ssid
1282  * and any optional information element data.
1283  */
1284 int
1285 ieee80211_send_probereq(struct ieee80211_node *ni,
1286 	const u_int8_t sa[IEEE80211_ADDR_LEN],
1287 	const u_int8_t da[IEEE80211_ADDR_LEN],
1288 	const u_int8_t bssid[IEEE80211_ADDR_LEN],
1289 	const u_int8_t *ssid, size_t ssidlen,
1290 	const void *optie, size_t optielen)
1291 {
1292 	struct ieee80211com *ic = ni->ni_ic;
1293 	enum ieee80211_phymode mode;
1294 	struct ieee80211_frame *wh;
1295 	struct mbuf *m;
1296 	u_int8_t *frm;
1297 
1298 	/*
1299 	 * Hold a reference on the node so it doesn't go away until after
1300 	 * the xmit is complete all the way in the driver.  On error we
1301 	 * will remove our reference.
1302 	 */
1303 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
1304 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1305 		__func__, __LINE__,
1306 		ni, ether_sprintf(ni->ni_macaddr),
1307 		ieee80211_node_refcnt(ni)+1);
1308 	ieee80211_ref_node(ni);
1309 
1310 	/*
1311 	 * prreq frame format
1312 	 *	[tlv] ssid
1313 	 *	[tlv] supported rates
1314 	 *	[tlv] extended supported rates
1315 	 *	[tlv] user-specified ie's
1316 	 */
1317 	m = ieee80211_getmgtframe(&frm,
1318 		 2 + IEEE80211_NWID_LEN
1319 	       + 2 + IEEE80211_RATE_SIZE
1320 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1321 	       + (optie != NULL ? optielen : 0)
1322 	);
1323 	if (m == NULL) {
1324 		ic->ic_stats.is_tx_nobuf++;
1325 		ieee80211_free_node(ni);
1326 		return ENOMEM;
1327 	}
1328 
1329 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1330 	mode = ieee80211_chan2mode(ic, ic->ic_curchan);
1331 	frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]);
1332 	frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]);
1333 
1334 	if (optie != NULL) {
1335 		memcpy(frm, optie, optielen);
1336 		frm += optielen;
1337 	}
1338 	m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1339 
1340 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1341 	if (m == NULL)
1342 		return ENOMEM;
1343 	M_SETCTX(m, ni);
1344 
1345 	wh = mtod(m, struct ieee80211_frame *);
1346 	ieee80211_send_setup(ic, ni, wh,
1347 		IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1348 		sa, da, bssid);
1349 	/* XXX power management? */
1350 
1351 	IEEE80211_NODE_STAT(ni, tx_probereq);
1352 	IEEE80211_NODE_STAT(ni, tx_mgmt);
1353 
1354 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1355 	    "[%s] send probe req on channel %u\n",
1356 	    ether_sprintf(wh->i_addr1),
1357 	    ieee80211_chan2ieee(ic, ic->ic_curchan));
1358 
1359 	IF_ENQUEUE(&ic->ic_mgtq, m);
1360 	if_start_lock(ic->ic_ifp);
1361 	return 0;
1362 }
1363 
1364 /*
1365  * Send a management frame.  The node is for the destination (or ic_bss
1366  * when in station mode).  Nodes other than ic_bss have their reference
1367  * count bumped to reflect our use for an indeterminant time.
1368  */
1369 int
1370 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni,
1371 	int type, int arg)
1372 {
1373 #define	senderr(_x, _v)	do { ic->ic_stats._v++; ret = _x; goto bad; } while (0)
1374 	struct mbuf *m;
1375 	u_int8_t *frm;
1376 	u_int16_t capinfo;
1377 	int has_challenge, is_shared_key, ret, timer, status;
1378 
1379 	IASSERT(ni != NULL, ("null node"));
1380 
1381 	/*
1382 	 * Hold a reference on the node so it doesn't go away until after
1383 	 * the xmit is complete all the way in the driver.  On error we
1384 	 * will remove our reference.
1385 	 */
1386 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
1387 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1388 		__func__, __LINE__,
1389 		ni, ether_sprintf(ni->ni_macaddr),
1390 		ieee80211_node_refcnt(ni)+1);
1391 	ieee80211_ref_node(ni);
1392 
1393 	timer = 0;
1394 	switch (type) {
1395 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
1396 		/*
1397 		 * probe response frame format
1398 		 *	[8] time stamp
1399 		 *	[2] beacon interval
1400 		 *	[2] cabability information
1401 		 *	[tlv] ssid
1402 		 *	[tlv] supported rates
1403 		 *	[tlv] parameter set (FH/DS)
1404 		 *	[tlv] parameter set (IBSS)
1405 		 *	[tlv] extended rate phy (ERP)
1406 		 *	[tlv] extended supported rates
1407 		 *	[tlv] WPA
1408 		 *	[tlv] WME (optional)
1409 		 */
1410 		m = ieee80211_getmgtframe(&frm,
1411 			 8
1412 		       + sizeof(u_int16_t)
1413 		       + sizeof(u_int16_t)
1414 		       + 2 + IEEE80211_NWID_LEN
1415 		       + 2 + IEEE80211_RATE_SIZE
1416 		       + 7	/* max(7,3) */
1417 		       + 6
1418 		       + 3
1419 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1420 		       /* XXX !WPA1+WPA2 fits w/o a cluster */
1421 		       + (ic->ic_flags & IEEE80211_F_WPA ?
1422 				2*sizeof(struct ieee80211_ie_wpa) : 0)
1423 		       + sizeof(struct ieee80211_wme_param)
1424 		);
1425 		if (m == NULL)
1426 			senderr(ENOMEM, is_tx_nobuf);
1427 
1428 		memset(frm, 0, 8);	/* timestamp should be filled later */
1429 		frm += 8;
1430 		*(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval);
1431 		frm += 2;
1432 		if (ic->ic_opmode == IEEE80211_M_IBSS)
1433 			capinfo = IEEE80211_CAPINFO_IBSS;
1434 		else
1435 			capinfo = IEEE80211_CAPINFO_ESS;
1436 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
1437 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
1438 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1439 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1440 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1441 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1442 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1443 		*(u_int16_t *)frm = htole16(capinfo);
1444 		frm += 2;
1445 
1446 		frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid,
1447 				ic->ic_bss->ni_esslen);
1448 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
1449 
1450 		if (ic->ic_phytype == IEEE80211_T_FH) {
1451                         *frm++ = IEEE80211_ELEMID_FHPARMS;
1452                         *frm++ = 5;
1453                         *frm++ = ni->ni_fhdwell & 0x00ff;
1454                         *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff;
1455                         *frm++ = IEEE80211_FH_CHANSET(
1456 			    ieee80211_chan2ieee(ic, ic->ic_curchan));
1457                         *frm++ = IEEE80211_FH_CHANPAT(
1458 			    ieee80211_chan2ieee(ic, ic->ic_curchan));
1459                         *frm++ = ni->ni_fhindex;
1460 		} else {
1461 			*frm++ = IEEE80211_ELEMID_DSPARMS;
1462 			*frm++ = 1;
1463 			*frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan);
1464 		}
1465 
1466 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
1467 			*frm++ = IEEE80211_ELEMID_IBSSPARMS;
1468 			*frm++ = 2;
1469 			*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
1470 		}
1471 		if (ic->ic_flags & IEEE80211_F_WPA)
1472 			frm = ieee80211_add_wpa(frm, ic);
1473 		if (ic->ic_curmode == IEEE80211_MODE_11G)
1474 			frm = ieee80211_add_erp(frm, ic);
1475 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1476 		if (ic->ic_flags & IEEE80211_F_WME)
1477 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1478 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1479 		break;
1480 
1481 	case IEEE80211_FC0_SUBTYPE_AUTH:
1482 		status = arg >> 16;
1483 		arg &= 0xffff;
1484 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1485 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1486 		    ni->ni_challenge != NULL);
1487 
1488 		/*
1489 		 * Deduce whether we're doing open authentication or
1490 		 * shared key authentication.  We do the latter if
1491 		 * we're in the middle of a shared key authentication
1492 		 * handshake or if we're initiating an authentication
1493 		 * request and configured to use shared key.
1494 		 */
1495 		is_shared_key = has_challenge ||
1496 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1497 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1498 		      ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED);
1499 
1500 		m = ieee80211_getmgtframe(&frm,
1501 			  3 * sizeof(u_int16_t)
1502 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1503 				sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0)
1504 		);
1505 		if (m == NULL)
1506 			senderr(ENOMEM, is_tx_nobuf);
1507 
1508 		((u_int16_t *)frm)[0] =
1509 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1510 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
1511 		((u_int16_t *)frm)[1] = htole16(arg);	/* sequence number */
1512 		((u_int16_t *)frm)[2] = htole16(status);/* status */
1513 
1514 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1515 			((u_int16_t *)frm)[3] =
1516 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
1517 			    IEEE80211_ELEMID_CHALLENGE);
1518 			memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge,
1519 			    IEEE80211_CHALLENGE_LEN);
1520 			m->m_pkthdr.len = m->m_len =
1521 				4 * sizeof(u_int16_t) + IEEE80211_CHALLENGE_LEN;
1522 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1523 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
1524 				    "[%s] request encrypt frame (%s)\n",
1525 				    ether_sprintf(ni->ni_macaddr), __func__);
1526 				m->m_flags |= M_LINK0; /* WEP-encrypt, please */
1527 			}
1528 		} else
1529 			m->m_pkthdr.len = m->m_len = 3 * sizeof(u_int16_t);
1530 
1531 		/* XXX not right for shared key */
1532 		if (status == IEEE80211_STATUS_SUCCESS)
1533 			IEEE80211_NODE_STAT(ni, tx_auth);
1534 		else
1535 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
1536 
1537 		if (ic->ic_opmode == IEEE80211_M_STA)
1538 			timer = IEEE80211_TRANS_WAIT;
1539 		break;
1540 
1541 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
1542 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
1543 			"[%s] send station deauthenticate (reason %d)\n",
1544 			ether_sprintf(ni->ni_macaddr), arg);
1545 		m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
1546 		if (m == NULL)
1547 			senderr(ENOMEM, is_tx_nobuf);
1548 		*(u_int16_t *)frm = htole16(arg);	/* reason */
1549 		m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
1550 
1551 		IEEE80211_NODE_STAT(ni, tx_deauth);
1552 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1553 
1554 		ieee80211_node_unauthorize(ni);		/* port closed */
1555 		break;
1556 
1557 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1558 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1559 		/*
1560 		 * asreq frame format
1561 		 *	[2] capability information
1562 		 *	[2] listen interval
1563 		 *	[6*] current AP address (reassoc only)
1564 		 *	[tlv] ssid
1565 		 *	[tlv] supported rates
1566 		 *	[tlv] extended supported rates
1567 		 *	[tlv] WME
1568 		 *	[tlv] user-specified ie's
1569 		 */
1570 		m = ieee80211_getmgtframe(&frm,
1571 			 sizeof(u_int16_t)
1572 		       + sizeof(u_int16_t)
1573 		       + IEEE80211_ADDR_LEN
1574 		       + 2 + IEEE80211_NWID_LEN
1575 		       + 2 + IEEE80211_RATE_SIZE
1576 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1577 		       + sizeof(struct ieee80211_wme_info)
1578 		       + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0)
1579 		);
1580 		if (m == NULL)
1581 			senderr(ENOMEM, is_tx_nobuf);
1582 
1583 		capinfo = 0;
1584 		if (ic->ic_opmode == IEEE80211_M_IBSS)
1585 			capinfo |= IEEE80211_CAPINFO_IBSS;
1586 		else		/* IEEE80211_M_STA */
1587 			capinfo |= IEEE80211_CAPINFO_ESS;
1588 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
1589 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
1590 		/*
1591 		 * NB: Some 11a AP's reject the request when
1592 		 *     short premable is set.
1593 		 */
1594 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1595 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1596 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1597 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) &&
1598 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
1599 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1600 		*(u_int16_t *)frm = htole16(capinfo);
1601 		frm += 2;
1602 
1603 		*(u_int16_t *)frm = htole16(ic->ic_lintval);
1604 		frm += 2;
1605 
1606 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
1607 			IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid);
1608 			frm += IEEE80211_ADDR_LEN;
1609 		}
1610 
1611 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
1612 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
1613 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1614 		if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
1615 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
1616 		if (ic->ic_opt_ie != NULL) {
1617 			memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
1618 			frm += ic->ic_opt_ie_len;
1619 		}
1620 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1621 
1622 		timer = IEEE80211_TRANS_WAIT;
1623 		break;
1624 
1625 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
1626 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
1627 		/*
1628 		 * asreq frame format
1629 		 *	[2] capability information
1630 		 *	[2] status
1631 		 *	[2] association ID
1632 		 *	[tlv] supported rates
1633 		 *	[tlv] extended supported rates
1634 		 *	[tlv] WME (if enabled and STA enabled)
1635 		 */
1636 		m = ieee80211_getmgtframe(&frm,
1637 			 sizeof(u_int16_t)
1638 		       + sizeof(u_int16_t)
1639 		       + sizeof(u_int16_t)
1640 		       + 2 + IEEE80211_RATE_SIZE
1641 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1642 		       + sizeof(struct ieee80211_wme_param)
1643 		);
1644 		if (m == NULL)
1645 			senderr(ENOMEM, is_tx_nobuf);
1646 
1647 		capinfo = IEEE80211_CAPINFO_ESS;
1648 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
1649 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
1650 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1651 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1652 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1653 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1654 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1655 		*(u_int16_t *)frm = htole16(capinfo);
1656 		frm += 2;
1657 
1658 		*(u_int16_t *)frm = htole16(arg);	/* status */
1659 		frm += 2;
1660 
1661 		if (arg == IEEE80211_STATUS_SUCCESS) {
1662 			*(u_int16_t *)frm = htole16(ni->ni_associd);
1663 			IEEE80211_NODE_STAT(ni, tx_assoc);
1664 		} else
1665 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
1666 		frm += 2;
1667 
1668 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
1669 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1670 		if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
1671 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1672 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1673 		break;
1674 
1675 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
1676 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC,
1677 			"[%s] send station disassociate (reason %d)\n",
1678 			ether_sprintf(ni->ni_macaddr), arg);
1679 		m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
1680 		if (m == NULL)
1681 			senderr(ENOMEM, is_tx_nobuf);
1682 		*(u_int16_t *)frm = htole16(arg);	/* reason */
1683 		m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
1684 
1685 		IEEE80211_NODE_STAT(ni, tx_disassoc);
1686 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
1687 		break;
1688 
1689 	default:
1690 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1691 			"[%s] invalid mgmt frame type %u\n",
1692 			ether_sprintf(ni->ni_macaddr), type);
1693 		senderr(EINVAL, is_tx_unknownmgt);
1694 		/* NOTREACHED */
1695 	}
1696 	ret = ieee80211_mgmt_output(ic, ni, m, type, timer);
1697 	if (ret != 0) {
1698 bad:
1699 		ieee80211_free_node(ni);
1700 	}
1701 	return ret;
1702 #undef senderr
1703 }
1704 
1705 /*
1706  * Build a RTS (Request To Send) control frame.
1707  */
1708 struct mbuf *
1709 ieee80211_get_rts(struct ieee80211com *ic, const struct ieee80211_frame *wh,
1710     uint16_t dur)
1711 {
1712 	struct ieee80211_frame_rts *rts;
1713 	struct mbuf *m;
1714 
1715 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1716 	if (m == NULL)
1717 		return NULL;
1718 
1719 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
1720 
1721 	rts = mtod(m, struct ieee80211_frame_rts *);
1722 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1723 	    IEEE80211_FC0_SUBTYPE_RTS;
1724 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1725 	*(uint16_t *)rts->i_dur = htole16(dur);
1726 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1727 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1728 
1729 	return m;
1730 }
1731 
1732 /*
1733  * Build a CTS-to-self (Clear To Send) control frame.
1734  */
1735 struct mbuf *
1736 ieee80211_get_cts_to_self(struct ieee80211com *ic, uint16_t dur)
1737 {
1738 	struct ieee80211_frame_cts *cts;
1739 	struct mbuf *m;
1740 
1741 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1742 	if (m == NULL)
1743 		return NULL;
1744 
1745 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
1746 
1747 	cts = mtod(m, struct ieee80211_frame_cts *);
1748 	cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1749 	    IEEE80211_FC0_SUBTYPE_CTS;
1750 	cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1751 	*(uint16_t *)cts->i_dur = htole16(dur);
1752 	IEEE80211_ADDR_COPY(cts->i_ra, ic->ic_myaddr);
1753 
1754 	return m;
1755 }
1756 
1757 /*
1758  * Allocate a beacon frame and fillin the appropriate bits.
1759  */
1760 struct mbuf *
1761 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni,
1762 	struct ieee80211_beacon_offsets *bo)
1763 {
1764 	struct ifnet *ifp = ic->ic_ifp;
1765 	struct ieee80211_frame *wh;
1766 	struct mbuf *m;
1767 	int pktlen;
1768 	u_int8_t *frm, *efrm;
1769 	u_int16_t capinfo;
1770 	struct ieee80211_rateset *rs;
1771 
1772 	/*
1773 	 * beacon frame format
1774 	 *	[8] time stamp
1775 	 *	[2] beacon interval
1776 	 *	[2] cabability information
1777 	 *	[tlv] ssid
1778 	 *	[tlv] supported rates
1779 	 *	[3] parameter set (DS)
1780 	 *	[tlv] parameter set (IBSS/TIM)
1781 	 *	[tlv] extended rate phy (ERP)
1782 	 *	[tlv] extended supported rates
1783 	 *	[tlv] WME parameters
1784 	 *	[tlv] WPA/RSN parameters
1785 	 * XXX Vendor-specific OIDs (e.g. Atheros)
1786 	 * NB: we allocate the max space required for the TIM bitmap.
1787 	 */
1788 	rs = &ni->ni_rates;
1789 	pktlen =   8					/* time stamp */
1790 		 + sizeof(u_int16_t)			/* beacon interval */
1791 		 + sizeof(u_int16_t)			/* capabilities */
1792 		 + 2 + ni->ni_esslen			/* ssid */
1793 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
1794 	         + 2 + 1				/* DS parameters */
1795 		 + 2 + 4 + ic->ic_tim_len		/* DTIM/IBSSPARMS */
1796 		 + 2 + 1				/* ERP */
1797 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1798 		 + (ic->ic_caps & IEEE80211_C_WME ?	/* WME */
1799 			sizeof(struct ieee80211_wme_param) : 0)
1800 		 + (ic->ic_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
1801 			2*sizeof(struct ieee80211_ie_wpa) : 0)
1802 		 ;
1803 	m = ieee80211_getmgtframe(&frm, pktlen);
1804 	if (m == NULL) {
1805 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1806 			"%s: cannot get buf; size %u\n", __func__, pktlen);
1807 		ic->ic_stats.is_tx_nobuf++;
1808 		return NULL;
1809 	}
1810 
1811 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
1812 	frm += 8;
1813 	*(u_int16_t *)frm = htole16(ni->ni_intval);
1814 	frm += 2;
1815 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1816 		capinfo = IEEE80211_CAPINFO_IBSS;
1817 	else
1818 		capinfo = IEEE80211_CAPINFO_ESS;
1819 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
1820 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1821 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1822 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1823 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1824 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1825 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1826 	bo->bo_caps = (u_int16_t *)frm;
1827 	*(u_int16_t *)frm = htole16(capinfo);
1828 	frm += 2;
1829 	*frm++ = IEEE80211_ELEMID_SSID;
1830 	if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) {
1831 		*frm++ = ni->ni_esslen;
1832 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
1833 		frm += ni->ni_esslen;
1834 	} else
1835 		*frm++ = 0;
1836 	frm = ieee80211_add_rates(frm, rs);
1837 	if (ic->ic_curmode != IEEE80211_MODE_FH) {
1838 		*frm++ = IEEE80211_ELEMID_DSPARMS;
1839 		*frm++ = 1;
1840 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1841 	}
1842 	bo->bo_tim = frm;
1843 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1844 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
1845 		*frm++ = 2;
1846 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
1847 		bo->bo_tim_len = 0;
1848 	} else {
1849 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
1850 
1851 		tie->tim_ie = IEEE80211_ELEMID_TIM;
1852 		tie->tim_len = 4;	/* length */
1853 		tie->tim_count = 0;	/* DTIM count */
1854 		tie->tim_period = ic->ic_dtim_period;	/* DTIM period */
1855 		tie->tim_bitctl = 0;	/* bitmap control */
1856 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
1857 		frm += sizeof(struct ieee80211_tim_ie);
1858 		bo->bo_tim_len = 1;
1859 	}
1860 	bo->bo_trailer = frm;
1861 	if (ic->ic_flags & IEEE80211_F_WME) {
1862 		bo->bo_wme = frm;
1863 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1864 		ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
1865 	}
1866 	if (ic->ic_flags & IEEE80211_F_WPA)
1867 		frm = ieee80211_add_wpa(frm, ic);
1868 	if (ic->ic_curmode == IEEE80211_MODE_11G)
1869 		frm = ieee80211_add_erp(frm, ic);
1870 	efrm = ieee80211_add_xrates(frm, rs);
1871 	bo->bo_trailer_len = efrm - bo->bo_trailer;
1872 	m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *);
1873 
1874 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1875 	IASSERT(m != NULL, ("no space for 802.11 header?"));
1876 	wh = mtod(m, struct ieee80211_frame *);
1877 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1878 	    IEEE80211_FC0_SUBTYPE_BEACON;
1879 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1880 	*(u_int16_t *)wh->i_dur = 0;
1881 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
1882 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
1883 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
1884 	*(u_int16_t *)wh->i_seq = 0;
1885 
1886 	return m;
1887 }
1888 
1889 /*
1890  * Update the dynamic parts of a beacon frame based on the current state.
1891  */
1892 int
1893 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni,
1894     struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
1895 {
1896 	int len_changed = 0;
1897 	u_int16_t capinfo;
1898 
1899 	IEEE80211_BEACON_LOCK(ic);
1900 	/* XXX faster to recalculate entirely or just changes? */
1901 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1902 		capinfo = IEEE80211_CAPINFO_IBSS;
1903 	else
1904 		capinfo = IEEE80211_CAPINFO_ESS;
1905 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
1906 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1907 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1908 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1909 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1910 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1911 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1912 	*bo->bo_caps = htole16(capinfo);
1913 
1914 	if (ic->ic_flags & IEEE80211_F_WME) {
1915 		struct ieee80211_wme_state *wme = &ic->ic_wme;
1916 
1917 		/*
1918 		 * Check for agressive mode change.  When there is
1919 		 * significant high priority traffic in the BSS
1920 		 * throttle back BE traffic by using conservative
1921 		 * parameters.  Otherwise BE uses agressive params
1922 		 * to optimize performance of legacy/non-QoS traffic.
1923 		 */
1924 		if (wme->wme_flags & WME_F_AGGRMODE) {
1925 			if (wme->wme_hipri_traffic >
1926 			    wme->wme_hipri_switch_thresh) {
1927 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
1928 				    "%s: traffic %u, disable aggressive mode\n",
1929 				    __func__, wme->wme_hipri_traffic);
1930 				wme->wme_flags &= ~WME_F_AGGRMODE;
1931 				ieee80211_wme_updateparams_locked(ic);
1932 				wme->wme_hipri_traffic =
1933 					wme->wme_hipri_switch_hysteresis;
1934 			} else
1935 				wme->wme_hipri_traffic = 0;
1936 		} else {
1937 			if (wme->wme_hipri_traffic <=
1938 			    wme->wme_hipri_switch_thresh) {
1939 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
1940 				    "%s: traffic %u, enable aggressive mode\n",
1941 				    __func__, wme->wme_hipri_traffic);
1942 				wme->wme_flags |= WME_F_AGGRMODE;
1943 				ieee80211_wme_updateparams_locked(ic);
1944 				wme->wme_hipri_traffic = 0;
1945 			} else
1946 				wme->wme_hipri_traffic =
1947 					wme->wme_hipri_switch_hysteresis;
1948 		}
1949 		if (ic->ic_flags & IEEE80211_F_WMEUPDATE) {
1950 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
1951 			ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
1952 		}
1953 	}
1954 
1955 #ifndef IEEE80211_NO_HOSTAP
1956 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {	/* NB: no IBSS support*/
1957 		struct ieee80211_tim_ie *tie =
1958 			(struct ieee80211_tim_ie *) bo->bo_tim;
1959 		if (ic->ic_flags & IEEE80211_F_TIMUPDATE) {
1960 			u_int timlen, timoff, i;
1961 			/*
1962 			 * ATIM/DTIM needs updating.  If it fits in the
1963 			 * current space allocated then just copy in the
1964 			 * new bits.  Otherwise we need to move any trailing
1965 			 * data to make room.  Note that we know there is
1966 			 * contiguous space because ieee80211_beacon_allocate
1967 			 * insures there is space in the mbuf to write a
1968 			 * maximal-size virtual bitmap (based on ic_max_aid).
1969 			 */
1970 			/*
1971 			 * Calculate the bitmap size and offset, copy any
1972 			 * trailer out of the way, and then copy in the
1973 			 * new bitmap and update the information element.
1974 			 * Note that the tim bitmap must contain at least
1975 			 * one byte and any offset must be even.
1976 			 */
1977 			if (ic->ic_ps_pending != 0) {
1978 				timoff = 128;		/* impossibly large */
1979 				for (i = 0; i < ic->ic_tim_len; i++)
1980 					if (ic->ic_tim_bitmap[i]) {
1981 						timoff = i &~ 1;
1982 						break;
1983 					}
1984 				IASSERT(timoff != 128, ("tim bitmap empty!"));
1985 				for (i = ic->ic_tim_len-1; i >= timoff; i--)
1986 					if (ic->ic_tim_bitmap[i])
1987 						break;
1988 				timlen = 1 + (i - timoff);
1989 			} else {
1990 				timoff = 0;
1991 				timlen = 1;
1992 			}
1993 			if (timlen != bo->bo_tim_len) {
1994 				/* copy up/down trailer */
1995 				ovbcopy(bo->bo_trailer, tie->tim_bitmap+timlen,
1996 					bo->bo_trailer_len);
1997 				bo->bo_trailer = tie->tim_bitmap+timlen;
1998 				bo->bo_wme = bo->bo_trailer;
1999 				bo->bo_tim_len = timlen;
2000 
2001 				/* update information element */
2002 				tie->tim_len = 3 + timlen;
2003 				tie->tim_bitctl = timoff;
2004 				len_changed = 1;
2005 			}
2006 			memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff,
2007 				bo->bo_tim_len);
2008 
2009 			ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
2010 
2011 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
2012 				"%s: TIM updated, pending %u, off %u, len %u\n",
2013 				__func__, ic->ic_ps_pending, timoff, timlen);
2014 		}
2015 		/* count down DTIM period */
2016 		if (tie->tim_count == 0)
2017 			tie->tim_count = tie->tim_period - 1;
2018 		else
2019 			tie->tim_count--;
2020 		/* update state for buffered multicast frames on DTIM */
2021 		if (mcast && (tie->tim_count == 1 || tie->tim_period == 1))
2022 			tie->tim_bitctl |= 1;
2023 		else
2024 			tie->tim_bitctl &= ~1;
2025 	}
2026 #endif /* !IEEE80211_NO_HOSTAP */
2027 	IEEE80211_BEACON_UNLOCK(ic);
2028 
2029 	return len_changed;
2030 }
2031 
2032 /*
2033  * Save an outbound packet for a node in power-save sleep state.
2034  * The new packet is placed on the node's saved queue, and the TIM
2035  * is changed, if necessary.
2036  */
2037 void
2038 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni,
2039 		  struct mbuf *m)
2040 {
2041 	int qlen, age;
2042 
2043 	IEEE80211_NODE_SAVEQ_LOCK(ni);
2044 	if (IF_QFULL(&ni->ni_savedq)) {
2045 		IF_DROP(&ni->ni_savedq);
2046 		IEEE80211_NODE_SAVEQ_UNLOCK(ni);
2047 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
2048 			"[%s] pwr save q overflow, drops %d (size %d)\n",
2049 			ether_sprintf(ni->ni_macaddr),
2050 			ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE);
2051 #ifdef IEEE80211_DEBUG
2052 		if (ieee80211_msg_dumppkts(ic))
2053 			ieee80211_dump_pkt(mtod(m, void *), m->m_len, -1, -1);
2054 #endif
2055 		m_freem(m);
2056 		return;
2057 	}
2058 	/*
2059 	 * Tag the frame with its expiry time and insert
2060 	 * it in the queue.  The aging interval is 4 times
2061 	 * the listen interval specified by the station.
2062 	 * Frames that sit around too long are reclaimed
2063 	 * using this information.
2064 	 */
2065 	/* XXX handle overflow? */
2066 	age = ((ni->ni_intval * ic->ic_bintval) << 2) / 1024; /* TU -> secs */
2067 	_IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age);
2068 	IEEE80211_NODE_SAVEQ_UNLOCK(ni);
2069 
2070 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
2071 		"[%s] save frame with age %d, %u now queued\n",
2072 		ether_sprintf(ni->ni_macaddr), age, qlen);
2073 
2074 	if (qlen == 1)
2075 		ic->ic_set_tim(ni, 1);
2076 }
2077