xref: /netbsd-src/sys/net/zlib.c (revision 81b108b45f75f89f1e3ffad9fb6f074e771c0935)
1 /*	$NetBSD: zlib.c,v 1.2 1996/03/16 23:55:40 christos Exp $	*/
2 
3 /*
4  * This file is derived from various .h and .c files from the zlib-0.95
5  * distribution by Jean-loup Gailly and Mark Adler, with some additions
6  * by Paul Mackerras to aid in implementing Deflate compression and
7  * decompression for PPP packets.  See zlib.h for conditions of
8  * distribution and use.
9  *
10  * Changes that have been made include:
11  * - changed functions not used outside this file to "local"
12  * - added minCompression parameter to deflateInit2
13  * - added Z_PACKET_FLUSH (see zlib.h for details)
14  * - added inflateIncomp
15  */
16 
17 
18 /*+++++*/
19 /* zutil.h -- internal interface and configuration of the compression library
20  * Copyright (C) 1995 Jean-loup Gailly.
21  * For conditions of distribution and use, see copyright notice in zlib.h
22  */
23 
24 /* WARNING: this file should *not* be used by applications. It is
25    part of the implementation of the compression library and is
26    subject to change. Applications should only use zlib.h.
27  */
28 
29 /* From: zutil.h,v 1.9 1995/05/03 17:27:12 jloup Exp */
30 
31 #define _Z_UTIL_H
32 
33 #include "zlib.h"
34 
35 #ifdef STDC
36 #  include <string.h>
37 #endif
38 
39 #ifndef local
40 #  define local static
41 #endif
42 /* compile with -Dlocal if your debugger can't find static symbols */
43 
44 #define FAR
45 
46 typedef unsigned char  uch;
47 typedef uch FAR uchf;
48 typedef unsigned short ush;
49 typedef ush FAR ushf;
50 typedef unsigned long  ulg;
51 
52 extern char *z_errmsg[]; /* indexed by 1-zlib_error */
53 
54 #define ERR_RETURN(strm,err) return (strm->msg=z_errmsg[1-err], err)
55 /* To be used only when the state is known to be valid */
56 
57 #ifndef NULL
58 #define NULL	((void *) 0)
59 #endif
60 
61         /* common constants */
62 
63 #define DEFLATED   8
64 
65 #ifndef DEF_WBITS
66 #  define DEF_WBITS MAX_WBITS
67 #endif
68 /* default windowBits for decompression. MAX_WBITS is for compression only */
69 
70 #if MAX_MEM_LEVEL >= 8
71 #  define DEF_MEM_LEVEL 8
72 #else
73 #  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
74 #endif
75 /* default memLevel */
76 
77 #define STORED_BLOCK 0
78 #define STATIC_TREES 1
79 #define DYN_TREES    2
80 /* The three kinds of block type */
81 
82 #define MIN_MATCH  3
83 #define MAX_MATCH  258
84 /* The minimum and maximum match lengths */
85 
86          /* functions */
87 
88 #if defined(KERNEL) || defined(_KERNEL)
89 #  define zmemcpy(d, s, n)	bcopy((s), (d), (n))
90 #  define zmemzero		bzero
91 #else
92 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
93 #  define HAVE_MEMCPY
94 #endif
95 #ifdef HAVE_MEMCPY
96 #    define zmemcpy memcpy
97 #    define zmemzero(dest, len) memset(dest, 0, len)
98 #else
99    extern void zmemcpy  OF((Bytef* dest, Bytef* source, uInt len));
100    extern void zmemzero OF((Bytef* dest, uInt len));
101 #endif
102 #endif
103 
104 /* Diagnostic functions */
105 #ifdef DEBUG_ZLIB
106 #  include <stdio.h>
107 #  ifndef verbose
108 #    define verbose 0
109 #  endif
110 #  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
111 #  define Trace(x) fprintf x
112 #  define Tracev(x) {if (verbose) fprintf x ;}
113 #  define Tracevv(x) {if (verbose>1) fprintf x ;}
114 #  define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
115 #  define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
116 #else
117 #  define Assert(cond,msg)
118 #  define Trace(x)
119 #  define Tracev(x)
120 #  define Tracevv(x)
121 #  define Tracec(c,x)
122 #  define Tracecv(c,x)
123 #endif
124 
125 
126 typedef uLong (*check_func) OF((uLong check, Bytef *buf, uInt len));
127 
128 /* voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size)); */
129 /* void   zcfree  OF((voidpf opaque, voidpf ptr)); */
130 
131 #define ZALLOC(strm, items, size) \
132            (*((strm)->zalloc))((strm)->opaque, (items), (size))
133 #define ZFREE(strm, addr, size)	\
134 	   (*((strm)->zfree))((strm)->opaque, (voidpf)(addr), (size))
135 #define TRY_FREE(s, p, n) {if (p) ZFREE(s, p, n);}
136 
137 /* deflate.h -- internal compression state
138  * Copyright (C) 1995 Jean-loup Gailly
139  * For conditions of distribution and use, see copyright notice in zlib.h
140  */
141 
142 /* WARNING: this file should *not* be used by applications. It is
143    part of the implementation of the compression library and is
144    subject to change. Applications should only use zlib.h.
145  */
146 
147 
148 /*+++++*/
149 /* From: deflate.h,v 1.5 1995/05/03 17:27:09 jloup Exp */
150 
151 /* ===========================================================================
152  * Internal compression state.
153  */
154 
155 /* Data type */
156 #define BINARY  0
157 #define ASCII   1
158 #define UNKNOWN 2
159 
160 #define LENGTH_CODES 29
161 /* number of length codes, not counting the special END_BLOCK code */
162 
163 #define LITERALS  256
164 /* number of literal bytes 0..255 */
165 
166 #define L_CODES (LITERALS+1+LENGTH_CODES)
167 /* number of Literal or Length codes, including the END_BLOCK code */
168 
169 #define D_CODES   30
170 /* number of distance codes */
171 
172 #define BL_CODES  19
173 /* number of codes used to transfer the bit lengths */
174 
175 #define HEAP_SIZE (2*L_CODES+1)
176 /* maximum heap size */
177 
178 #define MAX_BITS 15
179 /* All codes must not exceed MAX_BITS bits */
180 
181 #define INIT_STATE    42
182 #define BUSY_STATE   113
183 #define FLUSH_STATE  124
184 #define FINISH_STATE 666
185 /* Stream status */
186 
187 
188 /* Data structure describing a single value and its code string. */
189 typedef struct ct_data_s {
190     union {
191         ush  freq;       /* frequency count */
192         ush  code;       /* bit string */
193     } fc;
194     union {
195         ush  dad;        /* father node in Huffman tree */
196         ush  len;        /* length of bit string */
197     } dl;
198 } FAR ct_data;
199 
200 #define Freq fc.freq
201 #define Code fc.code
202 #define Dad  dl.dad
203 #define Len  dl.len
204 
205 typedef struct static_tree_desc_s  static_tree_desc;
206 
207 typedef struct tree_desc_s {
208     ct_data *dyn_tree;           /* the dynamic tree */
209     int     max_code;            /* largest code with non zero frequency */
210     static_tree_desc *stat_desc; /* the corresponding static tree */
211 } FAR tree_desc;
212 
213 typedef ush Pos;
214 typedef Pos FAR Posf;
215 typedef unsigned IPos;
216 
217 /* A Pos is an index in the character window. We use short instead of int to
218  * save space in the various tables. IPos is used only for parameter passing.
219  */
220 
221 typedef struct deflate_state {
222     z_stream *strm;      /* pointer back to this zlib stream */
223     int   status;        /* as the name implies */
224     Bytef *pending_buf;  /* output still pending */
225     Bytef *pending_out;  /* next pending byte to output to the stream */
226     int   pending;       /* nb of bytes in the pending buffer */
227     uLong adler;         /* adler32 of uncompressed data */
228     int   noheader;      /* suppress zlib header and adler32 */
229     Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
230     Byte  method;        /* STORED (for zip only) or DEFLATED */
231     int	  minCompr;	 /* min size decrease for Z_FLUSH_NOSTORE */
232 
233                 /* used by deflate.c: */
234 
235     uInt  w_size;        /* LZ77 window size (32K by default) */
236     uInt  w_bits;        /* log2(w_size)  (8..16) */
237     uInt  w_mask;        /* w_size - 1 */
238 
239     Bytef *window;
240     /* Sliding window. Input bytes are read into the second half of the window,
241      * and move to the first half later to keep a dictionary of at least wSize
242      * bytes. With this organization, matches are limited to a distance of
243      * wSize-MAX_MATCH bytes, but this ensures that IO is always
244      * performed with a length multiple of the block size. Also, it limits
245      * the window size to 64K, which is quite useful on MSDOS.
246      * To do: use the user input buffer as sliding window.
247      */
248 
249     ulg window_size;
250     /* Actual size of window: 2*wSize, except when the user input buffer
251      * is directly used as sliding window.
252      */
253 
254     Posf *prev;
255     /* Link to older string with same hash index. To limit the size of this
256      * array to 64K, this link is maintained only for the last 32K strings.
257      * An index in this array is thus a window index modulo 32K.
258      */
259 
260     Posf *head; /* Heads of the hash chains or NIL. */
261 
262     uInt  ins_h;          /* hash index of string to be inserted */
263     uInt  hash_size;      /* number of elements in hash table */
264     uInt  hash_bits;      /* log2(hash_size) */
265     uInt  hash_mask;      /* hash_size-1 */
266 
267     uInt  hash_shift;
268     /* Number of bits by which ins_h must be shifted at each input
269      * step. It must be such that after MIN_MATCH steps, the oldest
270      * byte no longer takes part in the hash key, that is:
271      *   hash_shift * MIN_MATCH >= hash_bits
272      */
273 
274     long block_start;
275     /* Window position at the beginning of the current output block. Gets
276      * negative when the window is moved backwards.
277      */
278 
279     uInt match_length;           /* length of best match */
280     IPos prev_match;             /* previous match */
281     int match_available;         /* set if previous match exists */
282     uInt strstart;               /* start of string to insert */
283     uInt match_start;            /* start of matching string */
284     uInt lookahead;              /* number of valid bytes ahead in window */
285 
286     uInt prev_length;
287     /* Length of the best match at previous step. Matches not greater than this
288      * are discarded. This is used in the lazy match evaluation.
289      */
290 
291     uInt max_chain_length;
292     /* To speed up deflation, hash chains are never searched beyond this
293      * length.  A higher limit improves compression ratio but degrades the
294      * speed.
295      */
296 
297     uInt max_lazy_match;
298     /* Attempt to find a better match only when the current match is strictly
299      * smaller than this value. This mechanism is used only for compression
300      * levels >= 4.
301      */
302 #   define max_insert_length  max_lazy_match
303     /* Insert new strings in the hash table only if the match length is not
304      * greater than this length. This saves time but degrades compression.
305      * max_insert_length is used only for compression levels <= 3.
306      */
307 
308     int level;    /* compression level (1..9) */
309     int strategy; /* favor or force Huffman coding*/
310 
311     uInt good_match;
312     /* Use a faster search when the previous match is longer than this */
313 
314      int nice_match; /* Stop searching when current match exceeds this */
315 
316                 /* used by trees.c: */
317     /* Didn't use ct_data typedef below to supress compiler warning */
318     struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
319     struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
320     struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
321 
322     struct tree_desc_s l_desc;               /* desc. for literal tree */
323     struct tree_desc_s d_desc;               /* desc. for distance tree */
324     struct tree_desc_s bl_desc;              /* desc. for bit length tree */
325 
326     ush bl_count[MAX_BITS+1];
327     /* number of codes at each bit length for an optimal tree */
328 
329     int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
330     int heap_len;               /* number of elements in the heap */
331     int heap_max;               /* element of largest frequency */
332     /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
333      * The same heap array is used to build all trees.
334      */
335 
336     uch depth[2*L_CODES+1];
337     /* Depth of each subtree used as tie breaker for trees of equal frequency
338      */
339 
340     uchf *l_buf;          /* buffer for literals or lengths */
341 
342     uInt  lit_bufsize;
343     /* Size of match buffer for literals/lengths.  There are 4 reasons for
344      * limiting lit_bufsize to 64K:
345      *   - frequencies can be kept in 16 bit counters
346      *   - if compression is not successful for the first block, all input
347      *     data is still in the window so we can still emit a stored block even
348      *     when input comes from standard input.  (This can also be done for
349      *     all blocks if lit_bufsize is not greater than 32K.)
350      *   - if compression is not successful for a file smaller than 64K, we can
351      *     even emit a stored file instead of a stored block (saving 5 bytes).
352      *     This is applicable only for zip (not gzip or zlib).
353      *   - creating new Huffman trees less frequently may not provide fast
354      *     adaptation to changes in the input data statistics. (Take for
355      *     example a binary file with poorly compressible code followed by
356      *     a highly compressible string table.) Smaller buffer sizes give
357      *     fast adaptation but have of course the overhead of transmitting
358      *     trees more frequently.
359      *   - I can't count above 4
360      */
361 
362     uInt last_lit;      /* running index in l_buf */
363 
364     ushf *d_buf;
365     /* Buffer for distances. To simplify the code, d_buf and l_buf have
366      * the same number of elements. To use different lengths, an extra flag
367      * array would be necessary.
368      */
369 
370     ulg opt_len;        /* bit length of current block with optimal trees */
371     ulg static_len;     /* bit length of current block with static trees */
372     ulg compressed_len; /* total bit length of compressed file */
373     uInt matches;       /* number of string matches in current block */
374     int last_eob_len;   /* bit length of EOB code for last block */
375 
376 #ifdef DEBUG_ZLIB
377     ulg bits_sent;      /* bit length of the compressed data */
378 #endif
379 
380     ush bi_buf;
381     /* Output buffer. bits are inserted starting at the bottom (least
382      * significant bits).
383      */
384     int bi_valid;
385     /* Number of valid bits in bi_buf.  All bits above the last valid bit
386      * are always zero.
387      */
388 
389     uInt blocks_in_packet;
390     /* Number of blocks produced since the last time Z_PACKET_FLUSH
391      * was used.
392      */
393 
394 } FAR deflate_state;
395 
396 /* Output a byte on the stream.
397  * IN assertion: there is enough room in pending_buf.
398  */
399 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
400 
401 
402 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
403 /* Minimum amount of lookahead, except at the end of the input file.
404  * See deflate.c for comments about the MIN_MATCH+1.
405  */
406 
407 #define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
408 /* In order to simplify the code, particularly on 16 bit machines, match
409  * distances are limited to MAX_DIST instead of WSIZE.
410  */
411 
412         /* in trees.c */
413 local void ct_init       OF((deflate_state *s));
414 local int  ct_tally      OF((deflate_state *s, int dist, int lc));
415 local ulg ct_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
416 			     int flush));
417 local void ct_align      OF((deflate_state *s));
418 local void ct_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
419                           int eof));
420 local void ct_stored_type_only OF((deflate_state *s));
421 
422 
423 /*+++++*/
424 /* deflate.c -- compress data using the deflation algorithm
425  * Copyright (C) 1995 Jean-loup Gailly.
426  * For conditions of distribution and use, see copyright notice in zlib.h
427  */
428 
429 /*
430  *  ALGORITHM
431  *
432  *      The "deflation" process depends on being able to identify portions
433  *      of the input text which are identical to earlier input (within a
434  *      sliding window trailing behind the input currently being processed).
435  *
436  *      The most straightforward technique turns out to be the fastest for
437  *      most input files: try all possible matches and select the longest.
438  *      The key feature of this algorithm is that insertions into the string
439  *      dictionary are very simple and thus fast, and deletions are avoided
440  *      completely. Insertions are performed at each input character, whereas
441  *      string matches are performed only when the previous match ends. So it
442  *      is preferable to spend more time in matches to allow very fast string
443  *      insertions and avoid deletions. The matching algorithm for small
444  *      strings is inspired from that of Rabin & Karp. A brute force approach
445  *      is used to find longer strings when a small match has been found.
446  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
447  *      (by Leonid Broukhis).
448  *         A previous version of this file used a more sophisticated algorithm
449  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
450  *      time, but has a larger average cost, uses more memory and is patented.
451  *      However the F&G algorithm may be faster for some highly redundant
452  *      files if the parameter max_chain_length (described below) is too large.
453  *
454  *  ACKNOWLEDGEMENTS
455  *
456  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
457  *      I found it in 'freeze' written by Leonid Broukhis.
458  *      Thanks to many people for bug reports and testing.
459  *
460  *  REFERENCES
461  *
462  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
463  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
464  *
465  *      A description of the Rabin and Karp algorithm is given in the book
466  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
467  *
468  *      Fiala,E.R., and Greene,D.H.
469  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
470  *
471  */
472 
473 /* From: deflate.c,v 1.8 1995/05/03 17:27:08 jloup Exp */
474 
475 #if 0
476 local char zlib_copyright[] = " deflate Copyright 1995 Jean-loup Gailly ";
477 #endif
478 /*
479   If you use the zlib library in a product, an acknowledgment is welcome
480   in the documentation of your product. If for some reason you cannot
481   include such an acknowledgment, I would appreciate that you keep this
482   copyright string in the executable of your product.
483  */
484 
485 #define NIL 0
486 /* Tail of hash chains */
487 
488 #ifndef TOO_FAR
489 #  define TOO_FAR 4096
490 #endif
491 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
492 
493 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
494 /* Minimum amount of lookahead, except at the end of the input file.
495  * See deflate.c for comments about the MIN_MATCH+1.
496  */
497 
498 /* Values for max_lazy_match, good_match and max_chain_length, depending on
499  * the desired pack level (0..9). The values given below have been tuned to
500  * exclude worst case performance for pathological files. Better values may be
501  * found for specific files.
502  */
503 
504 typedef struct config_s {
505    ush good_length; /* reduce lazy search above this match length */
506    ush max_lazy;    /* do not perform lazy search above this match length */
507    ush nice_length; /* quit search above this match length */
508    ush max_chain;
509 } config;
510 
511 local config configuration_table[10] = {
512 /*      good lazy nice chain */
513 /* 0 */ {0,    0,  0,    0},  /* store only */
514 /* 1 */ {4,    4,  8,    4},  /* maximum speed, no lazy matches */
515 /* 2 */ {4,    5, 16,    8},
516 /* 3 */ {4,    6, 32,   32},
517 
518 /* 4 */ {4,    4, 16,   16},  /* lazy matches */
519 /* 5 */ {8,   16, 32,   32},
520 /* 6 */ {8,   16, 128, 128},
521 /* 7 */ {8,   32, 128, 256},
522 /* 8 */ {32, 128, 258, 1024},
523 /* 9 */ {32, 258, 258, 4096}}; /* maximum compression */
524 
525 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
526  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
527  * meaning.
528  */
529 
530 #define EQUAL 0
531 /* result of memcmp for equal strings */
532 
533 /* ===========================================================================
534  *  Prototypes for local functions.
535  */
536 
537 local void fill_window   OF((deflate_state *s));
538 local int  deflate_fast  OF((deflate_state *s, int flush));
539 local int  deflate_slow  OF((deflate_state *s, int flush));
540 local void lm_init       OF((deflate_state *s));
541 local int longest_match  OF((deflate_state *s, IPos cur_match));
542 local void putShortMSB   OF((deflate_state *s, uInt b));
543 local void flush_pending OF((z_stream *strm));
544 local int read_buf       OF((z_stream *strm, charf *buf, unsigned size));
545 #ifdef ASMV
546       void match_init OF((void)); /* asm code initialization */
547 #endif
548 
549 #ifdef DEBUG_ZLIB
550 local  void check_match OF((deflate_state *s, IPos start, IPos match,
551                             int length));
552 #endif
553 
554 
555 /* ===========================================================================
556  * Update a hash value with the given input byte
557  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
558  *    input characters, so that a running hash key can be computed from the
559  *    previous key instead of complete recalculation each time.
560  */
561 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
562 
563 
564 /* ===========================================================================
565  * Insert string str in the dictionary and set match_head to the previous head
566  * of the hash chain (the most recent string with same hash key). Return
567  * the previous length of the hash chain.
568  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
569  *    input characters and the first MIN_MATCH bytes of str are valid
570  *    (except for the last MIN_MATCH-1 bytes of the input file).
571  */
572 #define INSERT_STRING(s, str, match_head) \
573    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
574     s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
575     s->head[s->ins_h] = (str))
576 
577 /* ===========================================================================
578  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
579  * prev[] will be initialized on the fly.
580  */
581 #define CLEAR_HASH(s) \
582     s->head[s->hash_size-1] = NIL; \
583     zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
584 
585 /* ========================================================================= */
586 int deflateInit (strm, level)
587     z_stream *strm;
588     int level;
589 {
590     return deflateInit2 (strm, level, DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
591 			 0, 0);
592     /* To do: ignore strm->next_in if we use it as window */
593 }
594 
595 /* ========================================================================= */
596 int deflateInit2 (strm, level, method, windowBits, memLevel,
597 		  strategy, minCompression)
598     z_stream *strm;
599     int  level;
600     int  method;
601     int  windowBits;
602     int  memLevel;
603     int  strategy;
604     int  minCompression;
605 {
606     deflate_state *s;
607     int noheader = 0;
608 
609     if (strm == Z_NULL) return Z_STREAM_ERROR;
610 
611     strm->msg = Z_NULL;
612 /*    if (strm->zalloc == Z_NULL) strm->zalloc = zcalloc; */
613 /*    if (strm->zfree == Z_NULL) strm->zfree = zcfree; */
614 
615     if (level == Z_DEFAULT_COMPRESSION) level = 6;
616 
617     if (windowBits < 0) { /* undocumented feature: suppress zlib header */
618         noheader = 1;
619         windowBits = -windowBits;
620     }
621     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != DEFLATED ||
622         windowBits < 8 || windowBits > 15 || level < 1 || level > 9) {
623         return Z_STREAM_ERROR;
624     }
625     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
626     if (s == Z_NULL) return Z_MEM_ERROR;
627     strm->state = (struct internal_state FAR *)s;
628     s->strm = strm;
629 
630     s->noheader = noheader;
631     s->w_bits = windowBits;
632     s->w_size = 1 << s->w_bits;
633     s->w_mask = s->w_size - 1;
634 
635     s->hash_bits = memLevel + 7;
636     s->hash_size = 1 << s->hash_bits;
637     s->hash_mask = s->hash_size - 1;
638     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
639 
640     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
641     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
642     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
643 
644     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
645 
646     s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 2*sizeof(ush));
647 
648     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
649         s->pending_buf == Z_NULL) {
650         strm->msg = z_errmsg[1-Z_MEM_ERROR];
651         deflateEnd (strm);
652         return Z_MEM_ERROR;
653     }
654     s->d_buf = (ushf *) &(s->pending_buf[s->lit_bufsize]);
655     s->l_buf = (uchf *) &(s->pending_buf[3*s->lit_bufsize]);
656     /* We overlay pending_buf and d_buf+l_buf. This works since the average
657      * output size for (length,distance) codes is <= 32 bits (worst case
658      * is 15+15+13=33).
659      */
660 
661     s->level = level;
662     s->strategy = strategy;
663     s->method = (Byte)method;
664     s->minCompr = minCompression;
665     s->blocks_in_packet = 0;
666 
667     return deflateReset(strm);
668 }
669 
670 /* ========================================================================= */
671 int deflateReset (strm)
672     z_stream *strm;
673 {
674     deflate_state *s;
675 
676     if (strm == Z_NULL || strm->state == Z_NULL ||
677         strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
678 
679     strm->total_in = strm->total_out = 0;
680     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
681     strm->data_type = Z_UNKNOWN;
682 
683     s = (deflate_state *)strm->state;
684     s->pending = 0;
685     s->pending_out = s->pending_buf;
686 
687     if (s->noheader < 0) {
688         s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
689     }
690     s->status = s->noheader ? BUSY_STATE : INIT_STATE;
691     s->adler = 1;
692 
693     ct_init(s);
694     lm_init(s);
695 
696     return Z_OK;
697 }
698 
699 /* =========================================================================
700  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
701  * IN assertion: the stream state is correct and there is enough room in
702  * pending_buf.
703  */
704 local void putShortMSB (s, b)
705     deflate_state *s;
706     uInt b;
707 {
708     put_byte(s, (Byte)(b >> 8));
709     put_byte(s, (Byte)(b & 0xff));
710 }
711 
712 /* =========================================================================
713  * Flush as much pending output as possible.
714  */
715 local void flush_pending(strm)
716     z_stream *strm;
717 {
718     deflate_state *state = (deflate_state *) strm->state;
719     unsigned len = state->pending;
720 
721     if (len > strm->avail_out) len = strm->avail_out;
722     if (len == 0) return;
723 
724     if (strm->next_out != NULL) {
725 	zmemcpy(strm->next_out, state->pending_out, len);
726 	strm->next_out += len;
727     }
728     state->pending_out += len;
729     strm->total_out += len;
730     strm->avail_out -= len;
731     state->pending -= len;
732     if (state->pending == 0) {
733         state->pending_out = state->pending_buf;
734     }
735 }
736 
737 /* ========================================================================= */
738 int deflate (strm, flush)
739     z_stream *strm;
740     int flush;
741 {
742     deflate_state *state = (deflate_state *) strm->state;
743 
744     if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
745 
746     if (strm->next_in == Z_NULL && strm->avail_in != 0) {
747         ERR_RETURN(strm, Z_STREAM_ERROR);
748     }
749     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
750 
751     state->strm = strm; /* just in case */
752 
753     /* Write the zlib header */
754     if (state->status == INIT_STATE) {
755 
756         uInt header = (DEFLATED + ((state->w_bits-8)<<4)) << 8;
757         uInt level_flags = (state->level-1) >> 1;
758 
759         if (level_flags > 3) level_flags = 3;
760         header |= (level_flags << 6);
761         header += 31 - (header % 31);
762 
763         state->status = BUSY_STATE;
764         putShortMSB(state, header);
765     }
766 
767     /* Flush as much pending output as possible */
768     if (state->pending != 0) {
769         flush_pending(strm);
770         if (strm->avail_out == 0) return Z_OK;
771     }
772 
773     /* If we came back in here to get the last output from
774      * a previous flush, we're done for now.
775      */
776     if (state->status == FLUSH_STATE) {
777 	state->status = BUSY_STATE;
778 	if (flush != Z_NO_FLUSH && flush != Z_FINISH)
779 	    return Z_OK;
780     }
781 
782     /* User must not provide more input after the first FINISH: */
783     if (state->status == FINISH_STATE && strm->avail_in != 0) {
784         ERR_RETURN(strm, Z_BUF_ERROR);
785     }
786 
787     /* Start a new block or continue the current one.
788      */
789     if (strm->avail_in != 0 || state->lookahead != 0 ||
790         (flush == Z_FINISH && state->status != FINISH_STATE)) {
791         int quit;
792 
793         if (flush == Z_FINISH) {
794             state->status = FINISH_STATE;
795         }
796         if (state->level <= 3) {
797             quit = deflate_fast(state, flush);
798         } else {
799             quit = deflate_slow(state, flush);
800         }
801         if (quit || strm->avail_out == 0)
802 	    return Z_OK;
803         /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
804          * of deflate should use the same flush parameter to make sure
805          * that the flush is complete. So we don't have to output an
806          * empty block here, this will be done at next call. This also
807          * ensures that for a very small output buffer, we emit at most
808          * one empty block.
809          */
810     }
811 
812     /* If a flush was requested, we have a little more to output now. */
813     if (flush != Z_NO_FLUSH && flush != Z_FINISH
814 	&& state->status != FINISH_STATE) {
815 	switch (flush) {
816 	case Z_PARTIAL_FLUSH:
817 	    ct_align(state);
818 	    break;
819 	case Z_PACKET_FLUSH:
820 	    /* Output just the 3-bit `stored' block type value,
821 	       but not a zero length. */
822 	    ct_stored_type_only(state);
823 	    break;
824 	default:
825 	    ct_stored_block(state, (char*)0, 0L, 0);
826 	    /* For a full flush, this empty block will be recognized
827 	     * as a special marker by inflate_sync().
828 	     */
829 	    if (flush == Z_FULL_FLUSH) {
830 		CLEAR_HASH(state);             /* forget history */
831 	    }
832 	}
833 	flush_pending(strm);
834 	if (strm->avail_out == 0) {
835 	    /* We'll have to come back to get the rest of the output;
836 	     * this ensures we don't output a second zero-length stored
837 	     * block (or whatever).
838 	     */
839 	    state->status = FLUSH_STATE;
840 	    return Z_OK;
841 	}
842     }
843 
844     Assert(strm->avail_out > 0, "bug2");
845 
846     if (flush != Z_FINISH) return Z_OK;
847     if (state->noheader) return Z_STREAM_END;
848 
849     /* Write the zlib trailer (adler32) */
850     putShortMSB(state, (uInt)(state->adler >> 16));
851     putShortMSB(state, (uInt)(state->adler & 0xffff));
852     flush_pending(strm);
853     /* If avail_out is zero, the application will call deflate again
854      * to flush the rest.
855      */
856     state->noheader = -1; /* write the trailer only once! */
857     return state->pending != 0 ? Z_OK : Z_STREAM_END;
858 }
859 
860 /* ========================================================================= */
861 int deflateEnd (strm)
862     z_stream *strm;
863 {
864     deflate_state *state = (deflate_state *) strm->state;
865 
866     if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
867 
868     TRY_FREE(strm, state->window, state->w_size * 2 * sizeof(Byte));
869     TRY_FREE(strm, state->prev, state->w_size * sizeof(Pos));
870     TRY_FREE(strm, state->head, state->hash_size * sizeof(Pos));
871     TRY_FREE(strm, state->pending_buf, state->lit_bufsize * 2 * sizeof(ush));
872 
873     ZFREE(strm, state, sizeof(deflate_state));
874     strm->state = Z_NULL;
875 
876     return Z_OK;
877 }
878 
879 /* ===========================================================================
880  * Read a new buffer from the current input stream, update the adler32
881  * and total number of bytes read.
882  */
883 local int read_buf(strm, buf, size)
884     z_stream *strm;
885     charf *buf;
886     unsigned size;
887 {
888     unsigned len = strm->avail_in;
889     deflate_state *state = (deflate_state *) strm->state;
890 
891     if (len > size) len = size;
892     if (len == 0) return 0;
893 
894     strm->avail_in  -= len;
895 
896     if (!state->noheader) {
897         state->adler = adler32(state->adler, strm->next_in, len);
898     }
899     zmemcpy(buf, strm->next_in, len);
900     strm->next_in  += len;
901     strm->total_in += len;
902 
903     return (int)len;
904 }
905 
906 /* ===========================================================================
907  * Initialize the "longest match" routines for a new zlib stream
908  */
909 local void lm_init (s)
910     deflate_state *s;
911 {
912     s->window_size = (ulg)2L*s->w_size;
913 
914     CLEAR_HASH(s);
915 
916     /* Set the default configuration parameters:
917      */
918     s->max_lazy_match   = configuration_table[s->level].max_lazy;
919     s->good_match       = configuration_table[s->level].good_length;
920     s->nice_match       = configuration_table[s->level].nice_length;
921     s->max_chain_length = configuration_table[s->level].max_chain;
922 
923     s->strstart = 0;
924     s->block_start = 0L;
925     s->lookahead = 0;
926     s->match_length = MIN_MATCH-1;
927     s->match_available = 0;
928     s->ins_h = 0;
929 #ifdef ASMV
930     match_init(); /* initialize the asm code */
931 #endif
932 }
933 
934 /* ===========================================================================
935  * Set match_start to the longest match starting at the given string and
936  * return its length. Matches shorter or equal to prev_length are discarded,
937  * in which case the result is equal to prev_length and match_start is
938  * garbage.
939  * IN assertions: cur_match is the head of the hash chain for the current
940  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
941  */
942 #ifndef ASMV
943 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
944  * match.S. The code will be functionally equivalent.
945  */
946 local int longest_match(s, cur_match)
947     deflate_state *s;
948     IPos cur_match;                             /* current match */
949 {
950     unsigned chain_length = s->max_chain_length;/* max hash chain length */
951     register Bytef *scan = s->window + s->strstart; /* current string */
952     register Bytef *match;                       /* matched string */
953     register int len;                           /* length of current match */
954     int best_len = s->prev_length;              /* best match length so far */
955     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
956         s->strstart - (IPos)MAX_DIST(s) : NIL;
957     /* Stop when cur_match becomes <= limit. To simplify the code,
958      * we prevent matches with the string of window index 0.
959      */
960     Posf *prev = s->prev;
961     uInt wmask = s->w_mask;
962 
963 #ifdef UNALIGNED_OK
964     /* Compare two bytes at a time. Note: this is not always beneficial.
965      * Try with and without -DUNALIGNED_OK to check.
966      */
967     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
968     register ush scan_start = *(ushf*)scan;
969     register ush scan_end   = *(ushf*)(scan+best_len-1);
970 #else
971     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
972     register Byte scan_end1  = scan[best_len-1];
973     register Byte scan_end   = scan[best_len];
974 #endif
975 
976     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
977      * It is easy to get rid of this optimization if necessary.
978      */
979     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
980 
981     /* Do not waste too much time if we already have a good match: */
982     if (s->prev_length >= s->good_match) {
983         chain_length >>= 2;
984     }
985     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
986 
987     do {
988         Assert(cur_match < s->strstart, "no future");
989         match = s->window + cur_match;
990 
991         /* Skip to next match if the match length cannot increase
992          * or if the match length is less than 2:
993          */
994 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
995         /* This code assumes sizeof(unsigned short) == 2. Do not use
996          * UNALIGNED_OK if your compiler uses a different size.
997          */
998         if (*(ushf*)(match+best_len-1) != scan_end ||
999             *(ushf*)match != scan_start) continue;
1000 
1001         /* It is not necessary to compare scan[2] and match[2] since they are
1002          * always equal when the other bytes match, given that the hash keys
1003          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1004          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1005          * lookahead only every 4th comparison; the 128th check will be made
1006          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1007          * necessary to put more guard bytes at the end of the window, or
1008          * to check more often for insufficient lookahead.
1009          */
1010         Assert(scan[2] == match[2], "scan[2]?");
1011         scan++, match++;
1012         do {
1013         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1014                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1015                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1016                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1017                  scan < strend);
1018         /* The funny "do {}" generates better code on most compilers */
1019 
1020         /* Here, scan <= window+strstart+257 */
1021         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1022         if (*scan == *match) scan++;
1023 
1024         len = (MAX_MATCH - 1) - (int)(strend-scan);
1025         scan = strend - (MAX_MATCH-1);
1026 
1027 #else /* UNALIGNED_OK */
1028 
1029         if (match[best_len]   != scan_end  ||
1030             match[best_len-1] != scan_end1 ||
1031             *match            != *scan     ||
1032             *++match          != scan[1])      continue;
1033 
1034         /* The check at best_len-1 can be removed because it will be made
1035          * again later. (This heuristic is not always a win.)
1036          * It is not necessary to compare scan[2] and match[2] since they
1037          * are always equal when the other bytes match, given that
1038          * the hash keys are equal and that HASH_BITS >= 8.
1039          */
1040         scan += 2, match++;
1041         Assert(*scan == *match, "match[2]?");
1042 
1043         /* We check for insufficient lookahead only every 8th comparison;
1044          * the 256th check will be made at strstart+258.
1045          */
1046         do {
1047         } while (*++scan == *++match && *++scan == *++match &&
1048                  *++scan == *++match && *++scan == *++match &&
1049                  *++scan == *++match && *++scan == *++match &&
1050                  *++scan == *++match && *++scan == *++match &&
1051                  scan < strend);
1052 
1053         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1054 
1055         len = MAX_MATCH - (int)(strend - scan);
1056         scan = strend - MAX_MATCH;
1057 
1058 #endif /* UNALIGNED_OK */
1059 
1060         if (len > best_len) {
1061             s->match_start = cur_match;
1062             best_len = len;
1063             if (len >= s->nice_match) break;
1064 #ifdef UNALIGNED_OK
1065             scan_end = *(ushf*)(scan+best_len-1);
1066 #else
1067             scan_end1  = scan[best_len-1];
1068             scan_end   = scan[best_len];
1069 #endif
1070         }
1071     } while ((cur_match = prev[cur_match & wmask]) > limit
1072              && --chain_length != 0);
1073 
1074     return best_len;
1075 }
1076 #endif /* ASMV */
1077 
1078 #ifdef DEBUG_ZLIB
1079 /* ===========================================================================
1080  * Check that the match at match_start is indeed a match.
1081  */
1082 local void check_match(s, start, match, length)
1083     deflate_state *s;
1084     IPos start, match;
1085     int length;
1086 {
1087     /* check that the match is indeed a match */
1088     if (memcmp((charf *)s->window + match,
1089                 (charf *)s->window + start, length) != EQUAL) {
1090         fprintf(stderr,
1091             " start %u, match %u, length %d\n",
1092             start, match, length);
1093         do { fprintf(stderr, "%c%c", s->window[match++],
1094                      s->window[start++]); } while (--length != 0);
1095         z_error("invalid match");
1096     }
1097     if (verbose > 1) {
1098         fprintf(stderr,"\\[%d,%d]", start-match, length);
1099         do { putc(s->window[start++], stderr); } while (--length != 0);
1100     }
1101 }
1102 #else
1103 #  define check_match(s, start, match, length)
1104 #endif
1105 
1106 /* ===========================================================================
1107  * Fill the window when the lookahead becomes insufficient.
1108  * Updates strstart and lookahead.
1109  *
1110  * IN assertion: lookahead < MIN_LOOKAHEAD
1111  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1112  *    At least one byte has been read, or avail_in == 0; reads are
1113  *    performed for at least two bytes (required for the zip translate_eol
1114  *    option -- not supported here).
1115  */
1116 local void fill_window(s)
1117     deflate_state *s;
1118 {
1119     register unsigned n, m;
1120     register Posf *p;
1121     unsigned more;    /* Amount of free space at the end of the window. */
1122     uInt wsize = s->w_size;
1123 
1124     do {
1125         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1126 
1127         /* Deal with !@#$% 64K limit: */
1128         if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1129             more = wsize;
1130         } else if (more == (unsigned)(-1)) {
1131             /* Very unlikely, but possible on 16 bit machine if strstart == 0
1132              * and lookahead == 1 (input done one byte at time)
1133              */
1134             more--;
1135 
1136         /* If the window is almost full and there is insufficient lookahead,
1137          * move the upper half to the lower one to make room in the upper half.
1138          */
1139         } else if (s->strstart >= wsize+MAX_DIST(s)) {
1140 
1141             /* By the IN assertion, the window is not empty so we can't confuse
1142              * more == 0 with more == 64K on a 16 bit machine.
1143              */
1144             zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1145                    (unsigned)wsize);
1146             s->match_start -= wsize;
1147             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1148 
1149             s->block_start -= (long) wsize;
1150 
1151             /* Slide the hash table (could be avoided with 32 bit values
1152                at the expense of memory usage):
1153              */
1154             n = s->hash_size;
1155             p = &s->head[n];
1156             do {
1157                 m = *--p;
1158                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1159             } while (--n);
1160 
1161             n = wsize;
1162             p = &s->prev[n];
1163             do {
1164                 m = *--p;
1165                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1166                 /* If n is not on any hash chain, prev[n] is garbage but
1167                  * its value will never be used.
1168                  */
1169             } while (--n);
1170 
1171             more += wsize;
1172         }
1173         if (s->strm->avail_in == 0) return;
1174 
1175         /* If there was no sliding:
1176          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1177          *    more == window_size - lookahead - strstart
1178          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1179          * => more >= window_size - 2*WSIZE + 2
1180          * In the BIG_MEM or MMAP case (not yet supported),
1181          *   window_size == input_size + MIN_LOOKAHEAD  &&
1182          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1183          * Otherwise, window_size == 2*WSIZE so more >= 2.
1184          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1185          */
1186         Assert(more >= 2, "more < 2");
1187 
1188         n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1189                      more);
1190         s->lookahead += n;
1191 
1192         /* Initialize the hash value now that we have some input: */
1193         if (s->lookahead >= MIN_MATCH) {
1194             s->ins_h = s->window[s->strstart];
1195             UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1196 #if MIN_MATCH != 3
1197             Call UPDATE_HASH() MIN_MATCH-3 more times
1198 #endif
1199         }
1200         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1201          * but this is not important since only literal bytes will be emitted.
1202          */
1203 
1204     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1205 }
1206 
1207 /* ===========================================================================
1208  * Flush the current block, with given end-of-file flag.
1209  * IN assertion: strstart is set to the end of the current match.
1210  */
1211 #define FLUSH_BLOCK_ONLY(s, flush) { \
1212    ct_flush_block(s, (s->block_start >= 0L ? \
1213            (charf *)&s->window[(unsigned)s->block_start] : \
1214            (charf *)Z_NULL), (long)s->strstart - s->block_start, (flush)); \
1215    s->block_start = s->strstart; \
1216    flush_pending(s->strm); \
1217    Tracev((stderr,"[FLUSH]")); \
1218 }
1219 
1220 /* Same but force premature exit if necessary. */
1221 #define FLUSH_BLOCK(s, flush) { \
1222    FLUSH_BLOCK_ONLY(s, flush); \
1223    if (s->strm->avail_out == 0) return 1; \
1224 }
1225 
1226 /* ===========================================================================
1227  * Compress as much as possible from the input stream, return true if
1228  * processing was terminated prematurely (no more input or output space).
1229  * This function does not perform lazy evaluationof matches and inserts
1230  * new strings in the dictionary only for unmatched strings or for short
1231  * matches. It is used only for the fast compression options.
1232  */
1233 local int deflate_fast(s, flush)
1234     deflate_state *s;
1235     int flush;
1236 {
1237     IPos hash_head = NIL; /* head of the hash chain */
1238     int bflush;     /* set if current block must be flushed */
1239 
1240     s->prev_length = MIN_MATCH-1;
1241 
1242     for (;;) {
1243         /* Make sure that we always have enough lookahead, except
1244          * at the end of the input file. We need MAX_MATCH bytes
1245          * for the next match, plus MIN_MATCH bytes to insert the
1246          * string following the next match.
1247          */
1248         if (s->lookahead < MIN_LOOKAHEAD) {
1249             fill_window(s);
1250             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
1251 
1252             if (s->lookahead == 0) break; /* flush the current block */
1253         }
1254 
1255         /* Insert the string window[strstart .. strstart+2] in the
1256          * dictionary, and set hash_head to the head of the hash chain:
1257          */
1258         if (s->lookahead >= MIN_MATCH) {
1259             INSERT_STRING(s, s->strstart, hash_head);
1260         }
1261 
1262         /* Find the longest match, discarding those <= prev_length.
1263          * At this point we have always match_length < MIN_MATCH
1264          */
1265         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1266             /* To simplify the code, we prevent matches with the string
1267              * of window index 0 (in particular we have to avoid a match
1268              * of the string with itself at the start of the input file).
1269              */
1270             if (s->strategy != Z_HUFFMAN_ONLY) {
1271                 s->match_length = longest_match (s, hash_head);
1272             }
1273             /* longest_match() sets match_start */
1274 
1275             if (s->match_length > s->lookahead) s->match_length = s->lookahead;
1276         }
1277         if (s->match_length >= MIN_MATCH) {
1278             check_match(s, s->strstart, s->match_start, s->match_length);
1279 
1280             bflush = ct_tally(s, s->strstart - s->match_start,
1281                               s->match_length - MIN_MATCH);
1282 
1283             s->lookahead -= s->match_length;
1284 
1285             /* Insert new strings in the hash table only if the match length
1286              * is not too large. This saves time but degrades compression.
1287              */
1288             if (s->match_length <= s->max_insert_length &&
1289                 s->lookahead >= MIN_MATCH) {
1290                 s->match_length--; /* string at strstart already in hash table */
1291                 do {
1292                     s->strstart++;
1293                     INSERT_STRING(s, s->strstart, hash_head);
1294                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1295                      * always MIN_MATCH bytes ahead.
1296                      */
1297                 } while (--s->match_length != 0);
1298                 s->strstart++;
1299             } else {
1300                 s->strstart += s->match_length;
1301                 s->match_length = 0;
1302                 s->ins_h = s->window[s->strstart];
1303                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1304 #if MIN_MATCH != 3
1305                 Call UPDATE_HASH() MIN_MATCH-3 more times
1306 #endif
1307                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1308                  * matter since it will be recomputed at next deflate call.
1309                  */
1310             }
1311         } else {
1312             /* No match, output a literal byte */
1313             Tracevv((stderr,"%c", s->window[s->strstart]));
1314             bflush = ct_tally (s, 0, s->window[s->strstart]);
1315             s->lookahead--;
1316             s->strstart++;
1317         }
1318         if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
1319     }
1320     FLUSH_BLOCK(s, flush);
1321     return 0; /* normal exit */
1322 }
1323 
1324 /* ===========================================================================
1325  * Same as above, but achieves better compression. We use a lazy
1326  * evaluation for matches: a match is finally adopted only if there is
1327  * no better match at the next window position.
1328  */
1329 local int deflate_slow(s, flush)
1330     deflate_state *s;
1331     int flush;
1332 {
1333     IPos hash_head = NIL;    /* head of hash chain */
1334     int bflush;              /* set if current block must be flushed */
1335 
1336     /* Process the input block. */
1337     for (;;) {
1338         /* Make sure that we always have enough lookahead, except
1339          * at the end of the input file. We need MAX_MATCH bytes
1340          * for the next match, plus MIN_MATCH bytes to insert the
1341          * string following the next match.
1342          */
1343         if (s->lookahead < MIN_LOOKAHEAD) {
1344             fill_window(s);
1345             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
1346 
1347             if (s->lookahead == 0) break; /* flush the current block */
1348         }
1349 
1350         /* Insert the string window[strstart .. strstart+2] in the
1351          * dictionary, and set hash_head to the head of the hash chain:
1352          */
1353         if (s->lookahead >= MIN_MATCH) {
1354             INSERT_STRING(s, s->strstart, hash_head);
1355         }
1356 
1357         /* Find the longest match, discarding those <= prev_length.
1358          */
1359         s->prev_length = s->match_length, s->prev_match = s->match_start;
1360         s->match_length = MIN_MATCH-1;
1361 
1362         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1363             s->strstart - hash_head <= MAX_DIST(s)) {
1364             /* To simplify the code, we prevent matches with the string
1365              * of window index 0 (in particular we have to avoid a match
1366              * of the string with itself at the start of the input file).
1367              */
1368             if (s->strategy != Z_HUFFMAN_ONLY) {
1369                 s->match_length = longest_match (s, hash_head);
1370             }
1371             /* longest_match() sets match_start */
1372             if (s->match_length > s->lookahead) s->match_length = s->lookahead;
1373 
1374             if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1375                  (s->match_length == MIN_MATCH &&
1376                   s->strstart - s->match_start > TOO_FAR))) {
1377 
1378                 /* If prev_match is also MIN_MATCH, match_start is garbage
1379                  * but we will ignore the current match anyway.
1380                  */
1381                 s->match_length = MIN_MATCH-1;
1382             }
1383         }
1384         /* If there was a match at the previous step and the current
1385          * match is not better, output the previous match:
1386          */
1387         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1388             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1389             /* Do not insert strings in hash table beyond this. */
1390 
1391             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1392 
1393             bflush = ct_tally(s, s->strstart -1 - s->prev_match,
1394                               s->prev_length - MIN_MATCH);
1395 
1396             /* Insert in hash table all strings up to the end of the match.
1397              * strstart-1 and strstart are already inserted. If there is not
1398              * enough lookahead, the last two strings are not inserted in
1399              * the hash table.
1400              */
1401             s->lookahead -= s->prev_length-1;
1402             s->prev_length -= 2;
1403             do {
1404                 if (++s->strstart <= max_insert) {
1405                     INSERT_STRING(s, s->strstart, hash_head);
1406                 }
1407             } while (--s->prev_length != 0);
1408             s->match_available = 0;
1409             s->match_length = MIN_MATCH-1;
1410             s->strstart++;
1411 
1412             if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
1413 
1414         } else if (s->match_available) {
1415             /* If there was no match at the previous position, output a
1416              * single literal. If there was a match but the current match
1417              * is longer, truncate the previous match to a single literal.
1418              */
1419             Tracevv((stderr,"%c", s->window[s->strstart-1]));
1420             if (ct_tally (s, 0, s->window[s->strstart-1])) {
1421                 FLUSH_BLOCK_ONLY(s, Z_NO_FLUSH);
1422             }
1423             s->strstart++;
1424             s->lookahead--;
1425             if (s->strm->avail_out == 0) return 1;
1426         } else {
1427             /* There is no previous match to compare with, wait for
1428              * the next step to decide.
1429              */
1430             s->match_available = 1;
1431             s->strstart++;
1432             s->lookahead--;
1433         }
1434     }
1435     Assert (flush != Z_NO_FLUSH, "no flush?");
1436     if (s->match_available) {
1437         Tracevv((stderr,"%c", s->window[s->strstart-1]));
1438         ct_tally (s, 0, s->window[s->strstart-1]);
1439         s->match_available = 0;
1440     }
1441     FLUSH_BLOCK(s, flush);
1442     return 0;
1443 }
1444 
1445 
1446 /*+++++*/
1447 /* trees.c -- output deflated data using Huffman coding
1448  * Copyright (C) 1995 Jean-loup Gailly
1449  * For conditions of distribution and use, see copyright notice in zlib.h
1450  */
1451 
1452 /*
1453  *  ALGORITHM
1454  *
1455  *      The "deflation" process uses several Huffman trees. The more
1456  *      common source values are represented by shorter bit sequences.
1457  *
1458  *      Each code tree is stored in a compressed form which is itself
1459  * a Huffman encoding of the lengths of all the code strings (in
1460  * ascending order by source values).  The actual code strings are
1461  * reconstructed from the lengths in the inflate process, as described
1462  * in the deflate specification.
1463  *
1464  *  REFERENCES
1465  *
1466  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1467  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1468  *
1469  *      Storer, James A.
1470  *          Data Compression:  Methods and Theory, pp. 49-50.
1471  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
1472  *
1473  *      Sedgewick, R.
1474  *          Algorithms, p290.
1475  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
1476  */
1477 
1478 /* From: trees.c,v 1.5 1995/05/03 17:27:12 jloup Exp */
1479 
1480 #ifdef DEBUG_ZLIB
1481 #  include <ctype.h>
1482 #endif
1483 
1484 /* ===========================================================================
1485  * Constants
1486  */
1487 
1488 #define MAX_BL_BITS 7
1489 /* Bit length codes must not exceed MAX_BL_BITS bits */
1490 
1491 #define END_BLOCK 256
1492 /* end of block literal code */
1493 
1494 #define REP_3_6      16
1495 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
1496 
1497 #define REPZ_3_10    17
1498 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
1499 
1500 #define REPZ_11_138  18
1501 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
1502 
1503 local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1504    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1505 
1506 local int extra_dbits[D_CODES] /* extra bits for each distance code */
1507    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1508 
1509 local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1510    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1511 
1512 local uch bl_order[BL_CODES]
1513    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1514 /* The lengths of the bit length codes are sent in order of decreasing
1515  * probability, to avoid transmitting the lengths for unused bit length codes.
1516  */
1517 
1518 #define Buf_size (8 * 2*sizeof(char))
1519 /* Number of bits used within bi_buf. (bi_buf might be implemented on
1520  * more than 16 bits on some systems.)
1521  */
1522 
1523 /* ===========================================================================
1524  * Local data. These are initialized only once.
1525  * To do: initialize at compile time to be completely reentrant. ???
1526  */
1527 
1528 local ct_data static_ltree[L_CODES+2];
1529 /* The static literal tree. Since the bit lengths are imposed, there is no
1530  * need for the L_CODES extra codes used during heap construction. However
1531  * The codes 286 and 287 are needed to build a canonical tree (see ct_init
1532  * below).
1533  */
1534 
1535 local ct_data static_dtree[D_CODES];
1536 /* The static distance tree. (Actually a trivial tree since all codes use
1537  * 5 bits.)
1538  */
1539 
1540 local uch dist_code[512];
1541 /* distance codes. The first 256 values correspond to the distances
1542  * 3 .. 258, the last 256 values correspond to the top 8 bits of
1543  * the 15 bit distances.
1544  */
1545 
1546 local uch length_code[MAX_MATCH-MIN_MATCH+1];
1547 /* length code for each normalized match length (0 == MIN_MATCH) */
1548 
1549 local int base_length[LENGTH_CODES];
1550 /* First normalized length for each code (0 = MIN_MATCH) */
1551 
1552 local int base_dist[D_CODES];
1553 /* First normalized distance for each code (0 = distance of 1) */
1554 
1555 struct static_tree_desc_s {
1556     ct_data *static_tree;        /* static tree or NULL */
1557     intf    *extra_bits;         /* extra bits for each code or NULL */
1558     int     extra_base;          /* base index for extra_bits */
1559     int     elems;               /* max number of elements in the tree */
1560     int     max_length;          /* max bit length for the codes */
1561 };
1562 
1563 local static_tree_desc  static_l_desc =
1564 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1565 
1566 local static_tree_desc  static_d_desc =
1567 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
1568 
1569 local static_tree_desc  static_bl_desc =
1570 {(ct_data *)0, extra_blbits, 0,      BL_CODES, MAX_BL_BITS};
1571 
1572 /* ===========================================================================
1573  * Local (static) routines in this file.
1574  */
1575 
1576 local void ct_static_init OF((void));
1577 local void init_block     OF((deflate_state *s));
1578 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
1579 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
1580 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
1581 local void build_tree     OF((deflate_state *s, tree_desc *desc));
1582 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1583 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1584 local int  build_bl_tree  OF((deflate_state *s));
1585 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1586                               int blcodes));
1587 local void compress_block OF((deflate_state *s, ct_data *ltree,
1588                               ct_data *dtree));
1589 local void set_data_type  OF((deflate_state *s));
1590 local unsigned bi_reverse OF((unsigned value, int length));
1591 local void bi_windup      OF((deflate_state *s));
1592 local void bi_flush       OF((deflate_state *s));
1593 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
1594                               int header));
1595 
1596 #ifndef DEBUG_ZLIB
1597 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1598    /* Send a code of the given tree. c and tree must not have side effects */
1599 
1600 #else /* DEBUG_ZLIB */
1601 #  define send_code(s, c, tree) \
1602      { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \
1603        send_bits(s, tree[c].Code, tree[c].Len); }
1604 #endif
1605 
1606 #define d_code(dist) \
1607    ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1608 /* Mapping from a distance to a distance code. dist is the distance - 1 and
1609  * must not have side effects. dist_code[256] and dist_code[257] are never
1610  * used.
1611  */
1612 
1613 /* ===========================================================================
1614  * Output a short LSB first on the stream.
1615  * IN assertion: there is enough room in pendingBuf.
1616  */
1617 #define put_short(s, w) { \
1618     put_byte(s, (uch)((w) & 0xff)); \
1619     put_byte(s, (uch)((ush)(w) >> 8)); \
1620 }
1621 
1622 /* ===========================================================================
1623  * Send a value on a given number of bits.
1624  * IN assertion: length <= 16 and value fits in length bits.
1625  */
1626 #ifdef DEBUG_ZLIB
1627 local void send_bits      OF((deflate_state *s, int value, int length));
1628 
1629 local void send_bits(s, value, length)
1630     deflate_state *s;
1631     int value;  /* value to send */
1632     int length; /* number of bits */
1633 {
1634     Tracev((stderr," l %2d v %4x ", length, value));
1635     Assert(length > 0 && length <= 15, "invalid length");
1636     s->bits_sent += (ulg)length;
1637 
1638     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
1639      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
1640      * unused bits in value.
1641      */
1642     if (s->bi_valid > (int)Buf_size - length) {
1643         s->bi_buf |= (value << s->bi_valid);
1644         put_short(s, s->bi_buf);
1645         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
1646         s->bi_valid += length - Buf_size;
1647     } else {
1648         s->bi_buf |= value << s->bi_valid;
1649         s->bi_valid += length;
1650     }
1651 }
1652 #else /* !DEBUG_ZLIB */
1653 
1654 #define send_bits(s, value, length) \
1655 { int len = length;\
1656   if (s->bi_valid > (int)Buf_size - len) {\
1657     int val = value;\
1658     s->bi_buf |= (val << s->bi_valid);\
1659     put_short(s, s->bi_buf);\
1660     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
1661     s->bi_valid += len - Buf_size;\
1662   } else {\
1663     s->bi_buf |= (value) << s->bi_valid;\
1664     s->bi_valid += len;\
1665   }\
1666 }
1667 #endif /* DEBUG_ZLIB */
1668 
1669 
1670 #define MAX(a,b) (a >= b ? a : b)
1671 /* the arguments must not have side effects */
1672 
1673 /* ===========================================================================
1674  * Initialize the various 'constant' tables.
1675  * To do: do this at compile time.
1676  */
1677 local void ct_static_init()
1678 {
1679     int n;        /* iterates over tree elements */
1680     int bits;     /* bit counter */
1681     int length;   /* length value */
1682     int code;     /* code value */
1683     int dist;     /* distance index */
1684     ush bl_count[MAX_BITS+1];
1685     /* number of codes at each bit length for an optimal tree */
1686 
1687     /* Initialize the mapping length (0..255) -> length code (0..28) */
1688     length = 0;
1689     for (code = 0; code < LENGTH_CODES-1; code++) {
1690         base_length[code] = length;
1691         for (n = 0; n < (1<<extra_lbits[code]); n++) {
1692             length_code[length++] = (uch)code;
1693         }
1694     }
1695     Assert (length == 256, "ct_static_init: length != 256");
1696     /* Note that the length 255 (match length 258) can be represented
1697      * in two different ways: code 284 + 5 bits or code 285, so we
1698      * overwrite length_code[255] to use the best encoding:
1699      */
1700     length_code[length-1] = (uch)code;
1701 
1702     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1703     dist = 0;
1704     for (code = 0 ; code < 16; code++) {
1705         base_dist[code] = dist;
1706         for (n = 0; n < (1<<extra_dbits[code]); n++) {
1707             dist_code[dist++] = (uch)code;
1708         }
1709     }
1710     Assert (dist == 256, "ct_static_init: dist != 256");
1711     dist >>= 7; /* from now on, all distances are divided by 128 */
1712     for ( ; code < D_CODES; code++) {
1713         base_dist[code] = dist << 7;
1714         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
1715             dist_code[256 + dist++] = (uch)code;
1716         }
1717     }
1718     Assert (dist == 256, "ct_static_init: 256+dist != 512");
1719 
1720     /* Construct the codes of the static literal tree */
1721     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
1722     n = 0;
1723     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
1724     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
1725     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
1726     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
1727     /* Codes 286 and 287 do not exist, but we must include them in the
1728      * tree construction to get a canonical Huffman tree (longest code
1729      * all ones)
1730      */
1731     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
1732 
1733     /* The static distance tree is trivial: */
1734     for (n = 0; n < D_CODES; n++) {
1735         static_dtree[n].Len = 5;
1736         static_dtree[n].Code = bi_reverse(n, 5);
1737     }
1738 }
1739 
1740 /* ===========================================================================
1741  * Initialize the tree data structures for a new zlib stream.
1742  */
1743 local void ct_init(s)
1744     deflate_state *s;
1745 {
1746     if (static_dtree[0].Len == 0) {
1747         ct_static_init();              /* To do: at compile time */
1748     }
1749 
1750     s->compressed_len = 0L;
1751 
1752     s->l_desc.dyn_tree = s->dyn_ltree;
1753     s->l_desc.stat_desc = &static_l_desc;
1754 
1755     s->d_desc.dyn_tree = s->dyn_dtree;
1756     s->d_desc.stat_desc = &static_d_desc;
1757 
1758     s->bl_desc.dyn_tree = s->bl_tree;
1759     s->bl_desc.stat_desc = &static_bl_desc;
1760 
1761     s->bi_buf = 0;
1762     s->bi_valid = 0;
1763     s->last_eob_len = 8; /* enough lookahead for inflate */
1764 #ifdef DEBUG_ZLIB
1765     s->bits_sent = 0L;
1766 #endif
1767     s->blocks_in_packet = 0;
1768 
1769     /* Initialize the first block of the first file: */
1770     init_block(s);
1771 }
1772 
1773 /* ===========================================================================
1774  * Initialize a new block.
1775  */
1776 local void init_block(s)
1777     deflate_state *s;
1778 {
1779     int n; /* iterates over tree elements */
1780 
1781     /* Initialize the trees. */
1782     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
1783     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
1784     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
1785 
1786     s->dyn_ltree[END_BLOCK].Freq = 1;
1787     s->opt_len = s->static_len = 0L;
1788     s->last_lit = s->matches = 0;
1789 }
1790 
1791 #define SMALLEST 1
1792 /* Index within the heap array of least frequent node in the Huffman tree */
1793 
1794 
1795 /* ===========================================================================
1796  * Remove the smallest element from the heap and recreate the heap with
1797  * one less element. Updates heap and heap_len.
1798  */
1799 #define pqremove(s, tree, top) \
1800 {\
1801     top = s->heap[SMALLEST]; \
1802     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
1803     pqdownheap(s, tree, SMALLEST); \
1804 }
1805 
1806 /* ===========================================================================
1807  * Compares to subtrees, using the tree depth as tie breaker when
1808  * the subtrees have equal frequency. This minimizes the worst case length.
1809  */
1810 #define smaller(tree, n, m, depth) \
1811    (tree[n].Freq < tree[m].Freq || \
1812    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
1813 
1814 /* ===========================================================================
1815  * Restore the heap property by moving down the tree starting at node k,
1816  * exchanging a node with the smallest of its two sons if necessary, stopping
1817  * when the heap property is re-established (each father smaller than its
1818  * two sons).
1819  */
1820 local void pqdownheap(s, tree, k)
1821     deflate_state *s;
1822     ct_data *tree;  /* the tree to restore */
1823     int k;               /* node to move down */
1824 {
1825     int v = s->heap[k];
1826     int j = k << 1;  /* left son of k */
1827     while (j <= s->heap_len) {
1828         /* Set j to the smallest of the two sons: */
1829         if (j < s->heap_len &&
1830             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
1831             j++;
1832         }
1833         /* Exit if v is smaller than both sons */
1834         if (smaller(tree, v, s->heap[j], s->depth)) break;
1835 
1836         /* Exchange v with the smallest son */
1837         s->heap[k] = s->heap[j];  k = j;
1838 
1839         /* And continue down the tree, setting j to the left son of k */
1840         j <<= 1;
1841     }
1842     s->heap[k] = v;
1843 }
1844 
1845 /* ===========================================================================
1846  * Compute the optimal bit lengths for a tree and update the total bit length
1847  * for the current block.
1848  * IN assertion: the fields freq and dad are set, heap[heap_max] and
1849  *    above are the tree nodes sorted by increasing frequency.
1850  * OUT assertions: the field len is set to the optimal bit length, the
1851  *     array bl_count contains the frequencies for each bit length.
1852  *     The length opt_len is updated; static_len is also updated if stree is
1853  *     not null.
1854  */
1855 local void gen_bitlen(s, desc)
1856     deflate_state *s;
1857     tree_desc *desc;    /* the tree descriptor */
1858 {
1859     ct_data *tree  = desc->dyn_tree;
1860     int max_code   = desc->max_code;
1861     ct_data *stree = desc->stat_desc->static_tree;
1862     intf *extra    = desc->stat_desc->extra_bits;
1863     int base       = desc->stat_desc->extra_base;
1864     int max_length = desc->stat_desc->max_length;
1865     int h;              /* heap index */
1866     int n, m;           /* iterate over the tree elements */
1867     int bits;           /* bit length */
1868     int xbits;          /* extra bits */
1869     ush f;              /* frequency */
1870     int overflow = 0;   /* number of elements with bit length too large */
1871 
1872     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
1873 
1874     /* In a first pass, compute the optimal bit lengths (which may
1875      * overflow in the case of the bit length tree).
1876      */
1877     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
1878 
1879     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
1880         n = s->heap[h];
1881         bits = tree[tree[n].Dad].Len + 1;
1882         if (bits > max_length) bits = max_length, overflow++;
1883         tree[n].Len = (ush)bits;
1884         /* We overwrite tree[n].Dad which is no longer needed */
1885 
1886         if (n > max_code) continue; /* not a leaf node */
1887 
1888         s->bl_count[bits]++;
1889         xbits = 0;
1890         if (n >= base) xbits = extra[n-base];
1891         f = tree[n].Freq;
1892         s->opt_len += (ulg)f * (bits + xbits);
1893         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
1894     }
1895     if (overflow == 0) return;
1896 
1897     Trace((stderr,"\nbit length overflow\n"));
1898     /* This happens for example on obj2 and pic of the Calgary corpus */
1899 
1900     /* Find the first bit length which could increase: */
1901     do {
1902         bits = max_length-1;
1903         while (s->bl_count[bits] == 0) bits--;
1904         s->bl_count[bits]--;      /* move one leaf down the tree */
1905         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
1906         s->bl_count[max_length]--;
1907         /* The brother of the overflow item also moves one step up,
1908          * but this does not affect bl_count[max_length]
1909          */
1910         overflow -= 2;
1911     } while (overflow > 0);
1912 
1913     /* Now recompute all bit lengths, scanning in increasing frequency.
1914      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1915      * lengths instead of fixing only the wrong ones. This idea is taken
1916      * from 'ar' written by Haruhiko Okumura.)
1917      */
1918     for (bits = max_length; bits != 0; bits--) {
1919         n = s->bl_count[bits];
1920         while (n != 0) {
1921             m = s->heap[--h];
1922             if (m > max_code) continue;
1923             if (tree[m].Len != (unsigned) bits) {
1924                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
1925                 s->opt_len += ((long)bits - (long)tree[m].Len)
1926                               *(long)tree[m].Freq;
1927                 tree[m].Len = (ush)bits;
1928             }
1929             n--;
1930         }
1931     }
1932 }
1933 
1934 /* ===========================================================================
1935  * Generate the codes for a given tree and bit counts (which need not be
1936  * optimal).
1937  * IN assertion: the array bl_count contains the bit length statistics for
1938  * the given tree and the field len is set for all tree elements.
1939  * OUT assertion: the field code is set for all tree elements of non
1940  *     zero code length.
1941  */
1942 local void gen_codes (tree, max_code, bl_count)
1943     ct_data *tree;             /* the tree to decorate */
1944     int max_code;              /* largest code with non zero frequency */
1945     ushf *bl_count;            /* number of codes at each bit length */
1946 {
1947     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
1948     ush code = 0;              /* running code value */
1949     int bits;                  /* bit index */
1950     int n;                     /* code index */
1951 
1952     /* The distribution counts are first used to generate the code values
1953      * without bit reversal.
1954      */
1955     for (bits = 1; bits <= MAX_BITS; bits++) {
1956         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
1957     }
1958     /* Check that the bit counts in bl_count are consistent. The last code
1959      * must be all ones.
1960      */
1961     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
1962             "inconsistent bit counts");
1963     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
1964 
1965     for (n = 0;  n <= max_code; n++) {
1966         int len = tree[n].Len;
1967         if (len == 0) continue;
1968         /* Now reverse the bits */
1969         tree[n].Code = bi_reverse(next_code[len]++, len);
1970 
1971         Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
1972              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
1973     }
1974 }
1975 
1976 /* ===========================================================================
1977  * Construct one Huffman tree and assigns the code bit strings and lengths.
1978  * Update the total bit length for the current block.
1979  * IN assertion: the field freq is set for all tree elements.
1980  * OUT assertions: the fields len and code are set to the optimal bit length
1981  *     and corresponding code. The length opt_len is updated; static_len is
1982  *     also updated if stree is not null. The field max_code is set.
1983  */
1984 local void build_tree(s, desc)
1985     deflate_state *s;
1986     tree_desc *desc; /* the tree descriptor */
1987 {
1988     ct_data *tree   = desc->dyn_tree;
1989     ct_data *stree  = desc->stat_desc->static_tree;
1990     int elems       = desc->stat_desc->elems;
1991     int n, m;          /* iterate over heap elements */
1992     int max_code = -1; /* largest code with non zero frequency */
1993     int node;          /* new node being created */
1994 
1995     /* Construct the initial heap, with least frequent element in
1996      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1997      * heap[0] is not used.
1998      */
1999     s->heap_len = 0, s->heap_max = HEAP_SIZE;
2000 
2001     for (n = 0; n < elems; n++) {
2002         if (tree[n].Freq != 0) {
2003             s->heap[++(s->heap_len)] = max_code = n;
2004             s->depth[n] = 0;
2005         } else {
2006             tree[n].Len = 0;
2007         }
2008     }
2009 
2010     /* The pkzip format requires that at least one distance code exists,
2011      * and that at least one bit should be sent even if there is only one
2012      * possible code. So to avoid special checks later on we force at least
2013      * two codes of non zero frequency.
2014      */
2015     while (s->heap_len < 2) {
2016         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2017         tree[node].Freq = 1;
2018         s->depth[node] = 0;
2019         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2020         /* node is 0 or 1 so it does not have extra bits */
2021     }
2022     desc->max_code = max_code;
2023 
2024     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2025      * establish sub-heaps of increasing lengths:
2026      */
2027     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2028 
2029     /* Construct the Huffman tree by repeatedly combining the least two
2030      * frequent nodes.
2031      */
2032     node = elems;              /* next internal node of the tree */
2033     do {
2034         pqremove(s, tree, n);  /* n = node of least frequency */
2035         m = s->heap[SMALLEST]; /* m = node of next least frequency */
2036 
2037         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2038         s->heap[--(s->heap_max)] = m;
2039 
2040         /* Create a new node father of n and m */
2041         tree[node].Freq = tree[n].Freq + tree[m].Freq;
2042         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2043         tree[n].Dad = tree[m].Dad = (ush)node;
2044 #ifdef DUMP_BL_TREE
2045         if (tree == s->bl_tree) {
2046             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2047                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2048         }
2049 #endif
2050         /* and insert the new node in the heap */
2051         s->heap[SMALLEST] = node++;
2052         pqdownheap(s, tree, SMALLEST);
2053 
2054     } while (s->heap_len >= 2);
2055 
2056     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2057 
2058     /* At this point, the fields freq and dad are set. We can now
2059      * generate the bit lengths.
2060      */
2061     gen_bitlen(s, (tree_desc *)desc);
2062 
2063     /* The field len is now set, we can generate the bit codes */
2064     gen_codes ((ct_data *)tree, max_code, s->bl_count);
2065 }
2066 
2067 /* ===========================================================================
2068  * Scan a literal or distance tree to determine the frequencies of the codes
2069  * in the bit length tree.
2070  */
2071 local void scan_tree (s, tree, max_code)
2072     deflate_state *s;
2073     ct_data *tree;   /* the tree to be scanned */
2074     int max_code;    /* and its largest code of non zero frequency */
2075 {
2076     int n;                     /* iterates over all tree elements */
2077     int prevlen = -1;          /* last emitted length */
2078     int curlen;                /* length of current code */
2079     int nextlen = tree[0].Len; /* length of next code */
2080     int count = 0;             /* repeat count of the current code */
2081     int max_count = 7;         /* max repeat count */
2082     int min_count = 4;         /* min repeat count */
2083 
2084     if (nextlen == 0) max_count = 138, min_count = 3;
2085     tree[max_code+1].Len = (ush)0xffff; /* guard */
2086 
2087     for (n = 0; n <= max_code; n++) {
2088         curlen = nextlen; nextlen = tree[n+1].Len;
2089         if (++count < max_count && curlen == nextlen) {
2090             continue;
2091         } else if (count < min_count) {
2092             s->bl_tree[curlen].Freq += count;
2093         } else if (curlen != 0) {
2094             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2095             s->bl_tree[REP_3_6].Freq++;
2096         } else if (count <= 10) {
2097             s->bl_tree[REPZ_3_10].Freq++;
2098         } else {
2099             s->bl_tree[REPZ_11_138].Freq++;
2100         }
2101         count = 0; prevlen = curlen;
2102         if (nextlen == 0) {
2103             max_count = 138, min_count = 3;
2104         } else if (curlen == nextlen) {
2105             max_count = 6, min_count = 3;
2106         } else {
2107             max_count = 7, min_count = 4;
2108         }
2109     }
2110 }
2111 
2112 /* ===========================================================================
2113  * Send a literal or distance tree in compressed form, using the codes in
2114  * bl_tree.
2115  */
2116 local void send_tree (s, tree, max_code)
2117     deflate_state *s;
2118     ct_data *tree; /* the tree to be scanned */
2119     int max_code;       /* and its largest code of non zero frequency */
2120 {
2121     int n;                     /* iterates over all tree elements */
2122     int prevlen = -1;          /* last emitted length */
2123     int curlen;                /* length of current code */
2124     int nextlen = tree[0].Len; /* length of next code */
2125     int count = 0;             /* repeat count of the current code */
2126     int max_count = 7;         /* max repeat count */
2127     int min_count = 4;         /* min repeat count */
2128 
2129     /* tree[max_code+1].Len = -1; */  /* guard already set */
2130     if (nextlen == 0) max_count = 138, min_count = 3;
2131 
2132     for (n = 0; n <= max_code; n++) {
2133         curlen = nextlen; nextlen = tree[n+1].Len;
2134         if (++count < max_count && curlen == nextlen) {
2135             continue;
2136         } else if (count < min_count) {
2137             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2138 
2139         } else if (curlen != 0) {
2140             if (curlen != prevlen) {
2141                 send_code(s, curlen, s->bl_tree); count--;
2142             }
2143             Assert(count >= 3 && count <= 6, " 3_6?");
2144             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2145 
2146         } else if (count <= 10) {
2147             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2148 
2149         } else {
2150             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2151         }
2152         count = 0; prevlen = curlen;
2153         if (nextlen == 0) {
2154             max_count = 138, min_count = 3;
2155         } else if (curlen == nextlen) {
2156             max_count = 6, min_count = 3;
2157         } else {
2158             max_count = 7, min_count = 4;
2159         }
2160     }
2161 }
2162 
2163 /* ===========================================================================
2164  * Construct the Huffman tree for the bit lengths and return the index in
2165  * bl_order of the last bit length code to send.
2166  */
2167 local int build_bl_tree(s)
2168     deflate_state *s;
2169 {
2170     int max_blindex;  /* index of last bit length code of non zero freq */
2171 
2172     /* Determine the bit length frequencies for literal and distance trees */
2173     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2174     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2175 
2176     /* Build the bit length tree: */
2177     build_tree(s, (tree_desc *)(&(s->bl_desc)));
2178     /* opt_len now includes the length of the tree representations, except
2179      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2180      */
2181 
2182     /* Determine the number of bit length codes to send. The pkzip format
2183      * requires that at least 4 bit length codes be sent. (appnote.txt says
2184      * 3 but the actual value used is 4.)
2185      */
2186     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2187         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2188     }
2189     /* Update opt_len to include the bit length tree and counts */
2190     s->opt_len += 3*(max_blindex+1) + 5+5+4;
2191     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2192             s->opt_len, s->static_len));
2193 
2194     return max_blindex;
2195 }
2196 
2197 /* ===========================================================================
2198  * Send the header for a block using dynamic Huffman trees: the counts, the
2199  * lengths of the bit length codes, the literal tree and the distance tree.
2200  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2201  */
2202 local void send_all_trees(s, lcodes, dcodes, blcodes)
2203     deflate_state *s;
2204     int lcodes, dcodes, blcodes; /* number of codes for each tree */
2205 {
2206     int rank;                    /* index in bl_order */
2207 
2208     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2209     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2210             "too many codes");
2211     Tracev((stderr, "\nbl counts: "));
2212     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2213     send_bits(s, dcodes-1,   5);
2214     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
2215     for (rank = 0; rank < blcodes; rank++) {
2216         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2217         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2218     }
2219     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2220 
2221     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2222     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2223 
2224     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2225     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2226 }
2227 
2228 /* ===========================================================================
2229  * Send a stored block
2230  */
2231 local void ct_stored_block(s, buf, stored_len, eof)
2232     deflate_state *s;
2233     charf *buf;       /* input block */
2234     ulg stored_len;   /* length of input block */
2235     int eof;          /* true if this is the last block for a file */
2236 {
2237     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
2238     s->compressed_len = (s->compressed_len + 3 + 7) & ~7L;
2239     s->compressed_len += (stored_len + 4) << 3;
2240 
2241     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2242 }
2243 
2244 /* Send just the `stored block' type code without any length bytes or data.
2245  */
2246 local void ct_stored_type_only(s)
2247     deflate_state *s;
2248 {
2249     send_bits(s, (STORED_BLOCK << 1), 3);
2250     bi_windup(s);
2251     s->compressed_len = (s->compressed_len + 3) & ~7L;
2252 }
2253 
2254 
2255 /* ===========================================================================
2256  * Send one empty static block to give enough lookahead for inflate.
2257  * This takes 10 bits, of which 7 may remain in the bit buffer.
2258  * The current inflate code requires 9 bits of lookahead. If the EOB
2259  * code for the previous block was coded on 5 bits or less, inflate
2260  * may have only 5+3 bits of lookahead to decode this EOB.
2261  * (There are no problems if the previous block is stored or fixed.)
2262  */
2263 local void ct_align(s)
2264     deflate_state *s;
2265 {
2266     send_bits(s, STATIC_TREES<<1, 3);
2267     send_code(s, END_BLOCK, static_ltree);
2268     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2269     bi_flush(s);
2270     /* Of the 10 bits for the empty block, we have already sent
2271      * (10 - bi_valid) bits. The lookahead for the EOB of the previous
2272      * block was thus its length plus what we have just sent.
2273      */
2274     if (s->last_eob_len + 10 - s->bi_valid < 9) {
2275         send_bits(s, STATIC_TREES<<1, 3);
2276         send_code(s, END_BLOCK, static_ltree);
2277         s->compressed_len += 10L;
2278         bi_flush(s);
2279     }
2280     s->last_eob_len = 7;
2281 }
2282 
2283 /* ===========================================================================
2284  * Determine the best encoding for the current block: dynamic trees, static
2285  * trees or store, and output the encoded block to the zip file. This function
2286  * returns the total compressed length for the file so far.
2287  */
2288 local ulg ct_flush_block(s, buf, stored_len, flush)
2289     deflate_state *s;
2290     charf *buf;       /* input block, or NULL if too old */
2291     ulg stored_len;   /* length of input block */
2292     int flush;        /* Z_FINISH if this is the last block for a file */
2293 {
2294     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2295     int max_blindex;  /* index of last bit length code of non zero freq */
2296     int eof = flush == Z_FINISH;
2297 
2298     ++s->blocks_in_packet;
2299 
2300     /* Check if the file is ascii or binary */
2301     if (s->data_type == UNKNOWN) set_data_type(s);
2302 
2303     /* Construct the literal and distance trees */
2304     build_tree(s, (tree_desc *)(&(s->l_desc)));
2305     Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2306             s->static_len));
2307 
2308     build_tree(s, (tree_desc *)(&(s->d_desc)));
2309     Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2310             s->static_len));
2311     /* At this point, opt_len and static_len are the total bit lengths of
2312      * the compressed block data, excluding the tree representations.
2313      */
2314 
2315     /* Build the bit length tree for the above two trees, and get the index
2316      * in bl_order of the last bit length code to send.
2317      */
2318     max_blindex = build_bl_tree(s);
2319 
2320     /* Determine the best encoding. Compute first the block length in bytes */
2321     opt_lenb = (s->opt_len+3+7)>>3;
2322     static_lenb = (s->static_len+3+7)>>3;
2323 
2324     Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2325             opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2326             s->last_lit));
2327 
2328     if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2329 
2330     /* If compression failed and this is the first and last block,
2331      * and if the .zip file can be seeked (to rewrite the local header),
2332      * the whole file is transformed into a stored file:
2333      */
2334 #ifdef STORED_FILE_OK
2335 #  ifdef FORCE_STORED_FILE
2336     if (eof && compressed_len == 0L) /* force stored file */
2337 #  else
2338     if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable())
2339 #  endif
2340     {
2341         /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2342         if (buf == (charf*)0) error ("block vanished");
2343 
2344         copy_block(buf, (unsigned)stored_len, 0); /* without header */
2345         s->compressed_len = stored_len << 3;
2346         s->method = STORED;
2347     } else
2348 #endif /* STORED_FILE_OK */
2349 
2350     /* For Z_PACKET_FLUSH, if we don't achieve the required minimum
2351      * compression, and this block contains all the data since the last
2352      * time we used Z_PACKET_FLUSH, then just omit this block completely
2353      * from the output.
2354      */
2355     if (flush == Z_PACKET_FLUSH && s->blocks_in_packet == 1
2356 	&& opt_lenb > stored_len - s->minCompr) {
2357 	s->blocks_in_packet = 0;
2358 	/* output nothing */
2359     } else
2360 
2361 #ifdef FORCE_STORED
2362     if (buf != (char*)0) /* force stored block */
2363 #else
2364     if (stored_len+4 <= opt_lenb && buf != (char*)0)
2365                        /* 4: two words for the lengths */
2366 #endif
2367     {
2368         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2369          * Otherwise we can't have processed more than WSIZE input bytes since
2370          * the last block flush, because compression would have been
2371          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2372          * transform a block into a stored block.
2373          */
2374         ct_stored_block(s, buf, stored_len, eof);
2375     } else
2376 
2377 #ifdef FORCE_STATIC
2378     if (static_lenb >= 0) /* force static trees */
2379 #else
2380     if (static_lenb == opt_lenb)
2381 #endif
2382     {
2383         send_bits(s, (STATIC_TREES<<1)+eof, 3);
2384         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2385         s->compressed_len += 3 + s->static_len;
2386     } else {
2387         send_bits(s, (DYN_TREES<<1)+eof, 3);
2388         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2389                        max_blindex+1);
2390         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2391         s->compressed_len += 3 + s->opt_len;
2392     }
2393     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2394     init_block(s);
2395 
2396     if (eof) {
2397         bi_windup(s);
2398         s->compressed_len += 7;  /* align on byte boundary */
2399     }
2400     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2401            s->compressed_len-7*eof));
2402 
2403     return s->compressed_len >> 3;
2404 }
2405 
2406 /* ===========================================================================
2407  * Save the match info and tally the frequency counts. Return true if
2408  * the current block must be flushed.
2409  */
2410 local int ct_tally (s, dist, lc)
2411     deflate_state *s;
2412     int dist;  /* distance of matched string */
2413     int lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
2414 {
2415     s->d_buf[s->last_lit] = (ush)dist;
2416     s->l_buf[s->last_lit++] = (uch)lc;
2417     if (dist == 0) {
2418         /* lc is the unmatched char */
2419         s->dyn_ltree[lc].Freq++;
2420     } else {
2421         s->matches++;
2422         /* Here, lc is the match length - MIN_MATCH */
2423         dist--;             /* dist = match distance - 1 */
2424         Assert((ush)dist < (ush)MAX_DIST(s) &&
2425                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2426                (ush)d_code(dist) < (ush)D_CODES,  "ct_tally: bad match");
2427 
2428         s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2429         s->dyn_dtree[d_code(dist)].Freq++;
2430     }
2431 
2432     /* Try to guess if it is profitable to stop the current block here */
2433     if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2434         /* Compute an upper bound for the compressed length */
2435         ulg out_length = (ulg)s->last_lit*8L;
2436         ulg in_length = (ulg)s->strstart - s->block_start;
2437         int dcode;
2438         for (dcode = 0; dcode < D_CODES; dcode++) {
2439             out_length += (ulg)s->dyn_dtree[dcode].Freq *
2440                 (5L+extra_dbits[dcode]);
2441         }
2442         out_length >>= 3;
2443         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2444                s->last_lit, in_length, out_length,
2445                100L - out_length*100L/in_length));
2446         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2447     }
2448     return (s->last_lit == s->lit_bufsize-1);
2449     /* We avoid equality with lit_bufsize because of wraparound at 64K
2450      * on 16 bit machines and because stored blocks are restricted to
2451      * 64K-1 bytes.
2452      */
2453 }
2454 
2455 /* ===========================================================================
2456  * Send the block data compressed using the given Huffman trees
2457  */
2458 local void compress_block(s, ltree, dtree)
2459     deflate_state *s;
2460     ct_data *ltree; /* literal tree */
2461     ct_data *dtree; /* distance tree */
2462 {
2463     unsigned dist;      /* distance of matched string */
2464     int lc;             /* match length or unmatched char (if dist == 0) */
2465     unsigned lx = 0;    /* running index in l_buf */
2466     unsigned code;      /* the code to send */
2467     int extra;          /* number of extra bits to send */
2468 
2469     if (s->last_lit != 0) do {
2470         dist = s->d_buf[lx];
2471         lc = s->l_buf[lx++];
2472         if (dist == 0) {
2473             send_code(s, lc, ltree); /* send a literal byte */
2474             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2475         } else {
2476             /* Here, lc is the match length - MIN_MATCH */
2477             code = length_code[lc];
2478             send_code(s, code+LITERALS+1, ltree); /* send the length code */
2479             extra = extra_lbits[code];
2480             if (extra != 0) {
2481                 lc -= base_length[code];
2482                 send_bits(s, lc, extra);       /* send the extra length bits */
2483             }
2484             dist--; /* dist is now the match distance - 1 */
2485             code = d_code(dist);
2486             Assert (code < D_CODES, "bad d_code");
2487 
2488             send_code(s, code, dtree);       /* send the distance code */
2489             extra = extra_dbits[code];
2490             if (extra != 0) {
2491                 dist -= base_dist[code];
2492                 send_bits(s, dist, extra);   /* send the extra distance bits */
2493             }
2494         } /* literal or match pair ? */
2495 
2496         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2497         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2498 
2499     } while (lx < s->last_lit);
2500 
2501     send_code(s, END_BLOCK, ltree);
2502     s->last_eob_len = ltree[END_BLOCK].Len;
2503 }
2504 
2505 /* ===========================================================================
2506  * Set the data type to ASCII or BINARY, using a crude approximation:
2507  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2508  * IN assertion: the fields freq of dyn_ltree are set and the total of all
2509  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2510  */
2511 local void set_data_type(s)
2512     deflate_state *s;
2513 {
2514     int n = 0;
2515     unsigned ascii_freq = 0;
2516     unsigned bin_freq = 0;
2517     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
2518     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
2519     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2520     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII);
2521 }
2522 
2523 /* ===========================================================================
2524  * Reverse the first len bits of a code, using straightforward code (a faster
2525  * method would use a table)
2526  * IN assertion: 1 <= len <= 15
2527  */
2528 local unsigned bi_reverse(code, len)
2529     unsigned code; /* the value to invert */
2530     int len;       /* its bit length */
2531 {
2532     register unsigned res = 0;
2533     do {
2534         res |= code & 1;
2535         code >>= 1, res <<= 1;
2536     } while (--len > 0);
2537     return res >> 1;
2538 }
2539 
2540 /* ===========================================================================
2541  * Flush the bit buffer, keeping at most 7 bits in it.
2542  */
2543 local void bi_flush(s)
2544     deflate_state *s;
2545 {
2546     if (s->bi_valid == 16) {
2547         put_short(s, s->bi_buf);
2548         s->bi_buf = 0;
2549         s->bi_valid = 0;
2550     } else if (s->bi_valid >= 8) {
2551         put_byte(s, (Byte)s->bi_buf);
2552         s->bi_buf >>= 8;
2553         s->bi_valid -= 8;
2554     }
2555 }
2556 
2557 /* ===========================================================================
2558  * Flush the bit buffer and align the output on a byte boundary
2559  */
2560 local void bi_windup(s)
2561     deflate_state *s;
2562 {
2563     if (s->bi_valid > 8) {
2564         put_short(s, s->bi_buf);
2565     } else if (s->bi_valid > 0) {
2566         put_byte(s, (Byte)s->bi_buf);
2567     }
2568     s->bi_buf = 0;
2569     s->bi_valid = 0;
2570 #ifdef DEBUG_ZLIB
2571     s->bits_sent = (s->bits_sent+7) & ~7;
2572 #endif
2573 }
2574 
2575 /* ===========================================================================
2576  * Copy a stored block, storing first the length and its
2577  * one's complement if requested.
2578  */
2579 local void copy_block(s, buf, len, header)
2580     deflate_state *s;
2581     charf    *buf;    /* the input data */
2582     unsigned len;     /* its length */
2583     int      header;  /* true if block header must be written */
2584 {
2585     bi_windup(s);        /* align on byte boundary */
2586     s->last_eob_len = 8; /* enough lookahead for inflate */
2587 
2588     if (header) {
2589         put_short(s, (ush)len);
2590         put_short(s, (ush)~len);
2591 #ifdef DEBUG_ZLIB
2592         s->bits_sent += 2*16;
2593 #endif
2594     }
2595 #ifdef DEBUG_ZLIB
2596     s->bits_sent += (ulg)len<<3;
2597 #endif
2598     while (len--) {
2599         put_byte(s, *buf++);
2600     }
2601 }
2602 
2603 
2604 /*+++++*/
2605 /* infblock.h -- header to use infblock.c
2606  * Copyright (C) 1995 Mark Adler
2607  * For conditions of distribution and use, see copyright notice in zlib.h
2608  */
2609 
2610 /* WARNING: this file should *not* be used by applications. It is
2611    part of the implementation of the compression library and is
2612    subject to change. Applications should only use zlib.h.
2613  */
2614 
2615 struct inflate_blocks_state;
2616 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
2617 
2618 local inflate_blocks_statef * inflate_blocks_new OF((
2619     z_stream *z,
2620     check_func c,               /* check function */
2621     uInt w));                   /* window size */
2622 
2623 local int inflate_blocks OF((
2624     inflate_blocks_statef *,
2625     z_stream *,
2626     int));                      /* initial return code */
2627 
2628 local void inflate_blocks_reset OF((
2629     inflate_blocks_statef *,
2630     z_stream *,
2631     uLongf *));                  /* check value on output */
2632 
2633 local int inflate_blocks_free OF((
2634     inflate_blocks_statef *,
2635     z_stream *,
2636     uLongf *));                  /* check value on output */
2637 
2638 local int inflate_addhistory OF((
2639     inflate_blocks_statef *,
2640     z_stream *));
2641 
2642 local int inflate_packet_flush OF((
2643     inflate_blocks_statef *));
2644 
2645 /*+++++*/
2646 /* inftrees.h -- header to use inftrees.c
2647  * Copyright (C) 1995 Mark Adler
2648  * For conditions of distribution and use, see copyright notice in zlib.h
2649  */
2650 
2651 /* WARNING: this file should *not* be used by applications. It is
2652    part of the implementation of the compression library and is
2653    subject to change. Applications should only use zlib.h.
2654  */
2655 
2656 /* Huffman code lookup table entry--this entry is four bytes for machines
2657    that have 16-bit pointers (e.g. PC's in the small or medium model). */
2658 
2659 typedef struct inflate_huft_s FAR inflate_huft;
2660 
2661 struct inflate_huft_s {
2662   union {
2663     struct {
2664       Byte Exop;        /* number of extra bits or operation */
2665       Byte Bits;        /* number of bits in this code or subcode */
2666     } what;
2667     uInt Nalloc;	/* number of these allocated here */
2668     Bytef *pad;         /* pad structure to a power of 2 (4 bytes for */
2669   } word;               /*  16-bit, 8 bytes for 32-bit machines) */
2670   union {
2671     uInt Base;          /* literal, length base, or distance base */
2672     inflate_huft *Next; /* pointer to next level of table */
2673   } more;
2674 };
2675 
2676 #ifdef DEBUG_ZLIB
2677   local uInt inflate_hufts;
2678 #endif
2679 
2680 local int inflate_trees_bits OF((
2681     uIntf *,                    /* 19 code lengths */
2682     uIntf *,                    /* bits tree desired/actual depth */
2683     inflate_huft * FAR *,       /* bits tree result */
2684     z_stream *));               /* for zalloc, zfree functions */
2685 
2686 local int inflate_trees_dynamic OF((
2687     uInt,                       /* number of literal/length codes */
2688     uInt,                       /* number of distance codes */
2689     uIntf *,                    /* that many (total) code lengths */
2690     uIntf *,                    /* literal desired/actual bit depth */
2691     uIntf *,                    /* distance desired/actual bit depth */
2692     inflate_huft * FAR *,       /* literal/length tree result */
2693     inflate_huft * FAR *,       /* distance tree result */
2694     z_stream *));               /* for zalloc, zfree functions */
2695 
2696 local int inflate_trees_fixed OF((
2697     uIntf *,                    /* literal desired/actual bit depth */
2698     uIntf *,                    /* distance desired/actual bit depth */
2699     inflate_huft * FAR *,       /* literal/length tree result */
2700     inflate_huft * FAR *));     /* distance tree result */
2701 
2702 local int inflate_trees_free OF((
2703     inflate_huft *,             /* tables to free */
2704     z_stream *));               /* for zfree function */
2705 
2706 
2707 /*+++++*/
2708 /* infcodes.h -- header to use infcodes.c
2709  * Copyright (C) 1995 Mark Adler
2710  * For conditions of distribution and use, see copyright notice in zlib.h
2711  */
2712 
2713 /* WARNING: this file should *not* be used by applications. It is
2714    part of the implementation of the compression library and is
2715    subject to change. Applications should only use zlib.h.
2716  */
2717 
2718 struct inflate_codes_state;
2719 typedef struct inflate_codes_state FAR inflate_codes_statef;
2720 
2721 local inflate_codes_statef *inflate_codes_new OF((
2722     uInt, uInt,
2723     inflate_huft *, inflate_huft *,
2724     z_stream *));
2725 
2726 local int inflate_codes OF((
2727     inflate_blocks_statef *,
2728     z_stream *,
2729     int));
2730 
2731 local void inflate_codes_free OF((
2732     inflate_codes_statef *,
2733     z_stream *));
2734 
2735 
2736 /*+++++*/
2737 /* inflate.c -- zlib interface to inflate modules
2738  * Copyright (C) 1995 Mark Adler
2739  * For conditions of distribution and use, see copyright notice in zlib.h
2740  */
2741 
2742 /* inflate private state */
2743 struct internal_state {
2744 
2745   /* mode */
2746   enum {
2747       METHOD,   /* waiting for method byte */
2748       FLAG,     /* waiting for flag byte */
2749       BLOCKS,   /* decompressing blocks */
2750       CHECK4,   /* four check bytes to go */
2751       CHECK3,   /* three check bytes to go */
2752       CHECK2,   /* two check bytes to go */
2753       CHECK1,   /* one check byte to go */
2754       DONE,     /* finished check, done */
2755       BAD}      /* got an error--stay here */
2756     mode;               /* current inflate mode */
2757 
2758   /* mode dependent information */
2759   union {
2760     uInt method;        /* if FLAGS, method byte */
2761     struct {
2762       uLong was;                /* computed check value */
2763       uLong need;               /* stream check value */
2764     } check;            /* if CHECK, check values to compare */
2765     uInt marker;        /* if BAD, inflateSync's marker bytes count */
2766   } sub;        /* submode */
2767 
2768   /* mode independent information */
2769   int  nowrap;          /* flag for no wrapper */
2770   uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
2771   inflate_blocks_statef
2772     *blocks;            /* current inflate_blocks state */
2773 
2774 };
2775 
2776 
2777 int inflateReset(z)
2778 z_stream *z;
2779 {
2780   uLong c;
2781 
2782   if (z == Z_NULL || z->state == Z_NULL)
2783     return Z_STREAM_ERROR;
2784   z->total_in = z->total_out = 0;
2785   z->msg = Z_NULL;
2786   z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
2787   inflate_blocks_reset(z->state->blocks, z, &c);
2788   Trace((stderr, "inflate: reset\n"));
2789   return Z_OK;
2790 }
2791 
2792 
2793 int inflateEnd(z)
2794 z_stream *z;
2795 {
2796   uLong c;
2797 
2798   if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
2799     return Z_STREAM_ERROR;
2800   if (z->state->blocks != Z_NULL)
2801     inflate_blocks_free(z->state->blocks, z, &c);
2802   ZFREE(z, z->state, sizeof(struct internal_state));
2803   z->state = Z_NULL;
2804   Trace((stderr, "inflate: end\n"));
2805   return Z_OK;
2806 }
2807 
2808 
2809 int inflateInit2(z, w)
2810 z_stream *z;
2811 int w;
2812 {
2813   /* initialize state */
2814   if (z == Z_NULL)
2815     return Z_STREAM_ERROR;
2816 /*  if (z->zalloc == Z_NULL) z->zalloc = zcalloc; */
2817 /*  if (z->zfree == Z_NULL) z->zfree = zcfree; */
2818   if ((z->state = (struct internal_state FAR *)
2819        ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
2820     return Z_MEM_ERROR;
2821   z->state->blocks = Z_NULL;
2822 
2823   /* handle undocumented nowrap option (no zlib header or check) */
2824   z->state->nowrap = 0;
2825   if (w < 0)
2826   {
2827     w = - w;
2828     z->state->nowrap = 1;
2829   }
2830 
2831   /* set window size */
2832   if (w < 8 || w > 15)
2833   {
2834     inflateEnd(z);
2835     return Z_STREAM_ERROR;
2836   }
2837   z->state->wbits = (uInt)w;
2838 
2839   /* create inflate_blocks state */
2840   if ((z->state->blocks =
2841        inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, 1 << w))
2842       == Z_NULL)
2843   {
2844     inflateEnd(z);
2845     return Z_MEM_ERROR;
2846   }
2847   Trace((stderr, "inflate: allocated\n"));
2848 
2849   /* reset state */
2850   inflateReset(z);
2851   return Z_OK;
2852 }
2853 
2854 
2855 int inflateInit(z)
2856 z_stream *z;
2857 {
2858   return inflateInit2(z, DEF_WBITS);
2859 }
2860 
2861 
2862 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
2863 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
2864 
2865 int inflate(z, f)
2866 z_stream *z;
2867 int f;
2868 {
2869   int r;
2870   uInt b;
2871 
2872   if (z == Z_NULL || z->next_in == Z_NULL)
2873     return Z_STREAM_ERROR;
2874   r = Z_BUF_ERROR;
2875   while (1) switch (z->state->mode)
2876   {
2877     case METHOD:
2878       NEEDBYTE
2879       if (((z->state->sub.method = NEXTBYTE) & 0xf) != DEFLATED)
2880       {
2881         z->state->mode = BAD;
2882         z->msg = "unknown compression method";
2883         z->state->sub.marker = 5;       /* can't try inflateSync */
2884         break;
2885       }
2886       if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
2887       {
2888         z->state->mode = BAD;
2889         z->msg = "invalid window size";
2890         z->state->sub.marker = 5;       /* can't try inflateSync */
2891         break;
2892       }
2893       z->state->mode = FLAG;
2894     case FLAG:
2895       NEEDBYTE
2896       if ((b = NEXTBYTE) & 0x20)
2897       {
2898         z->state->mode = BAD;
2899         z->msg = "invalid reserved bit";
2900         z->state->sub.marker = 5;       /* can't try inflateSync */
2901         break;
2902       }
2903       if (((z->state->sub.method << 8) + b) % 31)
2904       {
2905         z->state->mode = BAD;
2906         z->msg = "incorrect header check";
2907         z->state->sub.marker = 5;       /* can't try inflateSync */
2908         break;
2909       }
2910       Trace((stderr, "inflate: zlib header ok\n"));
2911       z->state->mode = BLOCKS;
2912     case BLOCKS:
2913       r = inflate_blocks(z->state->blocks, z, r);
2914       if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
2915 	  r = inflate_packet_flush(z->state->blocks);
2916       if (r == Z_DATA_ERROR)
2917       {
2918         z->state->mode = BAD;
2919         z->state->sub.marker = 0;       /* can try inflateSync */
2920         break;
2921       }
2922       if (r != Z_STREAM_END)
2923         return r;
2924       r = Z_OK;
2925       inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
2926       if (z->state->nowrap)
2927       {
2928         z->state->mode = DONE;
2929         break;
2930       }
2931       z->state->mode = CHECK4;
2932     case CHECK4:
2933       NEEDBYTE
2934       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
2935       z->state->mode = CHECK3;
2936     case CHECK3:
2937       NEEDBYTE
2938       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
2939       z->state->mode = CHECK2;
2940     case CHECK2:
2941       NEEDBYTE
2942       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
2943       z->state->mode = CHECK1;
2944     case CHECK1:
2945       NEEDBYTE
2946       z->state->sub.check.need += (uLong)NEXTBYTE;
2947 
2948       if (z->state->sub.check.was != z->state->sub.check.need)
2949       {
2950         z->state->mode = BAD;
2951         z->msg = "incorrect data check";
2952         z->state->sub.marker = 5;       /* can't try inflateSync */
2953         break;
2954       }
2955       Trace((stderr, "inflate: zlib check ok\n"));
2956       z->state->mode = DONE;
2957     case DONE:
2958       return Z_STREAM_END;
2959     case BAD:
2960       return Z_DATA_ERROR;
2961     default:
2962       return Z_STREAM_ERROR;
2963   }
2964 
2965  empty:
2966   if (f != Z_PACKET_FLUSH)
2967     return r;
2968   z->state->mode = BAD;
2969   z->state->sub.marker = 0;       /* can try inflateSync */
2970   return Z_DATA_ERROR;
2971 }
2972 
2973 /*
2974  * This subroutine adds the data at next_in/avail_in to the output history
2975  * without performing any output.  The output buffer must be "caught up";
2976  * i.e. no pending output (hence s->read equals s->write), and the state must
2977  * be BLOCKS (i.e. we should be willing to see the start of a series of
2978  * BLOCKS).  On exit, the output will also be caught up, and the checksum
2979  * will have been updated if need be.
2980  */
2981 
2982 int inflateIncomp(z)
2983 z_stream *z;
2984 {
2985     if (z->state->mode != BLOCKS)
2986 	return Z_DATA_ERROR;
2987     return inflate_addhistory(z->state->blocks, z);
2988 }
2989 
2990 
2991 int inflateSync(z)
2992 z_stream *z;
2993 {
2994   uInt n;       /* number of bytes to look at */
2995   Bytef *p;     /* pointer to bytes */
2996   uInt m;       /* number of marker bytes found in a row */
2997   uLong r, w;   /* temporaries to save total_in and total_out */
2998 
2999   /* set up */
3000   if (z == Z_NULL || z->state == Z_NULL)
3001     return Z_STREAM_ERROR;
3002   if (z->state->mode != BAD)
3003   {
3004     z->state->mode = BAD;
3005     z->state->sub.marker = 0;
3006   }
3007   if ((n = z->avail_in) == 0)
3008     return Z_BUF_ERROR;
3009   p = z->next_in;
3010   m = z->state->sub.marker;
3011 
3012   /* search */
3013   while (n && m < 4)
3014   {
3015     if (*p == (Byte)(m < 2 ? 0 : 0xff))
3016       m++;
3017     else if (*p)
3018       m = 0;
3019     else
3020       m = 4 - m;
3021     p++, n--;
3022   }
3023 
3024   /* restore */
3025   z->total_in += p - z->next_in;
3026   z->next_in = p;
3027   z->avail_in = n;
3028   z->state->sub.marker = m;
3029 
3030   /* return no joy or set up to restart on a new block */
3031   if (m != 4)
3032     return Z_DATA_ERROR;
3033   r = z->total_in;  w = z->total_out;
3034   inflateReset(z);
3035   z->total_in = r;  z->total_out = w;
3036   z->state->mode = BLOCKS;
3037   return Z_OK;
3038 }
3039 
3040 #undef NEEDBYTE
3041 #undef NEXTBYTE
3042 
3043 /*+++++*/
3044 /* infutil.h -- types and macros common to blocks and codes
3045  * Copyright (C) 1995 Mark Adler
3046  * For conditions of distribution and use, see copyright notice in zlib.h
3047  */
3048 
3049 /* WARNING: this file should *not* be used by applications. It is
3050    part of the implementation of the compression library and is
3051    subject to change. Applications should only use zlib.h.
3052  */
3053 
3054 /* inflate blocks semi-private state */
3055 struct inflate_blocks_state {
3056 
3057   /* mode */
3058   enum {
3059       TYPE,     /* get type bits (3, including end bit) */
3060       LENS,     /* get lengths for stored */
3061       STORED,   /* processing stored block */
3062       TABLE,    /* get table lengths */
3063       BTREE,    /* get bit lengths tree for a dynamic block */
3064       DTREE,    /* get length, distance trees for a dynamic block */
3065       CODES,    /* processing fixed or dynamic block */
3066       DRY,      /* output remaining window bytes */
3067       DONEB,     /* finished last block, done */
3068       BADB}      /* got a data error--stuck here */
3069     mode;               /* current inflate_block mode */
3070 
3071   /* mode dependent information */
3072   union {
3073     uInt left;          /* if STORED, bytes left to copy */
3074     struct {
3075       uInt table;               /* table lengths (14 bits) */
3076       uInt index;               /* index into blens (or border) */
3077       uIntf *blens;             /* bit lengths of codes */
3078       uInt bb;                  /* bit length tree depth */
3079       inflate_huft *tb;         /* bit length decoding tree */
3080       int nblens;		/* # elements allocated at blens */
3081     } trees;            /* if DTREE, decoding info for trees */
3082     struct {
3083       inflate_huft *tl, *td;    /* trees to free */
3084       inflate_codes_statef
3085          *codes;
3086     } decode;           /* if CODES, current state */
3087   } sub;                /* submode */
3088   uInt last;            /* true if this block is the last block */
3089 
3090   /* mode independent information */
3091   uInt bitk;            /* bits in bit buffer */
3092   uLong bitb;           /* bit buffer */
3093   Bytef *window;        /* sliding window */
3094   Bytef *end;           /* one byte after sliding window */
3095   Bytef *read;          /* window read pointer */
3096   Bytef *write;         /* window write pointer */
3097   check_func checkfn;   /* check function */
3098   uLong check;          /* check on output */
3099 
3100 };
3101 
3102 
3103 /* defines for inflate input/output */
3104 /*   update pointers and return */
3105 #define UPDBITS {s->bitb=b;s->bitk=k;}
3106 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3107 #define UPDOUT {s->write=q;}
3108 #define UPDATE {UPDBITS UPDIN UPDOUT}
3109 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3110 /*   get bytes and bits */
3111 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3112 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3113 #define NEXTBYTE (n--,*p++)
3114 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3115 #define DUMPBITS(j) {b>>=(j);k-=(j);}
3116 /*   output bytes */
3117 #define WAVAIL (q<s->read?s->read-q-1:s->end-q)
3118 #define LOADOUT {q=s->write;m=WAVAIL;}
3119 #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=WAVAIL;}}
3120 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3121 #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
3122 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3123 /*   load local pointers */
3124 #define LOAD {LOADIN LOADOUT}
3125 
3126 /* And'ing with mask[n] masks the lower n bits */
3127 local uInt inflate_mask[] = {
3128     0x0000,
3129     0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
3130     0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
3131 };
3132 
3133 /* copy as much as possible from the sliding window to the output area */
3134 local int inflate_flush OF((
3135     inflate_blocks_statef *,
3136     z_stream *,
3137     int));
3138 
3139 /*+++++*/
3140 /* inffast.h -- header to use inffast.c
3141  * Copyright (C) 1995 Mark Adler
3142  * For conditions of distribution and use, see copyright notice in zlib.h
3143  */
3144 
3145 /* WARNING: this file should *not* be used by applications. It is
3146    part of the implementation of the compression library and is
3147    subject to change. Applications should only use zlib.h.
3148  */
3149 
3150 local int inflate_fast OF((
3151     uInt,
3152     uInt,
3153     inflate_huft *,
3154     inflate_huft *,
3155     inflate_blocks_statef *,
3156     z_stream *));
3157 
3158 
3159 /*+++++*/
3160 /* infblock.c -- interpret and process block types to last block
3161  * Copyright (C) 1995 Mark Adler
3162  * For conditions of distribution and use, see copyright notice in zlib.h
3163  */
3164 
3165 /* Table for deflate from PKZIP's appnote.txt. */
3166 local uInt border[] = { /* Order of the bit length code lengths */
3167         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3168 
3169 /*
3170    Notes beyond the 1.93a appnote.txt:
3171 
3172    1. Distance pointers never point before the beginning of the output
3173       stream.
3174    2. Distance pointers can point back across blocks, up to 32k away.
3175    3. There is an implied maximum of 7 bits for the bit length table and
3176       15 bits for the actual data.
3177    4. If only one code exists, then it is encoded using one bit.  (Zero
3178       would be more efficient, but perhaps a little confusing.)  If two
3179       codes exist, they are coded using one bit each (0 and 1).
3180    5. There is no way of sending zero distance codes--a dummy must be
3181       sent if there are none.  (History: a pre 2.0 version of PKZIP would
3182       store blocks with no distance codes, but this was discovered to be
3183       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
3184       zero distance codes, which is sent as one code of zero bits in
3185       length.
3186    6. There are up to 286 literal/length codes.  Code 256 represents the
3187       end-of-block.  Note however that the static length tree defines
3188       288 codes just to fill out the Huffman codes.  Codes 286 and 287
3189       cannot be used though, since there is no length base or extra bits
3190       defined for them.  Similarily, there are up to 30 distance codes.
3191       However, static trees define 32 codes (all 5 bits) to fill out the
3192       Huffman codes, but the last two had better not show up in the data.
3193    7. Unzip can check dynamic Huffman blocks for complete code sets.
3194       The exception is that a single code would not be complete (see #4).
3195    8. The five bits following the block type is really the number of
3196       literal codes sent minus 257.
3197    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3198       (1+6+6).  Therefore, to output three times the length, you output
3199       three codes (1+1+1), whereas to output four times the same length,
3200       you only need two codes (1+3).  Hmm.
3201   10. In the tree reconstruction algorithm, Code = Code + Increment
3202       only if BitLength(i) is not zero.  (Pretty obvious.)
3203   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
3204   12. Note: length code 284 can represent 227-258, but length code 285
3205       really is 258.  The last length deserves its own, short code
3206       since it gets used a lot in very redundant files.  The length
3207       258 is special since 258 - 3 (the min match length) is 255.
3208   13. The literal/length and distance code bit lengths are read as a
3209       single stream of lengths.  It is possible (and advantageous) for
3210       a repeat code (16, 17, or 18) to go across the boundary between
3211       the two sets of lengths.
3212  */
3213 
3214 
3215 local void inflate_blocks_reset(s, z, c)
3216 inflate_blocks_statef *s;
3217 z_stream *z;
3218 uLongf *c;
3219 {
3220   if (s->checkfn != Z_NULL)
3221     *c = s->check;
3222   if (s->mode == BTREE || s->mode == DTREE)
3223     ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
3224   if (s->mode == CODES)
3225   {
3226     inflate_codes_free(s->sub.decode.codes, z);
3227     inflate_trees_free(s->sub.decode.td, z);
3228     inflate_trees_free(s->sub.decode.tl, z);
3229   }
3230   s->mode = TYPE;
3231   s->bitk = 0;
3232   s->bitb = 0;
3233   s->read = s->write = s->window;
3234   if (s->checkfn != Z_NULL)
3235     s->check = (*s->checkfn)(0L, Z_NULL, 0);
3236   Trace((stderr, "inflate:   blocks reset\n"));
3237 }
3238 
3239 
3240 local inflate_blocks_statef *inflate_blocks_new(z, c, w)
3241 z_stream *z;
3242 check_func c;
3243 uInt w;
3244 {
3245   inflate_blocks_statef *s;
3246 
3247   if ((s = (inflate_blocks_statef *)ZALLOC
3248        (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3249     return s;
3250   if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3251   {
3252     ZFREE(z, s, sizeof(struct inflate_blocks_state));
3253     return Z_NULL;
3254   }
3255   s->end = s->window + w;
3256   s->checkfn = c;
3257   s->mode = TYPE;
3258   Trace((stderr, "inflate:   blocks allocated\n"));
3259   inflate_blocks_reset(s, z, &s->check);
3260   return s;
3261 }
3262 
3263 
3264 local int inflate_blocks(s, z, r)
3265 inflate_blocks_statef *s;
3266 z_stream *z;
3267 int r;
3268 {
3269   uInt t;               /* temporary storage */
3270   uLong b;              /* bit buffer */
3271   uInt k;               /* bits in bit buffer */
3272   Bytef *p;             /* input data pointer */
3273   uInt n;               /* bytes available there */
3274   Bytef *q;             /* output window write pointer */
3275   uInt m;               /* bytes to end of window or read pointer */
3276 
3277   /* copy input/output information to locals (UPDATE macro restores) */
3278   LOAD
3279 
3280   /* process input based on current state */
3281   while (1) switch (s->mode)
3282   {
3283     case TYPE:
3284       NEEDBITS(3)
3285       t = (uInt)b & 7;
3286       s->last = t & 1;
3287       switch (t >> 1)
3288       {
3289         case 0:                         /* stored */
3290           Trace((stderr, "inflate:     stored block%s\n",
3291                  s->last ? " (last)" : ""));
3292           DUMPBITS(3)
3293           t = k & 7;                    /* go to byte boundary */
3294           DUMPBITS(t)
3295           s->mode = LENS;               /* get length of stored block */
3296           break;
3297         case 1:                         /* fixed */
3298           Trace((stderr, "inflate:     fixed codes block%s\n",
3299                  s->last ? " (last)" : ""));
3300           {
3301             uInt bl, bd;
3302             inflate_huft *tl, *td;
3303 
3304             inflate_trees_fixed(&bl, &bd, &tl, &td);
3305             s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3306             if (s->sub.decode.codes == Z_NULL)
3307             {
3308               r = Z_MEM_ERROR;
3309               LEAVE
3310             }
3311             s->sub.decode.tl = Z_NULL;  /* don't try to free these */
3312             s->sub.decode.td = Z_NULL;
3313           }
3314           DUMPBITS(3)
3315           s->mode = CODES;
3316           break;
3317         case 2:                         /* dynamic */
3318           Trace((stderr, "inflate:     dynamic codes block%s\n",
3319                  s->last ? " (last)" : ""));
3320           DUMPBITS(3)
3321           s->mode = TABLE;
3322           break;
3323         case 3:                         /* illegal */
3324           DUMPBITS(3)
3325           s->mode = BADB;
3326           z->msg = "invalid block type";
3327           r = Z_DATA_ERROR;
3328           LEAVE
3329       }
3330       break;
3331     case LENS:
3332       NEEDBITS(32)
3333       if (((~b) >> 16) != (b & 0xffff))
3334       {
3335         s->mode = BADB;
3336         z->msg = "invalid stored block lengths";
3337         r = Z_DATA_ERROR;
3338         LEAVE
3339       }
3340       s->sub.left = (uInt)b & 0xffff;
3341       b = k = 0;                      /* dump bits */
3342       Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
3343       s->mode = s->sub.left ? STORED : TYPE;
3344       break;
3345     case STORED:
3346       if (n == 0)
3347         LEAVE
3348       NEEDOUT
3349       t = s->sub.left;
3350       if (t > n) t = n;
3351       if (t > m) t = m;
3352       zmemcpy(q, p, t);
3353       p += t;  n -= t;
3354       q += t;  m -= t;
3355       if ((s->sub.left -= t) != 0)
3356         break;
3357       Tracev((stderr, "inflate:       stored end, %lu total out\n",
3358               z->total_out + (q >= s->read ? q - s->read :
3359               (s->end - s->read) + (q - s->window))));
3360       s->mode = s->last ? DRY : TYPE;
3361       break;
3362     case TABLE:
3363       NEEDBITS(14)
3364       s->sub.trees.table = t = (uInt)b & 0x3fff;
3365 #ifndef PKZIP_BUG_WORKAROUND
3366       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3367       {
3368         s->mode = BADB;
3369         z->msg = "too many length or distance symbols";
3370         r = Z_DATA_ERROR;
3371         LEAVE
3372       }
3373 #endif
3374       t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3375       if (t < 19)
3376         t = 19;
3377       if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3378       {
3379         r = Z_MEM_ERROR;
3380         LEAVE
3381       }
3382       s->sub.trees.nblens = t;
3383       DUMPBITS(14)
3384       s->sub.trees.index = 0;
3385       Tracev((stderr, "inflate:       table sizes ok\n"));
3386       s->mode = BTREE;
3387     case BTREE:
3388       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3389       {
3390         NEEDBITS(3)
3391         s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3392         DUMPBITS(3)
3393       }
3394       while (s->sub.trees.index < 19)
3395         s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3396       s->sub.trees.bb = 7;
3397       t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3398                              &s->sub.trees.tb, z);
3399       if (t != Z_OK)
3400       {
3401         r = t;
3402         if (r == Z_DATA_ERROR)
3403           s->mode = BADB;
3404         LEAVE
3405       }
3406       s->sub.trees.index = 0;
3407       Tracev((stderr, "inflate:       bits tree ok\n"));
3408       s->mode = DTREE;
3409     case DTREE:
3410       while (t = s->sub.trees.table,
3411              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3412       {
3413         inflate_huft *h;
3414         uInt i, j, c;
3415 
3416         t = s->sub.trees.bb;
3417         NEEDBITS(t)
3418         h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3419         t = h->word.what.Bits;
3420         c = h->more.Base;
3421         if (c < 16)
3422         {
3423           DUMPBITS(t)
3424           s->sub.trees.blens[s->sub.trees.index++] = c;
3425         }
3426         else /* c == 16..18 */
3427         {
3428           i = c == 18 ? 7 : c - 14;
3429           j = c == 18 ? 11 : 3;
3430           NEEDBITS(t + i)
3431           DUMPBITS(t)
3432           j += (uInt)b & inflate_mask[i];
3433           DUMPBITS(i)
3434           i = s->sub.trees.index;
3435           t = s->sub.trees.table;
3436           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3437               (c == 16 && i < 1))
3438           {
3439             s->mode = BADB;
3440             z->msg = "invalid bit length repeat";
3441             r = Z_DATA_ERROR;
3442             LEAVE
3443           }
3444           c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3445           do {
3446             s->sub.trees.blens[i++] = c;
3447           } while (--j);
3448           s->sub.trees.index = i;
3449         }
3450       }
3451       inflate_trees_free(s->sub.trees.tb, z);
3452       s->sub.trees.tb = Z_NULL;
3453       {
3454         uInt bl, bd;
3455         inflate_huft *tl, *td;
3456         inflate_codes_statef *c;
3457 
3458         bl = 9;         /* must be <= 9 for lookahead assumptions */
3459         bd = 6;         /* must be <= 9 for lookahead assumptions */
3460         t = s->sub.trees.table;
3461         t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3462                                   s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3463         if (t != Z_OK)
3464         {
3465           if (t == (uInt)Z_DATA_ERROR)
3466             s->mode = BADB;
3467           r = t;
3468           LEAVE
3469         }
3470         Tracev((stderr, "inflate:       trees ok\n"));
3471         if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3472         {
3473           inflate_trees_free(td, z);
3474           inflate_trees_free(tl, z);
3475           r = Z_MEM_ERROR;
3476           LEAVE
3477         }
3478         ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
3479         s->sub.decode.codes = c;
3480         s->sub.decode.tl = tl;
3481         s->sub.decode.td = td;
3482       }
3483       s->mode = CODES;
3484     case CODES:
3485       UPDATE
3486       if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3487         return inflate_flush(s, z, r);
3488       r = Z_OK;
3489       inflate_codes_free(s->sub.decode.codes, z);
3490       inflate_trees_free(s->sub.decode.td, z);
3491       inflate_trees_free(s->sub.decode.tl, z);
3492       LOAD
3493       Tracev((stderr, "inflate:       codes end, %lu total out\n",
3494               z->total_out + (q >= s->read ? q - s->read :
3495               (s->end - s->read) + (q - s->window))));
3496       if (!s->last)
3497       {
3498         s->mode = TYPE;
3499         break;
3500       }
3501       if (k > 7)              /* return unused byte, if any */
3502       {
3503         Assert(k < 16, "inflate_codes grabbed too many bytes")
3504         k -= 8;
3505         n++;
3506         p--;                    /* can always return one */
3507       }
3508       s->mode = DRY;
3509     case DRY:
3510       FLUSH
3511       if (s->read != s->write)
3512         LEAVE
3513       s->mode = DONEB;
3514     case DONEB:
3515       r = Z_STREAM_END;
3516       LEAVE
3517     case BADB:
3518       r = Z_DATA_ERROR;
3519       LEAVE
3520     default:
3521       r = Z_STREAM_ERROR;
3522       LEAVE
3523   }
3524 }
3525 
3526 
3527 local int inflate_blocks_free(s, z, c)
3528 inflate_blocks_statef *s;
3529 z_stream *z;
3530 uLongf *c;
3531 {
3532   inflate_blocks_reset(s, z, c);
3533   ZFREE(z, s->window, s->end - s->window);
3534   ZFREE(z, s, sizeof(struct inflate_blocks_state));
3535   Trace((stderr, "inflate:   blocks freed\n"));
3536   return Z_OK;
3537 }
3538 
3539 /*
3540  * This subroutine adds the data at next_in/avail_in to the output history
3541  * without performing any output.  The output buffer must be "caught up";
3542  * i.e. no pending output (hence s->read equals s->write), and the state must
3543  * be BLOCKS (i.e. we should be willing to see the start of a series of
3544  * BLOCKS).  On exit, the output will also be caught up, and the checksum
3545  * will have been updated if need be.
3546  */
3547 local int inflate_addhistory(s, z)
3548 inflate_blocks_statef *s;
3549 z_stream *z;
3550 {
3551     uLong b;              /* bit buffer */  /* NOT USED HERE */
3552     uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
3553     uInt t;               /* temporary storage */
3554     Bytef *p;             /* input data pointer */
3555     uInt n;               /* bytes available there */
3556     Bytef *q;             /* output window write pointer */
3557     uInt m;               /* bytes to end of window or read pointer */
3558 
3559     if (s->read != s->write)
3560 	return Z_STREAM_ERROR;
3561     if (s->mode != TYPE)
3562 	return Z_DATA_ERROR;
3563 
3564     /* we're ready to rock */
3565     LOAD
3566     /* while there is input ready, copy to output buffer, moving
3567      * pointers as needed.
3568      */
3569     while (n) {
3570 	t = n;  /* how many to do */
3571 	/* is there room until end of buffer? */
3572 	if (t > m) t = m;
3573 	/* update check information */
3574 	if (s->checkfn != Z_NULL)
3575 	    s->check = (*s->checkfn)(s->check, q, t);
3576 	zmemcpy(q, p, t);
3577 	q += t;
3578 	p += t;
3579 	n -= t;
3580 	z->total_out += t;
3581 	s->read = q;    /* drag read pointer forward */
3582 /*      WRAP  */ 	/* expand WRAP macro by hand to handle s->read */
3583 	if (q == s->end) {
3584 	    s->read = q = s->window;
3585 	    m = WAVAIL;
3586 	}
3587     }
3588     UPDATE
3589     return Z_OK;
3590 }
3591 
3592 
3593 /*
3594  * At the end of a Deflate-compressed PPP packet, we expect to have seen
3595  * a `stored' block type value but not the (zero) length bytes.
3596  */
3597 local int inflate_packet_flush(s)
3598     inflate_blocks_statef *s;
3599 {
3600     if (s->mode != LENS)
3601 	return Z_DATA_ERROR;
3602     s->mode = TYPE;
3603     return Z_OK;
3604 }
3605 
3606 
3607 /*+++++*/
3608 /* inftrees.c -- generate Huffman trees for efficient decoding
3609  * Copyright (C) 1995 Mark Adler
3610  * For conditions of distribution and use, see copyright notice in zlib.h
3611  */
3612 
3613 /* simplify the use of the inflate_huft type with some defines */
3614 #define base more.Base
3615 #define next more.Next
3616 #define exop word.what.Exop
3617 #define bits word.what.Bits
3618 
3619 
3620 local int huft_build OF((
3621     uIntf *,            /* code lengths in bits */
3622     uInt,               /* number of codes */
3623     uInt,               /* number of "simple" codes */
3624     uIntf *,            /* list of base values for non-simple codes */
3625     uIntf *,            /* list of extra bits for non-simple codes */
3626     inflate_huft * FAR*,/* result: starting table */
3627     uIntf *,            /* maximum lookup bits (returns actual) */
3628     z_stream *));       /* for zalloc function */
3629 
3630 local voidpf falloc OF((
3631     voidpf,             /* opaque pointer (not used) */
3632     uInt,               /* number of items */
3633     uInt));             /* size of item */
3634 
3635 local void ffree OF((
3636     voidpf q,           /* opaque pointer (not used) */
3637     voidpf p,           /* what to free (not used) */
3638     uInt n));		/* number of bytes (not used) */
3639 
3640 /* Tables for deflate from PKZIP's appnote.txt. */
3641 local uInt cplens[] = { /* Copy lengths for literal codes 257..285 */
3642         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
3643         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
3644         /* actually lengths - 2; also see note #13 above about 258 */
3645 local uInt cplext[] = { /* Extra bits for literal codes 257..285 */
3646         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3647         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 192, 192}; /* 192==invalid */
3648 local uInt cpdist[] = { /* Copy offsets for distance codes 0..29 */
3649         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
3650         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
3651         8193, 12289, 16385, 24577};
3652 local uInt cpdext[] = { /* Extra bits for distance codes */
3653         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
3654         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
3655         12, 12, 13, 13};
3656 
3657 /*
3658    Huffman code decoding is performed using a multi-level table lookup.
3659    The fastest way to decode is to simply build a lookup table whose
3660    size is determined by the longest code.  However, the time it takes
3661    to build this table can also be a factor if the data being decoded
3662    is not very long.  The most common codes are necessarily the
3663    shortest codes, so those codes dominate the decoding time, and hence
3664    the speed.  The idea is you can have a shorter table that decodes the
3665    shorter, more probable codes, and then point to subsidiary tables for
3666    the longer codes.  The time it costs to decode the longer codes is
3667    then traded against the time it takes to make longer tables.
3668 
3669    This results of this trade are in the variables lbits and dbits
3670    below.  lbits is the number of bits the first level table for literal/
3671    length codes can decode in one step, and dbits is the same thing for
3672    the distance codes.  Subsequent tables are also less than or equal to
3673    those sizes.  These values may be adjusted either when all of the
3674    codes are shorter than that, in which case the longest code length in
3675    bits is used, or when the shortest code is *longer* than the requested
3676    table size, in which case the length of the shortest code in bits is
3677    used.
3678 
3679    There are two different values for the two tables, since they code a
3680    different number of possibilities each.  The literal/length table
3681    codes 286 possible values, or in a flat code, a little over eight
3682    bits.  The distance table codes 30 possible values, or a little less
3683    than five bits, flat.  The optimum values for speed end up being
3684    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
3685    The optimum values may differ though from machine to machine, and
3686    possibly even between compilers.  Your mileage may vary.
3687  */
3688 
3689 
3690 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
3691 #define BMAX 15         /* maximum bit length of any code */
3692 #define N_MAX 288       /* maximum number of codes in any set */
3693 
3694 #ifdef DEBUG_ZLIB
3695   uInt inflate_hufts;
3696 #endif
3697 
3698 local int huft_build(b, n, s, d, e, t, m, zs)
3699 uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
3700 uInt n;                 /* number of codes (assumed <= N_MAX) */
3701 uInt s;                 /* number of simple-valued codes (0..s-1) */
3702 uIntf *d;               /* list of base values for non-simple codes */
3703 uIntf *e;               /* list of extra bits for non-simple codes */
3704 inflate_huft * FAR *t;  /* result: starting table */
3705 uIntf *m;               /* maximum lookup bits, returns actual */
3706 z_stream *zs;           /* for zalloc function */
3707 /* Given a list of code lengths and a maximum table size, make a set of
3708    tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
3709    if the given code set is incomplete (the tables are still built in this
3710    case), Z_DATA_ERROR if the input is invalid (all zero length codes or an
3711    over-subscribed set of lengths), or Z_MEM_ERROR if not enough memory. */
3712 {
3713 
3714   uInt a;                       /* counter for codes of length k */
3715   uInt c[BMAX+1];               /* bit length count table */
3716   uInt f;                       /* i repeats in table every f entries */
3717   int g;                        /* maximum code length */
3718   int h;                        /* table level */
3719   register uInt i;              /* counter, current code */
3720   register uInt j;              /* counter */
3721   register int k;               /* number of bits in current code */
3722   int l;                        /* bits per table (returned in m) */
3723   register uIntf *p;            /* pointer into c[], b[], or v[] */
3724   inflate_huft *q;              /* points to current table */
3725   struct inflate_huft_s r;      /* table entry for structure assignment */
3726   inflate_huft *u[BMAX];        /* table stack */
3727   uInt v[N_MAX];                /* values in order of bit length */
3728   register int w;               /* bits before this table == (l * h) */
3729   uInt x[BMAX+1];               /* bit offsets, then code stack */
3730   uIntf *xp;                    /* pointer into x */
3731   int y;                        /* number of dummy codes added */
3732   uInt z;                       /* number of entries in current table */
3733 
3734 
3735   /* Generate counts for each bit length */
3736   p = c;
3737 #define C0 *p++ = 0;
3738 #define C2 C0 C0 C0 C0
3739 #define C4 C2 C2 C2 C2
3740   C4                            /* clear c[]--assume BMAX+1 is 16 */
3741   p = b;  i = n;
3742   do {
3743     c[*p++]++;                  /* assume all entries <= BMAX */
3744   } while (--i);
3745   if (c[0] == n)                /* null input--all zero length codes */
3746   {
3747     *t = (inflate_huft *)Z_NULL;
3748     *m = 0;
3749     return Z_OK;
3750   }
3751 
3752 
3753   /* Find minimum and maximum length, bound *m by those */
3754   l = *m;
3755   for (j = 1; j <= BMAX; j++)
3756     if (c[j])
3757       break;
3758   k = j;                        /* minimum code length */
3759   if ((uInt)l < j)
3760     l = j;
3761   for (i = BMAX; i; i--)
3762     if (c[i])
3763       break;
3764   g = i;                        /* maximum code length */
3765   if ((uInt)l > i)
3766     l = i;
3767   *m = l;
3768 
3769 
3770   /* Adjust last length count to fill out codes, if needed */
3771   for (y = 1 << j; j < i; j++, y <<= 1)
3772     if ((y -= c[j]) < 0)
3773       return Z_DATA_ERROR;
3774   if ((y -= c[i]) < 0)
3775     return Z_DATA_ERROR;
3776   c[i] += y;
3777 
3778 
3779   /* Generate starting offsets into the value table for each length */
3780   x[1] = j = 0;
3781   p = c + 1;  xp = x + 2;
3782   while (--i) {                 /* note that i == g from above */
3783     *xp++ = (j += *p++);
3784   }
3785 
3786 
3787   /* Make a table of values in order of bit lengths */
3788   p = b;  i = 0;
3789   do {
3790     if ((j = *p++) != 0)
3791       v[x[j]++] = i;
3792   } while (++i < n);
3793 
3794 
3795   /* Generate the Huffman codes and for each, make the table entries */
3796   x[0] = i = 0;                 /* first Huffman code is zero */
3797   p = v;                        /* grab values in bit order */
3798   h = -1;                       /* no tables yet--level -1 */
3799   w = -l;                       /* bits decoded == (l * h) */
3800   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
3801   q = (inflate_huft *)Z_NULL;   /* ditto */
3802   z = 0;                        /* ditto */
3803 
3804   /* go through the bit lengths (k already is bits in shortest code) */
3805   for (; k <= g; k++)
3806   {
3807     a = c[k];
3808     while (a--)
3809     {
3810       /* here i is the Huffman code of length k bits for value *p */
3811       /* make tables up to required level */
3812       while (k > w + l)
3813       {
3814         h++;
3815         w += l;                 /* previous table always l bits */
3816 
3817         /* compute minimum size table less than or equal to l bits */
3818         z = (z = g - w) > (uInt)l ? l : z;      /* table size upper limit */
3819         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
3820         {                       /* too few codes for k-w bit table */
3821           f -= a + 1;           /* deduct codes from patterns left */
3822           xp = c + k;
3823           if (j < z)
3824             while (++j < z)     /* try smaller tables up to z bits */
3825             {
3826               if ((f <<= 1) <= *++xp)
3827                 break;          /* enough codes to use up j bits */
3828               f -= *xp;         /* else deduct codes from patterns */
3829             }
3830         }
3831         z = 1 << j;             /* table entries for j-bit table */
3832 
3833         /* allocate and link in new table */
3834         if ((q = (inflate_huft *)ZALLOC
3835              (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
3836         {
3837           if (h)
3838             inflate_trees_free(u[0], zs);
3839           return Z_MEM_ERROR;   /* not enough memory */
3840         }
3841 	q->word.Nalloc = z + 1;
3842 #ifdef DEBUG_ZLIB
3843         inflate_hufts += z + 1;
3844 #endif
3845         *t = q + 1;             /* link to list for huft_free() */
3846         *(t = &(q->next)) = Z_NULL;
3847         u[h] = ++q;             /* table starts after link */
3848 
3849         /* connect to last table, if there is one */
3850         if (h)
3851         {
3852           x[h] = i;             /* save pattern for backing up */
3853           r.bits = (Byte)l;     /* bits to dump before this table */
3854           r.exop = (Byte)j;     /* bits in this table */
3855           r.next = q;           /* pointer to this table */
3856           j = i >> (w - l);     /* (get around Turbo C bug) */
3857           u[h-1][j] = r;        /* connect to last table */
3858         }
3859       }
3860 
3861       /* set up table entry in r */
3862       r.bits = (Byte)(k - w);
3863       if (p >= v + n)
3864         r.exop = 128 + 64;      /* out of values--invalid code */
3865       else if (*p < s)
3866       {
3867         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
3868         r.base = *p++;          /* simple code is just the value */
3869       }
3870       else
3871       {
3872         r.exop = (Byte)e[*p - s] + 16 + 64; /* non-simple--look up in lists */
3873         r.base = d[*p++ - s];
3874       }
3875 
3876       /* fill code-like entries with r */
3877       f = 1 << (k - w);
3878       for (j = i >> w; j < z; j += f)
3879         q[j] = r;
3880 
3881       /* backwards increment the k-bit code i */
3882       for (j = 1 << (k - 1); i & j; j >>= 1)
3883         i ^= j;
3884       i ^= j;
3885 
3886       /* backup over finished tables */
3887       while ((i & ((1 << w) - 1)) != x[h])
3888       {
3889         h--;                    /* don't need to update q */
3890         w -= l;
3891       }
3892     }
3893   }
3894 
3895 
3896   /* Return Z_BUF_ERROR if we were given an incomplete table */
3897   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
3898 }
3899 
3900 
3901 local int inflate_trees_bits(c, bb, tb, z)
3902 uIntf *c;               /* 19 code lengths */
3903 uIntf *bb;              /* bits tree desired/actual depth */
3904 inflate_huft * FAR *tb; /* bits tree result */
3905 z_stream *z;            /* for zfree function */
3906 {
3907   int r;
3908 
3909   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
3910   if (r == Z_DATA_ERROR)
3911     z->msg = "oversubscribed dynamic bit lengths tree";
3912   else if (r == Z_BUF_ERROR)
3913   {
3914     inflate_trees_free(*tb, z);
3915     z->msg = "incomplete dynamic bit lengths tree";
3916     r = Z_DATA_ERROR;
3917   }
3918   return r;
3919 }
3920 
3921 
3922 local int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
3923 uInt nl;                /* number of literal/length codes */
3924 uInt nd;                /* number of distance codes */
3925 uIntf *c;               /* that many (total) code lengths */
3926 uIntf *bl;              /* literal desired/actual bit depth */
3927 uIntf *bd;              /* distance desired/actual bit depth */
3928 inflate_huft * FAR *tl; /* literal/length tree result */
3929 inflate_huft * FAR *td; /* distance tree result */
3930 z_stream *z;            /* for zfree function */
3931 {
3932   int r;
3933 
3934   /* build literal/length tree */
3935   if ((r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z)) != Z_OK)
3936   {
3937     if (r == Z_DATA_ERROR)
3938       z->msg = "oversubscribed literal/length tree";
3939     else if (r == Z_BUF_ERROR)
3940     {
3941       inflate_trees_free(*tl, z);
3942       z->msg = "incomplete literal/length tree";
3943       r = Z_DATA_ERROR;
3944     }
3945     return r;
3946   }
3947 
3948   /* build distance tree */
3949   if ((r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z)) != Z_OK)
3950   {
3951     if (r == Z_DATA_ERROR)
3952       z->msg = "oversubscribed literal/length tree";
3953     else if (r == Z_BUF_ERROR) {
3954 #ifdef PKZIP_BUG_WORKAROUND
3955       r = Z_OK;
3956     }
3957 #else
3958       inflate_trees_free(*td, z);
3959       z->msg = "incomplete literal/length tree";
3960       r = Z_DATA_ERROR;
3961     }
3962     inflate_trees_free(*tl, z);
3963     return r;
3964 #endif
3965   }
3966 
3967   /* done */
3968   return Z_OK;
3969 }
3970 
3971 
3972 /* build fixed tables only once--keep them here */
3973 local int fixed_lock = 0;
3974 local int fixed_built = 0;
3975 #define FIXEDH 530      /* number of hufts used by fixed tables */
3976 local uInt fixed_left = FIXEDH;
3977 local inflate_huft fixed_mem[FIXEDH];
3978 local uInt fixed_bl;
3979 local uInt fixed_bd;
3980 local inflate_huft *fixed_tl;
3981 local inflate_huft *fixed_td;
3982 
3983 
3984 local voidpf falloc(q, n, s)
3985 voidpf q;        /* opaque pointer (not used) */
3986 uInt n;         /* number of items */
3987 uInt s;         /* size of item */
3988 {
3989   Assert(s == sizeof(inflate_huft) && n <= fixed_left,
3990          "inflate_trees falloc overflow");
3991   if (q) s++; /* to make some compilers happy */
3992   fixed_left -= n;
3993   return (voidpf)(fixed_mem + fixed_left);
3994 }
3995 
3996 
3997 local void ffree(q, p, n)
3998 voidpf q;
3999 voidpf p;
4000 uInt n;
4001 {
4002   Assert(0, "inflate_trees ffree called!");
4003   if (q) q = p; /* to make some compilers happy */
4004 }
4005 
4006 
4007 local int inflate_trees_fixed(bl, bd, tl, td)
4008 uIntf *bl;               /* literal desired/actual bit depth */
4009 uIntf *bd;               /* distance desired/actual bit depth */
4010 inflate_huft * FAR *tl;  /* literal/length tree result */
4011 inflate_huft * FAR *td;  /* distance tree result */
4012 {
4013   /* build fixed tables if not built already--lock out other instances */
4014   while (++fixed_lock > 1)
4015     fixed_lock--;
4016   if (!fixed_built)
4017   {
4018     int k;              /* temporary variable */
4019     unsigned c[288];    /* length list for huft_build */
4020     z_stream z;         /* for falloc function */
4021 
4022     /* set up fake z_stream for memory routines */
4023     z.zalloc = falloc;
4024     z.zfree = ffree;
4025     z.opaque = Z_NULL;
4026 
4027     /* literal table */
4028     for (k = 0; k < 144; k++)
4029       c[k] = 8;
4030     for (; k < 256; k++)
4031       c[k] = 9;
4032     for (; k < 280; k++)
4033       c[k] = 7;
4034     for (; k < 288; k++)
4035       c[k] = 8;
4036     fixed_bl = 7;
4037     huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4038 
4039     /* distance table */
4040     for (k = 0; k < 30; k++)
4041       c[k] = 5;
4042     fixed_bd = 5;
4043     huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4044 
4045     /* done */
4046     fixed_built = 1;
4047   }
4048   fixed_lock--;
4049   *bl = fixed_bl;
4050   *bd = fixed_bd;
4051   *tl = fixed_tl;
4052   *td = fixed_td;
4053   return Z_OK;
4054 }
4055 
4056 
4057 local int inflate_trees_free(t, z)
4058 inflate_huft *t;        /* table to free */
4059 z_stream *z;            /* for zfree function */
4060 /* Free the malloc'ed tables built by huft_build(), which makes a linked
4061    list of the tables it made, with the links in a dummy first entry of
4062    each table. */
4063 {
4064   register inflate_huft *p, *q;
4065 
4066   /* Go through linked list, freeing from the malloced (t[-1]) address. */
4067   p = t;
4068   while (p != Z_NULL)
4069   {
4070     q = (--p)->next;
4071     ZFREE(z, p, p->word.Nalloc * sizeof(inflate_huft));
4072     p = q;
4073   }
4074   return Z_OK;
4075 }
4076 
4077 /*+++++*/
4078 /* infcodes.c -- process literals and length/distance pairs
4079  * Copyright (C) 1995 Mark Adler
4080  * For conditions of distribution and use, see copyright notice in zlib.h
4081  */
4082 
4083 /* simplify the use of the inflate_huft type with some defines */
4084 #define base more.Base
4085 #define next more.Next
4086 #define exop word.what.Exop
4087 #define bits word.what.Bits
4088 
4089 /* inflate codes private state */
4090 struct inflate_codes_state {
4091 
4092   /* mode */
4093   enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4094       START,    /* x: set up for LEN */
4095       LEN,      /* i: get length/literal/eob next */
4096       LENEXT,   /* i: getting length extra (have base) */
4097       DIST,     /* i: get distance next */
4098       DISTEXT,  /* i: getting distance extra */
4099       COPY,     /* o: copying bytes in window, waiting for space */
4100       LIT,      /* o: got literal, waiting for output space */
4101       WASH,     /* o: got eob, possibly still output waiting */
4102       END,      /* x: got eob and all data flushed */
4103       BADCODE}  /* x: got error */
4104     mode;               /* current inflate_codes mode */
4105 
4106   /* mode dependent information */
4107   uInt len;
4108   union {
4109     struct {
4110       inflate_huft *tree;       /* pointer into tree */
4111       uInt need;                /* bits needed */
4112     } code;             /* if LEN or DIST, where in tree */
4113     uInt lit;           /* if LIT, literal */
4114     struct {
4115       uInt get;                 /* bits to get for extra */
4116       uInt dist;                /* distance back to copy from */
4117     } copy;             /* if EXT or COPY, where and how much */
4118   } sub;                /* submode */
4119 
4120   /* mode independent information */
4121   Byte lbits;           /* ltree bits decoded per branch */
4122   Byte dbits;           /* dtree bits decoder per branch */
4123   inflate_huft *ltree;          /* literal/length/eob tree */
4124   inflate_huft *dtree;          /* distance tree */
4125 
4126 };
4127 
4128 
4129 local inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4130 uInt bl, bd;
4131 inflate_huft *tl, *td;
4132 z_stream *z;
4133 {
4134   inflate_codes_statef *c;
4135 
4136   if ((c = (inflate_codes_statef *)
4137        ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4138   {
4139     c->mode = START;
4140     c->lbits = (Byte)bl;
4141     c->dbits = (Byte)bd;
4142     c->ltree = tl;
4143     c->dtree = td;
4144     Tracev((stderr, "inflate:       codes new\n"));
4145   }
4146   return c;
4147 }
4148 
4149 
4150 local int inflate_codes(s, z, r)
4151 inflate_blocks_statef *s;
4152 z_stream *z;
4153 int r;
4154 {
4155   uInt j;               /* temporary storage */
4156   inflate_huft *t;      /* temporary pointer */
4157   uInt e;               /* extra bits or operation */
4158   uLong b;              /* bit buffer */
4159   uInt k;               /* bits in bit buffer */
4160   Bytef *p;             /* input data pointer */
4161   uInt n;               /* bytes available there */
4162   Bytef *q;             /* output window write pointer */
4163   uInt m;               /* bytes to end of window or read pointer */
4164   Bytef *f;             /* pointer to copy strings from */
4165   inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
4166 
4167   /* copy input/output information to locals (UPDATE macro restores) */
4168   LOAD
4169 
4170   /* process input and output based on current state */
4171   while (1) switch (c->mode)
4172   {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4173     case START:         /* x: set up for LEN */
4174 #ifndef SLOW
4175       if (m >= 258 && n >= 10)
4176       {
4177         UPDATE
4178         r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4179         LOAD
4180         if (r != Z_OK)
4181         {
4182           c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4183           break;
4184         }
4185       }
4186 #endif /* !SLOW */
4187       c->sub.code.need = c->lbits;
4188       c->sub.code.tree = c->ltree;
4189       c->mode = LEN;
4190     case LEN:           /* i: get length/literal/eob next */
4191       j = c->sub.code.need;
4192       NEEDBITS(j)
4193       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4194       DUMPBITS(t->bits)
4195       e = (uInt)(t->exop);
4196       if (e == 0)               /* literal */
4197       {
4198         c->sub.lit = t->base;
4199         Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4200                  "inflate:         literal '%c'\n" :
4201                  "inflate:         literal 0x%02x\n", t->base));
4202         c->mode = LIT;
4203         break;
4204       }
4205       if (e & 16)               /* length */
4206       {
4207         c->sub.copy.get = e & 15;
4208         c->len = t->base;
4209         c->mode = LENEXT;
4210         break;
4211       }
4212       if ((e & 64) == 0)        /* next table */
4213       {
4214         c->sub.code.need = e;
4215         c->sub.code.tree = t->next;
4216         break;
4217       }
4218       if (e & 32)               /* end of block */
4219       {
4220         Tracevv((stderr, "inflate:         end of block\n"));
4221         c->mode = WASH;
4222         break;
4223       }
4224       c->mode = BADCODE;        /* invalid code */
4225       z->msg = "invalid literal/length code";
4226       r = Z_DATA_ERROR;
4227       LEAVE
4228     case LENEXT:        /* i: getting length extra (have base) */
4229       j = c->sub.copy.get;
4230       NEEDBITS(j)
4231       c->len += (uInt)b & inflate_mask[j];
4232       DUMPBITS(j)
4233       c->sub.code.need = c->dbits;
4234       c->sub.code.tree = c->dtree;
4235       Tracevv((stderr, "inflate:         length %u\n", c->len));
4236       c->mode = DIST;
4237     case DIST:          /* i: get distance next */
4238       j = c->sub.code.need;
4239       NEEDBITS(j)
4240       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4241       DUMPBITS(t->bits)
4242       e = (uInt)(t->exop);
4243       if (e & 16)               /* distance */
4244       {
4245         c->sub.copy.get = e & 15;
4246         c->sub.copy.dist = t->base;
4247         c->mode = DISTEXT;
4248         break;
4249       }
4250       if ((e & 64) == 0)        /* next table */
4251       {
4252         c->sub.code.need = e;
4253         c->sub.code.tree = t->next;
4254         break;
4255       }
4256       c->mode = BADCODE;        /* invalid code */
4257       z->msg = "invalid distance code";
4258       r = Z_DATA_ERROR;
4259       LEAVE
4260     case DISTEXT:       /* i: getting distance extra */
4261       j = c->sub.copy.get;
4262       NEEDBITS(j)
4263       c->sub.copy.dist += (uInt)b & inflate_mask[j];
4264       DUMPBITS(j)
4265       Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
4266       c->mode = COPY;
4267     case COPY:          /* o: copying bytes in window, waiting for space */
4268 #ifndef __TURBOC__ /* Turbo C bug for following expression */
4269       f = (uInt)(q - s->window) < c->sub.copy.dist ?
4270           s->end - (c->sub.copy.dist - (q - s->window)) :
4271           q - c->sub.copy.dist;
4272 #else
4273       f = q - c->sub.copy.dist;
4274       if ((uInt)(q - s->window) < c->sub.copy.dist)
4275         f = s->end - (c->sub.copy.dist - (q - s->window));
4276 #endif
4277       while (c->len)
4278       {
4279         NEEDOUT
4280         OUTBYTE(*f++)
4281         if (f == s->end)
4282           f = s->window;
4283         c->len--;
4284       }
4285       c->mode = START;
4286       break;
4287     case LIT:           /* o: got literal, waiting for output space */
4288       NEEDOUT
4289       OUTBYTE(c->sub.lit)
4290       c->mode = START;
4291       break;
4292     case WASH:          /* o: got eob, possibly more output */
4293       FLUSH
4294       if (s->read != s->write)
4295         LEAVE
4296       c->mode = END;
4297     case END:
4298       r = Z_STREAM_END;
4299       LEAVE
4300     case BADCODE:       /* x: got error */
4301       r = Z_DATA_ERROR;
4302       LEAVE
4303     default:
4304       r = Z_STREAM_ERROR;
4305       LEAVE
4306   }
4307 }
4308 
4309 
4310 local void inflate_codes_free(c, z)
4311 inflate_codes_statef *c;
4312 z_stream *z;
4313 {
4314   ZFREE(z, c, sizeof(struct inflate_codes_state));
4315   Tracev((stderr, "inflate:       codes free\n"));
4316 }
4317 
4318 /*+++++*/
4319 /* inflate_util.c -- data and routines common to blocks and codes
4320  * Copyright (C) 1995 Mark Adler
4321  * For conditions of distribution and use, see copyright notice in zlib.h
4322  */
4323 
4324 /* copy as much as possible from the sliding window to the output area */
4325 local int inflate_flush(s, z, r)
4326 inflate_blocks_statef *s;
4327 z_stream *z;
4328 int r;
4329 {
4330   uInt n;
4331   Bytef *p, *q;
4332 
4333   /* local copies of source and destination pointers */
4334   p = z->next_out;
4335   q = s->read;
4336 
4337   /* compute number of bytes to copy as far as end of window */
4338   n = (uInt)((q <= s->write ? s->write : s->end) - q);
4339   if (n > z->avail_out) n = z->avail_out;
4340   if (n && r == Z_BUF_ERROR) r = Z_OK;
4341 
4342   /* update counters */
4343   z->avail_out -= n;
4344   z->total_out += n;
4345 
4346   /* update check information */
4347   if (s->checkfn != Z_NULL)
4348     s->check = (*s->checkfn)(s->check, q, n);
4349 
4350   /* copy as far as end of window */
4351   if (p != NULL) {
4352     zmemcpy(p, q, n);
4353     p += n;
4354   }
4355   q += n;
4356 
4357   /* see if more to copy at beginning of window */
4358   if (q == s->end)
4359   {
4360     /* wrap pointers */
4361     q = s->window;
4362     if (s->write == s->end)
4363       s->write = s->window;
4364 
4365     /* compute bytes to copy */
4366     n = (uInt)(s->write - q);
4367     if (n > z->avail_out) n = z->avail_out;
4368     if (n && r == Z_BUF_ERROR) r = Z_OK;
4369 
4370     /* update counters */
4371     z->avail_out -= n;
4372     z->total_out += n;
4373 
4374     /* update check information */
4375     if (s->checkfn != Z_NULL)
4376       s->check = (*s->checkfn)(s->check, q, n);
4377 
4378     /* copy */
4379     if (p != NULL) {
4380       zmemcpy(p, q, n);
4381       p += n;
4382     }
4383     q += n;
4384   }
4385 
4386   /* update pointers */
4387   z->next_out = p;
4388   s->read = q;
4389 
4390   /* done */
4391   return r;
4392 }
4393 
4394 
4395 /*+++++*/
4396 /* inffast.c -- process literals and length/distance pairs fast
4397  * Copyright (C) 1995 Mark Adler
4398  * For conditions of distribution and use, see copyright notice in zlib.h
4399  */
4400 
4401 /* simplify the use of the inflate_huft type with some defines */
4402 #define base more.Base
4403 #define next more.Next
4404 #define exop word.what.Exop
4405 #define bits word.what.Bits
4406 
4407 /* macros for bit input with no checking and for returning unused bytes */
4408 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4409 #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4410 
4411 /* Called with number of bytes left to write in window at least 258
4412    (the maximum string length) and number of input bytes available
4413    at least ten.  The ten bytes are six bytes for the longest length/
4414    distance pair plus four bytes for overloading the bit buffer. */
4415 
4416 local int inflate_fast(bl, bd, tl, td, s, z)
4417 uInt bl, bd;
4418 inflate_huft *tl, *td;
4419 inflate_blocks_statef *s;
4420 z_stream *z;
4421 {
4422   inflate_huft *t;      /* temporary pointer */
4423   uInt e;               /* extra bits or operation */
4424   uLong b;              /* bit buffer */
4425   uInt k;               /* bits in bit buffer */
4426   Bytef *p;             /* input data pointer */
4427   uInt n;               /* bytes available there */
4428   Bytef *q;             /* output window write pointer */
4429   uInt m;               /* bytes to end of window or read pointer */
4430   uInt ml;              /* mask for literal/length tree */
4431   uInt md;              /* mask for distance tree */
4432   uInt c;               /* bytes to copy */
4433   uInt d;               /* distance back to copy from */
4434   Bytef *r;             /* copy source pointer */
4435 
4436   /* load input, output, bit values */
4437   LOAD
4438 
4439   /* initialize masks */
4440   ml = inflate_mask[bl];
4441   md = inflate_mask[bd];
4442 
4443   /* do until not enough input or output space for fast loop */
4444   do {                          /* assume called with m >= 258 && n >= 10 */
4445     /* get literal/length code */
4446     GRABBITS(20)                /* max bits for literal/length code */
4447     if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
4448     {
4449       DUMPBITS(t->bits)
4450       Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4451                 "inflate:         * literal '%c'\n" :
4452                 "inflate:         * literal 0x%02x\n", t->base));
4453       *q++ = (Byte)t->base;
4454       m--;
4455       continue;
4456     }
4457     do {
4458       DUMPBITS(t->bits)
4459       if (e & 16)
4460       {
4461         /* get extra bits for length */
4462         e &= 15;
4463         c = t->base + ((uInt)b & inflate_mask[e]);
4464         DUMPBITS(e)
4465         Tracevv((stderr, "inflate:         * length %u\n", c));
4466 
4467         /* decode distance base of block to copy */
4468         GRABBITS(15);           /* max bits for distance code */
4469         e = (t = td + ((uInt)b & md))->exop;
4470         do {
4471           DUMPBITS(t->bits)
4472           if (e & 16)
4473           {
4474             /* get extra bits to add to distance base */
4475             e &= 15;
4476             GRABBITS(e)         /* get extra bits (up to 13) */
4477             d = t->base + ((uInt)b & inflate_mask[e]);
4478             DUMPBITS(e)
4479             Tracevv((stderr, "inflate:         * distance %u\n", d));
4480 
4481             /* do the copy */
4482             m -= c;
4483             if ((uInt)(q - s->window) >= d)     /* offset before dest */
4484             {                                   /*  just copy */
4485               r = q - d;
4486               *q++ = *r++;  c--;        /* minimum count is three, */
4487               *q++ = *r++;  c--;        /*  so unroll loop a little */
4488             }
4489             else                        /* else offset after destination */
4490             {
4491               e = d - (q - s->window);  /* bytes from offset to end */
4492               r = s->end - e;           /* pointer to offset */
4493               if (c > e)                /* if source crosses, */
4494               {
4495                 c -= e;                 /* copy to end of window */
4496                 do {
4497                   *q++ = *r++;
4498                 } while (--e);
4499                 r = s->window;          /* copy rest from start of window */
4500               }
4501             }
4502             do {                        /* copy all or what's left */
4503               *q++ = *r++;
4504             } while (--c);
4505             break;
4506           }
4507           else if ((e & 64) == 0)
4508             e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
4509           else
4510           {
4511             z->msg = "invalid distance code";
4512             UNGRAB
4513             UPDATE
4514             return Z_DATA_ERROR;
4515           }
4516         } while (1);
4517         break;
4518       }
4519       if ((e & 64) == 0)
4520       {
4521         if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
4522         {
4523           DUMPBITS(t->bits)
4524           Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4525                     "inflate:         * literal '%c'\n" :
4526                     "inflate:         * literal 0x%02x\n", t->base));
4527           *q++ = (Byte)t->base;
4528           m--;
4529           break;
4530         }
4531       }
4532       else if (e & 32)
4533       {
4534         Tracevv((stderr, "inflate:         * end of block\n"));
4535         UNGRAB
4536         UPDATE
4537         return Z_STREAM_END;
4538       }
4539       else
4540       {
4541         z->msg = "invalid literal/length code";
4542         UNGRAB
4543         UPDATE
4544         return Z_DATA_ERROR;
4545       }
4546     } while (1);
4547   } while (m >= 258 && n >= 10);
4548 
4549   /* not enough input or output--restore pointers and return */
4550   UNGRAB
4551   UPDATE
4552   return Z_OK;
4553 }
4554 
4555 
4556 /*+++++*/
4557 /* zutil.c -- target dependent utility functions for the compression library
4558  * Copyright (C) 1995 Jean-loup Gailly.
4559  * For conditions of distribution and use, see copyright notice in zlib.h
4560  */
4561 
4562 /* From: zutil.c,v 1.8 1995/05/03 17:27:12 jloup Exp */
4563 
4564 char *zlib_version = ZLIB_VERSION;
4565 
4566 char *z_errmsg[] = {
4567 "stream end",          /* Z_STREAM_END    1 */
4568 "",                    /* Z_OK            0 */
4569 "file error",          /* Z_ERRNO        (-1) */
4570 "stream error",        /* Z_STREAM_ERROR (-2) */
4571 "data error",          /* Z_DATA_ERROR   (-3) */
4572 "insufficient memory", /* Z_MEM_ERROR    (-4) */
4573 "buffer error",        /* Z_BUF_ERROR    (-5) */
4574 ""};
4575 
4576 
4577 /*+++++*/
4578 /* adler32.c -- compute the Adler-32 checksum of a data stream
4579  * Copyright (C) 1995 Mark Adler
4580  * For conditions of distribution and use, see copyright notice in zlib.h
4581  */
4582 
4583 /* From: adler32.c,v 1.6 1995/05/03 17:27:08 jloup Exp */
4584 
4585 #define BASE 65521L /* largest prime smaller than 65536 */
4586 #define NMAX 5552
4587 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
4588 
4589 #define DO1(buf)  {s1 += *buf++; s2 += s1;}
4590 #define DO2(buf)  DO1(buf); DO1(buf);
4591 #define DO4(buf)  DO2(buf); DO2(buf);
4592 #define DO8(buf)  DO4(buf); DO4(buf);
4593 #define DO16(buf) DO8(buf); DO8(buf);
4594 
4595 /* ========================================================================= */
4596 uLong adler32(adler, buf, len)
4597     uLong adler;
4598     Bytef *buf;
4599     uInt len;
4600 {
4601     unsigned long s1 = adler & 0xffff;
4602     unsigned long s2 = (adler >> 16) & 0xffff;
4603     int k;
4604 
4605     if (buf == Z_NULL) return 1L;
4606 
4607     while (len > 0) {
4608         k = len < NMAX ? len : NMAX;
4609         len -= k;
4610         while (k >= 16) {
4611             DO16(buf);
4612             k -= 16;
4613         }
4614         if (k != 0) do {
4615             DO1(buf);
4616         } while (--k);
4617         s1 %= BASE;
4618         s2 %= BASE;
4619     }
4620     return (s2 << 16) | s1;
4621 }
4622