1 /* $NetBSD: ieee80211_output.c,v 1.68 2024/07/05 04:31:53 rin Exp $ */ 2 3 /* 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * Alternatively, this software may be distributed under the terms of the 20 * GNU General Public License ("GPL") version 2 as published by the Free 21 * Software Foundation. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 #ifdef __FreeBSD__ 37 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.34 2005/08/10 16:22:29 sam Exp $"); 38 #endif 39 #ifdef __NetBSD__ 40 __KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.68 2024/07/05 04:31:53 rin Exp $"); 41 #endif 42 43 #ifdef _KERNEL_OPT 44 #include "opt_inet.h" 45 #endif 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/mbuf.h> 50 #include <sys/kernel.h> 51 #include <sys/endian.h> 52 #include <sys/errno.h> 53 #include <sys/proc.h> 54 #include <sys/sysctl.h> 55 56 #include <net/if.h> 57 #include <net/if_llc.h> 58 #include <net/if_media.h> 59 #include <net/if_arp.h> 60 #include <net/if_ether.h> 61 #include <net/if_llc.h> 62 #include <net/if_vlanvar.h> 63 64 #include <net80211/ieee80211_netbsd.h> 65 #include <net80211/ieee80211_var.h> 66 67 #include <net/bpf.h> 68 69 #ifdef INET 70 #include <netinet/in.h> 71 #include <netinet/in_systm.h> 72 #include <netinet/in_var.h> 73 #include <netinet/ip.h> 74 #include <net/if_ether.h> 75 #endif 76 77 static int ieee80211_fragment(struct ieee80211com *, struct mbuf *, 78 u_int hdrsize, u_int ciphdrsize, u_int mtu); 79 80 #ifdef IEEE80211_DEBUG 81 /* 82 * Decide if an outbound management frame should be 83 * printed when debugging is enabled. This filters some 84 * of the less interesting frames that come frequently 85 * (e.g. beacons). 86 */ 87 static __inline int 88 doprint(struct ieee80211com *ic, int subtype) 89 { 90 switch (subtype) { 91 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 92 return (ic->ic_opmode == IEEE80211_M_IBSS); 93 } 94 return 1; 95 } 96 #endif 97 98 /* 99 * Set the direction field and address fields of an outgoing 100 * non-QoS frame. Note this should be called early on in 101 * constructing a frame as it sets i_fc[1]; other bits can 102 * then be or'd in. 103 */ 104 static void 105 ieee80211_send_setup(struct ieee80211com *ic, 106 struct ieee80211_node *ni, 107 struct ieee80211_frame *wh, 108 int type, 109 const u_int8_t sa[IEEE80211_ADDR_LEN], 110 const u_int8_t da[IEEE80211_ADDR_LEN], 111 const u_int8_t bssid[IEEE80211_ADDR_LEN]) 112 { 113 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 114 115 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 116 117 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 118 switch (ic->ic_opmode) { 119 case IEEE80211_M_STA: 120 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 121 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 122 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 123 IEEE80211_ADDR_COPY(wh->i_addr3, da); 124 break; 125 126 case IEEE80211_M_IBSS: 127 case IEEE80211_M_AHDEMO: 128 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 129 IEEE80211_ADDR_COPY(wh->i_addr1, da); 130 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 131 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 132 break; 133 134 case IEEE80211_M_HOSTAP: 135 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 136 IEEE80211_ADDR_COPY(wh->i_addr1, da); 137 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 138 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 139 break; 140 141 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 142 break; 143 } 144 } else { 145 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 146 IEEE80211_ADDR_COPY(wh->i_addr1, da); 147 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 148 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 149 } 150 151 *(u_int16_t *)&wh->i_dur[0] = 0; 152 /* NB: use non-QoS tid */ 153 *(u_int16_t *)&wh->i_seq[0] = 154 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 155 ni->ni_txseqs[0]++; 156 #undef WH4 157 } 158 159 /* 160 * Send a management frame to the specified node. The node pointer 161 * must have a reference as the pointer will be passed to the driver 162 * and potentially held for a long time. If the frame is successfully 163 * dispatched to the driver, then it is responsible for freeing the 164 * reference (and potentially free'ing up any associated storage). 165 */ 166 static int 167 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni, 168 struct mbuf *m, int type, int timer) 169 { 170 struct ifnet *ifp = ic->ic_ifp; 171 struct ieee80211_frame *wh; 172 173 IASSERT(ni != NULL, ("null node")); 174 175 /* 176 * Yech, hack alert! We want to pass the node down to the 177 * driver's start routine. If we don't do so then the start 178 * routine must immediately look it up again and that can 179 * cause a lock order reversal if, for example, this frame 180 * is being sent because the station is being timedout and 181 * the frame being sent is a DEAUTH message. We could stick 182 * this in an m_tag and tack that on to the mbuf. However 183 * that's rather expensive to do for every frame so instead 184 * we stuff it in the rcvif field since outbound frames do 185 * not (presently) use this. 186 */ 187 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 188 if (m == NULL) 189 return ENOMEM; 190 M_SETCTX(m, ni); 191 192 wh = mtod(m, struct ieee80211_frame *); 193 ieee80211_send_setup(ic, ni, wh, IEEE80211_FC0_TYPE_MGT | type, 194 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); 195 196 if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) { 197 m->m_flags &= ~M_LINK0; 198 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 199 "[%s] encrypting frame (%s)\n", 200 ether_sprintf(wh->i_addr1), __func__); 201 wh->i_fc[1] |= IEEE80211_FC1_WEP; 202 } 203 204 #ifdef IEEE80211_DEBUG 205 /* avoid printing too many frames */ 206 if ((ieee80211_msg_debug(ic) && doprint(ic, type)) || 207 ieee80211_msg_dumppkts(ic)) { 208 printf("[%s] send %s on channel %u\n", 209 ether_sprintf(wh->i_addr1), 210 ieee80211_mgt_subtype_name[ 211 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 212 IEEE80211_FC0_SUBTYPE_SHIFT], 213 ieee80211_chan2ieee(ic, ic->ic_curchan)); 214 } 215 #endif 216 217 IEEE80211_NODE_STAT(ni, tx_mgmt); 218 IF_ENQUEUE(&ic->ic_mgtq, m); 219 if (timer) { 220 /* 221 * Set the mgt frame timeout. 222 */ 223 ic->ic_mgt_timer = timer; 224 ifp->if_timer = 1; 225 } 226 if_start_lock(ifp); 227 return 0; 228 } 229 230 /* 231 * Send a null data frame to the specified node. 232 * 233 * NB: the caller is assumed to have setup a node reference 234 * for use; this is necessary to deal with a race condition 235 * when probing for inactive stations. 236 */ 237 int 238 ieee80211_send_nulldata(struct ieee80211_node *ni) 239 { 240 struct ieee80211com *ic = ni->ni_ic; 241 struct ifnet *ifp = ic->ic_ifp; 242 struct mbuf *m; 243 struct ieee80211_frame *wh; 244 245 MGETHDR(m, M_NOWAIT, MT_HEADER); 246 if (m == NULL) { 247 ic->ic_stats.is_tx_nobuf++; 248 ieee80211_unref_node(&ni); 249 return ENOMEM; 250 } 251 M_SETCTX(m, ni); 252 253 wh = mtod(m, struct ieee80211_frame *); 254 255 ieee80211_send_setup(ic, ni, wh, 256 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 257 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); 258 259 /* NB: power management bit is never sent by an AP */ 260 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 261 ic->ic_opmode != IEEE80211_M_HOSTAP) { 262 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 263 } 264 265 m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame); 266 267 IEEE80211_NODE_STAT(ni, tx_data); 268 269 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 270 "[%s] send null data frame on channel %u, pwr mgt %s\n", 271 ether_sprintf(ni->ni_macaddr), 272 ieee80211_chan2ieee(ic, ic->ic_curchan), 273 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 274 275 IF_ENQUEUE(&ic->ic_mgtq, m); /* cheat */ 276 if_start_lock(ifp); 277 278 return 0; 279 } 280 281 /* 282 * Assign priority to a frame based on any vlan tag assigned 283 * to the station and/or any Diffserv setting in an IP header. 284 * Finally, if an ACM policy is setup (in station mode) it's 285 * applied. 286 */ 287 int 288 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, 289 struct ieee80211_node *ni) 290 { 291 int v_wme_ac, d_wme_ac, ac; 292 #ifdef INET 293 struct ether_header *eh; 294 #endif 295 296 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 297 ac = WME_AC_BE; 298 goto done; 299 } 300 301 /* 302 * If node has a vlan tag then all traffic 303 * to it must have a matching tag. 304 */ 305 v_wme_ac = 0; 306 if (ni->ni_vlan != 0) { 307 /* XXX used to check ec_nvlans. */ 308 if (!vlan_has_tag(m)) { 309 IEEE80211_NODE_STAT(ni, tx_novlantag); 310 return 1; 311 } 312 if (EVL_VLANOFTAG(vlan_get_tag(m)) != 313 EVL_VLANOFTAG(ni->ni_vlan)) { 314 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 315 return 1; 316 } 317 /* map vlan priority to AC */ 318 switch (EVL_PRIOFTAG(ni->ni_vlan)) { 319 case 1: 320 case 2: 321 v_wme_ac = WME_AC_BK; 322 break; 323 case 0: 324 case 3: 325 v_wme_ac = WME_AC_BE; 326 break; 327 case 4: 328 case 5: 329 v_wme_ac = WME_AC_VI; 330 break; 331 case 6: 332 case 7: 333 v_wme_ac = WME_AC_VO; 334 break; 335 } 336 } 337 338 #ifdef INET 339 eh = mtod(m, struct ether_header *); 340 if (eh->ether_type == htons(ETHERTYPE_IP)) { 341 const struct ip *ip = (struct ip *) 342 (mtod(m, u_int8_t *) + sizeof (*eh)); 343 /* 344 * IP frame, map the TOS field. 345 */ 346 switch (ip->ip_tos) { 347 case 0x08: 348 case 0x20: 349 d_wme_ac = WME_AC_BK; /* background */ 350 break; 351 case 0x28: 352 case 0xa0: 353 d_wme_ac = WME_AC_VI; /* video */ 354 break; 355 case 0x30: /* voice */ 356 case 0xe0: 357 case 0x88: /* XXX UPSD */ 358 case 0xb8: 359 d_wme_ac = WME_AC_VO; 360 break; 361 default: 362 d_wme_ac = WME_AC_BE; 363 break; 364 } 365 } else { 366 #endif /* INET */ 367 d_wme_ac = WME_AC_BE; 368 #ifdef INET 369 } 370 #endif 371 /* 372 * Use highest priority AC. 373 */ 374 if (v_wme_ac > d_wme_ac) 375 ac = v_wme_ac; 376 else 377 ac = d_wme_ac; 378 379 /* 380 * Apply ACM policy. 381 */ 382 if (ic->ic_opmode == IEEE80211_M_STA) { 383 static const int acmap[4] = { 384 WME_AC_BK, /* WME_AC_BE */ 385 WME_AC_BK, /* WME_AC_BK */ 386 WME_AC_BE, /* WME_AC_VI */ 387 WME_AC_VI, /* WME_AC_VO */ 388 }; 389 while (ac != WME_AC_BK && 390 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 391 ac = acmap[ac]; 392 } 393 done: 394 M_WME_SETAC(m, ac); 395 return 0; 396 } 397 398 /* 399 * Insure there is sufficient contiguous space to encapsulate the 400 * 802.11 data frame. If room isn't already there, arrange for it. 401 * Drivers and cipher modules assume we have done the necessary work 402 * and fail rudely if they don't find the space they need. 403 * 404 * Basically, we are trying to make sure that the several M_PREPENDs 405 * called after this function do not fail. 406 */ 407 static struct mbuf * 408 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize, 409 struct ieee80211_key *key, struct mbuf *m) 410 { 411 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 412 int needed_space = hdrsize; 413 int wlen = 0; 414 415 if (key != NULL) { 416 /* XXX belongs in crypto code? */ 417 needed_space += key->wk_cipher->ic_header; 418 /* XXX frags */ 419 } 420 421 /* 422 * We know we are called just before stripping an Ethernet 423 * header and prepending an LLC header. This means we know 424 * there will be 425 * sizeof(struct ether_header) - sizeof(struct llc) 426 * bytes recovered to which we need additional space for the 427 * 802.11 header and any crypto header. 428 */ 429 /* XXX check trailing space and copy instead? */ 430 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 431 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 432 if (n == NULL) { 433 ic->ic_stats.is_tx_nobuf++; 434 m_freem(m); 435 return NULL; 436 } 437 438 IASSERT(needed_space <= MHLEN, 439 ("not enough room, need %u got %lu\n", needed_space, (u_long)MHLEN)); 440 441 /* 442 * Setup new mbuf to have leading space to prepend the 443 * 802.11 header and any crypto header bits that are 444 * required (the latter are added when the driver calls 445 * back to ieee80211_crypto_encap to do crypto encapsulation). 446 */ 447 m_move_pkthdr(n, m); 448 n->m_len = 0; 449 n->m_data += needed_space; 450 451 /* 452 * Pull up Ethernet header to create the expected layout. 453 * We could use m_pullup but that's overkill (i.e. we don't 454 * need the actual data) and it cannot fail so do it inline 455 * for speed. 456 */ 457 n->m_len += sizeof(struct ether_header); 458 m->m_len -= sizeof(struct ether_header); 459 m->m_data += sizeof(struct ether_header); 460 461 /* 462 * Replace the head of the chain. 463 */ 464 n->m_next = m; 465 m = n; 466 } else { 467 /* 468 * We will overwrite the ethernet header in the 469 * 802.11 encapsulation stage. Make sure that it 470 * is writable. 471 */ 472 wlen = sizeof(struct ether_header); 473 } 474 475 /* 476 * If we're going to s/w encrypt the mbuf chain make sure it is 477 * writable. 478 */ 479 if (key != NULL && (key->wk_flags & IEEE80211_KEY_SWCRYPT) != 0) { 480 wlen = M_COPYALL; 481 } 482 if (wlen != 0 && m_makewritable(&m, 0, wlen, M_DONTWAIT) != 0) { 483 m_freem(m); 484 return NULL; 485 } 486 487 return m; 488 #undef TO_BE_RECLAIMED 489 } 490 491 /* 492 * Return the transmit key to use in sending a unicast frame. 493 * If a unicast key is set we use that. When no unicast key is set 494 * we fall back to the default transmit key. 495 */ 496 static __inline struct ieee80211_key * 497 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni) 498 { 499 if (IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)) { 500 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 501 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 502 return NULL; 503 return &ic->ic_nw_keys[ic->ic_def_txkey]; 504 } else { 505 return &ni->ni_ucastkey; 506 } 507 } 508 509 /* 510 * Return the transmit key to use in sending a multicast frame. 511 * Multicast traffic always uses the group key which is installed as 512 * the default tx key. 513 */ 514 static __inline struct ieee80211_key * 515 ieee80211_crypto_getmcastkey(struct ieee80211com *ic, 516 struct ieee80211_node *ni) 517 { 518 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 519 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 520 return NULL; 521 return &ic->ic_nw_keys[ic->ic_def_txkey]; 522 } 523 524 /* 525 * Encapsulate an outbound data frame. The mbuf chain is updated. 526 * If an error is encountered NULL is returned. The caller is required 527 * to provide a node reference and pullup the ethernet header in the 528 * first mbuf. 529 */ 530 struct mbuf * 531 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m, 532 struct ieee80211_node *ni) 533 { 534 struct ether_header eh; 535 struct ieee80211_frame *wh; 536 struct ieee80211_key *key; 537 struct llc *llc; 538 int hdrsize, datalen, addqos, txfrag; 539 540 IASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 541 memcpy(&eh, mtod(m, void *), sizeof(struct ether_header)); 542 543 /* 544 * Insure space for additional headers. First identify 545 * transmit key to use in calculating any buffer adjustments 546 * required. This is also used below to do privacy 547 * encapsulation work. Then calculate the 802.11 header 548 * size and any padding required by the driver. 549 * 550 * Note key may be NULL if we fall back to the default 551 * transmit key and that is not set. In that case the 552 * buffer may not be expanded as needed by the cipher 553 * routines, but they will/should discard it. 554 */ 555 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 556 if (ic->ic_opmode == IEEE80211_M_STA || 557 !IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 558 key = ieee80211_crypto_getucastkey(ic, ni); 559 } else { 560 key = ieee80211_crypto_getmcastkey(ic, ni); 561 } 562 if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) { 563 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO, 564 "[%s] no default transmit key (%s) deftxkey %u\n", 565 ether_sprintf(eh.ether_dhost), __func__, 566 ic->ic_def_txkey); 567 ic->ic_stats.is_tx_nodefkey++; 568 } 569 } else { 570 key = NULL; 571 } 572 573 /* 574 * XXX 4-address format. 575 * 576 * XXX Some ap's don't handle QoS-encapsulated EAPOL 577 * frames so suppress use. This may be an issue if other 578 * ap's require all data frames to be QoS-encapsulated 579 * once negotiated in which case we'll need to make this 580 * configurable. 581 */ 582 addqos = (ni->ni_flags & IEEE80211_NODE_QOS) && 583 eh.ether_type != htons(ETHERTYPE_PAE); 584 if (addqos) 585 hdrsize = sizeof(struct ieee80211_qosframe); 586 else 587 hdrsize = sizeof(struct ieee80211_frame); 588 if (ic->ic_flags & IEEE80211_F_DATAPAD) 589 hdrsize = roundup(hdrsize, sizeof(u_int32_t)); 590 591 m = ieee80211_mbuf_adjust(ic, hdrsize, key, m); 592 if (m == NULL) { 593 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 594 goto bad; 595 } 596 597 /* NB: this could be optimized because of ieee80211_mbuf_adjust */ 598 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 599 llc = mtod(m, struct llc *); 600 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 601 llc->llc_control = LLC_UI; 602 llc->llc_snap.org_code[0] = 0; 603 llc->llc_snap.org_code[1] = 0; 604 llc->llc_snap.org_code[2] = 0; 605 llc->llc_snap.ether_type = eh.ether_type; 606 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 607 608 M_PREPEND(m, hdrsize, M_DONTWAIT); 609 if (m == NULL) { 610 ic->ic_stats.is_tx_nobuf++; 611 goto bad; 612 } 613 614 wh = mtod(m, struct ieee80211_frame *); 615 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 616 *(u_int16_t *)wh->i_dur = 0; 617 618 switch (ic->ic_opmode) { 619 case IEEE80211_M_STA: 620 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 621 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 622 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 623 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 624 break; 625 626 case IEEE80211_M_IBSS: 627 case IEEE80211_M_AHDEMO: 628 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 629 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 630 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 631 /* 632 * NB: always use the bssid from ic_bss as the 633 * neighbor's may be stale after an ibss merge 634 */ 635 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid); 636 break; 637 638 case IEEE80211_M_HOSTAP: 639 #ifndef IEEE80211_NO_HOSTAP 640 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 641 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 642 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 643 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 644 #endif 645 break; 646 647 case IEEE80211_M_MONITOR: 648 goto bad; 649 } 650 651 if (m->m_flags & M_MORE_DATA) 652 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 653 654 if (addqos) { 655 struct ieee80211_qosframe *qwh = 656 (struct ieee80211_qosframe *)wh; 657 int ac, tid; 658 659 ac = M_WME_GETAC(m); 660 /* map from access class/queue to 11e header priorty value */ 661 tid = WME_AC_TO_TID(ac); 662 qwh->i_qos[0] = tid & IEEE80211_QOS_TID; 663 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 664 qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S; 665 qwh->i_qos[1] = 0; 666 qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 667 668 *(u_int16_t *)wh->i_seq = 669 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT); 670 ni->ni_txseqs[tid]++; 671 } else { 672 *(u_int16_t *)wh->i_seq = 673 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 674 ni->ni_txseqs[0]++; 675 } 676 677 /* check if xmit fragmentation is required */ 678 txfrag = (m->m_pkthdr.len > ic->ic_fragthreshold && 679 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 680 (m->m_flags & M_FF) == 0); /* NB: don't fragment ff's */ 681 682 if (key != NULL) { 683 /* 684 * IEEE 802.1X: send EAPOL frames always in the clear. 685 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 686 */ 687 if (eh.ether_type != htons(ETHERTYPE_PAE) || 688 ((ic->ic_flags & IEEE80211_F_WPA) && 689 (ic->ic_opmode == IEEE80211_M_STA ? 690 !IEEE80211_KEY_UNDEFINED(*key) : 691 !IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)))) { 692 wh->i_fc[1] |= IEEE80211_FC1_WEP; 693 if (!ieee80211_crypto_enmic(ic, key, m, txfrag)) { 694 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 695 "[%s] enmic failed, discard frame\n", 696 ether_sprintf(eh.ether_dhost)); 697 ic->ic_stats.is_crypto_enmicfail++; 698 goto bad; 699 } 700 } 701 } 702 703 if (txfrag && !ieee80211_fragment(ic, m, hdrsize, 704 key != NULL ? key->wk_cipher->ic_header : 0, ic->ic_fragthreshold)) 705 goto bad; 706 707 IEEE80211_NODE_STAT(ni, tx_data); 708 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 709 710 return m; 711 712 bad: 713 m_freem(m); 714 return NULL; 715 } 716 717 /* 718 * Arguments in: 719 * 720 * paylen: payload length (no FCS, no WEP header) 721 * 722 * hdrlen: header length 723 * 724 * rate: MSDU speed, units 500kb/s 725 * 726 * flags: IEEE80211_F_SHPREAMBLE (use short preamble), 727 * IEEE80211_F_SHSLOT (use short slot length) 728 * 729 * Arguments out: 730 * 731 * d: 802.11 Duration field for RTS, 732 * 802.11 Duration field for data frame, 733 * PLCP Length for data frame, 734 * residual octets at end of data slot 735 */ 736 static int 737 ieee80211_compute_duration1(int len, int use_ack, uint32_t icflags, int rate, 738 struct ieee80211_duration *d) 739 { 740 int pre, ctsrate; 741 int ack, bitlen, data_dur, remainder; 742 743 /* RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK 744 * DATA reserves medium for SIFS | ACK, 745 * 746 * (XXX or SIFS | ACK | SIFS | DATA | SIFS | ACK, if more fragments) 747 * 748 * XXXMYC: no ACK on multicast/broadcast or control packets 749 */ 750 751 bitlen = len * 8; 752 753 pre = IEEE80211_DUR_DS_SIFS; 754 if ((icflags & IEEE80211_F_SHPREAMBLE) != 0) 755 pre += IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR; 756 else 757 pre += IEEE80211_DUR_DS_LONG_PREAMBLE + IEEE80211_DUR_DS_SLOW_PLCPHDR; 758 759 d->d_residue = 0; 760 data_dur = (bitlen * 2) / rate; 761 remainder = (bitlen * 2) % rate; 762 if (remainder != 0) { 763 d->d_residue = (rate - remainder) / 16; 764 data_dur++; 765 } 766 767 switch (rate) { 768 case 2: /* 1 Mb/s */ 769 case 4: /* 2 Mb/s */ 770 /* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */ 771 ctsrate = 2; 772 break; 773 case 11: /* 5.5 Mb/s */ 774 case 22: /* 11 Mb/s */ 775 case 44: /* 22 Mb/s */ 776 /* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */ 777 ctsrate = 4; 778 break; 779 default: 780 /* TBD */ 781 return -1; 782 } 783 784 d->d_plcp_len = data_dur; 785 786 ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0; 787 788 d->d_rts_dur = 789 pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate + 790 pre + data_dur + 791 ack; 792 793 d->d_data_dur = ack; 794 795 return 0; 796 } 797 798 /* 799 * Arguments in: 800 * 801 * wh: 802.11 header 802 * 803 * paylen: payload length (no FCS, no WEP header) 804 * 805 * rate: MSDU speed, units 500kb/s 806 * 807 * fraglen: fragment length, set to maximum (or higher) for no 808 * fragmentation 809 * 810 * flags: IEEE80211_F_PRIVACY (hardware adds WEP), 811 * IEEE80211_F_SHPREAMBLE (use short preamble), 812 * IEEE80211_F_SHSLOT (use short slot length) 813 * 814 * Arguments out: 815 * 816 * d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields 817 * of first/only fragment 818 * 819 * dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields 820 * of last fragment 821 * 822 * ieee80211_compute_duration assumes crypto-encapsulation, if any, 823 * has already taken place. 824 */ 825 int 826 ieee80211_compute_duration(const struct ieee80211_frame_min *wh, 827 const struct ieee80211_key *wk, int len, 828 uint32_t icflags, int fraglen, int rate, struct ieee80211_duration *d0, 829 struct ieee80211_duration *dn, int *npktp, int debug) 830 { 831 int ack, rc; 832 int cryptolen, /* crypto overhead: header+trailer */ 833 firstlen, /* first fragment's payload + overhead length */ 834 hdrlen, /* header length w/o driver padding */ 835 lastlen, /* last fragment's payload length w/ overhead */ 836 lastlen0, /* last fragment's payload length w/o overhead */ 837 npkt, /* number of fragments */ 838 overlen, /* non-802.11 header overhead per fragment */ 839 paylen; /* payload length w/o overhead */ 840 841 hdrlen = ieee80211_anyhdrsize((const void *)wh); 842 843 /* Account for padding required by the driver. */ 844 if (icflags & IEEE80211_F_DATAPAD) { 845 paylen = len - roundup(hdrlen, sizeof(u_int32_t)); 846 if (paylen < 0) { 847 panic("%s: paylen < 0", __func__); 848 } 849 } else { 850 paylen = len - hdrlen; 851 } 852 853 overlen = IEEE80211_CRC_LEN; 854 855 if (wk != NULL) { 856 cryptolen = wk->wk_cipher->ic_header + 857 wk->wk_cipher->ic_trailer; 858 paylen -= cryptolen; 859 overlen += cryptolen; 860 } 861 862 npkt = paylen / fraglen; 863 lastlen0 = paylen % fraglen; 864 865 if (npkt == 0) /* no fragments */ 866 lastlen = paylen + overlen; 867 else if (lastlen0 != 0) { /* a short "tail" fragment */ 868 lastlen = lastlen0 + overlen; 869 npkt++; 870 } else /* full-length "tail" fragment */ 871 lastlen = fraglen + overlen; 872 873 if (npktp != NULL) 874 *npktp = npkt; 875 876 if (npkt > 1) 877 firstlen = fraglen + overlen; 878 else 879 firstlen = paylen + overlen; 880 881 if (debug) { 882 printf("%s: npkt %d firstlen %d lastlen0 %d lastlen %d " 883 "fraglen %d overlen %d len %d rate %d icflags %08x\n", 884 __func__, npkt, firstlen, lastlen0, lastlen, fraglen, 885 overlen, len, rate, icflags); 886 } 887 888 ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) && 889 (wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL; 890 891 rc = ieee80211_compute_duration1(firstlen + hdrlen, 892 ack, icflags, rate, d0); 893 if (rc == -1) 894 return rc; 895 896 if (npkt <= 1) { 897 *dn = *d0; 898 return 0; 899 } 900 return ieee80211_compute_duration1(lastlen + hdrlen, ack, icflags, rate, 901 dn); 902 } 903 904 /* 905 * Fragment the frame according to the specified mtu. 906 * The size of the 802.11 header (w/o padding) is provided 907 * so we don't need to recalculate it. We create a new 908 * mbuf for each fragment and chain it through m_nextpkt; 909 * we might be able to optimize this by reusing the original 910 * packet's mbufs but that is significantly more complicated. 911 */ 912 static int 913 ieee80211_fragment(struct ieee80211com *ic, struct mbuf *m0, 914 u_int hdrsize, u_int ciphdrsize, u_int mtu) 915 { 916 struct ieee80211_frame *wh, *whf; 917 struct mbuf *m, *prev, *next; 918 const u_int totalhdrsize = hdrsize + ciphdrsize; 919 u_int fragno, fragsize, off, remainder, payload; 920 921 IASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 922 IASSERT(m0->m_pkthdr.len > mtu, 923 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 924 925 wh = mtod(m0, struct ieee80211_frame *); 926 /* NB: mark the first frag; it will be propagated below */ 927 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 928 929 fragno = 1; 930 off = mtu - ciphdrsize; 931 remainder = m0->m_pkthdr.len - off; 932 prev = m0; 933 do { 934 fragsize = totalhdrsize + remainder; 935 if (fragsize > mtu) 936 fragsize = mtu; 937 IASSERT(fragsize < MCLBYTES, 938 ("fragment size %u too big!", fragsize)); 939 if (fragsize > MHLEN) 940 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 941 else 942 m = m_gethdr(M_DONTWAIT, MT_DATA); 943 if (m == NULL) 944 goto bad; 945 946 /* leave room to prepend any cipher header */ 947 m_align(m, fragsize - ciphdrsize); 948 949 /* 950 * Form the header in the fragment. Note that since 951 * we mark the first fragment with the MORE_FRAG bit 952 * it automatically is propagated to each fragment; we 953 * need only clear it on the last fragment (done below). 954 */ 955 whf = mtod(m, struct ieee80211_frame *); 956 memcpy(whf, wh, hdrsize); 957 *(u_int16_t *)&whf->i_seq[0] |= htole16( 958 (fragno & IEEE80211_SEQ_FRAG_MASK) << 959 IEEE80211_SEQ_FRAG_SHIFT); 960 fragno++; 961 962 payload = fragsize - totalhdrsize; 963 /* NB: destination is known to be contiguous */ 964 m_copydata(m0, off, payload, mtod(m, u_int8_t *) + hdrsize); 965 m->m_len = hdrsize + payload; 966 m->m_pkthdr.len = hdrsize + payload; 967 m->m_flags |= M_FRAG; 968 969 /* chain up the fragment */ 970 prev->m_nextpkt = m; 971 prev = m; 972 973 /* deduct fragment just formed */ 974 remainder -= payload; 975 off += payload; 976 } while (remainder != 0); 977 978 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 979 980 /* strip first mbuf now that everything has been copied */ 981 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 982 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 983 984 ic->ic_stats.is_tx_fragframes++; 985 ic->ic_stats.is_tx_frags += fragno-1; 986 987 return 1; 988 989 bad: 990 /* reclaim fragments but leave original frame for caller to free */ 991 for (m = m0->m_nextpkt; m != NULL; m = next) { 992 next = m->m_nextpkt; 993 m->m_nextpkt = NULL; 994 m_freem(m); 995 } 996 m0->m_nextpkt = NULL; 997 998 return 0; 999 } 1000 1001 /* 1002 * Add a supported rates element id to a frame. 1003 */ 1004 u_int8_t * 1005 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs) 1006 { 1007 int nrates; 1008 1009 *frm++ = IEEE80211_ELEMID_RATES; 1010 nrates = rs->rs_nrates; 1011 if (nrates > IEEE80211_RATE_SIZE) 1012 nrates = IEEE80211_RATE_SIZE; 1013 *frm++ = nrates; 1014 memcpy(frm, rs->rs_rates, nrates); 1015 return frm + nrates; 1016 } 1017 1018 /* 1019 * Add an extended supported rates element id to a frame. 1020 */ 1021 u_int8_t * 1022 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs) 1023 { 1024 /* 1025 * Add an extended supported rates element if operating in 11g mode. 1026 */ 1027 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1028 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1029 *frm++ = IEEE80211_ELEMID_XRATES; 1030 *frm++ = nrates; 1031 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1032 frm += nrates; 1033 } 1034 return frm; 1035 } 1036 1037 /* 1038 * Add an ssid elemet to a frame. 1039 */ 1040 u_int8_t * 1041 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len) 1042 { 1043 *frm++ = IEEE80211_ELEMID_SSID; 1044 *frm++ = len; 1045 memcpy(frm, ssid, len); 1046 return frm + len; 1047 } 1048 1049 /* 1050 * Add an erp element to a frame. 1051 */ 1052 static u_int8_t * 1053 ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic) 1054 { 1055 u_int8_t erp; 1056 1057 *frm++ = IEEE80211_ELEMID_ERP; 1058 *frm++ = 1; 1059 erp = 0; 1060 if (ic->ic_nonerpsta != 0) 1061 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1062 if (ic->ic_flags & IEEE80211_F_USEPROT) 1063 erp |= IEEE80211_ERP_USE_PROTECTION; 1064 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1065 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1066 *frm++ = erp; 1067 return frm; 1068 } 1069 1070 static u_int8_t * 1071 ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie) 1072 { 1073 #define WPA_OUI_BYTES 0x00, 0x50, 0xf2 1074 #define ADDSHORT(frm, v) do { \ 1075 frm[0] = (v) & 0xff; \ 1076 frm[1] = (v) >> 8; \ 1077 frm += 2; \ 1078 } while (0) 1079 #define ADDSELECTOR(frm, sel) do { \ 1080 memcpy(frm, sel, 4); \ 1081 frm += 4; \ 1082 } while (0) 1083 static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE }; 1084 static const u_int8_t cipher_suite[][4] = { 1085 { WPA_OUI_BYTES, WPA_CSE_WEP40 }, /* NB: 40-bit */ 1086 { WPA_OUI_BYTES, WPA_CSE_TKIP }, 1087 { 0x00, 0x00, 0x00, 0x00 }, /* XXX WRAP */ 1088 { WPA_OUI_BYTES, WPA_CSE_CCMP }, 1089 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ 1090 { WPA_OUI_BYTES, WPA_CSE_NULL }, 1091 }; 1092 static const u_int8_t wep104_suite[4] = 1093 { WPA_OUI_BYTES, WPA_CSE_WEP104 }; 1094 static const u_int8_t key_mgt_unspec[4] = 1095 { WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC }; 1096 static const u_int8_t key_mgt_psk[4] = 1097 { WPA_OUI_BYTES, WPA_ASE_8021X_PSK }; 1098 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; 1099 u_int8_t *frm = ie; 1100 u_int8_t *selcnt; 1101 1102 *frm++ = IEEE80211_ELEMID_VENDOR; 1103 *frm++ = 0; /* length filled in below */ 1104 memcpy(frm, oui, sizeof(oui)); /* WPA OUI */ 1105 frm += sizeof(oui); 1106 ADDSHORT(frm, WPA_VERSION); 1107 1108 /* XXX filter out CKIP */ 1109 1110 /* multicast cipher */ 1111 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && 1112 rsn->rsn_mcastkeylen >= 13) 1113 ADDSELECTOR(frm, wep104_suite); 1114 else 1115 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); 1116 1117 /* unicast cipher list */ 1118 selcnt = frm; 1119 ADDSHORT(frm, 0); /* selector count */ 1120 if (rsn->rsn_ucastcipherset & (1 << IEEE80211_CIPHER_AES_CCM)) { 1121 selcnt[0]++; 1122 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); 1123 } 1124 if (rsn->rsn_ucastcipherset & (1 << IEEE80211_CIPHER_TKIP)) { 1125 selcnt[0]++; 1126 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); 1127 } 1128 1129 /* authenticator selector list */ 1130 selcnt = frm; 1131 ADDSHORT(frm, 0); /* selector count */ 1132 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { 1133 selcnt[0]++; 1134 ADDSELECTOR(frm, key_mgt_unspec); 1135 } 1136 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { 1137 selcnt[0]++; 1138 ADDSELECTOR(frm, key_mgt_psk); 1139 } 1140 1141 /* optional capabilities */ 1142 if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH) 1143 ADDSHORT(frm, rsn->rsn_caps); 1144 1145 /* calculate element length */ 1146 ie[1] = frm - ie - 2; 1147 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), 1148 ("WPA IE too big, %u > %zu", 1149 ie[1]+2, sizeof(struct ieee80211_ie_wpa))); 1150 return frm; 1151 #undef ADDSHORT 1152 #undef ADDSELECTOR 1153 #undef WPA_OUI_BYTES 1154 } 1155 1156 static u_int8_t * 1157 ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie) 1158 { 1159 #define RSN_OUI_BYTES 0x00, 0x0f, 0xac 1160 #define ADDSHORT(frm, v) do { \ 1161 frm[0] = (v) & 0xff; \ 1162 frm[1] = (v) >> 8; \ 1163 frm += 2; \ 1164 } while (0) 1165 #define ADDSELECTOR(frm, sel) do { \ 1166 memcpy(frm, sel, 4); \ 1167 frm += 4; \ 1168 } while (0) 1169 static const u_int8_t cipher_suite[][4] = { 1170 { RSN_OUI_BYTES, RSN_CSE_WEP40 }, /* NB: 40-bit */ 1171 { RSN_OUI_BYTES, RSN_CSE_TKIP }, 1172 { RSN_OUI_BYTES, RSN_CSE_WRAP }, 1173 { RSN_OUI_BYTES, RSN_CSE_CCMP }, 1174 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ 1175 { RSN_OUI_BYTES, RSN_CSE_NULL }, 1176 }; 1177 static const u_int8_t wep104_suite[4] = 1178 { RSN_OUI_BYTES, RSN_CSE_WEP104 }; 1179 static const u_int8_t key_mgt_unspec[4] = 1180 { RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC }; 1181 static const u_int8_t key_mgt_psk[4] = 1182 { RSN_OUI_BYTES, RSN_ASE_8021X_PSK }; 1183 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; 1184 u_int8_t *frm = ie; 1185 u_int8_t *selcnt; 1186 1187 *frm++ = IEEE80211_ELEMID_RSN; 1188 *frm++ = 0; /* length filled in below */ 1189 ADDSHORT(frm, RSN_VERSION); 1190 1191 /* XXX filter out CKIP */ 1192 1193 /* multicast cipher */ 1194 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && 1195 rsn->rsn_mcastkeylen >= 13) 1196 ADDSELECTOR(frm, wep104_suite); 1197 else 1198 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); 1199 1200 /* unicast cipher list */ 1201 selcnt = frm; 1202 ADDSHORT(frm, 0); /* selector count */ 1203 if (rsn->rsn_ucastcipherset & (1 << IEEE80211_CIPHER_AES_CCM)) { 1204 selcnt[0]++; 1205 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); 1206 } 1207 if (rsn->rsn_ucastcipherset & (1 << IEEE80211_CIPHER_TKIP)) { 1208 selcnt[0]++; 1209 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); 1210 } 1211 1212 /* authenticator selector list */ 1213 selcnt = frm; 1214 ADDSHORT(frm, 0); /* selector count */ 1215 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { 1216 selcnt[0]++; 1217 ADDSELECTOR(frm, key_mgt_unspec); 1218 } 1219 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { 1220 selcnt[0]++; 1221 ADDSELECTOR(frm, key_mgt_psk); 1222 } 1223 1224 /* optional capabilities */ 1225 ADDSHORT(frm, rsn->rsn_caps); 1226 /* XXX PMKID */ 1227 1228 /* calculate element length */ 1229 ie[1] = frm - ie - 2; 1230 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), 1231 ("RSN IE too big, %u > %zu", 1232 ie[1]+2, sizeof(struct ieee80211_ie_wpa))); 1233 return frm; 1234 #undef ADDSELECTOR 1235 #undef ADDSHORT 1236 #undef RSN_OUI_BYTES 1237 } 1238 1239 /* 1240 * Add a WPA/RSN element to a frame. 1241 */ 1242 u_int8_t * 1243 ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic) 1244 { 1245 1246 IASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!")); 1247 if (ic->ic_flags & IEEE80211_F_WPA2) 1248 frm = ieee80211_setup_rsn_ie(ic, frm); 1249 if (ic->ic_flags & IEEE80211_F_WPA1) 1250 frm = ieee80211_setup_wpa_ie(ic, frm); 1251 return frm; 1252 } 1253 1254 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1255 /* 1256 * Add a WME information element to a frame. 1257 */ 1258 u_int8_t * 1259 ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme) 1260 { 1261 static const struct ieee80211_wme_info info = { 1262 .wme_id = IEEE80211_ELEMID_VENDOR, 1263 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1264 .wme_oui = { WME_OUI_BYTES }, 1265 .wme_type = WME_OUI_TYPE, 1266 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1267 .wme_version = WME_VERSION, 1268 .wme_info = 0, 1269 }; 1270 memcpy(frm, &info, sizeof(info)); 1271 return frm + sizeof(info); 1272 } 1273 1274 /* 1275 * Add a WME parameters element to a frame. 1276 */ 1277 static u_int8_t * 1278 ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme) 1279 { 1280 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1281 #define ADDSHORT(frm, v) do { \ 1282 frm[0] = (v) & 0xff; \ 1283 frm[1] = (v) >> 8; \ 1284 frm += 2; \ 1285 } while (0) 1286 /* NB: this works because a param has an info at the front */ 1287 static const struct ieee80211_wme_info param = { 1288 .wme_id = IEEE80211_ELEMID_VENDOR, 1289 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1290 .wme_oui = { WME_OUI_BYTES }, 1291 .wme_type = WME_OUI_TYPE, 1292 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1293 .wme_version = WME_VERSION, 1294 }; 1295 int i; 1296 1297 memcpy(frm, ¶m, sizeof(param)); 1298 frm += offsetof(struct ieee80211_wme_info, wme_info); 1299 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1300 *frm++ = 0; /* reserved field */ 1301 for (i = 0; i < WME_NUM_AC; i++) { 1302 const struct wmeParams *ac = 1303 &wme->wme_bssChanParams.cap_wmeParams[i]; 1304 *frm++ = SM(i, WME_PARAM_ACI) | 1305 SM(ac->wmep_acm, WME_PARAM_ACM) | 1306 SM(ac->wmep_aifsn, WME_PARAM_AIFSN); 1307 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) | 1308 SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN); 1309 ADDSHORT(frm, ac->wmep_txopLimit); 1310 } 1311 1312 return frm; 1313 #undef SM 1314 #undef ADDSHORT 1315 } 1316 #undef WME_OUI_BYTES 1317 1318 /* 1319 * Send a probe request frame with the specified ssid 1320 * and any optional information element data. 1321 */ 1322 int 1323 ieee80211_send_probereq(struct ieee80211_node *ni, 1324 const u_int8_t sa[IEEE80211_ADDR_LEN], 1325 const u_int8_t da[IEEE80211_ADDR_LEN], 1326 const u_int8_t bssid[IEEE80211_ADDR_LEN], 1327 const u_int8_t *ssid, size_t ssidlen, 1328 const void *optie, size_t optielen) 1329 { 1330 struct ieee80211com *ic = ni->ni_ic; 1331 enum ieee80211_phymode mode; 1332 struct ieee80211_frame *wh; 1333 struct mbuf *m; 1334 u_int8_t *frm; 1335 1336 /* 1337 * Hold a reference on the node so it doesn't go away until after 1338 * the xmit is complete all the way in the driver. On error we 1339 * will remove our reference. 1340 */ 1341 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, 1342 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1343 __func__, __LINE__, 1344 ni, ether_sprintf(ni->ni_macaddr), 1345 ieee80211_node_refcnt(ni)+1); 1346 ieee80211_ref_node(ni); 1347 1348 /* 1349 * prreq frame format 1350 * [tlv] ssid 1351 * [tlv] supported rates 1352 * [tlv] extended supported rates 1353 * [tlv] user-specified ie's 1354 */ 1355 m = ieee80211_getmgtframe(&frm, 1356 2 + IEEE80211_NWID_LEN 1357 + 2 + IEEE80211_RATE_SIZE 1358 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1359 + (optie != NULL ? optielen : 0) 1360 ); 1361 if (m == NULL) { 1362 ic->ic_stats.is_tx_nobuf++; 1363 ieee80211_free_node(ni); 1364 return ENOMEM; 1365 } 1366 1367 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 1368 mode = ieee80211_chan2mode(ic, ic->ic_curchan); 1369 frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]); 1370 frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]); 1371 1372 if (optie != NULL) { 1373 memcpy(frm, optie, optielen); 1374 frm += optielen; 1375 } 1376 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1377 1378 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 1379 if (m == NULL) { 1380 ic->ic_stats.is_tx_nobuf++; 1381 ieee80211_free_node(ni); 1382 return ENOMEM; 1383 } 1384 M_SETCTX(m, ni); 1385 1386 wh = mtod(m, struct ieee80211_frame *); 1387 ieee80211_send_setup(ic, ni, wh, 1388 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 1389 sa, da, bssid); 1390 /* XXX power management? */ 1391 1392 IEEE80211_NODE_STAT(ni, tx_probereq); 1393 IEEE80211_NODE_STAT(ni, tx_mgmt); 1394 1395 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 1396 "[%s] send probe req on channel %u\n", 1397 ether_sprintf(wh->i_addr1), 1398 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1399 1400 IF_ENQUEUE(&ic->ic_mgtq, m); 1401 if_start_lock(ic->ic_ifp); 1402 return 0; 1403 } 1404 1405 /* 1406 * Send a management frame. The node is for the destination (or ic_bss 1407 * when in station mode). Nodes other than ic_bss have their reference 1408 * count bumped to reflect our use for an indeterminant time. 1409 */ 1410 int 1411 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni, 1412 int type, int arg) 1413 { 1414 #define senderr(_x, _v) do { ic->ic_stats._v++; ret = _x; goto bad; } while (0) 1415 struct mbuf *m; 1416 u_int8_t *frm; 1417 u_int16_t capinfo; 1418 int ret, timer, status; 1419 1420 IASSERT(ni != NULL, ("null node")); 1421 1422 /* 1423 * Hold a reference on the node so it doesn't go away until after 1424 * the xmit is complete all the way in the driver. On error we 1425 * will remove our reference. 1426 */ 1427 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, 1428 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1429 __func__, __LINE__, 1430 ni, ether_sprintf(ni->ni_macaddr), 1431 ieee80211_node_refcnt(ni)+1); 1432 ieee80211_ref_node(ni); 1433 1434 timer = 0; 1435 switch (type) { 1436 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: { 1437 const bool has_wpa = (ic->ic_flags & IEEE80211_F_WPA) != 0; 1438 1439 /* 1440 * probe response frame format 1441 * [8] time stamp 1442 * [2] beacon interval 1443 * [2] cabability information 1444 * [tlv] ssid 1445 * [tlv] supported rates 1446 * [tlv] parameter set (FH/DS) 1447 * [tlv] parameter set (IBSS) 1448 * [tlv] extended rate phy (ERP) 1449 * [tlv] extended supported rates 1450 * [tlv] WPA 1451 * [tlv] WME (optional) 1452 */ 1453 m = ieee80211_getmgtframe(&frm, 1454 8 /* timestamp */ 1455 + sizeof(u_int16_t) /* interval */ 1456 + sizeof(u_int16_t) /* capinfo */ 1457 + 2 + IEEE80211_NWID_LEN /* ssid */ 1458 + 2 + IEEE80211_RATE_SIZE /* rates */ 1459 + 7 /* max(7,3) */ 1460 + 6 /* ibss (XXX could be 4?) */ 1461 + 3 /* erp */ 1462 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1463 /* XXX !WPA1+WPA2 fits w/o a cluster */ 1464 + (has_wpa ? (2 * sizeof(struct ieee80211_ie_wpa)) : 0) 1465 + sizeof(struct ieee80211_wme_param) 1466 ); 1467 if (m == NULL) 1468 senderr(ENOMEM, is_tx_nobuf); 1469 1470 /* timestamp (should be filled later) */ 1471 memset(frm, 0, 8); 1472 frm += 8; 1473 1474 /* interval */ 1475 *(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval); 1476 frm += 2; 1477 1478 /* capinfo */ 1479 if (ic->ic_opmode == IEEE80211_M_IBSS) 1480 capinfo = IEEE80211_CAPINFO_IBSS; 1481 else 1482 capinfo = IEEE80211_CAPINFO_ESS; 1483 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1484 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1485 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1486 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1487 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1488 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1489 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1490 *(u_int16_t *)frm = htole16(capinfo); 1491 frm += 2; 1492 1493 /* ssid */ 1494 frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid, 1495 ic->ic_bss->ni_esslen); 1496 1497 /* rates */ 1498 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1499 1500 /* variable */ 1501 if (ic->ic_phytype == IEEE80211_T_FH) { 1502 *frm++ = IEEE80211_ELEMID_FHPARMS; 1503 *frm++ = 5; 1504 *frm++ = ni->ni_fhdwell & 0x00ff; 1505 *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff; 1506 *frm++ = IEEE80211_FH_CHANSET( 1507 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1508 *frm++ = IEEE80211_FH_CHANPAT( 1509 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1510 *frm++ = ni->ni_fhindex; 1511 } else { 1512 *frm++ = IEEE80211_ELEMID_DSPARMS; 1513 *frm++ = 1; 1514 *frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan); 1515 } 1516 1517 /* ibss */ 1518 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1519 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1520 *frm++ = 2; 1521 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1522 } 1523 1524 /* wpa */ 1525 if (has_wpa) 1526 frm = ieee80211_add_wpa(frm, ic); 1527 1528 /* erp */ 1529 if (ic->ic_curmode == IEEE80211_MODE_11G) 1530 frm = ieee80211_add_erp(frm, ic); 1531 1532 /* xrates */ 1533 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1534 1535 /* wme */ 1536 if (ic->ic_flags & IEEE80211_F_WME) 1537 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1538 1539 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1540 break; 1541 } 1542 1543 case IEEE80211_FC0_SUBTYPE_AUTH: { 1544 status = arg >> 16; 1545 arg &= 0xffff; 1546 const bool has_challenge = 1547 (arg == IEEE80211_AUTH_SHARED_CHALLENGE || 1548 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 1549 ni->ni_challenge != NULL; 1550 1551 /* 1552 * Deduce whether we're doing open authentication or 1553 * shared key authentication. We do the latter if 1554 * we're in the middle of a shared key authentication 1555 * handshake or if we're initiating an authentication 1556 * request and configured to use shared key. 1557 */ 1558 const bool is_shared_key = has_challenge || 1559 (arg >= IEEE80211_AUTH_SHARED_RESPONSE) || 1560 (arg == IEEE80211_AUTH_SHARED_REQUEST && 1561 ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED); 1562 1563 const bool need_challenge = 1564 has_challenge && (status == IEEE80211_STATUS_SUCCESS); 1565 1566 const int frm_size = 3 * sizeof(u_int16_t) 1567 + (need_challenge ? 1568 sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0); 1569 1570 m = ieee80211_getmgtframe(&frm, frm_size); 1571 if (m == NULL) 1572 senderr(ENOMEM, is_tx_nobuf); 1573 1574 ((u_int16_t *)frm)[0] = 1575 is_shared_key ? htole16(IEEE80211_AUTH_ALG_SHARED) 1576 : htole16(IEEE80211_AUTH_ALG_OPEN); 1577 ((u_int16_t *)frm)[1] = htole16(arg); /* sequence number */ 1578 ((u_int16_t *)frm)[2] = htole16(status);/* status */ 1579 1580 if (need_challenge) { 1581 ((u_int16_t *)frm)[3] = 1582 htole16((IEEE80211_CHALLENGE_LEN << 8) | 1583 IEEE80211_ELEMID_CHALLENGE); 1584 memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge, 1585 IEEE80211_CHALLENGE_LEN); 1586 1587 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 1588 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 1589 "[%s] request encrypt frame (%s)\n", 1590 ether_sprintf(ni->ni_macaddr), __func__); 1591 m->m_flags |= M_LINK0; /* WEP-encrypt, please */ 1592 } 1593 } 1594 1595 m->m_pkthdr.len = m->m_len = frm_size; 1596 1597 /* XXX not right for shared key */ 1598 if (status == IEEE80211_STATUS_SUCCESS) 1599 IEEE80211_NODE_STAT(ni, tx_auth); 1600 else 1601 IEEE80211_NODE_STAT(ni, tx_auth_fail); 1602 1603 if (ic->ic_opmode == IEEE80211_M_STA) 1604 timer = IEEE80211_TRANS_WAIT; 1605 break; 1606 } 1607 1608 case IEEE80211_FC0_SUBTYPE_DEAUTH: 1609 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 1610 "[%s] send station deauthenticate (reason %d)\n", 1611 ether_sprintf(ni->ni_macaddr), arg); 1612 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t)); 1613 if (m == NULL) 1614 senderr(ENOMEM, is_tx_nobuf); 1615 *(u_int16_t *)frm = htole16(arg); /* reason */ 1616 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t); 1617 1618 IEEE80211_NODE_STAT(ni, tx_deauth); 1619 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 1620 1621 ieee80211_node_unauthorize(ni); /* port closed */ 1622 break; 1623 1624 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 1625 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 1626 /* 1627 * asreq frame format 1628 * [2] capability information 1629 * [2] listen interval 1630 * [6*] current AP address (reassoc only) 1631 * [tlv] ssid 1632 * [tlv] supported rates 1633 * [tlv] extended supported rates 1634 * [tlv] WME 1635 * [tlv] user-specified ie's 1636 */ 1637 m = ieee80211_getmgtframe(&frm, 1638 sizeof(u_int16_t) 1639 + sizeof(u_int16_t) 1640 + IEEE80211_ADDR_LEN 1641 + 2 + IEEE80211_NWID_LEN 1642 + 2 + IEEE80211_RATE_SIZE 1643 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1644 + sizeof(struct ieee80211_wme_info) 1645 + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0) 1646 ); 1647 if (m == NULL) 1648 senderr(ENOMEM, is_tx_nobuf); 1649 1650 capinfo = 0; 1651 if (ic->ic_opmode == IEEE80211_M_IBSS) 1652 capinfo |= IEEE80211_CAPINFO_IBSS; 1653 else /* IEEE80211_M_STA */ 1654 capinfo |= IEEE80211_CAPINFO_ESS; 1655 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1656 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1657 /* 1658 * NB: Some 11a AP's reject the request when 1659 * short premable is set. 1660 */ 1661 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1662 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1663 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1664 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) && 1665 (ic->ic_caps & IEEE80211_C_SHSLOT)) 1666 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1667 *(u_int16_t *)frm = htole16(capinfo); 1668 frm += 2; 1669 1670 *(u_int16_t *)frm = htole16(ic->ic_lintval); 1671 frm += 2; 1672 1673 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 1674 IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid); 1675 frm += IEEE80211_ADDR_LEN; 1676 } 1677 1678 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 1679 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1680 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1681 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) 1682 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 1683 if (ic->ic_opt_ie != NULL) { 1684 memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len); 1685 frm += ic->ic_opt_ie_len; 1686 } 1687 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1688 1689 timer = IEEE80211_TRANS_WAIT; 1690 break; 1691 1692 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 1693 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 1694 /* 1695 * asreq frame format 1696 * [2] capability information 1697 * [2] status 1698 * [2] association ID 1699 * [tlv] supported rates 1700 * [tlv] extended supported rates 1701 * [tlv] WME (if enabled and STA enabled) 1702 */ 1703 m = ieee80211_getmgtframe(&frm, 1704 sizeof(u_int16_t) 1705 + sizeof(u_int16_t) 1706 + sizeof(u_int16_t) 1707 + 2 + IEEE80211_RATE_SIZE 1708 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1709 + sizeof(struct ieee80211_wme_param) 1710 ); 1711 if (m == NULL) 1712 senderr(ENOMEM, is_tx_nobuf); 1713 1714 capinfo = IEEE80211_CAPINFO_ESS; 1715 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1716 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1717 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1718 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1719 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1720 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1721 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1722 *(u_int16_t *)frm = htole16(capinfo); 1723 frm += 2; 1724 1725 *(u_int16_t *)frm = htole16(arg); /* status */ 1726 frm += 2; 1727 1728 if (arg == IEEE80211_STATUS_SUCCESS) { 1729 *(u_int16_t *)frm = htole16(ni->ni_associd); 1730 IEEE80211_NODE_STAT(ni, tx_assoc); 1731 } else { 1732 *(u_int16_t *)frm = 0; 1733 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 1734 } 1735 frm += 2; 1736 1737 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1738 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1739 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) 1740 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1741 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1742 break; 1743 1744 case IEEE80211_FC0_SUBTYPE_DISASSOC: 1745 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC, 1746 "[%s] send station disassociate (reason %d)\n", 1747 ether_sprintf(ni->ni_macaddr), arg); 1748 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t)); 1749 if (m == NULL) 1750 senderr(ENOMEM, is_tx_nobuf); 1751 *(u_int16_t *)frm = htole16(arg); /* reason */ 1752 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t); 1753 1754 IEEE80211_NODE_STAT(ni, tx_disassoc); 1755 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 1756 break; 1757 1758 default: 1759 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1760 "[%s] invalid mgmt frame type %u\n", 1761 ether_sprintf(ni->ni_macaddr), type); 1762 senderr(EINVAL, is_tx_unknownmgt); 1763 /* NOTREACHED */ 1764 } 1765 ret = ieee80211_mgmt_output(ic, ni, m, type, timer); 1766 if (ret != 0) { 1767 bad: 1768 ieee80211_free_node(ni); 1769 } 1770 return ret; 1771 #undef senderr 1772 } 1773 1774 /* 1775 * Build a RTS (Request To Send) control frame. 1776 */ 1777 struct mbuf * 1778 ieee80211_get_rts(struct ieee80211com *ic, const struct ieee80211_frame *wh, 1779 uint16_t dur) 1780 { 1781 struct ieee80211_frame_rts *rts; 1782 struct mbuf *m; 1783 1784 MGETHDR(m, M_DONTWAIT, MT_DATA); 1785 if (m == NULL) 1786 return NULL; 1787 1788 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 1789 1790 rts = mtod(m, struct ieee80211_frame_rts *); 1791 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | 1792 IEEE80211_FC0_SUBTYPE_RTS; 1793 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1794 *(uint16_t *)rts->i_dur = htole16(dur); 1795 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1); 1796 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2); 1797 1798 return m; 1799 } 1800 1801 /* 1802 * Build a CTS-to-self (Clear To Send) control frame. 1803 */ 1804 struct mbuf * 1805 ieee80211_get_cts_to_self(struct ieee80211com *ic, uint16_t dur) 1806 { 1807 struct ieee80211_frame_cts *cts; 1808 struct mbuf *m; 1809 1810 MGETHDR(m, M_DONTWAIT, MT_DATA); 1811 if (m == NULL) 1812 return NULL; 1813 1814 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 1815 1816 cts = mtod(m, struct ieee80211_frame_cts *); 1817 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | 1818 IEEE80211_FC0_SUBTYPE_CTS; 1819 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1820 *(uint16_t *)cts->i_dur = htole16(dur); 1821 IEEE80211_ADDR_COPY(cts->i_ra, ic->ic_myaddr); 1822 1823 return m; 1824 } 1825 1826 /* 1827 * Allocate a beacon frame and fill in the appropriate bits. 1828 */ 1829 struct mbuf * 1830 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni, 1831 struct ieee80211_beacon_offsets *bo) 1832 { 1833 struct ifnet *ifp = ic->ic_ifp; 1834 struct ieee80211_frame *wh; 1835 struct mbuf *m; 1836 int pktlen; 1837 u_int8_t *frm, *efrm; 1838 u_int16_t capinfo; 1839 struct ieee80211_rateset *rs; 1840 1841 rs = &ni->ni_rates; 1842 1843 /* 1844 * beacon frame format 1845 * [8] time stamp 1846 * [2] beacon interval 1847 * [2] cabability information 1848 * [tlv] ssid 1849 * [tlv] supported rates 1850 * [3] parameter set (DS) 1851 * [tlv] parameter set (IBSS/TIM) 1852 * [tlv] extended rate phy (ERP) 1853 * [tlv] extended supported rates 1854 * [tlv] WME parameters 1855 * [tlv] WPA/RSN parameters 1856 * XXX Vendor-specific OIDs (e.g. Atheros) 1857 * 1858 * NB: we allocate the max space required for the TIM bitmap 1859 * (ic_tim_len). 1860 */ 1861 pktlen = 8 /* time stamp */ 1862 + sizeof(u_int16_t) /* beacon interval */ 1863 + sizeof(u_int16_t) /* capabilities */ 1864 + 2 + ni->ni_esslen /* ssid */ 1865 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 1866 + 2 + 1 /* DS parameters */ 1867 + 2 + 4 + ic->ic_tim_len /* DTIM/IBSSPARMS */ 1868 + 2 + 1 /* ERP */ 1869 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1870 + (ic->ic_caps & IEEE80211_C_WME ? /* WME */ 1871 sizeof(struct ieee80211_wme_param) : 0) 1872 + (ic->ic_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 1873 2*sizeof(struct ieee80211_ie_wpa) : 0) 1874 ; 1875 m = ieee80211_getmgtframe(&frm, pktlen); 1876 if (m == NULL) { 1877 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1878 "%s: cannot get buf; size %u\n", __func__, pktlen); 1879 ic->ic_stats.is_tx_nobuf++; 1880 return NULL; 1881 } 1882 1883 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 1884 frm += 8; 1885 1886 *(u_int16_t *)frm = htole16(ni->ni_intval); 1887 frm += 2; 1888 1889 if (ic->ic_opmode == IEEE80211_M_IBSS) 1890 capinfo = IEEE80211_CAPINFO_IBSS; 1891 else 1892 capinfo = IEEE80211_CAPINFO_ESS; 1893 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1894 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1895 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1896 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 1897 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1898 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1899 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1900 bo->bo_caps = (u_int16_t *)frm; 1901 *(u_int16_t *)frm = htole16(capinfo); 1902 frm += 2; 1903 1904 *frm++ = IEEE80211_ELEMID_SSID; 1905 if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) { 1906 *frm++ = ni->ni_esslen; 1907 memcpy(frm, ni->ni_essid, ni->ni_esslen); 1908 frm += ni->ni_esslen; 1909 } else 1910 *frm++ = 0; 1911 1912 frm = ieee80211_add_rates(frm, rs); 1913 1914 if (ic->ic_curmode != IEEE80211_MODE_FH) { 1915 *frm++ = IEEE80211_ELEMID_DSPARMS; 1916 *frm++ = 1; 1917 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 1918 } 1919 1920 bo->bo_tim = frm; 1921 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1922 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1923 *frm++ = 2; 1924 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1925 bo->bo_tim_len = 0; 1926 } else { 1927 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *)frm; 1928 1929 tie->tim_ie = IEEE80211_ELEMID_TIM; 1930 tie->tim_len = 4; /* length */ 1931 tie->tim_count = 0; /* DTIM count */ 1932 tie->tim_period = ic->ic_dtim_period; /* DTIM period */ 1933 tie->tim_bitctl = 0; /* bitmap control */ 1934 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 1935 frm += sizeof(struct ieee80211_tim_ie); 1936 bo->bo_tim_len = 1; 1937 } 1938 1939 bo->bo_trailer = frm; 1940 if (ic->ic_flags & IEEE80211_F_WME) { 1941 bo->bo_wme = frm; 1942 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1943 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; 1944 } 1945 1946 if (ic->ic_flags & IEEE80211_F_WPA) 1947 frm = ieee80211_add_wpa(frm, ic); 1948 1949 if (ic->ic_curmode == IEEE80211_MODE_11G) 1950 frm = ieee80211_add_erp(frm, ic); 1951 1952 efrm = ieee80211_add_xrates(frm, rs); 1953 1954 bo->bo_trailer_len = efrm - bo->bo_trailer; 1955 m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *); 1956 1957 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 1958 IASSERT(m != NULL, ("no space for 802.11 header?")); 1959 1960 wh = mtod(m, struct ieee80211_frame *); 1961 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 1962 IEEE80211_FC0_SUBTYPE_BEACON; 1963 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1964 *(u_int16_t *)wh->i_dur = 0; 1965 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 1966 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 1967 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 1968 *(u_int16_t *)wh->i_seq = 0; 1969 1970 return m; 1971 } 1972 1973 /* 1974 * Update the dynamic parts of a beacon frame based on the current state. 1975 */ 1976 int 1977 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni, 1978 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) 1979 { 1980 int len_changed = 0; 1981 u_int16_t capinfo; 1982 1983 IEEE80211_BEACON_LOCK(ic); 1984 1985 /* XXX faster to recalculate entirely or just changes? */ 1986 if (ic->ic_opmode == IEEE80211_M_IBSS) 1987 capinfo = IEEE80211_CAPINFO_IBSS; 1988 else 1989 capinfo = IEEE80211_CAPINFO_ESS; 1990 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1991 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1992 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1993 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 1994 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1995 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1996 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1997 *bo->bo_caps = htole16(capinfo); 1998 1999 if (ic->ic_flags & IEEE80211_F_WME) { 2000 struct ieee80211_wme_state *wme = &ic->ic_wme; 2001 2002 /* 2003 * Check for aggressive mode change. When there is 2004 * significant high priority traffic in the BSS 2005 * throttle back BE traffic by using conservative 2006 * parameters. Otherwise BE uses aggressive params 2007 * to optimize performance of legacy/non-QoS traffic. 2008 */ 2009 if (wme->wme_flags & WME_F_AGGRMODE) { 2010 if (wme->wme_hipri_traffic > 2011 wme->wme_hipri_switch_thresh) { 2012 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, 2013 "%s: traffic %u, disable aggressive mode\n", 2014 __func__, wme->wme_hipri_traffic); 2015 wme->wme_flags &= ~WME_F_AGGRMODE; 2016 ieee80211_wme_updateparams_locked(ic); 2017 wme->wme_hipri_traffic = 2018 wme->wme_hipri_switch_hysteresis; 2019 } else 2020 wme->wme_hipri_traffic = 0; 2021 } else { 2022 if (wme->wme_hipri_traffic <= 2023 wme->wme_hipri_switch_thresh) { 2024 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, 2025 "%s: traffic %u, enable aggressive mode\n", 2026 __func__, wme->wme_hipri_traffic); 2027 wme->wme_flags |= WME_F_AGGRMODE; 2028 ieee80211_wme_updateparams_locked(ic); 2029 wme->wme_hipri_traffic = 0; 2030 } else 2031 wme->wme_hipri_traffic = 2032 wme->wme_hipri_switch_hysteresis; 2033 } 2034 if (ic->ic_flags & IEEE80211_F_WMEUPDATE) { 2035 (void)ieee80211_add_wme_param(bo->bo_wme, wme); 2036 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; 2037 } 2038 } 2039 2040 #ifndef IEEE80211_NO_HOSTAP 2041 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/ 2042 struct ieee80211_tim_ie *tie = 2043 (struct ieee80211_tim_ie *)bo->bo_tim; 2044 if (ic->ic_flags & IEEE80211_F_TIMUPDATE) { 2045 u_int timlen, timoff, i; 2046 /* 2047 * ATIM/DTIM needs updating. If it fits in the 2048 * current space allocated then just copy in the 2049 * new bits. Otherwise we need to move any trailing 2050 * data to make room. Note that we know there is 2051 * contiguous space because ieee80211_beacon_allocate 2052 * insures there is space in the mbuf to write a 2053 * maximal-size virtual bitmap (based on ic_max_aid). 2054 */ 2055 /* 2056 * Calculate the bitmap size and offset, copy any 2057 * trailer out of the way, and then copy in the 2058 * new bitmap and update the information element. 2059 * Note that the tim bitmap must contain at least 2060 * one byte and any offset must be even. 2061 */ 2062 if (ic->ic_ps_pending != 0) { 2063 timoff = 128; /* impossibly large */ 2064 for (i = 0; i < ic->ic_tim_len; i++) 2065 if (ic->ic_tim_bitmap[i]) { 2066 timoff = i &~ 1; 2067 break; 2068 } 2069 IASSERT(timoff != 128, ("tim bitmap empty!")); 2070 for (i = ic->ic_tim_len-1; i >= timoff; i--) 2071 if (ic->ic_tim_bitmap[i]) 2072 break; 2073 timlen = 1 + (i - timoff); 2074 } else { 2075 timoff = 0; 2076 timlen = 1; 2077 } 2078 if (timlen != bo->bo_tim_len) { 2079 /* copy up/down trailer */ 2080 memmove(tie->tim_bitmap+timlen, bo->bo_trailer, 2081 bo->bo_trailer_len); 2082 bo->bo_trailer = tie->tim_bitmap+timlen; 2083 bo->bo_wme = bo->bo_trailer; 2084 bo->bo_tim_len = timlen; 2085 2086 /* update information element */ 2087 tie->tim_len = 3 + timlen; 2088 tie->tim_bitctl = timoff; 2089 len_changed = 1; 2090 } 2091 memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff, 2092 bo->bo_tim_len); 2093 2094 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE; 2095 2096 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, 2097 "%s: TIM updated, pending %u, off %u, len %u\n", 2098 __func__, ic->ic_ps_pending, timoff, timlen); 2099 } 2100 /* count down DTIM period */ 2101 if (tie->tim_count == 0) 2102 tie->tim_count = tie->tim_period - 1; 2103 else 2104 tie->tim_count--; 2105 /* update state for buffered multicast frames on DTIM */ 2106 if (mcast && (tie->tim_count == 1 || tie->tim_period == 1)) 2107 tie->tim_bitctl |= 1; 2108 else 2109 tie->tim_bitctl &= ~1; 2110 } 2111 #endif /* !IEEE80211_NO_HOSTAP */ 2112 2113 IEEE80211_BEACON_UNLOCK(ic); 2114 2115 return len_changed; 2116 } 2117 2118 /* 2119 * Save an outbound packet for a node in power-save sleep state. 2120 * The new packet is placed on the node's saved queue, and the TIM 2121 * is changed, if necessary. 2122 */ 2123 void 2124 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni, 2125 struct mbuf *m) 2126 { 2127 int qlen, age; 2128 2129 IEEE80211_NODE_SAVEQ_LOCK(ni); 2130 if (IF_QFULL(&ni->ni_savedq)) { 2131 IF_DROP(&ni->ni_savedq); 2132 IEEE80211_NODE_SAVEQ_UNLOCK(ni); 2133 2134 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 2135 "[%s] pwr save q overflow, drops %" PRIu64 2136 " (size %d)\n", 2137 ether_sprintf(ni->ni_macaddr), 2138 ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE); 2139 #ifdef IEEE80211_DEBUG 2140 if (ieee80211_msg_dumppkts(ic)) 2141 ieee80211_dump_pkt(mtod(m, void *), m->m_len, -1, -1); 2142 #endif 2143 2144 m_freem(m); 2145 return; 2146 } 2147 2148 /* 2149 * Tag the frame with its expiry time and insert 2150 * it in the queue. The aging interval is 4 times 2151 * the listen interval specified by the station. 2152 * Frames that sit around too long are reclaimed 2153 * using this information. 2154 */ 2155 /* XXX handle overflow? */ 2156 age = ((ni->ni_intval * ic->ic_bintval) << 2) / 1024; /* TU -> secs */ 2157 _IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age); 2158 IEEE80211_NODE_SAVEQ_UNLOCK(ni); 2159 2160 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, 2161 "[%s] save frame with age %d, %u now queued\n", 2162 ether_sprintf(ni->ni_macaddr), age, qlen); 2163 2164 if (qlen == 1) 2165 ic->ic_set_tim(ni, 1); 2166 } 2167