1 /* $NetBSD: ieee80211_output.c,v 1.61 2018/01/18 16:23:43 maxv Exp $ */ 2 3 /* 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * Alternatively, this software may be distributed under the terms of the 20 * GNU General Public License ("GPL") version 2 as published by the Free 21 * Software Foundation. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 #ifdef __FreeBSD__ 37 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.34 2005/08/10 16:22:29 sam Exp $"); 38 #endif 39 #ifdef __NetBSD__ 40 __KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.61 2018/01/18 16:23:43 maxv Exp $"); 41 #endif 42 43 #ifdef _KERNEL_OPT 44 #include "opt_inet.h" 45 #endif 46 47 #ifdef __NetBSD__ 48 #endif /* __NetBSD__ */ 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/mbuf.h> 53 #include <sys/kernel.h> 54 #include <sys/endian.h> 55 #include <sys/errno.h> 56 #include <sys/proc.h> 57 #include <sys/sysctl.h> 58 59 #include <net/if.h> 60 #include <net/if_llc.h> 61 #include <net/if_media.h> 62 #include <net/if_arp.h> 63 #include <net/if_ether.h> 64 #include <net/if_llc.h> 65 #include <net/if_vlanvar.h> 66 67 #include <net80211/ieee80211_netbsd.h> 68 #include <net80211/ieee80211_var.h> 69 70 #include <net/bpf.h> 71 72 #ifdef INET 73 #include <netinet/in.h> 74 #include <netinet/in_systm.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <net/if_ether.h> 78 #endif 79 80 static int ieee80211_fragment(struct ieee80211com *, struct mbuf *, 81 u_int hdrsize, u_int ciphdrsize, u_int mtu); 82 83 #ifdef IEEE80211_DEBUG 84 /* 85 * Decide if an outbound management frame should be 86 * printed when debugging is enabled. This filters some 87 * of the less interesting frames that come frequently 88 * (e.g. beacons). 89 */ 90 static __inline int 91 doprint(struct ieee80211com *ic, int subtype) 92 { 93 switch (subtype) { 94 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 95 return (ic->ic_opmode == IEEE80211_M_IBSS); 96 } 97 return 1; 98 } 99 #endif 100 101 /* 102 * Set the direction field and address fields of an outgoing 103 * non-QoS frame. Note this should be called early on in 104 * constructing a frame as it sets i_fc[1]; other bits can 105 * then be or'd in. 106 */ 107 static void 108 ieee80211_send_setup(struct ieee80211com *ic, 109 struct ieee80211_node *ni, 110 struct ieee80211_frame *wh, 111 int type, 112 const u_int8_t sa[IEEE80211_ADDR_LEN], 113 const u_int8_t da[IEEE80211_ADDR_LEN], 114 const u_int8_t bssid[IEEE80211_ADDR_LEN]) 115 { 116 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 117 118 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 119 120 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 121 switch (ic->ic_opmode) { 122 case IEEE80211_M_STA: 123 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 124 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 125 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 126 IEEE80211_ADDR_COPY(wh->i_addr3, da); 127 break; 128 129 case IEEE80211_M_IBSS: 130 case IEEE80211_M_AHDEMO: 131 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 132 IEEE80211_ADDR_COPY(wh->i_addr1, da); 133 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 134 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 135 break; 136 137 case IEEE80211_M_HOSTAP: 138 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 139 IEEE80211_ADDR_COPY(wh->i_addr1, da); 140 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 141 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 142 break; 143 144 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 145 break; 146 } 147 } else { 148 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 149 IEEE80211_ADDR_COPY(wh->i_addr1, da); 150 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 151 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 152 } 153 154 *(u_int16_t *)&wh->i_dur[0] = 0; 155 /* NB: use non-QoS tid */ 156 *(u_int16_t *)&wh->i_seq[0] = 157 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 158 ni->ni_txseqs[0]++; 159 #undef WH4 160 } 161 162 /* 163 * Send a management frame to the specified node. The node pointer 164 * must have a reference as the pointer will be passed to the driver 165 * and potentially held for a long time. If the frame is successfully 166 * dispatched to the driver, then it is responsible for freeing the 167 * reference (and potentially free'ing up any associated storage). 168 */ 169 static int 170 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni, 171 struct mbuf *m, int type, int timer) 172 { 173 struct ifnet *ifp = ic->ic_ifp; 174 struct ieee80211_frame *wh; 175 176 IASSERT(ni != NULL, ("null node")); 177 178 /* 179 * Yech, hack alert! We want to pass the node down to the 180 * driver's start routine. If we don't do so then the start 181 * routine must immediately look it up again and that can 182 * cause a lock order reversal if, for example, this frame 183 * is being sent because the station is being timedout and 184 * the frame being sent is a DEAUTH message. We could stick 185 * this in an m_tag and tack that on to the mbuf. However 186 * that's rather expensive to do for every frame so instead 187 * we stuff it in the rcvif field since outbound frames do 188 * not (presently) use this. 189 */ 190 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 191 if (m == NULL) 192 return ENOMEM; 193 M_SETCTX(m, ni); 194 195 wh = mtod(m, struct ieee80211_frame *); 196 ieee80211_send_setup(ic, ni, wh, IEEE80211_FC0_TYPE_MGT | type, 197 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); 198 199 if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) { 200 m->m_flags &= ~M_LINK0; 201 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 202 "[%s] encrypting frame (%s)\n", 203 ether_sprintf(wh->i_addr1), __func__); 204 wh->i_fc[1] |= IEEE80211_FC1_WEP; 205 } 206 207 #ifdef IEEE80211_DEBUG 208 /* avoid printing too many frames */ 209 if ((ieee80211_msg_debug(ic) && doprint(ic, type)) || 210 ieee80211_msg_dumppkts(ic)) { 211 printf("[%s] send %s on channel %u\n", 212 ether_sprintf(wh->i_addr1), 213 ieee80211_mgt_subtype_name[ 214 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 215 IEEE80211_FC0_SUBTYPE_SHIFT], 216 ieee80211_chan2ieee(ic, ic->ic_curchan)); 217 } 218 #endif 219 220 IEEE80211_NODE_STAT(ni, tx_mgmt); 221 IF_ENQUEUE(&ic->ic_mgtq, m); 222 if (timer) { 223 /* 224 * Set the mgt frame timeout. 225 */ 226 ic->ic_mgt_timer = timer; 227 ifp->if_timer = 1; 228 } 229 if_start_lock(ifp); 230 return 0; 231 } 232 233 /* 234 * Send a null data frame to the specified node. 235 * 236 * NB: the caller is assumed to have setup a node reference 237 * for use; this is necessary to deal with a race condition 238 * when probing for inactive stations. 239 */ 240 int 241 ieee80211_send_nulldata(struct ieee80211_node *ni) 242 { 243 struct ieee80211com *ic = ni->ni_ic; 244 struct ifnet *ifp = ic->ic_ifp; 245 struct mbuf *m; 246 struct ieee80211_frame *wh; 247 248 MGETHDR(m, M_NOWAIT, MT_HEADER); 249 if (m == NULL) { 250 /* XXX debug msg */ 251 ic->ic_stats.is_tx_nobuf++; 252 ieee80211_unref_node(&ni); 253 return ENOMEM; 254 } 255 M_SETCTX(m, ni); 256 257 wh = mtod(m, struct ieee80211_frame *); 258 259 ieee80211_send_setup(ic, ni, wh, 260 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 261 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); 262 263 /* NB: power management bit is never sent by an AP */ 264 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 265 ic->ic_opmode != IEEE80211_M_HOSTAP) { 266 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 267 } 268 269 m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame); 270 271 IEEE80211_NODE_STAT(ni, tx_data); 272 273 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 274 "[%s] send null data frame on channel %u, pwr mgt %s\n", 275 ether_sprintf(ni->ni_macaddr), 276 ieee80211_chan2ieee(ic, ic->ic_curchan), 277 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 278 279 IF_ENQUEUE(&ic->ic_mgtq, m); /* cheat */ 280 if_start_lock(ifp); 281 282 return 0; 283 } 284 285 /* 286 * Assign priority to a frame based on any vlan tag assigned 287 * to the station and/or any Diffserv setting in an IP header. 288 * Finally, if an ACM policy is setup (in station mode) it's 289 * applied. 290 */ 291 int 292 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, 293 struct ieee80211_node *ni) 294 { 295 int v_wme_ac, d_wme_ac, ac; 296 #ifdef INET 297 struct ether_header *eh; 298 #endif 299 300 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 301 ac = WME_AC_BE; 302 goto done; 303 } 304 305 /* 306 * If node has a vlan tag then all traffic 307 * to it must have a matching tag. 308 */ 309 v_wme_ac = 0; 310 if (ni->ni_vlan != 0) { 311 /* XXX used to check ec_nvlans. */ 312 if (!vlan_has_tag(m)) { 313 IEEE80211_NODE_STAT(ni, tx_novlantag); 314 return 1; 315 } 316 if (EVL_VLANOFTAG(vlan_get_tag(m)) != 317 EVL_VLANOFTAG(ni->ni_vlan)) { 318 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 319 return 1; 320 } 321 /* map vlan priority to AC */ 322 switch (EVL_PRIOFTAG(ni->ni_vlan)) { 323 case 1: 324 case 2: 325 v_wme_ac = WME_AC_BK; 326 break; 327 case 0: 328 case 3: 329 v_wme_ac = WME_AC_BE; 330 break; 331 case 4: 332 case 5: 333 v_wme_ac = WME_AC_VI; 334 break; 335 case 6: 336 case 7: 337 v_wme_ac = WME_AC_VO; 338 break; 339 } 340 } 341 342 #ifdef INET 343 eh = mtod(m, struct ether_header *); 344 if (eh->ether_type == htons(ETHERTYPE_IP)) { 345 const struct ip *ip = (struct ip *) 346 (mtod(m, u_int8_t *) + sizeof (*eh)); 347 /* 348 * IP frame, map the TOS field. 349 */ 350 switch (ip->ip_tos) { 351 case 0x08: 352 case 0x20: 353 d_wme_ac = WME_AC_BK; /* background */ 354 break; 355 case 0x28: 356 case 0xa0: 357 d_wme_ac = WME_AC_VI; /* video */ 358 break; 359 case 0x30: /* voice */ 360 case 0xe0: 361 case 0x88: /* XXX UPSD */ 362 case 0xb8: 363 d_wme_ac = WME_AC_VO; 364 break; 365 default: 366 d_wme_ac = WME_AC_BE; 367 break; 368 } 369 } else { 370 #endif /* INET */ 371 d_wme_ac = WME_AC_BE; 372 #ifdef INET 373 } 374 #endif 375 /* 376 * Use highest priority AC. 377 */ 378 if (v_wme_ac > d_wme_ac) 379 ac = v_wme_ac; 380 else 381 ac = d_wme_ac; 382 383 /* 384 * Apply ACM policy. 385 */ 386 if (ic->ic_opmode == IEEE80211_M_STA) { 387 static const int acmap[4] = { 388 WME_AC_BK, /* WME_AC_BE */ 389 WME_AC_BK, /* WME_AC_BK */ 390 WME_AC_BE, /* WME_AC_VI */ 391 WME_AC_VI, /* WME_AC_VO */ 392 }; 393 while (ac != WME_AC_BK && 394 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 395 ac = acmap[ac]; 396 } 397 done: 398 M_WME_SETAC(m, ac); 399 return 0; 400 } 401 402 /* 403 * Insure there is sufficient contiguous space to encapsulate the 404 * 802.11 data frame. If room isn't already there, arrange for it. 405 * Drivers and cipher modules assume we have done the necessary work 406 * and fail rudely if they don't find the space they need. 407 * 408 * Basically, we are trying to make sure that the several M_PREPENDs 409 * called after this function do not fail. 410 */ 411 static struct mbuf * 412 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize, 413 struct ieee80211_key *key, struct mbuf *m) 414 { 415 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 416 int needed_space = hdrsize; 417 int wlen = 0; 418 419 if (key != NULL) { 420 /* XXX belongs in crypto code? */ 421 needed_space += key->wk_cipher->ic_header; 422 /* XXX frags */ 423 } 424 425 /* 426 * We know we are called just before stripping an Ethernet 427 * header and prepending an LLC header. This means we know 428 * there will be 429 * sizeof(struct ether_header) - sizeof(struct llc) 430 * bytes recovered to which we need additional space for the 431 * 802.11 header and any crypto header. 432 */ 433 /* XXX check trailing space and copy instead? */ 434 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 435 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 436 if (n == NULL) { 437 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 438 "%s: cannot expand storage\n", __func__); 439 ic->ic_stats.is_tx_nobuf++; 440 m_freem(m); 441 return NULL; 442 } 443 444 IASSERT(needed_space <= MHLEN, 445 ("not enough room, need %u got %zu\n", needed_space, MHLEN)); 446 447 /* 448 * Setup new mbuf to have leading space to prepend the 449 * 802.11 header and any crypto header bits that are 450 * required (the latter are added when the driver calls 451 * back to ieee80211_crypto_encap to do crypto encapsulation). 452 */ 453 M_MOVE_PKTHDR(n, m); 454 n->m_len = 0; 455 n->m_data += needed_space; 456 457 /* 458 * Pull up Ethernet header to create the expected layout. 459 * We could use m_pullup but that's overkill (i.e. we don't 460 * need the actual data) and it cannot fail so do it inline 461 * for speed. 462 */ 463 n->m_len += sizeof(struct ether_header); 464 m->m_len -= sizeof(struct ether_header); 465 m->m_data += sizeof(struct ether_header); 466 467 /* 468 * Replace the head of the chain. 469 */ 470 n->m_next = m; 471 m = n; 472 } else { 473 /* 474 * We will overwrite the ethernet header in the 475 * 802.11 encapsulation stage. Make sure that it 476 * is writable. 477 */ 478 wlen = sizeof(struct ether_header); 479 } 480 481 /* 482 * If we're going to s/w encrypt the mbuf chain make sure it is 483 * writable. 484 */ 485 if (key != NULL && (key->wk_flags & IEEE80211_KEY_SWCRYPT) != 0) { 486 wlen = M_COPYALL; 487 } 488 if (wlen != 0 && m_makewritable(&m, 0, wlen, M_DONTWAIT) != 0) { 489 m_freem(m); 490 return NULL; 491 } 492 493 return m; 494 #undef TO_BE_RECLAIMED 495 } 496 497 /* 498 * Return the transmit key to use in sending a unicast frame. 499 * If a unicast key is set we use that. When no unicast key is set 500 * we fall back to the default transmit key. 501 */ 502 static __inline struct ieee80211_key * 503 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni) 504 { 505 if (IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)) { 506 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 507 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 508 return NULL; 509 return &ic->ic_nw_keys[ic->ic_def_txkey]; 510 } else { 511 return &ni->ni_ucastkey; 512 } 513 } 514 515 /* 516 * Return the transmit key to use in sending a multicast frame. 517 * Multicast traffic always uses the group key which is installed as 518 * the default tx key. 519 */ 520 static __inline struct ieee80211_key * 521 ieee80211_crypto_getmcastkey(struct ieee80211com *ic, 522 struct ieee80211_node *ni) 523 { 524 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 525 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 526 return NULL; 527 return &ic->ic_nw_keys[ic->ic_def_txkey]; 528 } 529 530 /* 531 * Encapsulate an outbound data frame. The mbuf chain is updated. 532 * If an error is encountered NULL is returned. The caller is required 533 * to provide a node reference and pullup the ethernet header in the 534 * first mbuf. 535 */ 536 struct mbuf * 537 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m, 538 struct ieee80211_node *ni) 539 { 540 struct ether_header eh; 541 struct ieee80211_frame *wh; 542 struct ieee80211_key *key; 543 struct llc *llc; 544 int hdrsize, datalen, addqos, txfrag; 545 546 IASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 547 memcpy(&eh, mtod(m, void *), sizeof(struct ether_header)); 548 549 /* 550 * Insure space for additional headers. First identify 551 * transmit key to use in calculating any buffer adjustments 552 * required. This is also used below to do privacy 553 * encapsulation work. Then calculate the 802.11 header 554 * size and any padding required by the driver. 555 * 556 * Note key may be NULL if we fall back to the default 557 * transmit key and that is not set. In that case the 558 * buffer may not be expanded as needed by the cipher 559 * routines, but they will/should discard it. 560 */ 561 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 562 if (ic->ic_opmode == IEEE80211_M_STA || 563 !IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 564 key = ieee80211_crypto_getucastkey(ic, ni); 565 } else { 566 key = ieee80211_crypto_getmcastkey(ic, ni); 567 } 568 if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) { 569 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO, 570 "[%s] no default transmit key (%s) deftxkey %u\n", 571 ether_sprintf(eh.ether_dhost), __func__, 572 ic->ic_def_txkey); 573 ic->ic_stats.is_tx_nodefkey++; 574 } 575 } else { 576 key = NULL; 577 } 578 579 /* 580 * XXX 4-address format. 581 * 582 * XXX Some ap's don't handle QoS-encapsulated EAPOL 583 * frames so suppress use. This may be an issue if other 584 * ap's require all data frames to be QoS-encapsulated 585 * once negotiated in which case we'll need to make this 586 * configurable. 587 */ 588 addqos = (ni->ni_flags & IEEE80211_NODE_QOS) && 589 eh.ether_type != htons(ETHERTYPE_PAE); 590 if (addqos) 591 hdrsize = sizeof(struct ieee80211_qosframe); 592 else 593 hdrsize = sizeof(struct ieee80211_frame); 594 if (ic->ic_flags & IEEE80211_F_DATAPAD) 595 hdrsize = roundup(hdrsize, sizeof(u_int32_t)); 596 597 m = ieee80211_mbuf_adjust(ic, hdrsize, key, m); 598 if (m == NULL) { 599 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 600 goto bad; 601 } 602 603 /* NB: this could be optimized because of ieee80211_mbuf_adjust */ 604 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 605 llc = mtod(m, struct llc *); 606 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 607 llc->llc_control = LLC_UI; 608 llc->llc_snap.org_code[0] = 0; 609 llc->llc_snap.org_code[1] = 0; 610 llc->llc_snap.org_code[2] = 0; 611 llc->llc_snap.ether_type = eh.ether_type; 612 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 613 614 M_PREPEND(m, hdrsize, M_DONTWAIT); 615 if (m == NULL) { 616 ic->ic_stats.is_tx_nobuf++; 617 goto bad; 618 } 619 620 wh = mtod(m, struct ieee80211_frame *); 621 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 622 *(u_int16_t *)wh->i_dur = 0; 623 624 switch (ic->ic_opmode) { 625 case IEEE80211_M_STA: 626 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 627 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 628 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 629 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 630 break; 631 632 case IEEE80211_M_IBSS: 633 case IEEE80211_M_AHDEMO: 634 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 635 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 636 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 637 /* 638 * NB: always use the bssid from ic_bss as the 639 * neighbor's may be stale after an ibss merge 640 */ 641 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid); 642 break; 643 644 case IEEE80211_M_HOSTAP: 645 #ifndef IEEE80211_NO_HOSTAP 646 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 647 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 648 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 649 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 650 #endif 651 break; 652 653 case IEEE80211_M_MONITOR: 654 goto bad; 655 } 656 657 if (m->m_flags & M_MORE_DATA) 658 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 659 660 if (addqos) { 661 struct ieee80211_qosframe *qwh = 662 (struct ieee80211_qosframe *)wh; 663 int ac, tid; 664 665 ac = M_WME_GETAC(m); 666 /* map from access class/queue to 11e header priorty value */ 667 tid = WME_AC_TO_TID(ac); 668 qwh->i_qos[0] = tid & IEEE80211_QOS_TID; 669 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 670 qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S; 671 qwh->i_qos[1] = 0; 672 qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 673 674 *(u_int16_t *)wh->i_seq = 675 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT); 676 ni->ni_txseqs[tid]++; 677 } else { 678 *(u_int16_t *)wh->i_seq = 679 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 680 ni->ni_txseqs[0]++; 681 } 682 683 /* check if xmit fragmentation is required */ 684 txfrag = (m->m_pkthdr.len > ic->ic_fragthreshold && 685 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 686 (m->m_flags & M_FF) == 0); /* NB: don't fragment ff's */ 687 688 if (key != NULL) { 689 /* 690 * IEEE 802.1X: send EAPOL frames always in the clear. 691 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 692 */ 693 if (eh.ether_type != htons(ETHERTYPE_PAE) || 694 ((ic->ic_flags & IEEE80211_F_WPA) && 695 (ic->ic_opmode == IEEE80211_M_STA ? 696 !IEEE80211_KEY_UNDEFINED(*key) : 697 !IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)))) { 698 wh->i_fc[1] |= IEEE80211_FC1_WEP; 699 if (!ieee80211_crypto_enmic(ic, key, m, txfrag)) { 700 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 701 "[%s] enmic failed, discard frame\n", 702 ether_sprintf(eh.ether_dhost)); 703 ic->ic_stats.is_crypto_enmicfail++; 704 goto bad; 705 } 706 } 707 } 708 709 if (txfrag && !ieee80211_fragment(ic, m, hdrsize, 710 key != NULL ? key->wk_cipher->ic_header : 0, ic->ic_fragthreshold)) 711 goto bad; 712 713 IEEE80211_NODE_STAT(ni, tx_data); 714 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 715 716 return m; 717 718 bad: 719 if (m != NULL) 720 m_freem(m); 721 return NULL; 722 } 723 724 /* 725 * Arguments in: 726 * 727 * paylen: payload length (no FCS, no WEP header) 728 * 729 * hdrlen: header length 730 * 731 * rate: MSDU speed, units 500kb/s 732 * 733 * flags: IEEE80211_F_SHPREAMBLE (use short preamble), 734 * IEEE80211_F_SHSLOT (use short slot length) 735 * 736 * Arguments out: 737 * 738 * d: 802.11 Duration field for RTS, 739 * 802.11 Duration field for data frame, 740 * PLCP Length for data frame, 741 * residual octets at end of data slot 742 */ 743 static int 744 ieee80211_compute_duration1(int len, int use_ack, uint32_t icflags, int rate, 745 struct ieee80211_duration *d) 746 { 747 int pre, ctsrate; 748 int ack, bitlen, data_dur, remainder; 749 750 /* RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK 751 * DATA reserves medium for SIFS | ACK, 752 * 753 * (XXX or SIFS | ACK | SIFS | DATA | SIFS | ACK, if more fragments) 754 * 755 * XXXMYC: no ACK on multicast/broadcast or control packets 756 */ 757 758 bitlen = len * 8; 759 760 pre = IEEE80211_DUR_DS_SIFS; 761 if ((icflags & IEEE80211_F_SHPREAMBLE) != 0) 762 pre += IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR; 763 else 764 pre += IEEE80211_DUR_DS_LONG_PREAMBLE + IEEE80211_DUR_DS_SLOW_PLCPHDR; 765 766 d->d_residue = 0; 767 data_dur = (bitlen * 2) / rate; 768 remainder = (bitlen * 2) % rate; 769 if (remainder != 0) { 770 d->d_residue = (rate - remainder) / 16; 771 data_dur++; 772 } 773 774 switch (rate) { 775 case 2: /* 1 Mb/s */ 776 case 4: /* 2 Mb/s */ 777 /* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */ 778 ctsrate = 2; 779 break; 780 case 11: /* 5.5 Mb/s */ 781 case 22: /* 11 Mb/s */ 782 case 44: /* 22 Mb/s */ 783 /* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */ 784 ctsrate = 4; 785 break; 786 default: 787 /* TBD */ 788 return -1; 789 } 790 791 d->d_plcp_len = data_dur; 792 793 ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0; 794 795 d->d_rts_dur = 796 pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate + 797 pre + data_dur + 798 ack; 799 800 d->d_data_dur = ack; 801 802 return 0; 803 } 804 805 /* 806 * Arguments in: 807 * 808 * wh: 802.11 header 809 * 810 * paylen: payload length (no FCS, no WEP header) 811 * 812 * rate: MSDU speed, units 500kb/s 813 * 814 * fraglen: fragment length, set to maximum (or higher) for no 815 * fragmentation 816 * 817 * flags: IEEE80211_F_PRIVACY (hardware adds WEP), 818 * IEEE80211_F_SHPREAMBLE (use short preamble), 819 * IEEE80211_F_SHSLOT (use short slot length) 820 * 821 * Arguments out: 822 * 823 * d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields 824 * of first/only fragment 825 * 826 * dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields 827 * of last fragment 828 * 829 * ieee80211_compute_duration assumes crypto-encapsulation, if any, 830 * has already taken place. 831 */ 832 int 833 ieee80211_compute_duration(const struct ieee80211_frame_min *wh, 834 const struct ieee80211_key *wk, int len, 835 uint32_t icflags, int fraglen, int rate, struct ieee80211_duration *d0, 836 struct ieee80211_duration *dn, int *npktp, int debug) 837 { 838 int ack, rc; 839 int cryptolen, /* crypto overhead: header+trailer */ 840 firstlen, /* first fragment's payload + overhead length */ 841 hdrlen, /* header length w/o driver padding */ 842 lastlen, /* last fragment's payload length w/ overhead */ 843 lastlen0, /* last fragment's payload length w/o overhead */ 844 npkt, /* number of fragments */ 845 overlen, /* non-802.11 header overhead per fragment */ 846 paylen; /* payload length w/o overhead */ 847 848 hdrlen = ieee80211_anyhdrsize((const void *)wh); 849 850 /* Account for padding required by the driver. */ 851 if (icflags & IEEE80211_F_DATAPAD) { 852 paylen = len - roundup(hdrlen, sizeof(u_int32_t)); 853 if (paylen < 0) { 854 panic("%s: paylen < 0", __func__); 855 } 856 } else { 857 paylen = len - hdrlen; 858 } 859 860 overlen = IEEE80211_CRC_LEN; 861 862 if (wk != NULL) { 863 cryptolen = wk->wk_cipher->ic_header + 864 wk->wk_cipher->ic_trailer; 865 paylen -= cryptolen; 866 overlen += cryptolen; 867 } 868 869 npkt = paylen / fraglen; 870 lastlen0 = paylen % fraglen; 871 872 if (npkt == 0) /* no fragments */ 873 lastlen = paylen + overlen; 874 else if (lastlen0 != 0) { /* a short "tail" fragment */ 875 lastlen = lastlen0 + overlen; 876 npkt++; 877 } else /* full-length "tail" fragment */ 878 lastlen = fraglen + overlen; 879 880 if (npktp != NULL) 881 *npktp = npkt; 882 883 if (npkt > 1) 884 firstlen = fraglen + overlen; 885 else 886 firstlen = paylen + overlen; 887 888 if (debug) { 889 printf("%s: npkt %d firstlen %d lastlen0 %d lastlen %d " 890 "fraglen %d overlen %d len %d rate %d icflags %08x\n", 891 __func__, npkt, firstlen, lastlen0, lastlen, fraglen, 892 overlen, len, rate, icflags); 893 } 894 895 ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) && 896 (wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL; 897 898 rc = ieee80211_compute_duration1(firstlen + hdrlen, 899 ack, icflags, rate, d0); 900 if (rc == -1) 901 return rc; 902 903 if (npkt <= 1) { 904 *dn = *d0; 905 return 0; 906 } 907 return ieee80211_compute_duration1(lastlen + hdrlen, ack, icflags, rate, 908 dn); 909 } 910 911 /* 912 * Fragment the frame according to the specified mtu. 913 * The size of the 802.11 header (w/o padding) is provided 914 * so we don't need to recalculate it. We create a new 915 * mbuf for each fragment and chain it through m_nextpkt; 916 * we might be able to optimize this by reusing the original 917 * packet's mbufs but that is significantly more complicated. 918 */ 919 static int 920 ieee80211_fragment(struct ieee80211com *ic, struct mbuf *m0, 921 u_int hdrsize, u_int ciphdrsize, u_int mtu) 922 { 923 struct ieee80211_frame *wh, *whf; 924 struct mbuf *m, *prev, *next; 925 const u_int totalhdrsize = hdrsize + ciphdrsize; 926 u_int fragno, fragsize, off, remainder, payload; 927 928 IASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 929 IASSERT(m0->m_pkthdr.len > mtu, 930 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 931 932 wh = mtod(m0, struct ieee80211_frame *); 933 /* NB: mark the first frag; it will be propagated below */ 934 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 935 936 fragno = 1; 937 off = mtu - ciphdrsize; 938 remainder = m0->m_pkthdr.len - off; 939 prev = m0; 940 do { 941 fragsize = totalhdrsize + remainder; 942 if (fragsize > mtu) 943 fragsize = mtu; 944 IASSERT(fragsize < MCLBYTES, 945 ("fragment size %u too big!", fragsize)); 946 if (fragsize > MHLEN) 947 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 948 else 949 m = m_gethdr(M_DONTWAIT, MT_DATA); 950 if (m == NULL) 951 goto bad; 952 953 /* leave room to prepend any cipher header */ 954 m_align(m, fragsize - ciphdrsize); 955 956 /* 957 * Form the header in the fragment. Note that since 958 * we mark the first fragment with the MORE_FRAG bit 959 * it automatically is propagated to each fragment; we 960 * need only clear it on the last fragment (done below). 961 */ 962 whf = mtod(m, struct ieee80211_frame *); 963 memcpy(whf, wh, hdrsize); 964 *(u_int16_t *)&whf->i_seq[0] |= htole16( 965 (fragno & IEEE80211_SEQ_FRAG_MASK) << 966 IEEE80211_SEQ_FRAG_SHIFT); 967 fragno++; 968 969 payload = fragsize - totalhdrsize; 970 /* NB: destination is known to be contiguous */ 971 m_copydata(m0, off, payload, mtod(m, u_int8_t *) + hdrsize); 972 m->m_len = hdrsize + payload; 973 m->m_pkthdr.len = hdrsize + payload; 974 m->m_flags |= M_FRAG; 975 976 /* chain up the fragment */ 977 prev->m_nextpkt = m; 978 prev = m; 979 980 /* deduct fragment just formed */ 981 remainder -= payload; 982 off += payload; 983 } while (remainder != 0); 984 985 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 986 987 /* strip first mbuf now that everything has been copied */ 988 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 989 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 990 991 ic->ic_stats.is_tx_fragframes++; 992 ic->ic_stats.is_tx_frags += fragno-1; 993 994 return 1; 995 996 bad: 997 /* reclaim fragments but leave original frame for caller to free */ 998 for (m = m0->m_nextpkt; m != NULL; m = next) { 999 next = m->m_nextpkt; 1000 m->m_nextpkt = NULL; /* XXX paranoid */ 1001 m_freem(m); 1002 } 1003 m0->m_nextpkt = NULL; 1004 1005 return 0; 1006 } 1007 1008 /* 1009 * Add a supported rates element id to a frame. 1010 */ 1011 u_int8_t * 1012 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs) 1013 { 1014 int nrates; 1015 1016 *frm++ = IEEE80211_ELEMID_RATES; 1017 nrates = rs->rs_nrates; 1018 if (nrates > IEEE80211_RATE_SIZE) 1019 nrates = IEEE80211_RATE_SIZE; 1020 *frm++ = nrates; 1021 memcpy(frm, rs->rs_rates, nrates); 1022 return frm + nrates; 1023 } 1024 1025 /* 1026 * Add an extended supported rates element id to a frame. 1027 */ 1028 u_int8_t * 1029 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs) 1030 { 1031 /* 1032 * Add an extended supported rates element if operating in 11g mode. 1033 */ 1034 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1035 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1036 *frm++ = IEEE80211_ELEMID_XRATES; 1037 *frm++ = nrates; 1038 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1039 frm += nrates; 1040 } 1041 return frm; 1042 } 1043 1044 /* 1045 * Add an ssid elemet to a frame. 1046 */ 1047 u_int8_t * 1048 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len) 1049 { 1050 *frm++ = IEEE80211_ELEMID_SSID; 1051 *frm++ = len; 1052 memcpy(frm, ssid, len); 1053 return frm + len; 1054 } 1055 1056 /* 1057 * Add an erp element to a frame. 1058 */ 1059 static u_int8_t * 1060 ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic) 1061 { 1062 u_int8_t erp; 1063 1064 *frm++ = IEEE80211_ELEMID_ERP; 1065 *frm++ = 1; 1066 erp = 0; 1067 if (ic->ic_nonerpsta != 0) 1068 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1069 if (ic->ic_flags & IEEE80211_F_USEPROT) 1070 erp |= IEEE80211_ERP_USE_PROTECTION; 1071 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1072 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1073 *frm++ = erp; 1074 return frm; 1075 } 1076 1077 static u_int8_t * 1078 ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie) 1079 { 1080 #define WPA_OUI_BYTES 0x00, 0x50, 0xf2 1081 #define ADDSHORT(frm, v) do { \ 1082 frm[0] = (v) & 0xff; \ 1083 frm[1] = (v) >> 8; \ 1084 frm += 2; \ 1085 } while (0) 1086 #define ADDSELECTOR(frm, sel) do { \ 1087 memcpy(frm, sel, 4); \ 1088 frm += 4; \ 1089 } while (0) 1090 static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE }; 1091 static const u_int8_t cipher_suite[][4] = { 1092 { WPA_OUI_BYTES, WPA_CSE_WEP40 }, /* NB: 40-bit */ 1093 { WPA_OUI_BYTES, WPA_CSE_TKIP }, 1094 { 0x00, 0x00, 0x00, 0x00 }, /* XXX WRAP */ 1095 { WPA_OUI_BYTES, WPA_CSE_CCMP }, 1096 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ 1097 { WPA_OUI_BYTES, WPA_CSE_NULL }, 1098 }; 1099 static const u_int8_t wep104_suite[4] = 1100 { WPA_OUI_BYTES, WPA_CSE_WEP104 }; 1101 static const u_int8_t key_mgt_unspec[4] = 1102 { WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC }; 1103 static const u_int8_t key_mgt_psk[4] = 1104 { WPA_OUI_BYTES, WPA_ASE_8021X_PSK }; 1105 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; 1106 u_int8_t *frm = ie; 1107 u_int8_t *selcnt; 1108 1109 *frm++ = IEEE80211_ELEMID_VENDOR; 1110 *frm++ = 0; /* length filled in below */ 1111 memcpy(frm, oui, sizeof(oui)); /* WPA OUI */ 1112 frm += sizeof(oui); 1113 ADDSHORT(frm, WPA_VERSION); 1114 1115 /* XXX filter out CKIP */ 1116 1117 /* multicast cipher */ 1118 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && 1119 rsn->rsn_mcastkeylen >= 13) 1120 ADDSELECTOR(frm, wep104_suite); 1121 else 1122 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); 1123 1124 /* unicast cipher list */ 1125 selcnt = frm; 1126 ADDSHORT(frm, 0); /* selector count */ 1127 if (rsn->rsn_ucastcipherset & (1 << IEEE80211_CIPHER_AES_CCM)) { 1128 selcnt[0]++; 1129 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); 1130 } 1131 if (rsn->rsn_ucastcipherset & (1 << IEEE80211_CIPHER_TKIP)) { 1132 selcnt[0]++; 1133 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); 1134 } 1135 1136 /* authenticator selector list */ 1137 selcnt = frm; 1138 ADDSHORT(frm, 0); /* selector count */ 1139 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { 1140 selcnt[0]++; 1141 ADDSELECTOR(frm, key_mgt_unspec); 1142 } 1143 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { 1144 selcnt[0]++; 1145 ADDSELECTOR(frm, key_mgt_psk); 1146 } 1147 1148 /* optional capabilities */ 1149 if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH) 1150 ADDSHORT(frm, rsn->rsn_caps); 1151 1152 /* calculate element length */ 1153 ie[1] = frm - ie - 2; 1154 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), 1155 ("WPA IE too big, %u > %zu", 1156 ie[1]+2, sizeof(struct ieee80211_ie_wpa))); 1157 return frm; 1158 #undef ADDSHORT 1159 #undef ADDSELECTOR 1160 #undef WPA_OUI_BYTES 1161 } 1162 1163 static u_int8_t * 1164 ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie) 1165 { 1166 #define RSN_OUI_BYTES 0x00, 0x0f, 0xac 1167 #define ADDSHORT(frm, v) do { \ 1168 frm[0] = (v) & 0xff; \ 1169 frm[1] = (v) >> 8; \ 1170 frm += 2; \ 1171 } while (0) 1172 #define ADDSELECTOR(frm, sel) do { \ 1173 memcpy(frm, sel, 4); \ 1174 frm += 4; \ 1175 } while (0) 1176 static const u_int8_t cipher_suite[][4] = { 1177 { RSN_OUI_BYTES, RSN_CSE_WEP40 }, /* NB: 40-bit */ 1178 { RSN_OUI_BYTES, RSN_CSE_TKIP }, 1179 { RSN_OUI_BYTES, RSN_CSE_WRAP }, 1180 { RSN_OUI_BYTES, RSN_CSE_CCMP }, 1181 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ 1182 { RSN_OUI_BYTES, RSN_CSE_NULL }, 1183 }; 1184 static const u_int8_t wep104_suite[4] = 1185 { RSN_OUI_BYTES, RSN_CSE_WEP104 }; 1186 static const u_int8_t key_mgt_unspec[4] = 1187 { RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC }; 1188 static const u_int8_t key_mgt_psk[4] = 1189 { RSN_OUI_BYTES, RSN_ASE_8021X_PSK }; 1190 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; 1191 u_int8_t *frm = ie; 1192 u_int8_t *selcnt; 1193 1194 *frm++ = IEEE80211_ELEMID_RSN; 1195 *frm++ = 0; /* length filled in below */ 1196 ADDSHORT(frm, RSN_VERSION); 1197 1198 /* XXX filter out CKIP */ 1199 1200 /* multicast cipher */ 1201 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && 1202 rsn->rsn_mcastkeylen >= 13) 1203 ADDSELECTOR(frm, wep104_suite); 1204 else 1205 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); 1206 1207 /* unicast cipher list */ 1208 selcnt = frm; 1209 ADDSHORT(frm, 0); /* selector count */ 1210 if (rsn->rsn_ucastcipherset & (1 << IEEE80211_CIPHER_AES_CCM)) { 1211 selcnt[0]++; 1212 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); 1213 } 1214 if (rsn->rsn_ucastcipherset & (1 << IEEE80211_CIPHER_TKIP)) { 1215 selcnt[0]++; 1216 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); 1217 } 1218 1219 /* authenticator selector list */ 1220 selcnt = frm; 1221 ADDSHORT(frm, 0); /* selector count */ 1222 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { 1223 selcnt[0]++; 1224 ADDSELECTOR(frm, key_mgt_unspec); 1225 } 1226 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { 1227 selcnt[0]++; 1228 ADDSELECTOR(frm, key_mgt_psk); 1229 } 1230 1231 /* optional capabilities */ 1232 ADDSHORT(frm, rsn->rsn_caps); 1233 /* XXX PMKID */ 1234 1235 /* calculate element length */ 1236 ie[1] = frm - ie - 2; 1237 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), 1238 ("RSN IE too big, %u > %zu", 1239 ie[1]+2, sizeof(struct ieee80211_ie_wpa))); 1240 return frm; 1241 #undef ADDSELECTOR 1242 #undef ADDSHORT 1243 #undef RSN_OUI_BYTES 1244 } 1245 1246 /* 1247 * Add a WPA/RSN element to a frame. 1248 */ 1249 u_int8_t * 1250 ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic) 1251 { 1252 1253 IASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!")); 1254 if (ic->ic_flags & IEEE80211_F_WPA2) 1255 frm = ieee80211_setup_rsn_ie(ic, frm); 1256 if (ic->ic_flags & IEEE80211_F_WPA1) 1257 frm = ieee80211_setup_wpa_ie(ic, frm); 1258 return frm; 1259 } 1260 1261 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1262 /* 1263 * Add a WME information element to a frame. 1264 */ 1265 u_int8_t * 1266 ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme) 1267 { 1268 static const struct ieee80211_wme_info info = { 1269 .wme_id = IEEE80211_ELEMID_VENDOR, 1270 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1271 .wme_oui = { WME_OUI_BYTES }, 1272 .wme_type = WME_OUI_TYPE, 1273 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1274 .wme_version = WME_VERSION, 1275 .wme_info = 0, 1276 }; 1277 memcpy(frm, &info, sizeof(info)); 1278 return frm + sizeof(info); 1279 } 1280 1281 /* 1282 * Add a WME parameters element to a frame. 1283 */ 1284 static u_int8_t * 1285 ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme) 1286 { 1287 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1288 #define ADDSHORT(frm, v) do { \ 1289 frm[0] = (v) & 0xff; \ 1290 frm[1] = (v) >> 8; \ 1291 frm += 2; \ 1292 } while (0) 1293 /* NB: this works because a param has an info at the front */ 1294 static const struct ieee80211_wme_info param = { 1295 .wme_id = IEEE80211_ELEMID_VENDOR, 1296 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1297 .wme_oui = { WME_OUI_BYTES }, 1298 .wme_type = WME_OUI_TYPE, 1299 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1300 .wme_version = WME_VERSION, 1301 }; 1302 int i; 1303 1304 memcpy(frm, ¶m, sizeof(param)); 1305 frm += offsetof(struct ieee80211_wme_info, wme_info); 1306 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1307 *frm++ = 0; /* reserved field */ 1308 for (i = 0; i < WME_NUM_AC; i++) { 1309 const struct wmeParams *ac = 1310 &wme->wme_bssChanParams.cap_wmeParams[i]; 1311 *frm++ = SM(i, WME_PARAM_ACI) | 1312 SM(ac->wmep_acm, WME_PARAM_ACM) | 1313 SM(ac->wmep_aifsn, WME_PARAM_AIFSN); 1314 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) | 1315 SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN); 1316 ADDSHORT(frm, ac->wmep_txopLimit); 1317 } 1318 1319 return frm; 1320 #undef SM 1321 #undef ADDSHORT 1322 } 1323 #undef WME_OUI_BYTES 1324 1325 /* 1326 * Send a probe request frame with the specified ssid 1327 * and any optional information element data. 1328 */ 1329 int 1330 ieee80211_send_probereq(struct ieee80211_node *ni, 1331 const u_int8_t sa[IEEE80211_ADDR_LEN], 1332 const u_int8_t da[IEEE80211_ADDR_LEN], 1333 const u_int8_t bssid[IEEE80211_ADDR_LEN], 1334 const u_int8_t *ssid, size_t ssidlen, 1335 const void *optie, size_t optielen) 1336 { 1337 struct ieee80211com *ic = ni->ni_ic; 1338 enum ieee80211_phymode mode; 1339 struct ieee80211_frame *wh; 1340 struct mbuf *m; 1341 u_int8_t *frm; 1342 1343 /* 1344 * Hold a reference on the node so it doesn't go away until after 1345 * the xmit is complete all the way in the driver. On error we 1346 * will remove our reference. 1347 */ 1348 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, 1349 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1350 __func__, __LINE__, 1351 ni, ether_sprintf(ni->ni_macaddr), 1352 ieee80211_node_refcnt(ni)+1); 1353 ieee80211_ref_node(ni); 1354 1355 /* 1356 * prreq frame format 1357 * [tlv] ssid 1358 * [tlv] supported rates 1359 * [tlv] extended supported rates 1360 * [tlv] user-specified ie's 1361 */ 1362 m = ieee80211_getmgtframe(&frm, 1363 2 + IEEE80211_NWID_LEN 1364 + 2 + IEEE80211_RATE_SIZE 1365 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1366 + (optie != NULL ? optielen : 0) 1367 ); 1368 if (m == NULL) { 1369 ic->ic_stats.is_tx_nobuf++; 1370 ieee80211_free_node(ni); 1371 return ENOMEM; 1372 } 1373 1374 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 1375 mode = ieee80211_chan2mode(ic, ic->ic_curchan); 1376 frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]); 1377 frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]); 1378 1379 if (optie != NULL) { 1380 memcpy(frm, optie, optielen); 1381 frm += optielen; 1382 } 1383 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1384 1385 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 1386 if (m == NULL) { 1387 ic->ic_stats.is_tx_nobuf++; 1388 ieee80211_free_node(ni); 1389 return ENOMEM; 1390 } 1391 M_SETCTX(m, ni); 1392 1393 wh = mtod(m, struct ieee80211_frame *); 1394 ieee80211_send_setup(ic, ni, wh, 1395 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 1396 sa, da, bssid); 1397 /* XXX power management? */ 1398 1399 IEEE80211_NODE_STAT(ni, tx_probereq); 1400 IEEE80211_NODE_STAT(ni, tx_mgmt); 1401 1402 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 1403 "[%s] send probe req on channel %u\n", 1404 ether_sprintf(wh->i_addr1), 1405 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1406 1407 IF_ENQUEUE(&ic->ic_mgtq, m); 1408 if_start_lock(ic->ic_ifp); 1409 return 0; 1410 } 1411 1412 /* 1413 * Send a management frame. The node is for the destination (or ic_bss 1414 * when in station mode). Nodes other than ic_bss have their reference 1415 * count bumped to reflect our use for an indeterminant time. 1416 */ 1417 int 1418 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni, 1419 int type, int arg) 1420 { 1421 #define senderr(_x, _v) do { ic->ic_stats._v++; ret = _x; goto bad; } while (0) 1422 struct mbuf *m; 1423 u_int8_t *frm; 1424 u_int16_t capinfo; 1425 int ret, timer, status; 1426 1427 IASSERT(ni != NULL, ("null node")); 1428 1429 /* 1430 * Hold a reference on the node so it doesn't go away until after 1431 * the xmit is complete all the way in the driver. On error we 1432 * will remove our reference. 1433 */ 1434 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, 1435 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1436 __func__, __LINE__, 1437 ni, ether_sprintf(ni->ni_macaddr), 1438 ieee80211_node_refcnt(ni)+1); 1439 ieee80211_ref_node(ni); 1440 1441 timer = 0; 1442 switch (type) { 1443 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: { 1444 const bool has_wpa = (ic->ic_flags & IEEE80211_F_WPA) != 0; 1445 1446 /* 1447 * probe response frame format 1448 * [8] time stamp 1449 * [2] beacon interval 1450 * [2] cabability information 1451 * [tlv] ssid 1452 * [tlv] supported rates 1453 * [tlv] parameter set (FH/DS) 1454 * [tlv] parameter set (IBSS) 1455 * [tlv] extended rate phy (ERP) 1456 * [tlv] extended supported rates 1457 * [tlv] WPA 1458 * [tlv] WME (optional) 1459 */ 1460 m = ieee80211_getmgtframe(&frm, 1461 8 /* timestamp */ 1462 + sizeof(u_int16_t) /* interval */ 1463 + sizeof(u_int16_t) /* capinfo */ 1464 + 2 + IEEE80211_NWID_LEN /* ssid */ 1465 + 2 + IEEE80211_RATE_SIZE /* rates */ 1466 + 7 /* max(7,3) */ 1467 + 6 /* ibss (XXX could be 4?) */ 1468 + 3 /* erp */ 1469 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1470 /* XXX !WPA1+WPA2 fits w/o a cluster */ 1471 + (has_wpa ? (2 * sizeof(struct ieee80211_ie_wpa)) : 0) 1472 + sizeof(struct ieee80211_wme_param) 1473 ); 1474 if (m == NULL) 1475 senderr(ENOMEM, is_tx_nobuf); 1476 1477 /* timestamp (should be filled later) */ 1478 memset(frm, 0, 8); 1479 frm += 8; 1480 1481 /* interval */ 1482 *(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval); 1483 frm += 2; 1484 1485 /* capinfo */ 1486 if (ic->ic_opmode == IEEE80211_M_IBSS) 1487 capinfo = IEEE80211_CAPINFO_IBSS; 1488 else 1489 capinfo = IEEE80211_CAPINFO_ESS; 1490 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1491 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1492 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1493 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1494 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1495 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1496 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1497 *(u_int16_t *)frm = htole16(capinfo); 1498 frm += 2; 1499 1500 /* ssid */ 1501 frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid, 1502 ic->ic_bss->ni_esslen); 1503 1504 /* rates */ 1505 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1506 1507 /* variable */ 1508 if (ic->ic_phytype == IEEE80211_T_FH) { 1509 *frm++ = IEEE80211_ELEMID_FHPARMS; 1510 *frm++ = 5; 1511 *frm++ = ni->ni_fhdwell & 0x00ff; 1512 *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff; 1513 *frm++ = IEEE80211_FH_CHANSET( 1514 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1515 *frm++ = IEEE80211_FH_CHANPAT( 1516 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1517 *frm++ = ni->ni_fhindex; 1518 } else { 1519 *frm++ = IEEE80211_ELEMID_DSPARMS; 1520 *frm++ = 1; 1521 *frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan); 1522 } 1523 1524 /* ibss */ 1525 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1526 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1527 *frm++ = 2; 1528 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1529 } 1530 1531 /* wpa */ 1532 if (has_wpa) 1533 frm = ieee80211_add_wpa(frm, ic); 1534 1535 /* erp */ 1536 if (ic->ic_curmode == IEEE80211_MODE_11G) 1537 frm = ieee80211_add_erp(frm, ic); 1538 1539 /* xrates */ 1540 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1541 1542 /* wme */ 1543 if (ic->ic_flags & IEEE80211_F_WME) 1544 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1545 1546 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1547 break; 1548 } 1549 1550 case IEEE80211_FC0_SUBTYPE_AUTH: { 1551 status = arg >> 16; 1552 arg &= 0xffff; 1553 const bool has_challenge = 1554 (arg == IEEE80211_AUTH_SHARED_CHALLENGE || 1555 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 1556 ni->ni_challenge != NULL; 1557 1558 /* 1559 * Deduce whether we're doing open authentication or 1560 * shared key authentication. We do the latter if 1561 * we're in the middle of a shared key authentication 1562 * handshake or if we're initiating an authentication 1563 * request and configured to use shared key. 1564 */ 1565 const bool is_shared_key = has_challenge || 1566 (arg >= IEEE80211_AUTH_SHARED_RESPONSE) || 1567 (arg == IEEE80211_AUTH_SHARED_REQUEST && 1568 ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED); 1569 1570 const bool need_challenge = 1571 has_challenge && (status == IEEE80211_STATUS_SUCCESS); 1572 1573 const int frm_size = 3 * sizeof(u_int16_t) 1574 + (need_challenge ? 1575 sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0); 1576 1577 m = ieee80211_getmgtframe(&frm, frm_size); 1578 if (m == NULL) 1579 senderr(ENOMEM, is_tx_nobuf); 1580 1581 ((u_int16_t *)frm)[0] = 1582 is_shared_key ? htole16(IEEE80211_AUTH_ALG_SHARED) 1583 : htole16(IEEE80211_AUTH_ALG_OPEN); 1584 ((u_int16_t *)frm)[1] = htole16(arg); /* sequence number */ 1585 ((u_int16_t *)frm)[2] = htole16(status);/* status */ 1586 1587 if (need_challenge) { 1588 ((u_int16_t *)frm)[3] = 1589 htole16((IEEE80211_CHALLENGE_LEN << 8) | 1590 IEEE80211_ELEMID_CHALLENGE); 1591 memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge, 1592 IEEE80211_CHALLENGE_LEN); 1593 1594 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 1595 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 1596 "[%s] request encrypt frame (%s)\n", 1597 ether_sprintf(ni->ni_macaddr), __func__); 1598 m->m_flags |= M_LINK0; /* WEP-encrypt, please */ 1599 } 1600 } 1601 1602 m->m_pkthdr.len = m->m_len = frm_size; 1603 1604 /* XXX not right for shared key */ 1605 if (status == IEEE80211_STATUS_SUCCESS) 1606 IEEE80211_NODE_STAT(ni, tx_auth); 1607 else 1608 IEEE80211_NODE_STAT(ni, tx_auth_fail); 1609 1610 if (ic->ic_opmode == IEEE80211_M_STA) 1611 timer = IEEE80211_TRANS_WAIT; 1612 break; 1613 } 1614 1615 case IEEE80211_FC0_SUBTYPE_DEAUTH: 1616 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 1617 "[%s] send station deauthenticate (reason %d)\n", 1618 ether_sprintf(ni->ni_macaddr), arg); 1619 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t)); 1620 if (m == NULL) 1621 senderr(ENOMEM, is_tx_nobuf); 1622 *(u_int16_t *)frm = htole16(arg); /* reason */ 1623 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t); 1624 1625 IEEE80211_NODE_STAT(ni, tx_deauth); 1626 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 1627 1628 ieee80211_node_unauthorize(ni); /* port closed */ 1629 break; 1630 1631 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 1632 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 1633 /* 1634 * asreq frame format 1635 * [2] capability information 1636 * [2] listen interval 1637 * [6*] current AP address (reassoc only) 1638 * [tlv] ssid 1639 * [tlv] supported rates 1640 * [tlv] extended supported rates 1641 * [tlv] WME 1642 * [tlv] user-specified ie's 1643 */ 1644 m = ieee80211_getmgtframe(&frm, 1645 sizeof(u_int16_t) 1646 + sizeof(u_int16_t) 1647 + IEEE80211_ADDR_LEN 1648 + 2 + IEEE80211_NWID_LEN 1649 + 2 + IEEE80211_RATE_SIZE 1650 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1651 + sizeof(struct ieee80211_wme_info) 1652 + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0) 1653 ); 1654 if (m == NULL) 1655 senderr(ENOMEM, is_tx_nobuf); 1656 1657 capinfo = 0; 1658 if (ic->ic_opmode == IEEE80211_M_IBSS) 1659 capinfo |= IEEE80211_CAPINFO_IBSS; 1660 else /* IEEE80211_M_STA */ 1661 capinfo |= IEEE80211_CAPINFO_ESS; 1662 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1663 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1664 /* 1665 * NB: Some 11a AP's reject the request when 1666 * short premable is set. 1667 */ 1668 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1669 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1670 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1671 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) && 1672 (ic->ic_caps & IEEE80211_C_SHSLOT)) 1673 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1674 *(u_int16_t *)frm = htole16(capinfo); 1675 frm += 2; 1676 1677 *(u_int16_t *)frm = htole16(ic->ic_lintval); 1678 frm += 2; 1679 1680 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 1681 IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid); 1682 frm += IEEE80211_ADDR_LEN; 1683 } 1684 1685 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 1686 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1687 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1688 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) 1689 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 1690 if (ic->ic_opt_ie != NULL) { 1691 memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len); 1692 frm += ic->ic_opt_ie_len; 1693 } 1694 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1695 1696 timer = IEEE80211_TRANS_WAIT; 1697 break; 1698 1699 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 1700 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 1701 /* 1702 * asreq frame format 1703 * [2] capability information 1704 * [2] status 1705 * [2] association ID 1706 * [tlv] supported rates 1707 * [tlv] extended supported rates 1708 * [tlv] WME (if enabled and STA enabled) 1709 */ 1710 m = ieee80211_getmgtframe(&frm, 1711 sizeof(u_int16_t) 1712 + sizeof(u_int16_t) 1713 + sizeof(u_int16_t) 1714 + 2 + IEEE80211_RATE_SIZE 1715 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1716 + sizeof(struct ieee80211_wme_param) 1717 ); 1718 if (m == NULL) 1719 senderr(ENOMEM, is_tx_nobuf); 1720 1721 capinfo = IEEE80211_CAPINFO_ESS; 1722 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1723 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1724 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1725 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1726 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1727 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1728 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1729 *(u_int16_t *)frm = htole16(capinfo); 1730 frm += 2; 1731 1732 *(u_int16_t *)frm = htole16(arg); /* status */ 1733 frm += 2; 1734 1735 if (arg == IEEE80211_STATUS_SUCCESS) { 1736 *(u_int16_t *)frm = htole16(ni->ni_associd); 1737 IEEE80211_NODE_STAT(ni, tx_assoc); 1738 } else { 1739 *(u_int16_t *)frm = 0; 1740 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 1741 } 1742 frm += 2; 1743 1744 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1745 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1746 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) 1747 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1748 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1749 break; 1750 1751 case IEEE80211_FC0_SUBTYPE_DISASSOC: 1752 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC, 1753 "[%s] send station disassociate (reason %d)\n", 1754 ether_sprintf(ni->ni_macaddr), arg); 1755 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t)); 1756 if (m == NULL) 1757 senderr(ENOMEM, is_tx_nobuf); 1758 *(u_int16_t *)frm = htole16(arg); /* reason */ 1759 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t); 1760 1761 IEEE80211_NODE_STAT(ni, tx_disassoc); 1762 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 1763 break; 1764 1765 default: 1766 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1767 "[%s] invalid mgmt frame type %u\n", 1768 ether_sprintf(ni->ni_macaddr), type); 1769 senderr(EINVAL, is_tx_unknownmgt); 1770 /* NOTREACHED */ 1771 } 1772 ret = ieee80211_mgmt_output(ic, ni, m, type, timer); 1773 if (ret != 0) { 1774 bad: 1775 ieee80211_free_node(ni); 1776 } 1777 return ret; 1778 #undef senderr 1779 } 1780 1781 /* 1782 * Build a RTS (Request To Send) control frame. 1783 */ 1784 struct mbuf * 1785 ieee80211_get_rts(struct ieee80211com *ic, const struct ieee80211_frame *wh, 1786 uint16_t dur) 1787 { 1788 struct ieee80211_frame_rts *rts; 1789 struct mbuf *m; 1790 1791 MGETHDR(m, M_DONTWAIT, MT_DATA); 1792 if (m == NULL) 1793 return NULL; 1794 1795 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 1796 1797 rts = mtod(m, struct ieee80211_frame_rts *); 1798 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | 1799 IEEE80211_FC0_SUBTYPE_RTS; 1800 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1801 *(uint16_t *)rts->i_dur = htole16(dur); 1802 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1); 1803 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2); 1804 1805 return m; 1806 } 1807 1808 /* 1809 * Build a CTS-to-self (Clear To Send) control frame. 1810 */ 1811 struct mbuf * 1812 ieee80211_get_cts_to_self(struct ieee80211com *ic, uint16_t dur) 1813 { 1814 struct ieee80211_frame_cts *cts; 1815 struct mbuf *m; 1816 1817 MGETHDR(m, M_DONTWAIT, MT_DATA); 1818 if (m == NULL) 1819 return NULL; 1820 1821 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 1822 1823 cts = mtod(m, struct ieee80211_frame_cts *); 1824 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | 1825 IEEE80211_FC0_SUBTYPE_CTS; 1826 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1827 *(uint16_t *)cts->i_dur = htole16(dur); 1828 IEEE80211_ADDR_COPY(cts->i_ra, ic->ic_myaddr); 1829 1830 return m; 1831 } 1832 1833 /* 1834 * Allocate a beacon frame and fill in the appropriate bits. 1835 */ 1836 struct mbuf * 1837 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni, 1838 struct ieee80211_beacon_offsets *bo) 1839 { 1840 struct ifnet *ifp = ic->ic_ifp; 1841 struct ieee80211_frame *wh; 1842 struct mbuf *m; 1843 int pktlen; 1844 u_int8_t *frm, *efrm; 1845 u_int16_t capinfo; 1846 struct ieee80211_rateset *rs; 1847 1848 rs = &ni->ni_rates; 1849 1850 /* 1851 * beacon frame format 1852 * [8] time stamp 1853 * [2] beacon interval 1854 * [2] cabability information 1855 * [tlv] ssid 1856 * [tlv] supported rates 1857 * [3] parameter set (DS) 1858 * [tlv] parameter set (IBSS/TIM) 1859 * [tlv] extended rate phy (ERP) 1860 * [tlv] extended supported rates 1861 * [tlv] WME parameters 1862 * [tlv] WPA/RSN parameters 1863 * XXX Vendor-specific OIDs (e.g. Atheros) 1864 * 1865 * NB: we allocate the max space required for the TIM bitmap 1866 * (ic_tim_len). 1867 */ 1868 pktlen = 8 /* time stamp */ 1869 + sizeof(u_int16_t) /* beacon interval */ 1870 + sizeof(u_int16_t) /* capabilities */ 1871 + 2 + ni->ni_esslen /* ssid */ 1872 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 1873 + 2 + 1 /* DS parameters */ 1874 + 2 + 4 + ic->ic_tim_len /* DTIM/IBSSPARMS */ 1875 + 2 + 1 /* ERP */ 1876 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1877 + (ic->ic_caps & IEEE80211_C_WME ? /* WME */ 1878 sizeof(struct ieee80211_wme_param) : 0) 1879 + (ic->ic_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 1880 2*sizeof(struct ieee80211_ie_wpa) : 0) 1881 ; 1882 m = ieee80211_getmgtframe(&frm, pktlen); 1883 if (m == NULL) { 1884 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1885 "%s: cannot get buf; size %u\n", __func__, pktlen); 1886 ic->ic_stats.is_tx_nobuf++; 1887 return NULL; 1888 } 1889 1890 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 1891 frm += 8; 1892 1893 *(u_int16_t *)frm = htole16(ni->ni_intval); 1894 frm += 2; 1895 1896 if (ic->ic_opmode == IEEE80211_M_IBSS) 1897 capinfo = IEEE80211_CAPINFO_IBSS; 1898 else 1899 capinfo = IEEE80211_CAPINFO_ESS; 1900 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1901 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1902 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1903 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 1904 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1905 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1906 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1907 bo->bo_caps = (u_int16_t *)frm; 1908 *(u_int16_t *)frm = htole16(capinfo); 1909 frm += 2; 1910 1911 *frm++ = IEEE80211_ELEMID_SSID; 1912 if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) { 1913 *frm++ = ni->ni_esslen; 1914 memcpy(frm, ni->ni_essid, ni->ni_esslen); 1915 frm += ni->ni_esslen; 1916 } else 1917 *frm++ = 0; 1918 1919 frm = ieee80211_add_rates(frm, rs); 1920 1921 if (ic->ic_curmode != IEEE80211_MODE_FH) { 1922 *frm++ = IEEE80211_ELEMID_DSPARMS; 1923 *frm++ = 1; 1924 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 1925 } 1926 1927 bo->bo_tim = frm; 1928 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1929 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1930 *frm++ = 2; 1931 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1932 bo->bo_tim_len = 0; 1933 } else { 1934 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *)frm; 1935 1936 tie->tim_ie = IEEE80211_ELEMID_TIM; 1937 tie->tim_len = 4; /* length */ 1938 tie->tim_count = 0; /* DTIM count */ 1939 tie->tim_period = ic->ic_dtim_period; /* DTIM period */ 1940 tie->tim_bitctl = 0; /* bitmap control */ 1941 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 1942 frm += sizeof(struct ieee80211_tim_ie); 1943 bo->bo_tim_len = 1; 1944 } 1945 1946 bo->bo_trailer = frm; 1947 if (ic->ic_flags & IEEE80211_F_WME) { 1948 bo->bo_wme = frm; 1949 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1950 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; 1951 } 1952 1953 if (ic->ic_flags & IEEE80211_F_WPA) 1954 frm = ieee80211_add_wpa(frm, ic); 1955 1956 if (ic->ic_curmode == IEEE80211_MODE_11G) 1957 frm = ieee80211_add_erp(frm, ic); 1958 1959 efrm = ieee80211_add_xrates(frm, rs); 1960 1961 bo->bo_trailer_len = efrm - bo->bo_trailer; 1962 m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *); 1963 1964 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 1965 IASSERT(m != NULL, ("no space for 802.11 header?")); 1966 1967 wh = mtod(m, struct ieee80211_frame *); 1968 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 1969 IEEE80211_FC0_SUBTYPE_BEACON; 1970 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1971 *(u_int16_t *)wh->i_dur = 0; 1972 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 1973 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 1974 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 1975 *(u_int16_t *)wh->i_seq = 0; 1976 1977 return m; 1978 } 1979 1980 /* 1981 * Update the dynamic parts of a beacon frame based on the current state. 1982 */ 1983 int 1984 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni, 1985 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) 1986 { 1987 int len_changed = 0; 1988 u_int16_t capinfo; 1989 1990 IEEE80211_BEACON_LOCK(ic); 1991 1992 /* XXX faster to recalculate entirely or just changes? */ 1993 if (ic->ic_opmode == IEEE80211_M_IBSS) 1994 capinfo = IEEE80211_CAPINFO_IBSS; 1995 else 1996 capinfo = IEEE80211_CAPINFO_ESS; 1997 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1998 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1999 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2000 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 2001 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2002 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2003 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2004 *bo->bo_caps = htole16(capinfo); 2005 2006 if (ic->ic_flags & IEEE80211_F_WME) { 2007 struct ieee80211_wme_state *wme = &ic->ic_wme; 2008 2009 /* 2010 * Check for agressive mode change. When there is 2011 * significant high priority traffic in the BSS 2012 * throttle back BE traffic by using conservative 2013 * parameters. Otherwise BE uses agressive params 2014 * to optimize performance of legacy/non-QoS traffic. 2015 */ 2016 if (wme->wme_flags & WME_F_AGGRMODE) { 2017 if (wme->wme_hipri_traffic > 2018 wme->wme_hipri_switch_thresh) { 2019 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, 2020 "%s: traffic %u, disable aggressive mode\n", 2021 __func__, wme->wme_hipri_traffic); 2022 wme->wme_flags &= ~WME_F_AGGRMODE; 2023 ieee80211_wme_updateparams_locked(ic); 2024 wme->wme_hipri_traffic = 2025 wme->wme_hipri_switch_hysteresis; 2026 } else 2027 wme->wme_hipri_traffic = 0; 2028 } else { 2029 if (wme->wme_hipri_traffic <= 2030 wme->wme_hipri_switch_thresh) { 2031 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, 2032 "%s: traffic %u, enable aggressive mode\n", 2033 __func__, wme->wme_hipri_traffic); 2034 wme->wme_flags |= WME_F_AGGRMODE; 2035 ieee80211_wme_updateparams_locked(ic); 2036 wme->wme_hipri_traffic = 0; 2037 } else 2038 wme->wme_hipri_traffic = 2039 wme->wme_hipri_switch_hysteresis; 2040 } 2041 if (ic->ic_flags & IEEE80211_F_WMEUPDATE) { 2042 (void)ieee80211_add_wme_param(bo->bo_wme, wme); 2043 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; 2044 } 2045 } 2046 2047 #ifndef IEEE80211_NO_HOSTAP 2048 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/ 2049 struct ieee80211_tim_ie *tie = 2050 (struct ieee80211_tim_ie *)bo->bo_tim; 2051 if (ic->ic_flags & IEEE80211_F_TIMUPDATE) { 2052 u_int timlen, timoff, i; 2053 /* 2054 * ATIM/DTIM needs updating. If it fits in the 2055 * current space allocated then just copy in the 2056 * new bits. Otherwise we need to move any trailing 2057 * data to make room. Note that we know there is 2058 * contiguous space because ieee80211_beacon_allocate 2059 * insures there is space in the mbuf to write a 2060 * maximal-size virtual bitmap (based on ic_max_aid). 2061 */ 2062 /* 2063 * Calculate the bitmap size and offset, copy any 2064 * trailer out of the way, and then copy in the 2065 * new bitmap and update the information element. 2066 * Note that the tim bitmap must contain at least 2067 * one byte and any offset must be even. 2068 */ 2069 if (ic->ic_ps_pending != 0) { 2070 timoff = 128; /* impossibly large */ 2071 for (i = 0; i < ic->ic_tim_len; i++) 2072 if (ic->ic_tim_bitmap[i]) { 2073 timoff = i &~ 1; 2074 break; 2075 } 2076 IASSERT(timoff != 128, ("tim bitmap empty!")); 2077 for (i = ic->ic_tim_len-1; i >= timoff; i--) 2078 if (ic->ic_tim_bitmap[i]) 2079 break; 2080 timlen = 1 + (i - timoff); 2081 } else { 2082 timoff = 0; 2083 timlen = 1; 2084 } 2085 if (timlen != bo->bo_tim_len) { 2086 /* copy up/down trailer */ 2087 ovbcopy(bo->bo_trailer, tie->tim_bitmap+timlen, 2088 bo->bo_trailer_len); 2089 bo->bo_trailer = tie->tim_bitmap+timlen; 2090 bo->bo_wme = bo->bo_trailer; 2091 bo->bo_tim_len = timlen; 2092 2093 /* update information element */ 2094 tie->tim_len = 3 + timlen; 2095 tie->tim_bitctl = timoff; 2096 len_changed = 1; 2097 } 2098 memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff, 2099 bo->bo_tim_len); 2100 2101 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE; 2102 2103 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, 2104 "%s: TIM updated, pending %u, off %u, len %u\n", 2105 __func__, ic->ic_ps_pending, timoff, timlen); 2106 } 2107 /* count down DTIM period */ 2108 if (tie->tim_count == 0) 2109 tie->tim_count = tie->tim_period - 1; 2110 else 2111 tie->tim_count--; 2112 /* update state for buffered multicast frames on DTIM */ 2113 if (mcast && (tie->tim_count == 1 || tie->tim_period == 1)) 2114 tie->tim_bitctl |= 1; 2115 else 2116 tie->tim_bitctl &= ~1; 2117 } 2118 #endif /* !IEEE80211_NO_HOSTAP */ 2119 2120 IEEE80211_BEACON_UNLOCK(ic); 2121 2122 return len_changed; 2123 } 2124 2125 /* 2126 * Save an outbound packet for a node in power-save sleep state. 2127 * The new packet is placed on the node's saved queue, and the TIM 2128 * is changed, if necessary. 2129 */ 2130 void 2131 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni, 2132 struct mbuf *m) 2133 { 2134 int qlen, age; 2135 2136 IEEE80211_NODE_SAVEQ_LOCK(ni); 2137 if (IF_QFULL(&ni->ni_savedq)) { 2138 IF_DROP(&ni->ni_savedq); 2139 IEEE80211_NODE_SAVEQ_UNLOCK(ni); 2140 2141 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 2142 "[%s] pwr save q overflow, drops %d (size %d)\n", 2143 ether_sprintf(ni->ni_macaddr), 2144 ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE); 2145 #ifdef IEEE80211_DEBUG 2146 if (ieee80211_msg_dumppkts(ic)) 2147 ieee80211_dump_pkt(mtod(m, void *), m->m_len, -1, -1); 2148 #endif 2149 2150 m_freem(m); 2151 return; 2152 } 2153 2154 /* 2155 * Tag the frame with its expiry time and insert 2156 * it in the queue. The aging interval is 4 times 2157 * the listen interval specified by the station. 2158 * Frames that sit around too long are reclaimed 2159 * using this information. 2160 */ 2161 /* XXX handle overflow? */ 2162 age = ((ni->ni_intval * ic->ic_bintval) << 2) / 1024; /* TU -> secs */ 2163 _IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age); 2164 IEEE80211_NODE_SAVEQ_UNLOCK(ni); 2165 2166 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, 2167 "[%s] save frame with age %d, %u now queued\n", 2168 ether_sprintf(ni->ni_macaddr), age, qlen); 2169 2170 if (qlen == 1) 2171 ic->ic_set_tim(ni, 1); 2172 } 2173