xref: /netbsd-src/sys/net/zlib.c (revision 76dfffe33547c37f8bdd446e3e4ab0f3c16cea4b)
1 /*	$NetBSD: zlib.c,v 1.3 1996/09/18 03:11:03 scottr Exp $	*/
2 
3 /*
4  * This file is derived from various .h and .c files from the zlib-0.95
5  * distribution by Jean-loup Gailly and Mark Adler, with some additions
6  * by Paul Mackerras to aid in implementing Deflate compression and
7  * decompression for PPP packets.  See zlib.h for conditions of
8  * distribution and use.
9  *
10  * Changes that have been made include:
11  * - changed functions not used outside this file to "local"
12  * - added minCompression parameter to deflateInit2
13  * - added Z_PACKET_FLUSH (see zlib.h for details)
14  * - added inflateIncomp
15  */
16 
17 
18 /*+++++*/
19 /* zutil.h -- internal interface and configuration of the compression library
20  * Copyright (C) 1995 Jean-loup Gailly.
21  * For conditions of distribution and use, see copyright notice in zlib.h
22  */
23 
24 /* WARNING: this file should *not* be used by applications. It is
25    part of the implementation of the compression library and is
26    subject to change. Applications should only use zlib.h.
27  */
28 
29 /* From: zutil.h,v 1.9 1995/05/03 17:27:12 jloup Exp */
30 
31 #define _Z_UTIL_H
32 
33 #include "zlib.h"
34 
35 #ifndef __NetBSD__
36 #  ifdef STDC
37 #    include <string.h>
38 #  endif
39 #endif
40 
41 #ifndef local
42 #  define local static
43 #endif
44 /* compile with -Dlocal if your debugger can't find static symbols */
45 
46 #define FAR
47 
48 typedef unsigned char  uch;
49 typedef uch FAR uchf;
50 typedef unsigned short ush;
51 typedef ush FAR ushf;
52 typedef unsigned long  ulg;
53 
54 extern char *z_errmsg[]; /* indexed by 1-zlib_error */
55 
56 #define ERR_RETURN(strm,err) return (strm->msg=z_errmsg[1-err], err)
57 /* To be used only when the state is known to be valid */
58 
59 #ifndef NULL
60 #define NULL	((void *) 0)
61 #endif
62 
63         /* common constants */
64 
65 #define DEFLATED   8
66 
67 #ifndef DEF_WBITS
68 #  define DEF_WBITS MAX_WBITS
69 #endif
70 /* default windowBits for decompression. MAX_WBITS is for compression only */
71 
72 #if MAX_MEM_LEVEL >= 8
73 #  define DEF_MEM_LEVEL 8
74 #else
75 #  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
76 #endif
77 /* default memLevel */
78 
79 #define STORED_BLOCK 0
80 #define STATIC_TREES 1
81 #define DYN_TREES    2
82 /* The three kinds of block type */
83 
84 #define MIN_MATCH  3
85 #define MAX_MATCH  258
86 /* The minimum and maximum match lengths */
87 
88          /* functions */
89 
90 #if defined(KERNEL) || defined(_KERNEL)
91 #  ifdef __NetBSD__
92 #    include <sys/types.h>
93 #    include <sys/systm.h>
94 #  endif
95 #  define zmemcpy(d, s, n)	bcopy((s), (d), (n))
96 #  define zmemzero		bzero
97 #else
98 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
99 #  define HAVE_MEMCPY
100 #endif
101 #ifdef HAVE_MEMCPY
102 #    define zmemcpy memcpy
103 #    define zmemzero(dest, len) memset(dest, 0, len)
104 #else
105    extern void zmemcpy  OF((Bytef* dest, Bytef* source, uInt len));
106    extern void zmemzero OF((Bytef* dest, uInt len));
107 #endif
108 #endif
109 
110 /* Diagnostic functions */
111 #ifdef DEBUG_ZLIB
112 #  include <stdio.h>
113 #  ifndef verbose
114 #    define verbose 0
115 #  endif
116 #  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
117 #  define Trace(x) fprintf x
118 #  define Tracev(x) {if (verbose) fprintf x ;}
119 #  define Tracevv(x) {if (verbose>1) fprintf x ;}
120 #  define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
121 #  define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
122 #else
123 #  define Assert(cond,msg)
124 #  define Trace(x)
125 #  define Tracev(x)
126 #  define Tracevv(x)
127 #  define Tracec(c,x)
128 #  define Tracecv(c,x)
129 #endif
130 
131 
132 typedef uLong (*check_func) OF((uLong check, Bytef *buf, uInt len));
133 
134 /* voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size)); */
135 /* void   zcfree  OF((voidpf opaque, voidpf ptr)); */
136 
137 #define ZALLOC(strm, items, size) \
138            (*((strm)->zalloc))((strm)->opaque, (items), (size))
139 #define ZFREE(strm, addr, size)	\
140 	   (*((strm)->zfree))((strm)->opaque, (voidpf)(addr), (size))
141 #define TRY_FREE(s, p, n) {if (p) ZFREE(s, p, n);}
142 
143 /* deflate.h -- internal compression state
144  * Copyright (C) 1995 Jean-loup Gailly
145  * For conditions of distribution and use, see copyright notice in zlib.h
146  */
147 
148 /* WARNING: this file should *not* be used by applications. It is
149    part of the implementation of the compression library and is
150    subject to change. Applications should only use zlib.h.
151  */
152 
153 
154 /*+++++*/
155 /* From: deflate.h,v 1.5 1995/05/03 17:27:09 jloup Exp */
156 
157 /* ===========================================================================
158  * Internal compression state.
159  */
160 
161 /* Data type */
162 #define BINARY  0
163 #define ASCII   1
164 #define UNKNOWN 2
165 
166 #define LENGTH_CODES 29
167 /* number of length codes, not counting the special END_BLOCK code */
168 
169 #define LITERALS  256
170 /* number of literal bytes 0..255 */
171 
172 #define L_CODES (LITERALS+1+LENGTH_CODES)
173 /* number of Literal or Length codes, including the END_BLOCK code */
174 
175 #define D_CODES   30
176 /* number of distance codes */
177 
178 #define BL_CODES  19
179 /* number of codes used to transfer the bit lengths */
180 
181 #define HEAP_SIZE (2*L_CODES+1)
182 /* maximum heap size */
183 
184 #define MAX_BITS 15
185 /* All codes must not exceed MAX_BITS bits */
186 
187 #define INIT_STATE    42
188 #define BUSY_STATE   113
189 #define FLUSH_STATE  124
190 #define FINISH_STATE 666
191 /* Stream status */
192 
193 
194 /* Data structure describing a single value and its code string. */
195 typedef struct ct_data_s {
196     union {
197         ush  freq;       /* frequency count */
198         ush  code;       /* bit string */
199     } fc;
200     union {
201         ush  dad;        /* father node in Huffman tree */
202         ush  len;        /* length of bit string */
203     } dl;
204 } FAR ct_data;
205 
206 #define Freq fc.freq
207 #define Code fc.code
208 #define Dad  dl.dad
209 #define Len  dl.len
210 
211 typedef struct static_tree_desc_s  static_tree_desc;
212 
213 typedef struct tree_desc_s {
214     ct_data *dyn_tree;           /* the dynamic tree */
215     int     max_code;            /* largest code with non zero frequency */
216     static_tree_desc *stat_desc; /* the corresponding static tree */
217 } FAR tree_desc;
218 
219 typedef ush Pos;
220 typedef Pos FAR Posf;
221 typedef unsigned IPos;
222 
223 /* A Pos is an index in the character window. We use short instead of int to
224  * save space in the various tables. IPos is used only for parameter passing.
225  */
226 
227 typedef struct deflate_state {
228     z_stream *strm;      /* pointer back to this zlib stream */
229     int   status;        /* as the name implies */
230     Bytef *pending_buf;  /* output still pending */
231     Bytef *pending_out;  /* next pending byte to output to the stream */
232     int   pending;       /* nb of bytes in the pending buffer */
233     uLong adler;         /* adler32 of uncompressed data */
234     int   noheader;      /* suppress zlib header and adler32 */
235     Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
236     Byte  method;        /* STORED (for zip only) or DEFLATED */
237     int	  minCompr;	 /* min size decrease for Z_FLUSH_NOSTORE */
238 
239                 /* used by deflate.c: */
240 
241     uInt  w_size;        /* LZ77 window size (32K by default) */
242     uInt  w_bits;        /* log2(w_size)  (8..16) */
243     uInt  w_mask;        /* w_size - 1 */
244 
245     Bytef *window;
246     /* Sliding window. Input bytes are read into the second half of the window,
247      * and move to the first half later to keep a dictionary of at least wSize
248      * bytes. With this organization, matches are limited to a distance of
249      * wSize-MAX_MATCH bytes, but this ensures that IO is always
250      * performed with a length multiple of the block size. Also, it limits
251      * the window size to 64K, which is quite useful on MSDOS.
252      * To do: use the user input buffer as sliding window.
253      */
254 
255     ulg window_size;
256     /* Actual size of window: 2*wSize, except when the user input buffer
257      * is directly used as sliding window.
258      */
259 
260     Posf *prev;
261     /* Link to older string with same hash index. To limit the size of this
262      * array to 64K, this link is maintained only for the last 32K strings.
263      * An index in this array is thus a window index modulo 32K.
264      */
265 
266     Posf *head; /* Heads of the hash chains or NIL. */
267 
268     uInt  ins_h;          /* hash index of string to be inserted */
269     uInt  hash_size;      /* number of elements in hash table */
270     uInt  hash_bits;      /* log2(hash_size) */
271     uInt  hash_mask;      /* hash_size-1 */
272 
273     uInt  hash_shift;
274     /* Number of bits by which ins_h must be shifted at each input
275      * step. It must be such that after MIN_MATCH steps, the oldest
276      * byte no longer takes part in the hash key, that is:
277      *   hash_shift * MIN_MATCH >= hash_bits
278      */
279 
280     long block_start;
281     /* Window position at the beginning of the current output block. Gets
282      * negative when the window is moved backwards.
283      */
284 
285     uInt match_length;           /* length of best match */
286     IPos prev_match;             /* previous match */
287     int match_available;         /* set if previous match exists */
288     uInt strstart;               /* start of string to insert */
289     uInt match_start;            /* start of matching string */
290     uInt lookahead;              /* number of valid bytes ahead in window */
291 
292     uInt prev_length;
293     /* Length of the best match at previous step. Matches not greater than this
294      * are discarded. This is used in the lazy match evaluation.
295      */
296 
297     uInt max_chain_length;
298     /* To speed up deflation, hash chains are never searched beyond this
299      * length.  A higher limit improves compression ratio but degrades the
300      * speed.
301      */
302 
303     uInt max_lazy_match;
304     /* Attempt to find a better match only when the current match is strictly
305      * smaller than this value. This mechanism is used only for compression
306      * levels >= 4.
307      */
308 #   define max_insert_length  max_lazy_match
309     /* Insert new strings in the hash table only if the match length is not
310      * greater than this length. This saves time but degrades compression.
311      * max_insert_length is used only for compression levels <= 3.
312      */
313 
314     int level;    /* compression level (1..9) */
315     int strategy; /* favor or force Huffman coding*/
316 
317     uInt good_match;
318     /* Use a faster search when the previous match is longer than this */
319 
320      int nice_match; /* Stop searching when current match exceeds this */
321 
322                 /* used by trees.c: */
323     /* Didn't use ct_data typedef below to supress compiler warning */
324     struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
325     struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
326     struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
327 
328     struct tree_desc_s l_desc;               /* desc. for literal tree */
329     struct tree_desc_s d_desc;               /* desc. for distance tree */
330     struct tree_desc_s bl_desc;              /* desc. for bit length tree */
331 
332     ush bl_count[MAX_BITS+1];
333     /* number of codes at each bit length for an optimal tree */
334 
335     int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
336     int heap_len;               /* number of elements in the heap */
337     int heap_max;               /* element of largest frequency */
338     /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
339      * The same heap array is used to build all trees.
340      */
341 
342     uch depth[2*L_CODES+1];
343     /* Depth of each subtree used as tie breaker for trees of equal frequency
344      */
345 
346     uchf *l_buf;          /* buffer for literals or lengths */
347 
348     uInt  lit_bufsize;
349     /* Size of match buffer for literals/lengths.  There are 4 reasons for
350      * limiting lit_bufsize to 64K:
351      *   - frequencies can be kept in 16 bit counters
352      *   - if compression is not successful for the first block, all input
353      *     data is still in the window so we can still emit a stored block even
354      *     when input comes from standard input.  (This can also be done for
355      *     all blocks if lit_bufsize is not greater than 32K.)
356      *   - if compression is not successful for a file smaller than 64K, we can
357      *     even emit a stored file instead of a stored block (saving 5 bytes).
358      *     This is applicable only for zip (not gzip or zlib).
359      *   - creating new Huffman trees less frequently may not provide fast
360      *     adaptation to changes in the input data statistics. (Take for
361      *     example a binary file with poorly compressible code followed by
362      *     a highly compressible string table.) Smaller buffer sizes give
363      *     fast adaptation but have of course the overhead of transmitting
364      *     trees more frequently.
365      *   - I can't count above 4
366      */
367 
368     uInt last_lit;      /* running index in l_buf */
369 
370     ushf *d_buf;
371     /* Buffer for distances. To simplify the code, d_buf and l_buf have
372      * the same number of elements. To use different lengths, an extra flag
373      * array would be necessary.
374      */
375 
376     ulg opt_len;        /* bit length of current block with optimal trees */
377     ulg static_len;     /* bit length of current block with static trees */
378     ulg compressed_len; /* total bit length of compressed file */
379     uInt matches;       /* number of string matches in current block */
380     int last_eob_len;   /* bit length of EOB code for last block */
381 
382 #ifdef DEBUG_ZLIB
383     ulg bits_sent;      /* bit length of the compressed data */
384 #endif
385 
386     ush bi_buf;
387     /* Output buffer. bits are inserted starting at the bottom (least
388      * significant bits).
389      */
390     int bi_valid;
391     /* Number of valid bits in bi_buf.  All bits above the last valid bit
392      * are always zero.
393      */
394 
395     uInt blocks_in_packet;
396     /* Number of blocks produced since the last time Z_PACKET_FLUSH
397      * was used.
398      */
399 
400 } FAR deflate_state;
401 
402 /* Output a byte on the stream.
403  * IN assertion: there is enough room in pending_buf.
404  */
405 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
406 
407 
408 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
409 /* Minimum amount of lookahead, except at the end of the input file.
410  * See deflate.c for comments about the MIN_MATCH+1.
411  */
412 
413 #define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
414 /* In order to simplify the code, particularly on 16 bit machines, match
415  * distances are limited to MAX_DIST instead of WSIZE.
416  */
417 
418         /* in trees.c */
419 local void ct_init       OF((deflate_state *s));
420 local int  ct_tally      OF((deflate_state *s, int dist, int lc));
421 local ulg ct_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
422 			     int flush));
423 local void ct_align      OF((deflate_state *s));
424 local void ct_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
425                           int eof));
426 local void ct_stored_type_only OF((deflate_state *s));
427 
428 
429 /*+++++*/
430 /* deflate.c -- compress data using the deflation algorithm
431  * Copyright (C) 1995 Jean-loup Gailly.
432  * For conditions of distribution and use, see copyright notice in zlib.h
433  */
434 
435 /*
436  *  ALGORITHM
437  *
438  *      The "deflation" process depends on being able to identify portions
439  *      of the input text which are identical to earlier input (within a
440  *      sliding window trailing behind the input currently being processed).
441  *
442  *      The most straightforward technique turns out to be the fastest for
443  *      most input files: try all possible matches and select the longest.
444  *      The key feature of this algorithm is that insertions into the string
445  *      dictionary are very simple and thus fast, and deletions are avoided
446  *      completely. Insertions are performed at each input character, whereas
447  *      string matches are performed only when the previous match ends. So it
448  *      is preferable to spend more time in matches to allow very fast string
449  *      insertions and avoid deletions. The matching algorithm for small
450  *      strings is inspired from that of Rabin & Karp. A brute force approach
451  *      is used to find longer strings when a small match has been found.
452  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
453  *      (by Leonid Broukhis).
454  *         A previous version of this file used a more sophisticated algorithm
455  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
456  *      time, but has a larger average cost, uses more memory and is patented.
457  *      However the F&G algorithm may be faster for some highly redundant
458  *      files if the parameter max_chain_length (described below) is too large.
459  *
460  *  ACKNOWLEDGEMENTS
461  *
462  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
463  *      I found it in 'freeze' written by Leonid Broukhis.
464  *      Thanks to many people for bug reports and testing.
465  *
466  *  REFERENCES
467  *
468  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
469  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
470  *
471  *      A description of the Rabin and Karp algorithm is given in the book
472  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
473  *
474  *      Fiala,E.R., and Greene,D.H.
475  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
476  *
477  */
478 
479 /* From: deflate.c,v 1.8 1995/05/03 17:27:08 jloup Exp */
480 
481 #if 0
482 local char zlib_copyright[] = " deflate Copyright 1995 Jean-loup Gailly ";
483 #endif
484 /*
485   If you use the zlib library in a product, an acknowledgment is welcome
486   in the documentation of your product. If for some reason you cannot
487   include such an acknowledgment, I would appreciate that you keep this
488   copyright string in the executable of your product.
489  */
490 
491 #define NIL 0
492 /* Tail of hash chains */
493 
494 #ifndef TOO_FAR
495 #  define TOO_FAR 4096
496 #endif
497 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
498 
499 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
500 /* Minimum amount of lookahead, except at the end of the input file.
501  * See deflate.c for comments about the MIN_MATCH+1.
502  */
503 
504 /* Values for max_lazy_match, good_match and max_chain_length, depending on
505  * the desired pack level (0..9). The values given below have been tuned to
506  * exclude worst case performance for pathological files. Better values may be
507  * found for specific files.
508  */
509 
510 typedef struct config_s {
511    ush good_length; /* reduce lazy search above this match length */
512    ush max_lazy;    /* do not perform lazy search above this match length */
513    ush nice_length; /* quit search above this match length */
514    ush max_chain;
515 } config;
516 
517 local config configuration_table[10] = {
518 /*      good lazy nice chain */
519 /* 0 */ {0,    0,  0,    0},  /* store only */
520 /* 1 */ {4,    4,  8,    4},  /* maximum speed, no lazy matches */
521 /* 2 */ {4,    5, 16,    8},
522 /* 3 */ {4,    6, 32,   32},
523 
524 /* 4 */ {4,    4, 16,   16},  /* lazy matches */
525 /* 5 */ {8,   16, 32,   32},
526 /* 6 */ {8,   16, 128, 128},
527 /* 7 */ {8,   32, 128, 256},
528 /* 8 */ {32, 128, 258, 1024},
529 /* 9 */ {32, 258, 258, 4096}}; /* maximum compression */
530 
531 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
532  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
533  * meaning.
534  */
535 
536 #define EQUAL 0
537 /* result of memcmp for equal strings */
538 
539 /* ===========================================================================
540  *  Prototypes for local functions.
541  */
542 
543 local void fill_window   OF((deflate_state *s));
544 local int  deflate_fast  OF((deflate_state *s, int flush));
545 local int  deflate_slow  OF((deflate_state *s, int flush));
546 local void lm_init       OF((deflate_state *s));
547 local int longest_match  OF((deflate_state *s, IPos cur_match));
548 local void putShortMSB   OF((deflate_state *s, uInt b));
549 local void flush_pending OF((z_stream *strm));
550 local int read_buf       OF((z_stream *strm, charf *buf, unsigned size));
551 #ifdef ASMV
552       void match_init OF((void)); /* asm code initialization */
553 #endif
554 
555 #ifdef DEBUG_ZLIB
556 local  void check_match OF((deflate_state *s, IPos start, IPos match,
557                             int length));
558 #endif
559 
560 
561 /* ===========================================================================
562  * Update a hash value with the given input byte
563  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
564  *    input characters, so that a running hash key can be computed from the
565  *    previous key instead of complete recalculation each time.
566  */
567 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
568 
569 
570 /* ===========================================================================
571  * Insert string str in the dictionary and set match_head to the previous head
572  * of the hash chain (the most recent string with same hash key). Return
573  * the previous length of the hash chain.
574  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
575  *    input characters and the first MIN_MATCH bytes of str are valid
576  *    (except for the last MIN_MATCH-1 bytes of the input file).
577  */
578 #define INSERT_STRING(s, str, match_head) \
579    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
580     s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
581     s->head[s->ins_h] = (str))
582 
583 /* ===========================================================================
584  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
585  * prev[] will be initialized on the fly.
586  */
587 #define CLEAR_HASH(s) \
588     s->head[s->hash_size-1] = NIL; \
589     zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
590 
591 /* ========================================================================= */
592 int deflateInit (strm, level)
593     z_stream *strm;
594     int level;
595 {
596     return deflateInit2 (strm, level, DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
597 			 0, 0);
598     /* To do: ignore strm->next_in if we use it as window */
599 }
600 
601 /* ========================================================================= */
602 int deflateInit2 (strm, level, method, windowBits, memLevel,
603 		  strategy, minCompression)
604     z_stream *strm;
605     int  level;
606     int  method;
607     int  windowBits;
608     int  memLevel;
609     int  strategy;
610     int  minCompression;
611 {
612     deflate_state *s;
613     int noheader = 0;
614 
615     if (strm == Z_NULL) return Z_STREAM_ERROR;
616 
617     strm->msg = Z_NULL;
618 /*    if (strm->zalloc == Z_NULL) strm->zalloc = zcalloc; */
619 /*    if (strm->zfree == Z_NULL) strm->zfree = zcfree; */
620 
621     if (level == Z_DEFAULT_COMPRESSION) level = 6;
622 
623     if (windowBits < 0) { /* undocumented feature: suppress zlib header */
624         noheader = 1;
625         windowBits = -windowBits;
626     }
627     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != DEFLATED ||
628         windowBits < 8 || windowBits > 15 || level < 1 || level > 9) {
629         return Z_STREAM_ERROR;
630     }
631     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
632     if (s == Z_NULL) return Z_MEM_ERROR;
633     strm->state = (struct internal_state FAR *)s;
634     s->strm = strm;
635 
636     s->noheader = noheader;
637     s->w_bits = windowBits;
638     s->w_size = 1 << s->w_bits;
639     s->w_mask = s->w_size - 1;
640 
641     s->hash_bits = memLevel + 7;
642     s->hash_size = 1 << s->hash_bits;
643     s->hash_mask = s->hash_size - 1;
644     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
645 
646     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
647     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
648     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
649 
650     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
651 
652     s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 2*sizeof(ush));
653 
654     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
655         s->pending_buf == Z_NULL) {
656         strm->msg = z_errmsg[1-Z_MEM_ERROR];
657         deflateEnd (strm);
658         return Z_MEM_ERROR;
659     }
660     s->d_buf = (ushf *) &(s->pending_buf[s->lit_bufsize]);
661     s->l_buf = (uchf *) &(s->pending_buf[3*s->lit_bufsize]);
662     /* We overlay pending_buf and d_buf+l_buf. This works since the average
663      * output size for (length,distance) codes is <= 32 bits (worst case
664      * is 15+15+13=33).
665      */
666 
667     s->level = level;
668     s->strategy = strategy;
669     s->method = (Byte)method;
670     s->minCompr = minCompression;
671     s->blocks_in_packet = 0;
672 
673     return deflateReset(strm);
674 }
675 
676 /* ========================================================================= */
677 int deflateReset (strm)
678     z_stream *strm;
679 {
680     deflate_state *s;
681 
682     if (strm == Z_NULL || strm->state == Z_NULL ||
683         strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
684 
685     strm->total_in = strm->total_out = 0;
686     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
687     strm->data_type = Z_UNKNOWN;
688 
689     s = (deflate_state *)strm->state;
690     s->pending = 0;
691     s->pending_out = s->pending_buf;
692 
693     if (s->noheader < 0) {
694         s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
695     }
696     s->status = s->noheader ? BUSY_STATE : INIT_STATE;
697     s->adler = 1;
698 
699     ct_init(s);
700     lm_init(s);
701 
702     return Z_OK;
703 }
704 
705 /* =========================================================================
706  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
707  * IN assertion: the stream state is correct and there is enough room in
708  * pending_buf.
709  */
710 local void putShortMSB (s, b)
711     deflate_state *s;
712     uInt b;
713 {
714     put_byte(s, (Byte)(b >> 8));
715     put_byte(s, (Byte)(b & 0xff));
716 }
717 
718 /* =========================================================================
719  * Flush as much pending output as possible.
720  */
721 local void flush_pending(strm)
722     z_stream *strm;
723 {
724     deflate_state *state = (deflate_state *) strm->state;
725     unsigned len = state->pending;
726 
727     if (len > strm->avail_out) len = strm->avail_out;
728     if (len == 0) return;
729 
730     if (strm->next_out != NULL) {
731 	zmemcpy(strm->next_out, state->pending_out, len);
732 	strm->next_out += len;
733     }
734     state->pending_out += len;
735     strm->total_out += len;
736     strm->avail_out -= len;
737     state->pending -= len;
738     if (state->pending == 0) {
739         state->pending_out = state->pending_buf;
740     }
741 }
742 
743 /* ========================================================================= */
744 int deflate (strm, flush)
745     z_stream *strm;
746     int flush;
747 {
748     deflate_state *state = (deflate_state *) strm->state;
749 
750     if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
751 
752     if (strm->next_in == Z_NULL && strm->avail_in != 0) {
753         ERR_RETURN(strm, Z_STREAM_ERROR);
754     }
755     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
756 
757     state->strm = strm; /* just in case */
758 
759     /* Write the zlib header */
760     if (state->status == INIT_STATE) {
761 
762         uInt header = (DEFLATED + ((state->w_bits-8)<<4)) << 8;
763         uInt level_flags = (state->level-1) >> 1;
764 
765         if (level_flags > 3) level_flags = 3;
766         header |= (level_flags << 6);
767         header += 31 - (header % 31);
768 
769         state->status = BUSY_STATE;
770         putShortMSB(state, header);
771     }
772 
773     /* Flush as much pending output as possible */
774     if (state->pending != 0) {
775         flush_pending(strm);
776         if (strm->avail_out == 0) return Z_OK;
777     }
778 
779     /* If we came back in here to get the last output from
780      * a previous flush, we're done for now.
781      */
782     if (state->status == FLUSH_STATE) {
783 	state->status = BUSY_STATE;
784 	if (flush != Z_NO_FLUSH && flush != Z_FINISH)
785 	    return Z_OK;
786     }
787 
788     /* User must not provide more input after the first FINISH: */
789     if (state->status == FINISH_STATE && strm->avail_in != 0) {
790         ERR_RETURN(strm, Z_BUF_ERROR);
791     }
792 
793     /* Start a new block or continue the current one.
794      */
795     if (strm->avail_in != 0 || state->lookahead != 0 ||
796         (flush == Z_FINISH && state->status != FINISH_STATE)) {
797         int quit;
798 
799         if (flush == Z_FINISH) {
800             state->status = FINISH_STATE;
801         }
802         if (state->level <= 3) {
803             quit = deflate_fast(state, flush);
804         } else {
805             quit = deflate_slow(state, flush);
806         }
807         if (quit || strm->avail_out == 0)
808 	    return Z_OK;
809         /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
810          * of deflate should use the same flush parameter to make sure
811          * that the flush is complete. So we don't have to output an
812          * empty block here, this will be done at next call. This also
813          * ensures that for a very small output buffer, we emit at most
814          * one empty block.
815          */
816     }
817 
818     /* If a flush was requested, we have a little more to output now. */
819     if (flush != Z_NO_FLUSH && flush != Z_FINISH
820 	&& state->status != FINISH_STATE) {
821 	switch (flush) {
822 	case Z_PARTIAL_FLUSH:
823 	    ct_align(state);
824 	    break;
825 	case Z_PACKET_FLUSH:
826 	    /* Output just the 3-bit `stored' block type value,
827 	       but not a zero length. */
828 	    ct_stored_type_only(state);
829 	    break;
830 	default:
831 	    ct_stored_block(state, (char*)0, 0L, 0);
832 	    /* For a full flush, this empty block will be recognized
833 	     * as a special marker by inflate_sync().
834 	     */
835 	    if (flush == Z_FULL_FLUSH) {
836 		CLEAR_HASH(state);             /* forget history */
837 	    }
838 	}
839 	flush_pending(strm);
840 	if (strm->avail_out == 0) {
841 	    /* We'll have to come back to get the rest of the output;
842 	     * this ensures we don't output a second zero-length stored
843 	     * block (or whatever).
844 	     */
845 	    state->status = FLUSH_STATE;
846 	    return Z_OK;
847 	}
848     }
849 
850     Assert(strm->avail_out > 0, "bug2");
851 
852     if (flush != Z_FINISH) return Z_OK;
853     if (state->noheader) return Z_STREAM_END;
854 
855     /* Write the zlib trailer (adler32) */
856     putShortMSB(state, (uInt)(state->adler >> 16));
857     putShortMSB(state, (uInt)(state->adler & 0xffff));
858     flush_pending(strm);
859     /* If avail_out is zero, the application will call deflate again
860      * to flush the rest.
861      */
862     state->noheader = -1; /* write the trailer only once! */
863     return state->pending != 0 ? Z_OK : Z_STREAM_END;
864 }
865 
866 /* ========================================================================= */
867 int deflateEnd (strm)
868     z_stream *strm;
869 {
870     deflate_state *state = (deflate_state *) strm->state;
871 
872     if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
873 
874     TRY_FREE(strm, state->window, state->w_size * 2 * sizeof(Byte));
875     TRY_FREE(strm, state->prev, state->w_size * sizeof(Pos));
876     TRY_FREE(strm, state->head, state->hash_size * sizeof(Pos));
877     TRY_FREE(strm, state->pending_buf, state->lit_bufsize * 2 * sizeof(ush));
878 
879     ZFREE(strm, state, sizeof(deflate_state));
880     strm->state = Z_NULL;
881 
882     return Z_OK;
883 }
884 
885 /* ===========================================================================
886  * Read a new buffer from the current input stream, update the adler32
887  * and total number of bytes read.
888  */
889 local int read_buf(strm, buf, size)
890     z_stream *strm;
891     charf *buf;
892     unsigned size;
893 {
894     unsigned len = strm->avail_in;
895     deflate_state *state = (deflate_state *) strm->state;
896 
897     if (len > size) len = size;
898     if (len == 0) return 0;
899 
900     strm->avail_in  -= len;
901 
902     if (!state->noheader) {
903         state->adler = adler32(state->adler, strm->next_in, len);
904     }
905     zmemcpy(buf, strm->next_in, len);
906     strm->next_in  += len;
907     strm->total_in += len;
908 
909     return (int)len;
910 }
911 
912 /* ===========================================================================
913  * Initialize the "longest match" routines for a new zlib stream
914  */
915 local void lm_init (s)
916     deflate_state *s;
917 {
918     s->window_size = (ulg)2L*s->w_size;
919 
920     CLEAR_HASH(s);
921 
922     /* Set the default configuration parameters:
923      */
924     s->max_lazy_match   = configuration_table[s->level].max_lazy;
925     s->good_match       = configuration_table[s->level].good_length;
926     s->nice_match       = configuration_table[s->level].nice_length;
927     s->max_chain_length = configuration_table[s->level].max_chain;
928 
929     s->strstart = 0;
930     s->block_start = 0L;
931     s->lookahead = 0;
932     s->match_length = MIN_MATCH-1;
933     s->match_available = 0;
934     s->ins_h = 0;
935 #ifdef ASMV
936     match_init(); /* initialize the asm code */
937 #endif
938 }
939 
940 /* ===========================================================================
941  * Set match_start to the longest match starting at the given string and
942  * return its length. Matches shorter or equal to prev_length are discarded,
943  * in which case the result is equal to prev_length and match_start is
944  * garbage.
945  * IN assertions: cur_match is the head of the hash chain for the current
946  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
947  */
948 #ifndef ASMV
949 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
950  * match.S. The code will be functionally equivalent.
951  */
952 local int longest_match(s, cur_match)
953     deflate_state *s;
954     IPos cur_match;                             /* current match */
955 {
956     unsigned chain_length = s->max_chain_length;/* max hash chain length */
957     register Bytef *scan = s->window + s->strstart; /* current string */
958     register Bytef *match;                       /* matched string */
959     register int len;                           /* length of current match */
960     int best_len = s->prev_length;              /* best match length so far */
961     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
962         s->strstart - (IPos)MAX_DIST(s) : NIL;
963     /* Stop when cur_match becomes <= limit. To simplify the code,
964      * we prevent matches with the string of window index 0.
965      */
966     Posf *prev = s->prev;
967     uInt wmask = s->w_mask;
968 
969 #ifdef UNALIGNED_OK
970     /* Compare two bytes at a time. Note: this is not always beneficial.
971      * Try with and without -DUNALIGNED_OK to check.
972      */
973     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
974     register ush scan_start = *(ushf*)scan;
975     register ush scan_end   = *(ushf*)(scan+best_len-1);
976 #else
977     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
978     register Byte scan_end1  = scan[best_len-1];
979     register Byte scan_end   = scan[best_len];
980 #endif
981 
982     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
983      * It is easy to get rid of this optimization if necessary.
984      */
985     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
986 
987     /* Do not waste too much time if we already have a good match: */
988     if (s->prev_length >= s->good_match) {
989         chain_length >>= 2;
990     }
991     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
992 
993     do {
994         Assert(cur_match < s->strstart, "no future");
995         match = s->window + cur_match;
996 
997         /* Skip to next match if the match length cannot increase
998          * or if the match length is less than 2:
999          */
1000 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1001         /* This code assumes sizeof(unsigned short) == 2. Do not use
1002          * UNALIGNED_OK if your compiler uses a different size.
1003          */
1004         if (*(ushf*)(match+best_len-1) != scan_end ||
1005             *(ushf*)match != scan_start) continue;
1006 
1007         /* It is not necessary to compare scan[2] and match[2] since they are
1008          * always equal when the other bytes match, given that the hash keys
1009          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1010          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1011          * lookahead only every 4th comparison; the 128th check will be made
1012          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1013          * necessary to put more guard bytes at the end of the window, or
1014          * to check more often for insufficient lookahead.
1015          */
1016         Assert(scan[2] == match[2], "scan[2]?");
1017         scan++, match++;
1018         do {
1019         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1020                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1021                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1022                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1023                  scan < strend);
1024         /* The funny "do {}" generates better code on most compilers */
1025 
1026         /* Here, scan <= window+strstart+257 */
1027         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1028         if (*scan == *match) scan++;
1029 
1030         len = (MAX_MATCH - 1) - (int)(strend-scan);
1031         scan = strend - (MAX_MATCH-1);
1032 
1033 #else /* UNALIGNED_OK */
1034 
1035         if (match[best_len]   != scan_end  ||
1036             match[best_len-1] != scan_end1 ||
1037             *match            != *scan     ||
1038             *++match          != scan[1])      continue;
1039 
1040         /* The check at best_len-1 can be removed because it will be made
1041          * again later. (This heuristic is not always a win.)
1042          * It is not necessary to compare scan[2] and match[2] since they
1043          * are always equal when the other bytes match, given that
1044          * the hash keys are equal and that HASH_BITS >= 8.
1045          */
1046         scan += 2, match++;
1047         Assert(*scan == *match, "match[2]?");
1048 
1049         /* We check for insufficient lookahead only every 8th comparison;
1050          * the 256th check will be made at strstart+258.
1051          */
1052         do {
1053         } while (*++scan == *++match && *++scan == *++match &&
1054                  *++scan == *++match && *++scan == *++match &&
1055                  *++scan == *++match && *++scan == *++match &&
1056                  *++scan == *++match && *++scan == *++match &&
1057                  scan < strend);
1058 
1059         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1060 
1061         len = MAX_MATCH - (int)(strend - scan);
1062         scan = strend - MAX_MATCH;
1063 
1064 #endif /* UNALIGNED_OK */
1065 
1066         if (len > best_len) {
1067             s->match_start = cur_match;
1068             best_len = len;
1069             if (len >= s->nice_match) break;
1070 #ifdef UNALIGNED_OK
1071             scan_end = *(ushf*)(scan+best_len-1);
1072 #else
1073             scan_end1  = scan[best_len-1];
1074             scan_end   = scan[best_len];
1075 #endif
1076         }
1077     } while ((cur_match = prev[cur_match & wmask]) > limit
1078              && --chain_length != 0);
1079 
1080     return best_len;
1081 }
1082 #endif /* ASMV */
1083 
1084 #ifdef DEBUG_ZLIB
1085 /* ===========================================================================
1086  * Check that the match at match_start is indeed a match.
1087  */
1088 local void check_match(s, start, match, length)
1089     deflate_state *s;
1090     IPos start, match;
1091     int length;
1092 {
1093     /* check that the match is indeed a match */
1094     if (memcmp((charf *)s->window + match,
1095                 (charf *)s->window + start, length) != EQUAL) {
1096         fprintf(stderr,
1097             " start %u, match %u, length %d\n",
1098             start, match, length);
1099         do { fprintf(stderr, "%c%c", s->window[match++],
1100                      s->window[start++]); } while (--length != 0);
1101         z_error("invalid match");
1102     }
1103     if (verbose > 1) {
1104         fprintf(stderr,"\\[%d,%d]", start-match, length);
1105         do { putc(s->window[start++], stderr); } while (--length != 0);
1106     }
1107 }
1108 #else
1109 #  define check_match(s, start, match, length)
1110 #endif
1111 
1112 /* ===========================================================================
1113  * Fill the window when the lookahead becomes insufficient.
1114  * Updates strstart and lookahead.
1115  *
1116  * IN assertion: lookahead < MIN_LOOKAHEAD
1117  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1118  *    At least one byte has been read, or avail_in == 0; reads are
1119  *    performed for at least two bytes (required for the zip translate_eol
1120  *    option -- not supported here).
1121  */
1122 local void fill_window(s)
1123     deflate_state *s;
1124 {
1125     register unsigned n, m;
1126     register Posf *p;
1127     unsigned more;    /* Amount of free space at the end of the window. */
1128     uInt wsize = s->w_size;
1129 
1130     do {
1131         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1132 
1133         /* Deal with !@#$% 64K limit: */
1134         if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1135             more = wsize;
1136         } else if (more == (unsigned)(-1)) {
1137             /* Very unlikely, but possible on 16 bit machine if strstart == 0
1138              * and lookahead == 1 (input done one byte at time)
1139              */
1140             more--;
1141 
1142         /* If the window is almost full and there is insufficient lookahead,
1143          * move the upper half to the lower one to make room in the upper half.
1144          */
1145         } else if (s->strstart >= wsize+MAX_DIST(s)) {
1146 
1147             /* By the IN assertion, the window is not empty so we can't confuse
1148              * more == 0 with more == 64K on a 16 bit machine.
1149              */
1150             zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1151                    (unsigned)wsize);
1152             s->match_start -= wsize;
1153             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1154 
1155             s->block_start -= (long) wsize;
1156 
1157             /* Slide the hash table (could be avoided with 32 bit values
1158                at the expense of memory usage):
1159              */
1160             n = s->hash_size;
1161             p = &s->head[n];
1162             do {
1163                 m = *--p;
1164                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1165             } while (--n);
1166 
1167             n = wsize;
1168             p = &s->prev[n];
1169             do {
1170                 m = *--p;
1171                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1172                 /* If n is not on any hash chain, prev[n] is garbage but
1173                  * its value will never be used.
1174                  */
1175             } while (--n);
1176 
1177             more += wsize;
1178         }
1179         if (s->strm->avail_in == 0) return;
1180 
1181         /* If there was no sliding:
1182          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1183          *    more == window_size - lookahead - strstart
1184          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1185          * => more >= window_size - 2*WSIZE + 2
1186          * In the BIG_MEM or MMAP case (not yet supported),
1187          *   window_size == input_size + MIN_LOOKAHEAD  &&
1188          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1189          * Otherwise, window_size == 2*WSIZE so more >= 2.
1190          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1191          */
1192         Assert(more >= 2, "more < 2");
1193 
1194         n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1195                      more);
1196         s->lookahead += n;
1197 
1198         /* Initialize the hash value now that we have some input: */
1199         if (s->lookahead >= MIN_MATCH) {
1200             s->ins_h = s->window[s->strstart];
1201             UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1202 #if MIN_MATCH != 3
1203             Call UPDATE_HASH() MIN_MATCH-3 more times
1204 #endif
1205         }
1206         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1207          * but this is not important since only literal bytes will be emitted.
1208          */
1209 
1210     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1211 }
1212 
1213 /* ===========================================================================
1214  * Flush the current block, with given end-of-file flag.
1215  * IN assertion: strstart is set to the end of the current match.
1216  */
1217 #define FLUSH_BLOCK_ONLY(s, flush) { \
1218    ct_flush_block(s, (s->block_start >= 0L ? \
1219            (charf *)&s->window[(unsigned)s->block_start] : \
1220            (charf *)Z_NULL), (long)s->strstart - s->block_start, (flush)); \
1221    s->block_start = s->strstart; \
1222    flush_pending(s->strm); \
1223    Tracev((stderr,"[FLUSH]")); \
1224 }
1225 
1226 /* Same but force premature exit if necessary. */
1227 #define FLUSH_BLOCK(s, flush) { \
1228    FLUSH_BLOCK_ONLY(s, flush); \
1229    if (s->strm->avail_out == 0) return 1; \
1230 }
1231 
1232 /* ===========================================================================
1233  * Compress as much as possible from the input stream, return true if
1234  * processing was terminated prematurely (no more input or output space).
1235  * This function does not perform lazy evaluationof matches and inserts
1236  * new strings in the dictionary only for unmatched strings or for short
1237  * matches. It is used only for the fast compression options.
1238  */
1239 local int deflate_fast(s, flush)
1240     deflate_state *s;
1241     int flush;
1242 {
1243     IPos hash_head = NIL; /* head of the hash chain */
1244     int bflush;     /* set if current block must be flushed */
1245 
1246     s->prev_length = MIN_MATCH-1;
1247 
1248     for (;;) {
1249         /* Make sure that we always have enough lookahead, except
1250          * at the end of the input file. We need MAX_MATCH bytes
1251          * for the next match, plus MIN_MATCH bytes to insert the
1252          * string following the next match.
1253          */
1254         if (s->lookahead < MIN_LOOKAHEAD) {
1255             fill_window(s);
1256             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
1257 
1258             if (s->lookahead == 0) break; /* flush the current block */
1259         }
1260 
1261         /* Insert the string window[strstart .. strstart+2] in the
1262          * dictionary, and set hash_head to the head of the hash chain:
1263          */
1264         if (s->lookahead >= MIN_MATCH) {
1265             INSERT_STRING(s, s->strstart, hash_head);
1266         }
1267 
1268         /* Find the longest match, discarding those <= prev_length.
1269          * At this point we have always match_length < MIN_MATCH
1270          */
1271         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1272             /* To simplify the code, we prevent matches with the string
1273              * of window index 0 (in particular we have to avoid a match
1274              * of the string with itself at the start of the input file).
1275              */
1276             if (s->strategy != Z_HUFFMAN_ONLY) {
1277                 s->match_length = longest_match (s, hash_head);
1278             }
1279             /* longest_match() sets match_start */
1280 
1281             if (s->match_length > s->lookahead) s->match_length = s->lookahead;
1282         }
1283         if (s->match_length >= MIN_MATCH) {
1284             check_match(s, s->strstart, s->match_start, s->match_length);
1285 
1286             bflush = ct_tally(s, s->strstart - s->match_start,
1287                               s->match_length - MIN_MATCH);
1288 
1289             s->lookahead -= s->match_length;
1290 
1291             /* Insert new strings in the hash table only if the match length
1292              * is not too large. This saves time but degrades compression.
1293              */
1294             if (s->match_length <= s->max_insert_length &&
1295                 s->lookahead >= MIN_MATCH) {
1296                 s->match_length--; /* string at strstart already in hash table */
1297                 do {
1298                     s->strstart++;
1299                     INSERT_STRING(s, s->strstart, hash_head);
1300                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1301                      * always MIN_MATCH bytes ahead.
1302                      */
1303                 } while (--s->match_length != 0);
1304                 s->strstart++;
1305             } else {
1306                 s->strstart += s->match_length;
1307                 s->match_length = 0;
1308                 s->ins_h = s->window[s->strstart];
1309                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1310 #if MIN_MATCH != 3
1311                 Call UPDATE_HASH() MIN_MATCH-3 more times
1312 #endif
1313                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1314                  * matter since it will be recomputed at next deflate call.
1315                  */
1316             }
1317         } else {
1318             /* No match, output a literal byte */
1319             Tracevv((stderr,"%c", s->window[s->strstart]));
1320             bflush = ct_tally (s, 0, s->window[s->strstart]);
1321             s->lookahead--;
1322             s->strstart++;
1323         }
1324         if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
1325     }
1326     FLUSH_BLOCK(s, flush);
1327     return 0; /* normal exit */
1328 }
1329 
1330 /* ===========================================================================
1331  * Same as above, but achieves better compression. We use a lazy
1332  * evaluation for matches: a match is finally adopted only if there is
1333  * no better match at the next window position.
1334  */
1335 local int deflate_slow(s, flush)
1336     deflate_state *s;
1337     int flush;
1338 {
1339     IPos hash_head = NIL;    /* head of hash chain */
1340     int bflush;              /* set if current block must be flushed */
1341 
1342     /* Process the input block. */
1343     for (;;) {
1344         /* Make sure that we always have enough lookahead, except
1345          * at the end of the input file. We need MAX_MATCH bytes
1346          * for the next match, plus MIN_MATCH bytes to insert the
1347          * string following the next match.
1348          */
1349         if (s->lookahead < MIN_LOOKAHEAD) {
1350             fill_window(s);
1351             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
1352 
1353             if (s->lookahead == 0) break; /* flush the current block */
1354         }
1355 
1356         /* Insert the string window[strstart .. strstart+2] in the
1357          * dictionary, and set hash_head to the head of the hash chain:
1358          */
1359         if (s->lookahead >= MIN_MATCH) {
1360             INSERT_STRING(s, s->strstart, hash_head);
1361         }
1362 
1363         /* Find the longest match, discarding those <= prev_length.
1364          */
1365         s->prev_length = s->match_length, s->prev_match = s->match_start;
1366         s->match_length = MIN_MATCH-1;
1367 
1368         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1369             s->strstart - hash_head <= MAX_DIST(s)) {
1370             /* To simplify the code, we prevent matches with the string
1371              * of window index 0 (in particular we have to avoid a match
1372              * of the string with itself at the start of the input file).
1373              */
1374             if (s->strategy != Z_HUFFMAN_ONLY) {
1375                 s->match_length = longest_match (s, hash_head);
1376             }
1377             /* longest_match() sets match_start */
1378             if (s->match_length > s->lookahead) s->match_length = s->lookahead;
1379 
1380             if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1381                  (s->match_length == MIN_MATCH &&
1382                   s->strstart - s->match_start > TOO_FAR))) {
1383 
1384                 /* If prev_match is also MIN_MATCH, match_start is garbage
1385                  * but we will ignore the current match anyway.
1386                  */
1387                 s->match_length = MIN_MATCH-1;
1388             }
1389         }
1390         /* If there was a match at the previous step and the current
1391          * match is not better, output the previous match:
1392          */
1393         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1394             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1395             /* Do not insert strings in hash table beyond this. */
1396 
1397             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1398 
1399             bflush = ct_tally(s, s->strstart -1 - s->prev_match,
1400                               s->prev_length - MIN_MATCH);
1401 
1402             /* Insert in hash table all strings up to the end of the match.
1403              * strstart-1 and strstart are already inserted. If there is not
1404              * enough lookahead, the last two strings are not inserted in
1405              * the hash table.
1406              */
1407             s->lookahead -= s->prev_length-1;
1408             s->prev_length -= 2;
1409             do {
1410                 if (++s->strstart <= max_insert) {
1411                     INSERT_STRING(s, s->strstart, hash_head);
1412                 }
1413             } while (--s->prev_length != 0);
1414             s->match_available = 0;
1415             s->match_length = MIN_MATCH-1;
1416             s->strstart++;
1417 
1418             if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
1419 
1420         } else if (s->match_available) {
1421             /* If there was no match at the previous position, output a
1422              * single literal. If there was a match but the current match
1423              * is longer, truncate the previous match to a single literal.
1424              */
1425             Tracevv((stderr,"%c", s->window[s->strstart-1]));
1426             if (ct_tally (s, 0, s->window[s->strstart-1])) {
1427                 FLUSH_BLOCK_ONLY(s, Z_NO_FLUSH);
1428             }
1429             s->strstart++;
1430             s->lookahead--;
1431             if (s->strm->avail_out == 0) return 1;
1432         } else {
1433             /* There is no previous match to compare with, wait for
1434              * the next step to decide.
1435              */
1436             s->match_available = 1;
1437             s->strstart++;
1438             s->lookahead--;
1439         }
1440     }
1441     Assert (flush != Z_NO_FLUSH, "no flush?");
1442     if (s->match_available) {
1443         Tracevv((stderr,"%c", s->window[s->strstart-1]));
1444         ct_tally (s, 0, s->window[s->strstart-1]);
1445         s->match_available = 0;
1446     }
1447     FLUSH_BLOCK(s, flush);
1448     return 0;
1449 }
1450 
1451 
1452 /*+++++*/
1453 /* trees.c -- output deflated data using Huffman coding
1454  * Copyright (C) 1995 Jean-loup Gailly
1455  * For conditions of distribution and use, see copyright notice in zlib.h
1456  */
1457 
1458 /*
1459  *  ALGORITHM
1460  *
1461  *      The "deflation" process uses several Huffman trees. The more
1462  *      common source values are represented by shorter bit sequences.
1463  *
1464  *      Each code tree is stored in a compressed form which is itself
1465  * a Huffman encoding of the lengths of all the code strings (in
1466  * ascending order by source values).  The actual code strings are
1467  * reconstructed from the lengths in the inflate process, as described
1468  * in the deflate specification.
1469  *
1470  *  REFERENCES
1471  *
1472  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1473  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1474  *
1475  *      Storer, James A.
1476  *          Data Compression:  Methods and Theory, pp. 49-50.
1477  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
1478  *
1479  *      Sedgewick, R.
1480  *          Algorithms, p290.
1481  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
1482  */
1483 
1484 /* From: trees.c,v 1.5 1995/05/03 17:27:12 jloup Exp */
1485 
1486 #ifdef DEBUG_ZLIB
1487 #  include <ctype.h>
1488 #endif
1489 
1490 /* ===========================================================================
1491  * Constants
1492  */
1493 
1494 #define MAX_BL_BITS 7
1495 /* Bit length codes must not exceed MAX_BL_BITS bits */
1496 
1497 #define END_BLOCK 256
1498 /* end of block literal code */
1499 
1500 #define REP_3_6      16
1501 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
1502 
1503 #define REPZ_3_10    17
1504 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
1505 
1506 #define REPZ_11_138  18
1507 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
1508 
1509 local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1510    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1511 
1512 local int extra_dbits[D_CODES] /* extra bits for each distance code */
1513    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1514 
1515 local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1516    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1517 
1518 local uch bl_order[BL_CODES]
1519    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1520 /* The lengths of the bit length codes are sent in order of decreasing
1521  * probability, to avoid transmitting the lengths for unused bit length codes.
1522  */
1523 
1524 #define Buf_size (8 * 2*sizeof(char))
1525 /* Number of bits used within bi_buf. (bi_buf might be implemented on
1526  * more than 16 bits on some systems.)
1527  */
1528 
1529 /* ===========================================================================
1530  * Local data. These are initialized only once.
1531  * To do: initialize at compile time to be completely reentrant. ???
1532  */
1533 
1534 local ct_data static_ltree[L_CODES+2];
1535 /* The static literal tree. Since the bit lengths are imposed, there is no
1536  * need for the L_CODES extra codes used during heap construction. However
1537  * The codes 286 and 287 are needed to build a canonical tree (see ct_init
1538  * below).
1539  */
1540 
1541 local ct_data static_dtree[D_CODES];
1542 /* The static distance tree. (Actually a trivial tree since all codes use
1543  * 5 bits.)
1544  */
1545 
1546 local uch dist_code[512];
1547 /* distance codes. The first 256 values correspond to the distances
1548  * 3 .. 258, the last 256 values correspond to the top 8 bits of
1549  * the 15 bit distances.
1550  */
1551 
1552 local uch length_code[MAX_MATCH-MIN_MATCH+1];
1553 /* length code for each normalized match length (0 == MIN_MATCH) */
1554 
1555 local int base_length[LENGTH_CODES];
1556 /* First normalized length for each code (0 = MIN_MATCH) */
1557 
1558 local int base_dist[D_CODES];
1559 /* First normalized distance for each code (0 = distance of 1) */
1560 
1561 struct static_tree_desc_s {
1562     ct_data *static_tree;        /* static tree or NULL */
1563     intf    *extra_bits;         /* extra bits for each code or NULL */
1564     int     extra_base;          /* base index for extra_bits */
1565     int     elems;               /* max number of elements in the tree */
1566     int     max_length;          /* max bit length for the codes */
1567 };
1568 
1569 local static_tree_desc  static_l_desc =
1570 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1571 
1572 local static_tree_desc  static_d_desc =
1573 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
1574 
1575 local static_tree_desc  static_bl_desc =
1576 {(ct_data *)0, extra_blbits, 0,      BL_CODES, MAX_BL_BITS};
1577 
1578 /* ===========================================================================
1579  * Local (static) routines in this file.
1580  */
1581 
1582 local void ct_static_init OF((void));
1583 local void init_block     OF((deflate_state *s));
1584 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
1585 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
1586 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
1587 local void build_tree     OF((deflate_state *s, tree_desc *desc));
1588 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1589 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1590 local int  build_bl_tree  OF((deflate_state *s));
1591 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1592                               int blcodes));
1593 local void compress_block OF((deflate_state *s, ct_data *ltree,
1594                               ct_data *dtree));
1595 local void set_data_type  OF((deflate_state *s));
1596 local unsigned bi_reverse OF((unsigned value, int length));
1597 local void bi_windup      OF((deflate_state *s));
1598 local void bi_flush       OF((deflate_state *s));
1599 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
1600                               int header));
1601 
1602 #ifndef DEBUG_ZLIB
1603 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1604    /* Send a code of the given tree. c and tree must not have side effects */
1605 
1606 #else /* DEBUG_ZLIB */
1607 #  define send_code(s, c, tree) \
1608      { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \
1609        send_bits(s, tree[c].Code, tree[c].Len); }
1610 #endif
1611 
1612 #define d_code(dist) \
1613    ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1614 /* Mapping from a distance to a distance code. dist is the distance - 1 and
1615  * must not have side effects. dist_code[256] and dist_code[257] are never
1616  * used.
1617  */
1618 
1619 /* ===========================================================================
1620  * Output a short LSB first on the stream.
1621  * IN assertion: there is enough room in pendingBuf.
1622  */
1623 #define put_short(s, w) { \
1624     put_byte(s, (uch)((w) & 0xff)); \
1625     put_byte(s, (uch)((ush)(w) >> 8)); \
1626 }
1627 
1628 /* ===========================================================================
1629  * Send a value on a given number of bits.
1630  * IN assertion: length <= 16 and value fits in length bits.
1631  */
1632 #ifdef DEBUG_ZLIB
1633 local void send_bits      OF((deflate_state *s, int value, int length));
1634 
1635 local void send_bits(s, value, length)
1636     deflate_state *s;
1637     int value;  /* value to send */
1638     int length; /* number of bits */
1639 {
1640     Tracev((stderr," l %2d v %4x ", length, value));
1641     Assert(length > 0 && length <= 15, "invalid length");
1642     s->bits_sent += (ulg)length;
1643 
1644     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
1645      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
1646      * unused bits in value.
1647      */
1648     if (s->bi_valid > (int)Buf_size - length) {
1649         s->bi_buf |= (value << s->bi_valid);
1650         put_short(s, s->bi_buf);
1651         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
1652         s->bi_valid += length - Buf_size;
1653     } else {
1654         s->bi_buf |= value << s->bi_valid;
1655         s->bi_valid += length;
1656     }
1657 }
1658 #else /* !DEBUG_ZLIB */
1659 
1660 #define send_bits(s, value, length) \
1661 { int len = length;\
1662   if (s->bi_valid > (int)Buf_size - len) {\
1663     int val = value;\
1664     s->bi_buf |= (val << s->bi_valid);\
1665     put_short(s, s->bi_buf);\
1666     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
1667     s->bi_valid += len - Buf_size;\
1668   } else {\
1669     s->bi_buf |= (value) << s->bi_valid;\
1670     s->bi_valid += len;\
1671   }\
1672 }
1673 #endif /* DEBUG_ZLIB */
1674 
1675 
1676 #define MAX(a,b) (a >= b ? a : b)
1677 /* the arguments must not have side effects */
1678 
1679 /* ===========================================================================
1680  * Initialize the various 'constant' tables.
1681  * To do: do this at compile time.
1682  */
1683 local void ct_static_init()
1684 {
1685     int n;        /* iterates over tree elements */
1686     int bits;     /* bit counter */
1687     int length;   /* length value */
1688     int code;     /* code value */
1689     int dist;     /* distance index */
1690     ush bl_count[MAX_BITS+1];
1691     /* number of codes at each bit length for an optimal tree */
1692 
1693     /* Initialize the mapping length (0..255) -> length code (0..28) */
1694     length = 0;
1695     for (code = 0; code < LENGTH_CODES-1; code++) {
1696         base_length[code] = length;
1697         for (n = 0; n < (1<<extra_lbits[code]); n++) {
1698             length_code[length++] = (uch)code;
1699         }
1700     }
1701     Assert (length == 256, "ct_static_init: length != 256");
1702     /* Note that the length 255 (match length 258) can be represented
1703      * in two different ways: code 284 + 5 bits or code 285, so we
1704      * overwrite length_code[255] to use the best encoding:
1705      */
1706     length_code[length-1] = (uch)code;
1707 
1708     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1709     dist = 0;
1710     for (code = 0 ; code < 16; code++) {
1711         base_dist[code] = dist;
1712         for (n = 0; n < (1<<extra_dbits[code]); n++) {
1713             dist_code[dist++] = (uch)code;
1714         }
1715     }
1716     Assert (dist == 256, "ct_static_init: dist != 256");
1717     dist >>= 7; /* from now on, all distances are divided by 128 */
1718     for ( ; code < D_CODES; code++) {
1719         base_dist[code] = dist << 7;
1720         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
1721             dist_code[256 + dist++] = (uch)code;
1722         }
1723     }
1724     Assert (dist == 256, "ct_static_init: 256+dist != 512");
1725 
1726     /* Construct the codes of the static literal tree */
1727     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
1728     n = 0;
1729     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
1730     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
1731     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
1732     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
1733     /* Codes 286 and 287 do not exist, but we must include them in the
1734      * tree construction to get a canonical Huffman tree (longest code
1735      * all ones)
1736      */
1737     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
1738 
1739     /* The static distance tree is trivial: */
1740     for (n = 0; n < D_CODES; n++) {
1741         static_dtree[n].Len = 5;
1742         static_dtree[n].Code = bi_reverse(n, 5);
1743     }
1744 }
1745 
1746 /* ===========================================================================
1747  * Initialize the tree data structures for a new zlib stream.
1748  */
1749 local void ct_init(s)
1750     deflate_state *s;
1751 {
1752     if (static_dtree[0].Len == 0) {
1753         ct_static_init();              /* To do: at compile time */
1754     }
1755 
1756     s->compressed_len = 0L;
1757 
1758     s->l_desc.dyn_tree = s->dyn_ltree;
1759     s->l_desc.stat_desc = &static_l_desc;
1760 
1761     s->d_desc.dyn_tree = s->dyn_dtree;
1762     s->d_desc.stat_desc = &static_d_desc;
1763 
1764     s->bl_desc.dyn_tree = s->bl_tree;
1765     s->bl_desc.stat_desc = &static_bl_desc;
1766 
1767     s->bi_buf = 0;
1768     s->bi_valid = 0;
1769     s->last_eob_len = 8; /* enough lookahead for inflate */
1770 #ifdef DEBUG_ZLIB
1771     s->bits_sent = 0L;
1772 #endif
1773     s->blocks_in_packet = 0;
1774 
1775     /* Initialize the first block of the first file: */
1776     init_block(s);
1777 }
1778 
1779 /* ===========================================================================
1780  * Initialize a new block.
1781  */
1782 local void init_block(s)
1783     deflate_state *s;
1784 {
1785     int n; /* iterates over tree elements */
1786 
1787     /* Initialize the trees. */
1788     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
1789     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
1790     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
1791 
1792     s->dyn_ltree[END_BLOCK].Freq = 1;
1793     s->opt_len = s->static_len = 0L;
1794     s->last_lit = s->matches = 0;
1795 }
1796 
1797 #define SMALLEST 1
1798 /* Index within the heap array of least frequent node in the Huffman tree */
1799 
1800 
1801 /* ===========================================================================
1802  * Remove the smallest element from the heap and recreate the heap with
1803  * one less element. Updates heap and heap_len.
1804  */
1805 #define pqremove(s, tree, top) \
1806 {\
1807     top = s->heap[SMALLEST]; \
1808     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
1809     pqdownheap(s, tree, SMALLEST); \
1810 }
1811 
1812 /* ===========================================================================
1813  * Compares to subtrees, using the tree depth as tie breaker when
1814  * the subtrees have equal frequency. This minimizes the worst case length.
1815  */
1816 #define smaller(tree, n, m, depth) \
1817    (tree[n].Freq < tree[m].Freq || \
1818    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
1819 
1820 /* ===========================================================================
1821  * Restore the heap property by moving down the tree starting at node k,
1822  * exchanging a node with the smallest of its two sons if necessary, stopping
1823  * when the heap property is re-established (each father smaller than its
1824  * two sons).
1825  */
1826 local void pqdownheap(s, tree, k)
1827     deflate_state *s;
1828     ct_data *tree;  /* the tree to restore */
1829     int k;               /* node to move down */
1830 {
1831     int v = s->heap[k];
1832     int j = k << 1;  /* left son of k */
1833     while (j <= s->heap_len) {
1834         /* Set j to the smallest of the two sons: */
1835         if (j < s->heap_len &&
1836             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
1837             j++;
1838         }
1839         /* Exit if v is smaller than both sons */
1840         if (smaller(tree, v, s->heap[j], s->depth)) break;
1841 
1842         /* Exchange v with the smallest son */
1843         s->heap[k] = s->heap[j];  k = j;
1844 
1845         /* And continue down the tree, setting j to the left son of k */
1846         j <<= 1;
1847     }
1848     s->heap[k] = v;
1849 }
1850 
1851 /* ===========================================================================
1852  * Compute the optimal bit lengths for a tree and update the total bit length
1853  * for the current block.
1854  * IN assertion: the fields freq and dad are set, heap[heap_max] and
1855  *    above are the tree nodes sorted by increasing frequency.
1856  * OUT assertions: the field len is set to the optimal bit length, the
1857  *     array bl_count contains the frequencies for each bit length.
1858  *     The length opt_len is updated; static_len is also updated if stree is
1859  *     not null.
1860  */
1861 local void gen_bitlen(s, desc)
1862     deflate_state *s;
1863     tree_desc *desc;    /* the tree descriptor */
1864 {
1865     ct_data *tree  = desc->dyn_tree;
1866     int max_code   = desc->max_code;
1867     ct_data *stree = desc->stat_desc->static_tree;
1868     intf *extra    = desc->stat_desc->extra_bits;
1869     int base       = desc->stat_desc->extra_base;
1870     int max_length = desc->stat_desc->max_length;
1871     int h;              /* heap index */
1872     int n, m;           /* iterate over the tree elements */
1873     int bits;           /* bit length */
1874     int xbits;          /* extra bits */
1875     ush f;              /* frequency */
1876     int overflow = 0;   /* number of elements with bit length too large */
1877 
1878     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
1879 
1880     /* In a first pass, compute the optimal bit lengths (which may
1881      * overflow in the case of the bit length tree).
1882      */
1883     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
1884 
1885     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
1886         n = s->heap[h];
1887         bits = tree[tree[n].Dad].Len + 1;
1888         if (bits > max_length) bits = max_length, overflow++;
1889         tree[n].Len = (ush)bits;
1890         /* We overwrite tree[n].Dad which is no longer needed */
1891 
1892         if (n > max_code) continue; /* not a leaf node */
1893 
1894         s->bl_count[bits]++;
1895         xbits = 0;
1896         if (n >= base) xbits = extra[n-base];
1897         f = tree[n].Freq;
1898         s->opt_len += (ulg)f * (bits + xbits);
1899         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
1900     }
1901     if (overflow == 0) return;
1902 
1903     Trace((stderr,"\nbit length overflow\n"));
1904     /* This happens for example on obj2 and pic of the Calgary corpus */
1905 
1906     /* Find the first bit length which could increase: */
1907     do {
1908         bits = max_length-1;
1909         while (s->bl_count[bits] == 0) bits--;
1910         s->bl_count[bits]--;      /* move one leaf down the tree */
1911         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
1912         s->bl_count[max_length]--;
1913         /* The brother of the overflow item also moves one step up,
1914          * but this does not affect bl_count[max_length]
1915          */
1916         overflow -= 2;
1917     } while (overflow > 0);
1918 
1919     /* Now recompute all bit lengths, scanning in increasing frequency.
1920      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1921      * lengths instead of fixing only the wrong ones. This idea is taken
1922      * from 'ar' written by Haruhiko Okumura.)
1923      */
1924     for (bits = max_length; bits != 0; bits--) {
1925         n = s->bl_count[bits];
1926         while (n != 0) {
1927             m = s->heap[--h];
1928             if (m > max_code) continue;
1929             if (tree[m].Len != (unsigned) bits) {
1930                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
1931                 s->opt_len += ((long)bits - (long)tree[m].Len)
1932                               *(long)tree[m].Freq;
1933                 tree[m].Len = (ush)bits;
1934             }
1935             n--;
1936         }
1937     }
1938 }
1939 
1940 /* ===========================================================================
1941  * Generate the codes for a given tree and bit counts (which need not be
1942  * optimal).
1943  * IN assertion: the array bl_count contains the bit length statistics for
1944  * the given tree and the field len is set for all tree elements.
1945  * OUT assertion: the field code is set for all tree elements of non
1946  *     zero code length.
1947  */
1948 local void gen_codes (tree, max_code, bl_count)
1949     ct_data *tree;             /* the tree to decorate */
1950     int max_code;              /* largest code with non zero frequency */
1951     ushf *bl_count;            /* number of codes at each bit length */
1952 {
1953     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
1954     ush code = 0;              /* running code value */
1955     int bits;                  /* bit index */
1956     int n;                     /* code index */
1957 
1958     /* The distribution counts are first used to generate the code values
1959      * without bit reversal.
1960      */
1961     for (bits = 1; bits <= MAX_BITS; bits++) {
1962         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
1963     }
1964     /* Check that the bit counts in bl_count are consistent. The last code
1965      * must be all ones.
1966      */
1967     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
1968             "inconsistent bit counts");
1969     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
1970 
1971     for (n = 0;  n <= max_code; n++) {
1972         int len = tree[n].Len;
1973         if (len == 0) continue;
1974         /* Now reverse the bits */
1975         tree[n].Code = bi_reverse(next_code[len]++, len);
1976 
1977         Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
1978              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
1979     }
1980 }
1981 
1982 /* ===========================================================================
1983  * Construct one Huffman tree and assigns the code bit strings and lengths.
1984  * Update the total bit length for the current block.
1985  * IN assertion: the field freq is set for all tree elements.
1986  * OUT assertions: the fields len and code are set to the optimal bit length
1987  *     and corresponding code. The length opt_len is updated; static_len is
1988  *     also updated if stree is not null. The field max_code is set.
1989  */
1990 local void build_tree(s, desc)
1991     deflate_state *s;
1992     tree_desc *desc; /* the tree descriptor */
1993 {
1994     ct_data *tree   = desc->dyn_tree;
1995     ct_data *stree  = desc->stat_desc->static_tree;
1996     int elems       = desc->stat_desc->elems;
1997     int n, m;          /* iterate over heap elements */
1998     int max_code = -1; /* largest code with non zero frequency */
1999     int node;          /* new node being created */
2000 
2001     /* Construct the initial heap, with least frequent element in
2002      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2003      * heap[0] is not used.
2004      */
2005     s->heap_len = 0, s->heap_max = HEAP_SIZE;
2006 
2007     for (n = 0; n < elems; n++) {
2008         if (tree[n].Freq != 0) {
2009             s->heap[++(s->heap_len)] = max_code = n;
2010             s->depth[n] = 0;
2011         } else {
2012             tree[n].Len = 0;
2013         }
2014     }
2015 
2016     /* The pkzip format requires that at least one distance code exists,
2017      * and that at least one bit should be sent even if there is only one
2018      * possible code. So to avoid special checks later on we force at least
2019      * two codes of non zero frequency.
2020      */
2021     while (s->heap_len < 2) {
2022         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2023         tree[node].Freq = 1;
2024         s->depth[node] = 0;
2025         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2026         /* node is 0 or 1 so it does not have extra bits */
2027     }
2028     desc->max_code = max_code;
2029 
2030     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2031      * establish sub-heaps of increasing lengths:
2032      */
2033     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2034 
2035     /* Construct the Huffman tree by repeatedly combining the least two
2036      * frequent nodes.
2037      */
2038     node = elems;              /* next internal node of the tree */
2039     do {
2040         pqremove(s, tree, n);  /* n = node of least frequency */
2041         m = s->heap[SMALLEST]; /* m = node of next least frequency */
2042 
2043         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2044         s->heap[--(s->heap_max)] = m;
2045 
2046         /* Create a new node father of n and m */
2047         tree[node].Freq = tree[n].Freq + tree[m].Freq;
2048         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2049         tree[n].Dad = tree[m].Dad = (ush)node;
2050 #ifdef DUMP_BL_TREE
2051         if (tree == s->bl_tree) {
2052             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2053                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2054         }
2055 #endif
2056         /* and insert the new node in the heap */
2057         s->heap[SMALLEST] = node++;
2058         pqdownheap(s, tree, SMALLEST);
2059 
2060     } while (s->heap_len >= 2);
2061 
2062     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2063 
2064     /* At this point, the fields freq and dad are set. We can now
2065      * generate the bit lengths.
2066      */
2067     gen_bitlen(s, (tree_desc *)desc);
2068 
2069     /* The field len is now set, we can generate the bit codes */
2070     gen_codes ((ct_data *)tree, max_code, s->bl_count);
2071 }
2072 
2073 /* ===========================================================================
2074  * Scan a literal or distance tree to determine the frequencies of the codes
2075  * in the bit length tree.
2076  */
2077 local void scan_tree (s, tree, max_code)
2078     deflate_state *s;
2079     ct_data *tree;   /* the tree to be scanned */
2080     int max_code;    /* and its largest code of non zero frequency */
2081 {
2082     int n;                     /* iterates over all tree elements */
2083     int prevlen = -1;          /* last emitted length */
2084     int curlen;                /* length of current code */
2085     int nextlen = tree[0].Len; /* length of next code */
2086     int count = 0;             /* repeat count of the current code */
2087     int max_count = 7;         /* max repeat count */
2088     int min_count = 4;         /* min repeat count */
2089 
2090     if (nextlen == 0) max_count = 138, min_count = 3;
2091     tree[max_code+1].Len = (ush)0xffff; /* guard */
2092 
2093     for (n = 0; n <= max_code; n++) {
2094         curlen = nextlen; nextlen = tree[n+1].Len;
2095         if (++count < max_count && curlen == nextlen) {
2096             continue;
2097         } else if (count < min_count) {
2098             s->bl_tree[curlen].Freq += count;
2099         } else if (curlen != 0) {
2100             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2101             s->bl_tree[REP_3_6].Freq++;
2102         } else if (count <= 10) {
2103             s->bl_tree[REPZ_3_10].Freq++;
2104         } else {
2105             s->bl_tree[REPZ_11_138].Freq++;
2106         }
2107         count = 0; prevlen = curlen;
2108         if (nextlen == 0) {
2109             max_count = 138, min_count = 3;
2110         } else if (curlen == nextlen) {
2111             max_count = 6, min_count = 3;
2112         } else {
2113             max_count = 7, min_count = 4;
2114         }
2115     }
2116 }
2117 
2118 /* ===========================================================================
2119  * Send a literal or distance tree in compressed form, using the codes in
2120  * bl_tree.
2121  */
2122 local void send_tree (s, tree, max_code)
2123     deflate_state *s;
2124     ct_data *tree; /* the tree to be scanned */
2125     int max_code;       /* and its largest code of non zero frequency */
2126 {
2127     int n;                     /* iterates over all tree elements */
2128     int prevlen = -1;          /* last emitted length */
2129     int curlen;                /* length of current code */
2130     int nextlen = tree[0].Len; /* length of next code */
2131     int count = 0;             /* repeat count of the current code */
2132     int max_count = 7;         /* max repeat count */
2133     int min_count = 4;         /* min repeat count */
2134 
2135     /* tree[max_code+1].Len = -1; */  /* guard already set */
2136     if (nextlen == 0) max_count = 138, min_count = 3;
2137 
2138     for (n = 0; n <= max_code; n++) {
2139         curlen = nextlen; nextlen = tree[n+1].Len;
2140         if (++count < max_count && curlen == nextlen) {
2141             continue;
2142         } else if (count < min_count) {
2143             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2144 
2145         } else if (curlen != 0) {
2146             if (curlen != prevlen) {
2147                 send_code(s, curlen, s->bl_tree); count--;
2148             }
2149             Assert(count >= 3 && count <= 6, " 3_6?");
2150             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2151 
2152         } else if (count <= 10) {
2153             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2154 
2155         } else {
2156             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2157         }
2158         count = 0; prevlen = curlen;
2159         if (nextlen == 0) {
2160             max_count = 138, min_count = 3;
2161         } else if (curlen == nextlen) {
2162             max_count = 6, min_count = 3;
2163         } else {
2164             max_count = 7, min_count = 4;
2165         }
2166     }
2167 }
2168 
2169 /* ===========================================================================
2170  * Construct the Huffman tree for the bit lengths and return the index in
2171  * bl_order of the last bit length code to send.
2172  */
2173 local int build_bl_tree(s)
2174     deflate_state *s;
2175 {
2176     int max_blindex;  /* index of last bit length code of non zero freq */
2177 
2178     /* Determine the bit length frequencies for literal and distance trees */
2179     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2180     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2181 
2182     /* Build the bit length tree: */
2183     build_tree(s, (tree_desc *)(&(s->bl_desc)));
2184     /* opt_len now includes the length of the tree representations, except
2185      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2186      */
2187 
2188     /* Determine the number of bit length codes to send. The pkzip format
2189      * requires that at least 4 bit length codes be sent. (appnote.txt says
2190      * 3 but the actual value used is 4.)
2191      */
2192     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2193         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2194     }
2195     /* Update opt_len to include the bit length tree and counts */
2196     s->opt_len += 3*(max_blindex+1) + 5+5+4;
2197     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2198             s->opt_len, s->static_len));
2199 
2200     return max_blindex;
2201 }
2202 
2203 /* ===========================================================================
2204  * Send the header for a block using dynamic Huffman trees: the counts, the
2205  * lengths of the bit length codes, the literal tree and the distance tree.
2206  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2207  */
2208 local void send_all_trees(s, lcodes, dcodes, blcodes)
2209     deflate_state *s;
2210     int lcodes, dcodes, blcodes; /* number of codes for each tree */
2211 {
2212     int rank;                    /* index in bl_order */
2213 
2214     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2215     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2216             "too many codes");
2217     Tracev((stderr, "\nbl counts: "));
2218     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2219     send_bits(s, dcodes-1,   5);
2220     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
2221     for (rank = 0; rank < blcodes; rank++) {
2222         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2223         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2224     }
2225     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2226 
2227     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2228     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2229 
2230     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2231     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2232 }
2233 
2234 /* ===========================================================================
2235  * Send a stored block
2236  */
2237 local void ct_stored_block(s, buf, stored_len, eof)
2238     deflate_state *s;
2239     charf *buf;       /* input block */
2240     ulg stored_len;   /* length of input block */
2241     int eof;          /* true if this is the last block for a file */
2242 {
2243     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
2244     s->compressed_len = (s->compressed_len + 3 + 7) & ~7L;
2245     s->compressed_len += (stored_len + 4) << 3;
2246 
2247     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2248 }
2249 
2250 /* Send just the `stored block' type code without any length bytes or data.
2251  */
2252 local void ct_stored_type_only(s)
2253     deflate_state *s;
2254 {
2255     send_bits(s, (STORED_BLOCK << 1), 3);
2256     bi_windup(s);
2257     s->compressed_len = (s->compressed_len + 3) & ~7L;
2258 }
2259 
2260 
2261 /* ===========================================================================
2262  * Send one empty static block to give enough lookahead for inflate.
2263  * This takes 10 bits, of which 7 may remain in the bit buffer.
2264  * The current inflate code requires 9 bits of lookahead. If the EOB
2265  * code for the previous block was coded on 5 bits or less, inflate
2266  * may have only 5+3 bits of lookahead to decode this EOB.
2267  * (There are no problems if the previous block is stored or fixed.)
2268  */
2269 local void ct_align(s)
2270     deflate_state *s;
2271 {
2272     send_bits(s, STATIC_TREES<<1, 3);
2273     send_code(s, END_BLOCK, static_ltree);
2274     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2275     bi_flush(s);
2276     /* Of the 10 bits for the empty block, we have already sent
2277      * (10 - bi_valid) bits. The lookahead for the EOB of the previous
2278      * block was thus its length plus what we have just sent.
2279      */
2280     if (s->last_eob_len + 10 - s->bi_valid < 9) {
2281         send_bits(s, STATIC_TREES<<1, 3);
2282         send_code(s, END_BLOCK, static_ltree);
2283         s->compressed_len += 10L;
2284         bi_flush(s);
2285     }
2286     s->last_eob_len = 7;
2287 }
2288 
2289 /* ===========================================================================
2290  * Determine the best encoding for the current block: dynamic trees, static
2291  * trees or store, and output the encoded block to the zip file. This function
2292  * returns the total compressed length for the file so far.
2293  */
2294 local ulg ct_flush_block(s, buf, stored_len, flush)
2295     deflate_state *s;
2296     charf *buf;       /* input block, or NULL if too old */
2297     ulg stored_len;   /* length of input block */
2298     int flush;        /* Z_FINISH if this is the last block for a file */
2299 {
2300     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2301     int max_blindex;  /* index of last bit length code of non zero freq */
2302     int eof = flush == Z_FINISH;
2303 
2304     ++s->blocks_in_packet;
2305 
2306     /* Check if the file is ascii or binary */
2307     if (s->data_type == UNKNOWN) set_data_type(s);
2308 
2309     /* Construct the literal and distance trees */
2310     build_tree(s, (tree_desc *)(&(s->l_desc)));
2311     Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2312             s->static_len));
2313 
2314     build_tree(s, (tree_desc *)(&(s->d_desc)));
2315     Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2316             s->static_len));
2317     /* At this point, opt_len and static_len are the total bit lengths of
2318      * the compressed block data, excluding the tree representations.
2319      */
2320 
2321     /* Build the bit length tree for the above two trees, and get the index
2322      * in bl_order of the last bit length code to send.
2323      */
2324     max_blindex = build_bl_tree(s);
2325 
2326     /* Determine the best encoding. Compute first the block length in bytes */
2327     opt_lenb = (s->opt_len+3+7)>>3;
2328     static_lenb = (s->static_len+3+7)>>3;
2329 
2330     Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2331             opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2332             s->last_lit));
2333 
2334     if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2335 
2336     /* If compression failed and this is the first and last block,
2337      * and if the .zip file can be seeked (to rewrite the local header),
2338      * the whole file is transformed into a stored file:
2339      */
2340 #ifdef STORED_FILE_OK
2341 #  ifdef FORCE_STORED_FILE
2342     if (eof && compressed_len == 0L) /* force stored file */
2343 #  else
2344     if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable())
2345 #  endif
2346     {
2347         /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2348         if (buf == (charf*)0) error ("block vanished");
2349 
2350         copy_block(buf, (unsigned)stored_len, 0); /* without header */
2351         s->compressed_len = stored_len << 3;
2352         s->method = STORED;
2353     } else
2354 #endif /* STORED_FILE_OK */
2355 
2356     /* For Z_PACKET_FLUSH, if we don't achieve the required minimum
2357      * compression, and this block contains all the data since the last
2358      * time we used Z_PACKET_FLUSH, then just omit this block completely
2359      * from the output.
2360      */
2361     if (flush == Z_PACKET_FLUSH && s->blocks_in_packet == 1
2362 	&& opt_lenb > stored_len - s->minCompr) {
2363 	s->blocks_in_packet = 0;
2364 	/* output nothing */
2365     } else
2366 
2367 #ifdef FORCE_STORED
2368     if (buf != (char*)0) /* force stored block */
2369 #else
2370     if (stored_len+4 <= opt_lenb && buf != (char*)0)
2371                        /* 4: two words for the lengths */
2372 #endif
2373     {
2374         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2375          * Otherwise we can't have processed more than WSIZE input bytes since
2376          * the last block flush, because compression would have been
2377          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2378          * transform a block into a stored block.
2379          */
2380         ct_stored_block(s, buf, stored_len, eof);
2381     } else
2382 
2383 #ifdef FORCE_STATIC
2384     if (static_lenb >= 0) /* force static trees */
2385 #else
2386     if (static_lenb == opt_lenb)
2387 #endif
2388     {
2389         send_bits(s, (STATIC_TREES<<1)+eof, 3);
2390         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2391         s->compressed_len += 3 + s->static_len;
2392     } else {
2393         send_bits(s, (DYN_TREES<<1)+eof, 3);
2394         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2395                        max_blindex+1);
2396         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2397         s->compressed_len += 3 + s->opt_len;
2398     }
2399     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2400     init_block(s);
2401 
2402     if (eof) {
2403         bi_windup(s);
2404         s->compressed_len += 7;  /* align on byte boundary */
2405     }
2406     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2407            s->compressed_len-7*eof));
2408 
2409     return s->compressed_len >> 3;
2410 }
2411 
2412 /* ===========================================================================
2413  * Save the match info and tally the frequency counts. Return true if
2414  * the current block must be flushed.
2415  */
2416 local int ct_tally (s, dist, lc)
2417     deflate_state *s;
2418     int dist;  /* distance of matched string */
2419     int lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
2420 {
2421     s->d_buf[s->last_lit] = (ush)dist;
2422     s->l_buf[s->last_lit++] = (uch)lc;
2423     if (dist == 0) {
2424         /* lc is the unmatched char */
2425         s->dyn_ltree[lc].Freq++;
2426     } else {
2427         s->matches++;
2428         /* Here, lc is the match length - MIN_MATCH */
2429         dist--;             /* dist = match distance - 1 */
2430         Assert((ush)dist < (ush)MAX_DIST(s) &&
2431                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2432                (ush)d_code(dist) < (ush)D_CODES,  "ct_tally: bad match");
2433 
2434         s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2435         s->dyn_dtree[d_code(dist)].Freq++;
2436     }
2437 
2438     /* Try to guess if it is profitable to stop the current block here */
2439     if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2440         /* Compute an upper bound for the compressed length */
2441         ulg out_length = (ulg)s->last_lit*8L;
2442         ulg in_length = (ulg)s->strstart - s->block_start;
2443         int dcode;
2444         for (dcode = 0; dcode < D_CODES; dcode++) {
2445             out_length += (ulg)s->dyn_dtree[dcode].Freq *
2446                 (5L+extra_dbits[dcode]);
2447         }
2448         out_length >>= 3;
2449         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2450                s->last_lit, in_length, out_length,
2451                100L - out_length*100L/in_length));
2452         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2453     }
2454     return (s->last_lit == s->lit_bufsize-1);
2455     /* We avoid equality with lit_bufsize because of wraparound at 64K
2456      * on 16 bit machines and because stored blocks are restricted to
2457      * 64K-1 bytes.
2458      */
2459 }
2460 
2461 /* ===========================================================================
2462  * Send the block data compressed using the given Huffman trees
2463  */
2464 local void compress_block(s, ltree, dtree)
2465     deflate_state *s;
2466     ct_data *ltree; /* literal tree */
2467     ct_data *dtree; /* distance tree */
2468 {
2469     unsigned dist;      /* distance of matched string */
2470     int lc;             /* match length or unmatched char (if dist == 0) */
2471     unsigned lx = 0;    /* running index in l_buf */
2472     unsigned code;      /* the code to send */
2473     int extra;          /* number of extra bits to send */
2474 
2475     if (s->last_lit != 0) do {
2476         dist = s->d_buf[lx];
2477         lc = s->l_buf[lx++];
2478         if (dist == 0) {
2479             send_code(s, lc, ltree); /* send a literal byte */
2480             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2481         } else {
2482             /* Here, lc is the match length - MIN_MATCH */
2483             code = length_code[lc];
2484             send_code(s, code+LITERALS+1, ltree); /* send the length code */
2485             extra = extra_lbits[code];
2486             if (extra != 0) {
2487                 lc -= base_length[code];
2488                 send_bits(s, lc, extra);       /* send the extra length bits */
2489             }
2490             dist--; /* dist is now the match distance - 1 */
2491             code = d_code(dist);
2492             Assert (code < D_CODES, "bad d_code");
2493 
2494             send_code(s, code, dtree);       /* send the distance code */
2495             extra = extra_dbits[code];
2496             if (extra != 0) {
2497                 dist -= base_dist[code];
2498                 send_bits(s, dist, extra);   /* send the extra distance bits */
2499             }
2500         } /* literal or match pair ? */
2501 
2502         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2503         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2504 
2505     } while (lx < s->last_lit);
2506 
2507     send_code(s, END_BLOCK, ltree);
2508     s->last_eob_len = ltree[END_BLOCK].Len;
2509 }
2510 
2511 /* ===========================================================================
2512  * Set the data type to ASCII or BINARY, using a crude approximation:
2513  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2514  * IN assertion: the fields freq of dyn_ltree are set and the total of all
2515  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2516  */
2517 local void set_data_type(s)
2518     deflate_state *s;
2519 {
2520     int n = 0;
2521     unsigned ascii_freq = 0;
2522     unsigned bin_freq = 0;
2523     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
2524     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
2525     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2526     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII);
2527 }
2528 
2529 /* ===========================================================================
2530  * Reverse the first len bits of a code, using straightforward code (a faster
2531  * method would use a table)
2532  * IN assertion: 1 <= len <= 15
2533  */
2534 local unsigned bi_reverse(code, len)
2535     unsigned code; /* the value to invert */
2536     int len;       /* its bit length */
2537 {
2538     register unsigned res = 0;
2539     do {
2540         res |= code & 1;
2541         code >>= 1, res <<= 1;
2542     } while (--len > 0);
2543     return res >> 1;
2544 }
2545 
2546 /* ===========================================================================
2547  * Flush the bit buffer, keeping at most 7 bits in it.
2548  */
2549 local void bi_flush(s)
2550     deflate_state *s;
2551 {
2552     if (s->bi_valid == 16) {
2553         put_short(s, s->bi_buf);
2554         s->bi_buf = 0;
2555         s->bi_valid = 0;
2556     } else if (s->bi_valid >= 8) {
2557         put_byte(s, (Byte)s->bi_buf);
2558         s->bi_buf >>= 8;
2559         s->bi_valid -= 8;
2560     }
2561 }
2562 
2563 /* ===========================================================================
2564  * Flush the bit buffer and align the output on a byte boundary
2565  */
2566 local void bi_windup(s)
2567     deflate_state *s;
2568 {
2569     if (s->bi_valid > 8) {
2570         put_short(s, s->bi_buf);
2571     } else if (s->bi_valid > 0) {
2572         put_byte(s, (Byte)s->bi_buf);
2573     }
2574     s->bi_buf = 0;
2575     s->bi_valid = 0;
2576 #ifdef DEBUG_ZLIB
2577     s->bits_sent = (s->bits_sent+7) & ~7;
2578 #endif
2579 }
2580 
2581 /* ===========================================================================
2582  * Copy a stored block, storing first the length and its
2583  * one's complement if requested.
2584  */
2585 local void copy_block(s, buf, len, header)
2586     deflate_state *s;
2587     charf    *buf;    /* the input data */
2588     unsigned len;     /* its length */
2589     int      header;  /* true if block header must be written */
2590 {
2591     bi_windup(s);        /* align on byte boundary */
2592     s->last_eob_len = 8; /* enough lookahead for inflate */
2593 
2594     if (header) {
2595         put_short(s, (ush)len);
2596         put_short(s, (ush)~len);
2597 #ifdef DEBUG_ZLIB
2598         s->bits_sent += 2*16;
2599 #endif
2600     }
2601 #ifdef DEBUG_ZLIB
2602     s->bits_sent += (ulg)len<<3;
2603 #endif
2604     while (len--) {
2605         put_byte(s, *buf++);
2606     }
2607 }
2608 
2609 
2610 /*+++++*/
2611 /* infblock.h -- header to use infblock.c
2612  * Copyright (C) 1995 Mark Adler
2613  * For conditions of distribution and use, see copyright notice in zlib.h
2614  */
2615 
2616 /* WARNING: this file should *not* be used by applications. It is
2617    part of the implementation of the compression library and is
2618    subject to change. Applications should only use zlib.h.
2619  */
2620 
2621 struct inflate_blocks_state;
2622 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
2623 
2624 local inflate_blocks_statef * inflate_blocks_new OF((
2625     z_stream *z,
2626     check_func c,               /* check function */
2627     uInt w));                   /* window size */
2628 
2629 local int inflate_blocks OF((
2630     inflate_blocks_statef *,
2631     z_stream *,
2632     int));                      /* initial return code */
2633 
2634 local void inflate_blocks_reset OF((
2635     inflate_blocks_statef *,
2636     z_stream *,
2637     uLongf *));                  /* check value on output */
2638 
2639 local int inflate_blocks_free OF((
2640     inflate_blocks_statef *,
2641     z_stream *,
2642     uLongf *));                  /* check value on output */
2643 
2644 local int inflate_addhistory OF((
2645     inflate_blocks_statef *,
2646     z_stream *));
2647 
2648 local int inflate_packet_flush OF((
2649     inflate_blocks_statef *));
2650 
2651 /*+++++*/
2652 /* inftrees.h -- header to use inftrees.c
2653  * Copyright (C) 1995 Mark Adler
2654  * For conditions of distribution and use, see copyright notice in zlib.h
2655  */
2656 
2657 /* WARNING: this file should *not* be used by applications. It is
2658    part of the implementation of the compression library and is
2659    subject to change. Applications should only use zlib.h.
2660  */
2661 
2662 /* Huffman code lookup table entry--this entry is four bytes for machines
2663    that have 16-bit pointers (e.g. PC's in the small or medium model). */
2664 
2665 typedef struct inflate_huft_s FAR inflate_huft;
2666 
2667 struct inflate_huft_s {
2668   union {
2669     struct {
2670       Byte Exop;        /* number of extra bits or operation */
2671       Byte Bits;        /* number of bits in this code or subcode */
2672     } what;
2673     uInt Nalloc;	/* number of these allocated here */
2674     Bytef *pad;         /* pad structure to a power of 2 (4 bytes for */
2675   } word;               /*  16-bit, 8 bytes for 32-bit machines) */
2676   union {
2677     uInt Base;          /* literal, length base, or distance base */
2678     inflate_huft *Next; /* pointer to next level of table */
2679   } more;
2680 };
2681 
2682 #ifdef DEBUG_ZLIB
2683   local uInt inflate_hufts;
2684 #endif
2685 
2686 local int inflate_trees_bits OF((
2687     uIntf *,                    /* 19 code lengths */
2688     uIntf *,                    /* bits tree desired/actual depth */
2689     inflate_huft * FAR *,       /* bits tree result */
2690     z_stream *));               /* for zalloc, zfree functions */
2691 
2692 local int inflate_trees_dynamic OF((
2693     uInt,                       /* number of literal/length codes */
2694     uInt,                       /* number of distance codes */
2695     uIntf *,                    /* that many (total) code lengths */
2696     uIntf *,                    /* literal desired/actual bit depth */
2697     uIntf *,                    /* distance desired/actual bit depth */
2698     inflate_huft * FAR *,       /* literal/length tree result */
2699     inflate_huft * FAR *,       /* distance tree result */
2700     z_stream *));               /* for zalloc, zfree functions */
2701 
2702 local int inflate_trees_fixed OF((
2703     uIntf *,                    /* literal desired/actual bit depth */
2704     uIntf *,                    /* distance desired/actual bit depth */
2705     inflate_huft * FAR *,       /* literal/length tree result */
2706     inflate_huft * FAR *));     /* distance tree result */
2707 
2708 local int inflate_trees_free OF((
2709     inflate_huft *,             /* tables to free */
2710     z_stream *));               /* for zfree function */
2711 
2712 
2713 /*+++++*/
2714 /* infcodes.h -- header to use infcodes.c
2715  * Copyright (C) 1995 Mark Adler
2716  * For conditions of distribution and use, see copyright notice in zlib.h
2717  */
2718 
2719 /* WARNING: this file should *not* be used by applications. It is
2720    part of the implementation of the compression library and is
2721    subject to change. Applications should only use zlib.h.
2722  */
2723 
2724 struct inflate_codes_state;
2725 typedef struct inflate_codes_state FAR inflate_codes_statef;
2726 
2727 local inflate_codes_statef *inflate_codes_new OF((
2728     uInt, uInt,
2729     inflate_huft *, inflate_huft *,
2730     z_stream *));
2731 
2732 local int inflate_codes OF((
2733     inflate_blocks_statef *,
2734     z_stream *,
2735     int));
2736 
2737 local void inflate_codes_free OF((
2738     inflate_codes_statef *,
2739     z_stream *));
2740 
2741 
2742 /*+++++*/
2743 /* inflate.c -- zlib interface to inflate modules
2744  * Copyright (C) 1995 Mark Adler
2745  * For conditions of distribution and use, see copyright notice in zlib.h
2746  */
2747 
2748 /* inflate private state */
2749 struct internal_state {
2750 
2751   /* mode */
2752   enum {
2753       METHOD,   /* waiting for method byte */
2754       FLAG,     /* waiting for flag byte */
2755       BLOCKS,   /* decompressing blocks */
2756       CHECK4,   /* four check bytes to go */
2757       CHECK3,   /* three check bytes to go */
2758       CHECK2,   /* two check bytes to go */
2759       CHECK1,   /* one check byte to go */
2760       DONE,     /* finished check, done */
2761       BAD}      /* got an error--stay here */
2762     mode;               /* current inflate mode */
2763 
2764   /* mode dependent information */
2765   union {
2766     uInt method;        /* if FLAGS, method byte */
2767     struct {
2768       uLong was;                /* computed check value */
2769       uLong need;               /* stream check value */
2770     } check;            /* if CHECK, check values to compare */
2771     uInt marker;        /* if BAD, inflateSync's marker bytes count */
2772   } sub;        /* submode */
2773 
2774   /* mode independent information */
2775   int  nowrap;          /* flag for no wrapper */
2776   uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
2777   inflate_blocks_statef
2778     *blocks;            /* current inflate_blocks state */
2779 
2780 };
2781 
2782 
2783 int inflateReset(z)
2784 z_stream *z;
2785 {
2786   uLong c;
2787 
2788   if (z == Z_NULL || z->state == Z_NULL)
2789     return Z_STREAM_ERROR;
2790   z->total_in = z->total_out = 0;
2791   z->msg = Z_NULL;
2792   z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
2793   inflate_blocks_reset(z->state->blocks, z, &c);
2794   Trace((stderr, "inflate: reset\n"));
2795   return Z_OK;
2796 }
2797 
2798 
2799 int inflateEnd(z)
2800 z_stream *z;
2801 {
2802   uLong c;
2803 
2804   if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
2805     return Z_STREAM_ERROR;
2806   if (z->state->blocks != Z_NULL)
2807     inflate_blocks_free(z->state->blocks, z, &c);
2808   ZFREE(z, z->state, sizeof(struct internal_state));
2809   z->state = Z_NULL;
2810   Trace((stderr, "inflate: end\n"));
2811   return Z_OK;
2812 }
2813 
2814 
2815 int inflateInit2(z, w)
2816 z_stream *z;
2817 int w;
2818 {
2819   /* initialize state */
2820   if (z == Z_NULL)
2821     return Z_STREAM_ERROR;
2822 /*  if (z->zalloc == Z_NULL) z->zalloc = zcalloc; */
2823 /*  if (z->zfree == Z_NULL) z->zfree = zcfree; */
2824   if ((z->state = (struct internal_state FAR *)
2825        ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
2826     return Z_MEM_ERROR;
2827   z->state->blocks = Z_NULL;
2828 
2829   /* handle undocumented nowrap option (no zlib header or check) */
2830   z->state->nowrap = 0;
2831   if (w < 0)
2832   {
2833     w = - w;
2834     z->state->nowrap = 1;
2835   }
2836 
2837   /* set window size */
2838   if (w < 8 || w > 15)
2839   {
2840     inflateEnd(z);
2841     return Z_STREAM_ERROR;
2842   }
2843   z->state->wbits = (uInt)w;
2844 
2845   /* create inflate_blocks state */
2846   if ((z->state->blocks =
2847        inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, 1 << w))
2848       == Z_NULL)
2849   {
2850     inflateEnd(z);
2851     return Z_MEM_ERROR;
2852   }
2853   Trace((stderr, "inflate: allocated\n"));
2854 
2855   /* reset state */
2856   inflateReset(z);
2857   return Z_OK;
2858 }
2859 
2860 
2861 int inflateInit(z)
2862 z_stream *z;
2863 {
2864   return inflateInit2(z, DEF_WBITS);
2865 }
2866 
2867 
2868 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
2869 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
2870 
2871 int inflate(z, f)
2872 z_stream *z;
2873 int f;
2874 {
2875   int r;
2876   uInt b;
2877 
2878   if (z == Z_NULL || z->next_in == Z_NULL)
2879     return Z_STREAM_ERROR;
2880   r = Z_BUF_ERROR;
2881   while (1) switch (z->state->mode)
2882   {
2883     case METHOD:
2884       NEEDBYTE
2885       if (((z->state->sub.method = NEXTBYTE) & 0xf) != DEFLATED)
2886       {
2887         z->state->mode = BAD;
2888         z->msg = "unknown compression method";
2889         z->state->sub.marker = 5;       /* can't try inflateSync */
2890         break;
2891       }
2892       if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
2893       {
2894         z->state->mode = BAD;
2895         z->msg = "invalid window size";
2896         z->state->sub.marker = 5;       /* can't try inflateSync */
2897         break;
2898       }
2899       z->state->mode = FLAG;
2900     case FLAG:
2901       NEEDBYTE
2902       if ((b = NEXTBYTE) & 0x20)
2903       {
2904         z->state->mode = BAD;
2905         z->msg = "invalid reserved bit";
2906         z->state->sub.marker = 5;       /* can't try inflateSync */
2907         break;
2908       }
2909       if (((z->state->sub.method << 8) + b) % 31)
2910       {
2911         z->state->mode = BAD;
2912         z->msg = "incorrect header check";
2913         z->state->sub.marker = 5;       /* can't try inflateSync */
2914         break;
2915       }
2916       Trace((stderr, "inflate: zlib header ok\n"));
2917       z->state->mode = BLOCKS;
2918     case BLOCKS:
2919       r = inflate_blocks(z->state->blocks, z, r);
2920       if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
2921 	  r = inflate_packet_flush(z->state->blocks);
2922       if (r == Z_DATA_ERROR)
2923       {
2924         z->state->mode = BAD;
2925         z->state->sub.marker = 0;       /* can try inflateSync */
2926         break;
2927       }
2928       if (r != Z_STREAM_END)
2929         return r;
2930       r = Z_OK;
2931       inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
2932       if (z->state->nowrap)
2933       {
2934         z->state->mode = DONE;
2935         break;
2936       }
2937       z->state->mode = CHECK4;
2938     case CHECK4:
2939       NEEDBYTE
2940       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
2941       z->state->mode = CHECK3;
2942     case CHECK3:
2943       NEEDBYTE
2944       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
2945       z->state->mode = CHECK2;
2946     case CHECK2:
2947       NEEDBYTE
2948       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
2949       z->state->mode = CHECK1;
2950     case CHECK1:
2951       NEEDBYTE
2952       z->state->sub.check.need += (uLong)NEXTBYTE;
2953 
2954       if (z->state->sub.check.was != z->state->sub.check.need)
2955       {
2956         z->state->mode = BAD;
2957         z->msg = "incorrect data check";
2958         z->state->sub.marker = 5;       /* can't try inflateSync */
2959         break;
2960       }
2961       Trace((stderr, "inflate: zlib check ok\n"));
2962       z->state->mode = DONE;
2963     case DONE:
2964       return Z_STREAM_END;
2965     case BAD:
2966       return Z_DATA_ERROR;
2967     default:
2968       return Z_STREAM_ERROR;
2969   }
2970 
2971  empty:
2972   if (f != Z_PACKET_FLUSH)
2973     return r;
2974   z->state->mode = BAD;
2975   z->state->sub.marker = 0;       /* can try inflateSync */
2976   return Z_DATA_ERROR;
2977 }
2978 
2979 /*
2980  * This subroutine adds the data at next_in/avail_in to the output history
2981  * without performing any output.  The output buffer must be "caught up";
2982  * i.e. no pending output (hence s->read equals s->write), and the state must
2983  * be BLOCKS (i.e. we should be willing to see the start of a series of
2984  * BLOCKS).  On exit, the output will also be caught up, and the checksum
2985  * will have been updated if need be.
2986  */
2987 
2988 int inflateIncomp(z)
2989 z_stream *z;
2990 {
2991     if (z->state->mode != BLOCKS)
2992 	return Z_DATA_ERROR;
2993     return inflate_addhistory(z->state->blocks, z);
2994 }
2995 
2996 
2997 int inflateSync(z)
2998 z_stream *z;
2999 {
3000   uInt n;       /* number of bytes to look at */
3001   Bytef *p;     /* pointer to bytes */
3002   uInt m;       /* number of marker bytes found in a row */
3003   uLong r, w;   /* temporaries to save total_in and total_out */
3004 
3005   /* set up */
3006   if (z == Z_NULL || z->state == Z_NULL)
3007     return Z_STREAM_ERROR;
3008   if (z->state->mode != BAD)
3009   {
3010     z->state->mode = BAD;
3011     z->state->sub.marker = 0;
3012   }
3013   if ((n = z->avail_in) == 0)
3014     return Z_BUF_ERROR;
3015   p = z->next_in;
3016   m = z->state->sub.marker;
3017 
3018   /* search */
3019   while (n && m < 4)
3020   {
3021     if (*p == (Byte)(m < 2 ? 0 : 0xff))
3022       m++;
3023     else if (*p)
3024       m = 0;
3025     else
3026       m = 4 - m;
3027     p++, n--;
3028   }
3029 
3030   /* restore */
3031   z->total_in += p - z->next_in;
3032   z->next_in = p;
3033   z->avail_in = n;
3034   z->state->sub.marker = m;
3035 
3036   /* return no joy or set up to restart on a new block */
3037   if (m != 4)
3038     return Z_DATA_ERROR;
3039   r = z->total_in;  w = z->total_out;
3040   inflateReset(z);
3041   z->total_in = r;  z->total_out = w;
3042   z->state->mode = BLOCKS;
3043   return Z_OK;
3044 }
3045 
3046 #undef NEEDBYTE
3047 #undef NEXTBYTE
3048 
3049 /*+++++*/
3050 /* infutil.h -- types and macros common to blocks and codes
3051  * Copyright (C) 1995 Mark Adler
3052  * For conditions of distribution and use, see copyright notice in zlib.h
3053  */
3054 
3055 /* WARNING: this file should *not* be used by applications. It is
3056    part of the implementation of the compression library and is
3057    subject to change. Applications should only use zlib.h.
3058  */
3059 
3060 /* inflate blocks semi-private state */
3061 struct inflate_blocks_state {
3062 
3063   /* mode */
3064   enum {
3065       TYPE,     /* get type bits (3, including end bit) */
3066       LENS,     /* get lengths for stored */
3067       STORED,   /* processing stored block */
3068       TABLE,    /* get table lengths */
3069       BTREE,    /* get bit lengths tree for a dynamic block */
3070       DTREE,    /* get length, distance trees for a dynamic block */
3071       CODES,    /* processing fixed or dynamic block */
3072       DRY,      /* output remaining window bytes */
3073       DONEB,     /* finished last block, done */
3074       BADB}      /* got a data error--stuck here */
3075     mode;               /* current inflate_block mode */
3076 
3077   /* mode dependent information */
3078   union {
3079     uInt left;          /* if STORED, bytes left to copy */
3080     struct {
3081       uInt table;               /* table lengths (14 bits) */
3082       uInt index;               /* index into blens (or border) */
3083       uIntf *blens;             /* bit lengths of codes */
3084       uInt bb;                  /* bit length tree depth */
3085       inflate_huft *tb;         /* bit length decoding tree */
3086       int nblens;		/* # elements allocated at blens */
3087     } trees;            /* if DTREE, decoding info for trees */
3088     struct {
3089       inflate_huft *tl, *td;    /* trees to free */
3090       inflate_codes_statef
3091          *codes;
3092     } decode;           /* if CODES, current state */
3093   } sub;                /* submode */
3094   uInt last;            /* true if this block is the last block */
3095 
3096   /* mode independent information */
3097   uInt bitk;            /* bits in bit buffer */
3098   uLong bitb;           /* bit buffer */
3099   Bytef *window;        /* sliding window */
3100   Bytef *end;           /* one byte after sliding window */
3101   Bytef *read;          /* window read pointer */
3102   Bytef *write;         /* window write pointer */
3103   check_func checkfn;   /* check function */
3104   uLong check;          /* check on output */
3105 
3106 };
3107 
3108 
3109 /* defines for inflate input/output */
3110 /*   update pointers and return */
3111 #define UPDBITS {s->bitb=b;s->bitk=k;}
3112 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3113 #define UPDOUT {s->write=q;}
3114 #define UPDATE {UPDBITS UPDIN UPDOUT}
3115 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3116 /*   get bytes and bits */
3117 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3118 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3119 #define NEXTBYTE (n--,*p++)
3120 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3121 #define DUMPBITS(j) {b>>=(j);k-=(j);}
3122 /*   output bytes */
3123 #define WAVAIL (q<s->read?s->read-q-1:s->end-q)
3124 #define LOADOUT {q=s->write;m=WAVAIL;}
3125 #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=WAVAIL;}}
3126 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3127 #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
3128 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3129 /*   load local pointers */
3130 #define LOAD {LOADIN LOADOUT}
3131 
3132 /* And'ing with mask[n] masks the lower n bits */
3133 local uInt inflate_mask[] = {
3134     0x0000,
3135     0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
3136     0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
3137 };
3138 
3139 /* copy as much as possible from the sliding window to the output area */
3140 local int inflate_flush OF((
3141     inflate_blocks_statef *,
3142     z_stream *,
3143     int));
3144 
3145 /*+++++*/
3146 /* inffast.h -- header to use inffast.c
3147  * Copyright (C) 1995 Mark Adler
3148  * For conditions of distribution and use, see copyright notice in zlib.h
3149  */
3150 
3151 /* WARNING: this file should *not* be used by applications. It is
3152    part of the implementation of the compression library and is
3153    subject to change. Applications should only use zlib.h.
3154  */
3155 
3156 local int inflate_fast OF((
3157     uInt,
3158     uInt,
3159     inflate_huft *,
3160     inflate_huft *,
3161     inflate_blocks_statef *,
3162     z_stream *));
3163 
3164 
3165 /*+++++*/
3166 /* infblock.c -- interpret and process block types to last block
3167  * Copyright (C) 1995 Mark Adler
3168  * For conditions of distribution and use, see copyright notice in zlib.h
3169  */
3170 
3171 /* Table for deflate from PKZIP's appnote.txt. */
3172 local uInt border[] = { /* Order of the bit length code lengths */
3173         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3174 
3175 /*
3176    Notes beyond the 1.93a appnote.txt:
3177 
3178    1. Distance pointers never point before the beginning of the output
3179       stream.
3180    2. Distance pointers can point back across blocks, up to 32k away.
3181    3. There is an implied maximum of 7 bits for the bit length table and
3182       15 bits for the actual data.
3183    4. If only one code exists, then it is encoded using one bit.  (Zero
3184       would be more efficient, but perhaps a little confusing.)  If two
3185       codes exist, they are coded using one bit each (0 and 1).
3186    5. There is no way of sending zero distance codes--a dummy must be
3187       sent if there are none.  (History: a pre 2.0 version of PKZIP would
3188       store blocks with no distance codes, but this was discovered to be
3189       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
3190       zero distance codes, which is sent as one code of zero bits in
3191       length.
3192    6. There are up to 286 literal/length codes.  Code 256 represents the
3193       end-of-block.  Note however that the static length tree defines
3194       288 codes just to fill out the Huffman codes.  Codes 286 and 287
3195       cannot be used though, since there is no length base or extra bits
3196       defined for them.  Similarily, there are up to 30 distance codes.
3197       However, static trees define 32 codes (all 5 bits) to fill out the
3198       Huffman codes, but the last two had better not show up in the data.
3199    7. Unzip can check dynamic Huffman blocks for complete code sets.
3200       The exception is that a single code would not be complete (see #4).
3201    8. The five bits following the block type is really the number of
3202       literal codes sent minus 257.
3203    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3204       (1+6+6).  Therefore, to output three times the length, you output
3205       three codes (1+1+1), whereas to output four times the same length,
3206       you only need two codes (1+3).  Hmm.
3207   10. In the tree reconstruction algorithm, Code = Code + Increment
3208       only if BitLength(i) is not zero.  (Pretty obvious.)
3209   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
3210   12. Note: length code 284 can represent 227-258, but length code 285
3211       really is 258.  The last length deserves its own, short code
3212       since it gets used a lot in very redundant files.  The length
3213       258 is special since 258 - 3 (the min match length) is 255.
3214   13. The literal/length and distance code bit lengths are read as a
3215       single stream of lengths.  It is possible (and advantageous) for
3216       a repeat code (16, 17, or 18) to go across the boundary between
3217       the two sets of lengths.
3218  */
3219 
3220 
3221 local void inflate_blocks_reset(s, z, c)
3222 inflate_blocks_statef *s;
3223 z_stream *z;
3224 uLongf *c;
3225 {
3226   if (s->checkfn != Z_NULL)
3227     *c = s->check;
3228   if (s->mode == BTREE || s->mode == DTREE)
3229     ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
3230   if (s->mode == CODES)
3231   {
3232     inflate_codes_free(s->sub.decode.codes, z);
3233     inflate_trees_free(s->sub.decode.td, z);
3234     inflate_trees_free(s->sub.decode.tl, z);
3235   }
3236   s->mode = TYPE;
3237   s->bitk = 0;
3238   s->bitb = 0;
3239   s->read = s->write = s->window;
3240   if (s->checkfn != Z_NULL)
3241     s->check = (*s->checkfn)(0L, Z_NULL, 0);
3242   Trace((stderr, "inflate:   blocks reset\n"));
3243 }
3244 
3245 
3246 local inflate_blocks_statef *inflate_blocks_new(z, c, w)
3247 z_stream *z;
3248 check_func c;
3249 uInt w;
3250 {
3251   inflate_blocks_statef *s;
3252 
3253   if ((s = (inflate_blocks_statef *)ZALLOC
3254        (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3255     return s;
3256   if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3257   {
3258     ZFREE(z, s, sizeof(struct inflate_blocks_state));
3259     return Z_NULL;
3260   }
3261   s->end = s->window + w;
3262   s->checkfn = c;
3263   s->mode = TYPE;
3264   Trace((stderr, "inflate:   blocks allocated\n"));
3265   inflate_blocks_reset(s, z, &s->check);
3266   return s;
3267 }
3268 
3269 
3270 local int inflate_blocks(s, z, r)
3271 inflate_blocks_statef *s;
3272 z_stream *z;
3273 int r;
3274 {
3275   uInt t;               /* temporary storage */
3276   uLong b;              /* bit buffer */
3277   uInt k;               /* bits in bit buffer */
3278   Bytef *p;             /* input data pointer */
3279   uInt n;               /* bytes available there */
3280   Bytef *q;             /* output window write pointer */
3281   uInt m;               /* bytes to end of window or read pointer */
3282 
3283   /* copy input/output information to locals (UPDATE macro restores) */
3284   LOAD
3285 
3286   /* process input based on current state */
3287   while (1) switch (s->mode)
3288   {
3289     case TYPE:
3290       NEEDBITS(3)
3291       t = (uInt)b & 7;
3292       s->last = t & 1;
3293       switch (t >> 1)
3294       {
3295         case 0:                         /* stored */
3296           Trace((stderr, "inflate:     stored block%s\n",
3297                  s->last ? " (last)" : ""));
3298           DUMPBITS(3)
3299           t = k & 7;                    /* go to byte boundary */
3300           DUMPBITS(t)
3301           s->mode = LENS;               /* get length of stored block */
3302           break;
3303         case 1:                         /* fixed */
3304           Trace((stderr, "inflate:     fixed codes block%s\n",
3305                  s->last ? " (last)" : ""));
3306           {
3307             uInt bl, bd;
3308             inflate_huft *tl, *td;
3309 
3310             inflate_trees_fixed(&bl, &bd, &tl, &td);
3311             s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3312             if (s->sub.decode.codes == Z_NULL)
3313             {
3314               r = Z_MEM_ERROR;
3315               LEAVE
3316             }
3317             s->sub.decode.tl = Z_NULL;  /* don't try to free these */
3318             s->sub.decode.td = Z_NULL;
3319           }
3320           DUMPBITS(3)
3321           s->mode = CODES;
3322           break;
3323         case 2:                         /* dynamic */
3324           Trace((stderr, "inflate:     dynamic codes block%s\n",
3325                  s->last ? " (last)" : ""));
3326           DUMPBITS(3)
3327           s->mode = TABLE;
3328           break;
3329         case 3:                         /* illegal */
3330           DUMPBITS(3)
3331           s->mode = BADB;
3332           z->msg = "invalid block type";
3333           r = Z_DATA_ERROR;
3334           LEAVE
3335       }
3336       break;
3337     case LENS:
3338       NEEDBITS(32)
3339       if (((~b) >> 16) != (b & 0xffff))
3340       {
3341         s->mode = BADB;
3342         z->msg = "invalid stored block lengths";
3343         r = Z_DATA_ERROR;
3344         LEAVE
3345       }
3346       s->sub.left = (uInt)b & 0xffff;
3347       b = k = 0;                      /* dump bits */
3348       Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
3349       s->mode = s->sub.left ? STORED : TYPE;
3350       break;
3351     case STORED:
3352       if (n == 0)
3353         LEAVE
3354       NEEDOUT
3355       t = s->sub.left;
3356       if (t > n) t = n;
3357       if (t > m) t = m;
3358       zmemcpy(q, p, t);
3359       p += t;  n -= t;
3360       q += t;  m -= t;
3361       if ((s->sub.left -= t) != 0)
3362         break;
3363       Tracev((stderr, "inflate:       stored end, %lu total out\n",
3364               z->total_out + (q >= s->read ? q - s->read :
3365               (s->end - s->read) + (q - s->window))));
3366       s->mode = s->last ? DRY : TYPE;
3367       break;
3368     case TABLE:
3369       NEEDBITS(14)
3370       s->sub.trees.table = t = (uInt)b & 0x3fff;
3371 #ifndef PKZIP_BUG_WORKAROUND
3372       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3373       {
3374         s->mode = BADB;
3375         z->msg = "too many length or distance symbols";
3376         r = Z_DATA_ERROR;
3377         LEAVE
3378       }
3379 #endif
3380       t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3381       if (t < 19)
3382         t = 19;
3383       if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3384       {
3385         r = Z_MEM_ERROR;
3386         LEAVE
3387       }
3388       s->sub.trees.nblens = t;
3389       DUMPBITS(14)
3390       s->sub.trees.index = 0;
3391       Tracev((stderr, "inflate:       table sizes ok\n"));
3392       s->mode = BTREE;
3393     case BTREE:
3394       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3395       {
3396         NEEDBITS(3)
3397         s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3398         DUMPBITS(3)
3399       }
3400       while (s->sub.trees.index < 19)
3401         s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3402       s->sub.trees.bb = 7;
3403       t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3404                              &s->sub.trees.tb, z);
3405       if (t != Z_OK)
3406       {
3407         r = t;
3408         if (r == Z_DATA_ERROR)
3409           s->mode = BADB;
3410         LEAVE
3411       }
3412       s->sub.trees.index = 0;
3413       Tracev((stderr, "inflate:       bits tree ok\n"));
3414       s->mode = DTREE;
3415     case DTREE:
3416       while (t = s->sub.trees.table,
3417              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3418       {
3419         inflate_huft *h;
3420         uInt i, j, c;
3421 
3422         t = s->sub.trees.bb;
3423         NEEDBITS(t)
3424         h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3425         t = h->word.what.Bits;
3426         c = h->more.Base;
3427         if (c < 16)
3428         {
3429           DUMPBITS(t)
3430           s->sub.trees.blens[s->sub.trees.index++] = c;
3431         }
3432         else /* c == 16..18 */
3433         {
3434           i = c == 18 ? 7 : c - 14;
3435           j = c == 18 ? 11 : 3;
3436           NEEDBITS(t + i)
3437           DUMPBITS(t)
3438           j += (uInt)b & inflate_mask[i];
3439           DUMPBITS(i)
3440           i = s->sub.trees.index;
3441           t = s->sub.trees.table;
3442           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3443               (c == 16 && i < 1))
3444           {
3445             s->mode = BADB;
3446             z->msg = "invalid bit length repeat";
3447             r = Z_DATA_ERROR;
3448             LEAVE
3449           }
3450           c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3451           do {
3452             s->sub.trees.blens[i++] = c;
3453           } while (--j);
3454           s->sub.trees.index = i;
3455         }
3456       }
3457       inflate_trees_free(s->sub.trees.tb, z);
3458       s->sub.trees.tb = Z_NULL;
3459       {
3460         uInt bl, bd;
3461         inflate_huft *tl, *td;
3462         inflate_codes_statef *c;
3463 
3464         bl = 9;         /* must be <= 9 for lookahead assumptions */
3465         bd = 6;         /* must be <= 9 for lookahead assumptions */
3466         t = s->sub.trees.table;
3467         t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3468                                   s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3469         if (t != Z_OK)
3470         {
3471           if (t == (uInt)Z_DATA_ERROR)
3472             s->mode = BADB;
3473           r = t;
3474           LEAVE
3475         }
3476         Tracev((stderr, "inflate:       trees ok\n"));
3477         if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3478         {
3479           inflate_trees_free(td, z);
3480           inflate_trees_free(tl, z);
3481           r = Z_MEM_ERROR;
3482           LEAVE
3483         }
3484         ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
3485         s->sub.decode.codes = c;
3486         s->sub.decode.tl = tl;
3487         s->sub.decode.td = td;
3488       }
3489       s->mode = CODES;
3490     case CODES:
3491       UPDATE
3492       if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3493         return inflate_flush(s, z, r);
3494       r = Z_OK;
3495       inflate_codes_free(s->sub.decode.codes, z);
3496       inflate_trees_free(s->sub.decode.td, z);
3497       inflate_trees_free(s->sub.decode.tl, z);
3498       LOAD
3499       Tracev((stderr, "inflate:       codes end, %lu total out\n",
3500               z->total_out + (q >= s->read ? q - s->read :
3501               (s->end - s->read) + (q - s->window))));
3502       if (!s->last)
3503       {
3504         s->mode = TYPE;
3505         break;
3506       }
3507       if (k > 7)              /* return unused byte, if any */
3508       {
3509         Assert(k < 16, "inflate_codes grabbed too many bytes")
3510         k -= 8;
3511         n++;
3512         p--;                    /* can always return one */
3513       }
3514       s->mode = DRY;
3515     case DRY:
3516       FLUSH
3517       if (s->read != s->write)
3518         LEAVE
3519       s->mode = DONEB;
3520     case DONEB:
3521       r = Z_STREAM_END;
3522       LEAVE
3523     case BADB:
3524       r = Z_DATA_ERROR;
3525       LEAVE
3526     default:
3527       r = Z_STREAM_ERROR;
3528       LEAVE
3529   }
3530 }
3531 
3532 
3533 local int inflate_blocks_free(s, z, c)
3534 inflate_blocks_statef *s;
3535 z_stream *z;
3536 uLongf *c;
3537 {
3538   inflate_blocks_reset(s, z, c);
3539   ZFREE(z, s->window, s->end - s->window);
3540   ZFREE(z, s, sizeof(struct inflate_blocks_state));
3541   Trace((stderr, "inflate:   blocks freed\n"));
3542   return Z_OK;
3543 }
3544 
3545 /*
3546  * This subroutine adds the data at next_in/avail_in to the output history
3547  * without performing any output.  The output buffer must be "caught up";
3548  * i.e. no pending output (hence s->read equals s->write), and the state must
3549  * be BLOCKS (i.e. we should be willing to see the start of a series of
3550  * BLOCKS).  On exit, the output will also be caught up, and the checksum
3551  * will have been updated if need be.
3552  */
3553 local int inflate_addhistory(s, z)
3554 inflate_blocks_statef *s;
3555 z_stream *z;
3556 {
3557     uLong b;              /* bit buffer */  /* NOT USED HERE */
3558     uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
3559     uInt t;               /* temporary storage */
3560     Bytef *p;             /* input data pointer */
3561     uInt n;               /* bytes available there */
3562     Bytef *q;             /* output window write pointer */
3563     uInt m;               /* bytes to end of window or read pointer */
3564 
3565     if (s->read != s->write)
3566 	return Z_STREAM_ERROR;
3567     if (s->mode != TYPE)
3568 	return Z_DATA_ERROR;
3569 
3570     /* we're ready to rock */
3571     LOAD
3572     /* while there is input ready, copy to output buffer, moving
3573      * pointers as needed.
3574      */
3575     while (n) {
3576 	t = n;  /* how many to do */
3577 	/* is there room until end of buffer? */
3578 	if (t > m) t = m;
3579 	/* update check information */
3580 	if (s->checkfn != Z_NULL)
3581 	    s->check = (*s->checkfn)(s->check, q, t);
3582 	zmemcpy(q, p, t);
3583 	q += t;
3584 	p += t;
3585 	n -= t;
3586 	z->total_out += t;
3587 	s->read = q;    /* drag read pointer forward */
3588 /*      WRAP  */ 	/* expand WRAP macro by hand to handle s->read */
3589 	if (q == s->end) {
3590 	    s->read = q = s->window;
3591 	    m = WAVAIL;
3592 	}
3593     }
3594     UPDATE
3595     return Z_OK;
3596 }
3597 
3598 
3599 /*
3600  * At the end of a Deflate-compressed PPP packet, we expect to have seen
3601  * a `stored' block type value but not the (zero) length bytes.
3602  */
3603 local int inflate_packet_flush(s)
3604     inflate_blocks_statef *s;
3605 {
3606     if (s->mode != LENS)
3607 	return Z_DATA_ERROR;
3608     s->mode = TYPE;
3609     return Z_OK;
3610 }
3611 
3612 
3613 /*+++++*/
3614 /* inftrees.c -- generate Huffman trees for efficient decoding
3615  * Copyright (C) 1995 Mark Adler
3616  * For conditions of distribution and use, see copyright notice in zlib.h
3617  */
3618 
3619 /* simplify the use of the inflate_huft type with some defines */
3620 #define base more.Base
3621 #define next more.Next
3622 #define exop word.what.Exop
3623 #define bits word.what.Bits
3624 
3625 
3626 local int huft_build OF((
3627     uIntf *,            /* code lengths in bits */
3628     uInt,               /* number of codes */
3629     uInt,               /* number of "simple" codes */
3630     uIntf *,            /* list of base values for non-simple codes */
3631     uIntf *,            /* list of extra bits for non-simple codes */
3632     inflate_huft * FAR*,/* result: starting table */
3633     uIntf *,            /* maximum lookup bits (returns actual) */
3634     z_stream *));       /* for zalloc function */
3635 
3636 local voidpf falloc OF((
3637     voidpf,             /* opaque pointer (not used) */
3638     uInt,               /* number of items */
3639     uInt));             /* size of item */
3640 
3641 local void ffree OF((
3642     voidpf q,           /* opaque pointer (not used) */
3643     voidpf p,           /* what to free (not used) */
3644     uInt n));		/* number of bytes (not used) */
3645 
3646 /* Tables for deflate from PKZIP's appnote.txt. */
3647 local uInt cplens[] = { /* Copy lengths for literal codes 257..285 */
3648         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
3649         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
3650         /* actually lengths - 2; also see note #13 above about 258 */
3651 local uInt cplext[] = { /* Extra bits for literal codes 257..285 */
3652         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3653         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 192, 192}; /* 192==invalid */
3654 local uInt cpdist[] = { /* Copy offsets for distance codes 0..29 */
3655         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
3656         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
3657         8193, 12289, 16385, 24577};
3658 local uInt cpdext[] = { /* Extra bits for distance codes */
3659         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
3660         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
3661         12, 12, 13, 13};
3662 
3663 /*
3664    Huffman code decoding is performed using a multi-level table lookup.
3665    The fastest way to decode is to simply build a lookup table whose
3666    size is determined by the longest code.  However, the time it takes
3667    to build this table can also be a factor if the data being decoded
3668    is not very long.  The most common codes are necessarily the
3669    shortest codes, so those codes dominate the decoding time, and hence
3670    the speed.  The idea is you can have a shorter table that decodes the
3671    shorter, more probable codes, and then point to subsidiary tables for
3672    the longer codes.  The time it costs to decode the longer codes is
3673    then traded against the time it takes to make longer tables.
3674 
3675    This results of this trade are in the variables lbits and dbits
3676    below.  lbits is the number of bits the first level table for literal/
3677    length codes can decode in one step, and dbits is the same thing for
3678    the distance codes.  Subsequent tables are also less than or equal to
3679    those sizes.  These values may be adjusted either when all of the
3680    codes are shorter than that, in which case the longest code length in
3681    bits is used, or when the shortest code is *longer* than the requested
3682    table size, in which case the length of the shortest code in bits is
3683    used.
3684 
3685    There are two different values for the two tables, since they code a
3686    different number of possibilities each.  The literal/length table
3687    codes 286 possible values, or in a flat code, a little over eight
3688    bits.  The distance table codes 30 possible values, or a little less
3689    than five bits, flat.  The optimum values for speed end up being
3690    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
3691    The optimum values may differ though from machine to machine, and
3692    possibly even between compilers.  Your mileage may vary.
3693  */
3694 
3695 
3696 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
3697 #define BMAX 15         /* maximum bit length of any code */
3698 #define N_MAX 288       /* maximum number of codes in any set */
3699 
3700 #ifdef DEBUG_ZLIB
3701   uInt inflate_hufts;
3702 #endif
3703 
3704 local int huft_build(b, n, s, d, e, t, m, zs)
3705 uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
3706 uInt n;                 /* number of codes (assumed <= N_MAX) */
3707 uInt s;                 /* number of simple-valued codes (0..s-1) */
3708 uIntf *d;               /* list of base values for non-simple codes */
3709 uIntf *e;               /* list of extra bits for non-simple codes */
3710 inflate_huft * FAR *t;  /* result: starting table */
3711 uIntf *m;               /* maximum lookup bits, returns actual */
3712 z_stream *zs;           /* for zalloc function */
3713 /* Given a list of code lengths and a maximum table size, make a set of
3714    tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
3715    if the given code set is incomplete (the tables are still built in this
3716    case), Z_DATA_ERROR if the input is invalid (all zero length codes or an
3717    over-subscribed set of lengths), or Z_MEM_ERROR if not enough memory. */
3718 {
3719 
3720   uInt a;                       /* counter for codes of length k */
3721   uInt c[BMAX+1];               /* bit length count table */
3722   uInt f;                       /* i repeats in table every f entries */
3723   int g;                        /* maximum code length */
3724   int h;                        /* table level */
3725   register uInt i;              /* counter, current code */
3726   register uInt j;              /* counter */
3727   register int k;               /* number of bits in current code */
3728   int l;                        /* bits per table (returned in m) */
3729   register uIntf *p;            /* pointer into c[], b[], or v[] */
3730   inflate_huft *q;              /* points to current table */
3731   struct inflate_huft_s r;      /* table entry for structure assignment */
3732   inflate_huft *u[BMAX];        /* table stack */
3733   uInt v[N_MAX];                /* values in order of bit length */
3734   register int w;               /* bits before this table == (l * h) */
3735   uInt x[BMAX+1];               /* bit offsets, then code stack */
3736   uIntf *xp;                    /* pointer into x */
3737   int y;                        /* number of dummy codes added */
3738   uInt z;                       /* number of entries in current table */
3739 
3740 
3741   /* Generate counts for each bit length */
3742   p = c;
3743 #define C0 *p++ = 0;
3744 #define C2 C0 C0 C0 C0
3745 #define C4 C2 C2 C2 C2
3746   C4                            /* clear c[]--assume BMAX+1 is 16 */
3747   p = b;  i = n;
3748   do {
3749     c[*p++]++;                  /* assume all entries <= BMAX */
3750   } while (--i);
3751   if (c[0] == n)                /* null input--all zero length codes */
3752   {
3753     *t = (inflate_huft *)Z_NULL;
3754     *m = 0;
3755     return Z_OK;
3756   }
3757 
3758 
3759   /* Find minimum and maximum length, bound *m by those */
3760   l = *m;
3761   for (j = 1; j <= BMAX; j++)
3762     if (c[j])
3763       break;
3764   k = j;                        /* minimum code length */
3765   if ((uInt)l < j)
3766     l = j;
3767   for (i = BMAX; i; i--)
3768     if (c[i])
3769       break;
3770   g = i;                        /* maximum code length */
3771   if ((uInt)l > i)
3772     l = i;
3773   *m = l;
3774 
3775 
3776   /* Adjust last length count to fill out codes, if needed */
3777   for (y = 1 << j; j < i; j++, y <<= 1)
3778     if ((y -= c[j]) < 0)
3779       return Z_DATA_ERROR;
3780   if ((y -= c[i]) < 0)
3781     return Z_DATA_ERROR;
3782   c[i] += y;
3783 
3784 
3785   /* Generate starting offsets into the value table for each length */
3786   x[1] = j = 0;
3787   p = c + 1;  xp = x + 2;
3788   while (--i) {                 /* note that i == g from above */
3789     *xp++ = (j += *p++);
3790   }
3791 
3792 
3793   /* Make a table of values in order of bit lengths */
3794   p = b;  i = 0;
3795   do {
3796     if ((j = *p++) != 0)
3797       v[x[j]++] = i;
3798   } while (++i < n);
3799 
3800 
3801   /* Generate the Huffman codes and for each, make the table entries */
3802   x[0] = i = 0;                 /* first Huffman code is zero */
3803   p = v;                        /* grab values in bit order */
3804   h = -1;                       /* no tables yet--level -1 */
3805   w = -l;                       /* bits decoded == (l * h) */
3806   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
3807   q = (inflate_huft *)Z_NULL;   /* ditto */
3808   z = 0;                        /* ditto */
3809 
3810   /* go through the bit lengths (k already is bits in shortest code) */
3811   for (; k <= g; k++)
3812   {
3813     a = c[k];
3814     while (a--)
3815     {
3816       /* here i is the Huffman code of length k bits for value *p */
3817       /* make tables up to required level */
3818       while (k > w + l)
3819       {
3820         h++;
3821         w += l;                 /* previous table always l bits */
3822 
3823         /* compute minimum size table less than or equal to l bits */
3824         z = (z = g - w) > (uInt)l ? l : z;      /* table size upper limit */
3825         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
3826         {                       /* too few codes for k-w bit table */
3827           f -= a + 1;           /* deduct codes from patterns left */
3828           xp = c + k;
3829           if (j < z)
3830             while (++j < z)     /* try smaller tables up to z bits */
3831             {
3832               if ((f <<= 1) <= *++xp)
3833                 break;          /* enough codes to use up j bits */
3834               f -= *xp;         /* else deduct codes from patterns */
3835             }
3836         }
3837         z = 1 << j;             /* table entries for j-bit table */
3838 
3839         /* allocate and link in new table */
3840         if ((q = (inflate_huft *)ZALLOC
3841              (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
3842         {
3843           if (h)
3844             inflate_trees_free(u[0], zs);
3845           return Z_MEM_ERROR;   /* not enough memory */
3846         }
3847 	q->word.Nalloc = z + 1;
3848 #ifdef DEBUG_ZLIB
3849         inflate_hufts += z + 1;
3850 #endif
3851         *t = q + 1;             /* link to list for huft_free() */
3852         *(t = &(q->next)) = Z_NULL;
3853         u[h] = ++q;             /* table starts after link */
3854 
3855         /* connect to last table, if there is one */
3856         if (h)
3857         {
3858           x[h] = i;             /* save pattern for backing up */
3859           r.bits = (Byte)l;     /* bits to dump before this table */
3860           r.exop = (Byte)j;     /* bits in this table */
3861           r.next = q;           /* pointer to this table */
3862           j = i >> (w - l);     /* (get around Turbo C bug) */
3863           u[h-1][j] = r;        /* connect to last table */
3864         }
3865       }
3866 
3867       /* set up table entry in r */
3868       r.bits = (Byte)(k - w);
3869       if (p >= v + n)
3870         r.exop = 128 + 64;      /* out of values--invalid code */
3871       else if (*p < s)
3872       {
3873         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
3874         r.base = *p++;          /* simple code is just the value */
3875       }
3876       else
3877       {
3878         r.exop = (Byte)e[*p - s] + 16 + 64; /* non-simple--look up in lists */
3879         r.base = d[*p++ - s];
3880       }
3881 
3882       /* fill code-like entries with r */
3883       f = 1 << (k - w);
3884       for (j = i >> w; j < z; j += f)
3885         q[j] = r;
3886 
3887       /* backwards increment the k-bit code i */
3888       for (j = 1 << (k - 1); i & j; j >>= 1)
3889         i ^= j;
3890       i ^= j;
3891 
3892       /* backup over finished tables */
3893       while ((i & ((1 << w) - 1)) != x[h])
3894       {
3895         h--;                    /* don't need to update q */
3896         w -= l;
3897       }
3898     }
3899   }
3900 
3901 
3902   /* Return Z_BUF_ERROR if we were given an incomplete table */
3903   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
3904 }
3905 
3906 
3907 local int inflate_trees_bits(c, bb, tb, z)
3908 uIntf *c;               /* 19 code lengths */
3909 uIntf *bb;              /* bits tree desired/actual depth */
3910 inflate_huft * FAR *tb; /* bits tree result */
3911 z_stream *z;            /* for zfree function */
3912 {
3913   int r;
3914 
3915   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
3916   if (r == Z_DATA_ERROR)
3917     z->msg = "oversubscribed dynamic bit lengths tree";
3918   else if (r == Z_BUF_ERROR)
3919   {
3920     inflate_trees_free(*tb, z);
3921     z->msg = "incomplete dynamic bit lengths tree";
3922     r = Z_DATA_ERROR;
3923   }
3924   return r;
3925 }
3926 
3927 
3928 local int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
3929 uInt nl;                /* number of literal/length codes */
3930 uInt nd;                /* number of distance codes */
3931 uIntf *c;               /* that many (total) code lengths */
3932 uIntf *bl;              /* literal desired/actual bit depth */
3933 uIntf *bd;              /* distance desired/actual bit depth */
3934 inflate_huft * FAR *tl; /* literal/length tree result */
3935 inflate_huft * FAR *td; /* distance tree result */
3936 z_stream *z;            /* for zfree function */
3937 {
3938   int r;
3939 
3940   /* build literal/length tree */
3941   if ((r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z)) != Z_OK)
3942   {
3943     if (r == Z_DATA_ERROR)
3944       z->msg = "oversubscribed literal/length tree";
3945     else if (r == Z_BUF_ERROR)
3946     {
3947       inflate_trees_free(*tl, z);
3948       z->msg = "incomplete literal/length tree";
3949       r = Z_DATA_ERROR;
3950     }
3951     return r;
3952   }
3953 
3954   /* build distance tree */
3955   if ((r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z)) != Z_OK)
3956   {
3957     if (r == Z_DATA_ERROR)
3958       z->msg = "oversubscribed literal/length tree";
3959     else if (r == Z_BUF_ERROR) {
3960 #ifdef PKZIP_BUG_WORKAROUND
3961       r = Z_OK;
3962     }
3963 #else
3964       inflate_trees_free(*td, z);
3965       z->msg = "incomplete literal/length tree";
3966       r = Z_DATA_ERROR;
3967     }
3968     inflate_trees_free(*tl, z);
3969     return r;
3970 #endif
3971   }
3972 
3973   /* done */
3974   return Z_OK;
3975 }
3976 
3977 
3978 /* build fixed tables only once--keep them here */
3979 local int fixed_lock = 0;
3980 local int fixed_built = 0;
3981 #define FIXEDH 530      /* number of hufts used by fixed tables */
3982 local uInt fixed_left = FIXEDH;
3983 local inflate_huft fixed_mem[FIXEDH];
3984 local uInt fixed_bl;
3985 local uInt fixed_bd;
3986 local inflate_huft *fixed_tl;
3987 local inflate_huft *fixed_td;
3988 
3989 
3990 local voidpf falloc(q, n, s)
3991 voidpf q;        /* opaque pointer (not used) */
3992 uInt n;         /* number of items */
3993 uInt s;         /* size of item */
3994 {
3995   Assert(s == sizeof(inflate_huft) && n <= fixed_left,
3996          "inflate_trees falloc overflow");
3997   if (q) s++; /* to make some compilers happy */
3998   fixed_left -= n;
3999   return (voidpf)(fixed_mem + fixed_left);
4000 }
4001 
4002 
4003 local void ffree(q, p, n)
4004 voidpf q;
4005 voidpf p;
4006 uInt n;
4007 {
4008   Assert(0, "inflate_trees ffree called!");
4009   if (q) q = p; /* to make some compilers happy */
4010 }
4011 
4012 
4013 local int inflate_trees_fixed(bl, bd, tl, td)
4014 uIntf *bl;               /* literal desired/actual bit depth */
4015 uIntf *bd;               /* distance desired/actual bit depth */
4016 inflate_huft * FAR *tl;  /* literal/length tree result */
4017 inflate_huft * FAR *td;  /* distance tree result */
4018 {
4019   /* build fixed tables if not built already--lock out other instances */
4020   while (++fixed_lock > 1)
4021     fixed_lock--;
4022   if (!fixed_built)
4023   {
4024     int k;              /* temporary variable */
4025     unsigned c[288];    /* length list for huft_build */
4026     z_stream z;         /* for falloc function */
4027 
4028     /* set up fake z_stream for memory routines */
4029     z.zalloc = falloc;
4030     z.zfree = ffree;
4031     z.opaque = Z_NULL;
4032 
4033     /* literal table */
4034     for (k = 0; k < 144; k++)
4035       c[k] = 8;
4036     for (; k < 256; k++)
4037       c[k] = 9;
4038     for (; k < 280; k++)
4039       c[k] = 7;
4040     for (; k < 288; k++)
4041       c[k] = 8;
4042     fixed_bl = 7;
4043     huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4044 
4045     /* distance table */
4046     for (k = 0; k < 30; k++)
4047       c[k] = 5;
4048     fixed_bd = 5;
4049     huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4050 
4051     /* done */
4052     fixed_built = 1;
4053   }
4054   fixed_lock--;
4055   *bl = fixed_bl;
4056   *bd = fixed_bd;
4057   *tl = fixed_tl;
4058   *td = fixed_td;
4059   return Z_OK;
4060 }
4061 
4062 
4063 local int inflate_trees_free(t, z)
4064 inflate_huft *t;        /* table to free */
4065 z_stream *z;            /* for zfree function */
4066 /* Free the malloc'ed tables built by huft_build(), which makes a linked
4067    list of the tables it made, with the links in a dummy first entry of
4068    each table. */
4069 {
4070   register inflate_huft *p, *q;
4071 
4072   /* Go through linked list, freeing from the malloced (t[-1]) address. */
4073   p = t;
4074   while (p != Z_NULL)
4075   {
4076     q = (--p)->next;
4077     ZFREE(z, p, p->word.Nalloc * sizeof(inflate_huft));
4078     p = q;
4079   }
4080   return Z_OK;
4081 }
4082 
4083 /*+++++*/
4084 /* infcodes.c -- process literals and length/distance pairs
4085  * Copyright (C) 1995 Mark Adler
4086  * For conditions of distribution and use, see copyright notice in zlib.h
4087  */
4088 
4089 /* simplify the use of the inflate_huft type with some defines */
4090 #define base more.Base
4091 #define next more.Next
4092 #define exop word.what.Exop
4093 #define bits word.what.Bits
4094 
4095 /* inflate codes private state */
4096 struct inflate_codes_state {
4097 
4098   /* mode */
4099   enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4100       START,    /* x: set up for LEN */
4101       LEN,      /* i: get length/literal/eob next */
4102       LENEXT,   /* i: getting length extra (have base) */
4103       DIST,     /* i: get distance next */
4104       DISTEXT,  /* i: getting distance extra */
4105       COPY,     /* o: copying bytes in window, waiting for space */
4106       LIT,      /* o: got literal, waiting for output space */
4107       WASH,     /* o: got eob, possibly still output waiting */
4108       END,      /* x: got eob and all data flushed */
4109       BADCODE}  /* x: got error */
4110     mode;               /* current inflate_codes mode */
4111 
4112   /* mode dependent information */
4113   uInt len;
4114   union {
4115     struct {
4116       inflate_huft *tree;       /* pointer into tree */
4117       uInt need;                /* bits needed */
4118     } code;             /* if LEN or DIST, where in tree */
4119     uInt lit;           /* if LIT, literal */
4120     struct {
4121       uInt get;                 /* bits to get for extra */
4122       uInt dist;                /* distance back to copy from */
4123     } copy;             /* if EXT or COPY, where and how much */
4124   } sub;                /* submode */
4125 
4126   /* mode independent information */
4127   Byte lbits;           /* ltree bits decoded per branch */
4128   Byte dbits;           /* dtree bits decoder per branch */
4129   inflate_huft *ltree;          /* literal/length/eob tree */
4130   inflate_huft *dtree;          /* distance tree */
4131 
4132 };
4133 
4134 
4135 local inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4136 uInt bl, bd;
4137 inflate_huft *tl, *td;
4138 z_stream *z;
4139 {
4140   inflate_codes_statef *c;
4141 
4142   if ((c = (inflate_codes_statef *)
4143        ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4144   {
4145     c->mode = START;
4146     c->lbits = (Byte)bl;
4147     c->dbits = (Byte)bd;
4148     c->ltree = tl;
4149     c->dtree = td;
4150     Tracev((stderr, "inflate:       codes new\n"));
4151   }
4152   return c;
4153 }
4154 
4155 
4156 local int inflate_codes(s, z, r)
4157 inflate_blocks_statef *s;
4158 z_stream *z;
4159 int r;
4160 {
4161   uInt j;               /* temporary storage */
4162   inflate_huft *t;      /* temporary pointer */
4163   uInt e;               /* extra bits or operation */
4164   uLong b;              /* bit buffer */
4165   uInt k;               /* bits in bit buffer */
4166   Bytef *p;             /* input data pointer */
4167   uInt n;               /* bytes available there */
4168   Bytef *q;             /* output window write pointer */
4169   uInt m;               /* bytes to end of window or read pointer */
4170   Bytef *f;             /* pointer to copy strings from */
4171   inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
4172 
4173   /* copy input/output information to locals (UPDATE macro restores) */
4174   LOAD
4175 
4176   /* process input and output based on current state */
4177   while (1) switch (c->mode)
4178   {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4179     case START:         /* x: set up for LEN */
4180 #ifndef SLOW
4181       if (m >= 258 && n >= 10)
4182       {
4183         UPDATE
4184         r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4185         LOAD
4186         if (r != Z_OK)
4187         {
4188           c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4189           break;
4190         }
4191       }
4192 #endif /* !SLOW */
4193       c->sub.code.need = c->lbits;
4194       c->sub.code.tree = c->ltree;
4195       c->mode = LEN;
4196     case LEN:           /* i: get length/literal/eob next */
4197       j = c->sub.code.need;
4198       NEEDBITS(j)
4199       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4200       DUMPBITS(t->bits)
4201       e = (uInt)(t->exop);
4202       if (e == 0)               /* literal */
4203       {
4204         c->sub.lit = t->base;
4205         Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4206                  "inflate:         literal '%c'\n" :
4207                  "inflate:         literal 0x%02x\n", t->base));
4208         c->mode = LIT;
4209         break;
4210       }
4211       if (e & 16)               /* length */
4212       {
4213         c->sub.copy.get = e & 15;
4214         c->len = t->base;
4215         c->mode = LENEXT;
4216         break;
4217       }
4218       if ((e & 64) == 0)        /* next table */
4219       {
4220         c->sub.code.need = e;
4221         c->sub.code.tree = t->next;
4222         break;
4223       }
4224       if (e & 32)               /* end of block */
4225       {
4226         Tracevv((stderr, "inflate:         end of block\n"));
4227         c->mode = WASH;
4228         break;
4229       }
4230       c->mode = BADCODE;        /* invalid code */
4231       z->msg = "invalid literal/length code";
4232       r = Z_DATA_ERROR;
4233       LEAVE
4234     case LENEXT:        /* i: getting length extra (have base) */
4235       j = c->sub.copy.get;
4236       NEEDBITS(j)
4237       c->len += (uInt)b & inflate_mask[j];
4238       DUMPBITS(j)
4239       c->sub.code.need = c->dbits;
4240       c->sub.code.tree = c->dtree;
4241       Tracevv((stderr, "inflate:         length %u\n", c->len));
4242       c->mode = DIST;
4243     case DIST:          /* i: get distance next */
4244       j = c->sub.code.need;
4245       NEEDBITS(j)
4246       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4247       DUMPBITS(t->bits)
4248       e = (uInt)(t->exop);
4249       if (e & 16)               /* distance */
4250       {
4251         c->sub.copy.get = e & 15;
4252         c->sub.copy.dist = t->base;
4253         c->mode = DISTEXT;
4254         break;
4255       }
4256       if ((e & 64) == 0)        /* next table */
4257       {
4258         c->sub.code.need = e;
4259         c->sub.code.tree = t->next;
4260         break;
4261       }
4262       c->mode = BADCODE;        /* invalid code */
4263       z->msg = "invalid distance code";
4264       r = Z_DATA_ERROR;
4265       LEAVE
4266     case DISTEXT:       /* i: getting distance extra */
4267       j = c->sub.copy.get;
4268       NEEDBITS(j)
4269       c->sub.copy.dist += (uInt)b & inflate_mask[j];
4270       DUMPBITS(j)
4271       Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
4272       c->mode = COPY;
4273     case COPY:          /* o: copying bytes in window, waiting for space */
4274 #ifndef __TURBOC__ /* Turbo C bug for following expression */
4275       f = (uInt)(q - s->window) < c->sub.copy.dist ?
4276           s->end - (c->sub.copy.dist - (q - s->window)) :
4277           q - c->sub.copy.dist;
4278 #else
4279       f = q - c->sub.copy.dist;
4280       if ((uInt)(q - s->window) < c->sub.copy.dist)
4281         f = s->end - (c->sub.copy.dist - (q - s->window));
4282 #endif
4283       while (c->len)
4284       {
4285         NEEDOUT
4286         OUTBYTE(*f++)
4287         if (f == s->end)
4288           f = s->window;
4289         c->len--;
4290       }
4291       c->mode = START;
4292       break;
4293     case LIT:           /* o: got literal, waiting for output space */
4294       NEEDOUT
4295       OUTBYTE(c->sub.lit)
4296       c->mode = START;
4297       break;
4298     case WASH:          /* o: got eob, possibly more output */
4299       FLUSH
4300       if (s->read != s->write)
4301         LEAVE
4302       c->mode = END;
4303     case END:
4304       r = Z_STREAM_END;
4305       LEAVE
4306     case BADCODE:       /* x: got error */
4307       r = Z_DATA_ERROR;
4308       LEAVE
4309     default:
4310       r = Z_STREAM_ERROR;
4311       LEAVE
4312   }
4313 }
4314 
4315 
4316 local void inflate_codes_free(c, z)
4317 inflate_codes_statef *c;
4318 z_stream *z;
4319 {
4320   ZFREE(z, c, sizeof(struct inflate_codes_state));
4321   Tracev((stderr, "inflate:       codes free\n"));
4322 }
4323 
4324 /*+++++*/
4325 /* inflate_util.c -- data and routines common to blocks and codes
4326  * Copyright (C) 1995 Mark Adler
4327  * For conditions of distribution and use, see copyright notice in zlib.h
4328  */
4329 
4330 /* copy as much as possible from the sliding window to the output area */
4331 local int inflate_flush(s, z, r)
4332 inflate_blocks_statef *s;
4333 z_stream *z;
4334 int r;
4335 {
4336   uInt n;
4337   Bytef *p, *q;
4338 
4339   /* local copies of source and destination pointers */
4340   p = z->next_out;
4341   q = s->read;
4342 
4343   /* compute number of bytes to copy as far as end of window */
4344   n = (uInt)((q <= s->write ? s->write : s->end) - q);
4345   if (n > z->avail_out) n = z->avail_out;
4346   if (n && r == Z_BUF_ERROR) r = Z_OK;
4347 
4348   /* update counters */
4349   z->avail_out -= n;
4350   z->total_out += n;
4351 
4352   /* update check information */
4353   if (s->checkfn != Z_NULL)
4354     s->check = (*s->checkfn)(s->check, q, n);
4355 
4356   /* copy as far as end of window */
4357   if (p != NULL) {
4358     zmemcpy(p, q, n);
4359     p += n;
4360   }
4361   q += n;
4362 
4363   /* see if more to copy at beginning of window */
4364   if (q == s->end)
4365   {
4366     /* wrap pointers */
4367     q = s->window;
4368     if (s->write == s->end)
4369       s->write = s->window;
4370 
4371     /* compute bytes to copy */
4372     n = (uInt)(s->write - q);
4373     if (n > z->avail_out) n = z->avail_out;
4374     if (n && r == Z_BUF_ERROR) r = Z_OK;
4375 
4376     /* update counters */
4377     z->avail_out -= n;
4378     z->total_out += n;
4379 
4380     /* update check information */
4381     if (s->checkfn != Z_NULL)
4382       s->check = (*s->checkfn)(s->check, q, n);
4383 
4384     /* copy */
4385     if (p != NULL) {
4386       zmemcpy(p, q, n);
4387       p += n;
4388     }
4389     q += n;
4390   }
4391 
4392   /* update pointers */
4393   z->next_out = p;
4394   s->read = q;
4395 
4396   /* done */
4397   return r;
4398 }
4399 
4400 
4401 /*+++++*/
4402 /* inffast.c -- process literals and length/distance pairs fast
4403  * Copyright (C) 1995 Mark Adler
4404  * For conditions of distribution and use, see copyright notice in zlib.h
4405  */
4406 
4407 /* simplify the use of the inflate_huft type with some defines */
4408 #define base more.Base
4409 #define next more.Next
4410 #define exop word.what.Exop
4411 #define bits word.what.Bits
4412 
4413 /* macros for bit input with no checking and for returning unused bytes */
4414 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4415 #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4416 
4417 /* Called with number of bytes left to write in window at least 258
4418    (the maximum string length) and number of input bytes available
4419    at least ten.  The ten bytes are six bytes for the longest length/
4420    distance pair plus four bytes for overloading the bit buffer. */
4421 
4422 local int inflate_fast(bl, bd, tl, td, s, z)
4423 uInt bl, bd;
4424 inflate_huft *tl, *td;
4425 inflate_blocks_statef *s;
4426 z_stream *z;
4427 {
4428   inflate_huft *t;      /* temporary pointer */
4429   uInt e;               /* extra bits or operation */
4430   uLong b;              /* bit buffer */
4431   uInt k;               /* bits in bit buffer */
4432   Bytef *p;             /* input data pointer */
4433   uInt n;               /* bytes available there */
4434   Bytef *q;             /* output window write pointer */
4435   uInt m;               /* bytes to end of window or read pointer */
4436   uInt ml;              /* mask for literal/length tree */
4437   uInt md;              /* mask for distance tree */
4438   uInt c;               /* bytes to copy */
4439   uInt d;               /* distance back to copy from */
4440   Bytef *r;             /* copy source pointer */
4441 
4442   /* load input, output, bit values */
4443   LOAD
4444 
4445   /* initialize masks */
4446   ml = inflate_mask[bl];
4447   md = inflate_mask[bd];
4448 
4449   /* do until not enough input or output space for fast loop */
4450   do {                          /* assume called with m >= 258 && n >= 10 */
4451     /* get literal/length code */
4452     GRABBITS(20)                /* max bits for literal/length code */
4453     if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
4454     {
4455       DUMPBITS(t->bits)
4456       Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4457                 "inflate:         * literal '%c'\n" :
4458                 "inflate:         * literal 0x%02x\n", t->base));
4459       *q++ = (Byte)t->base;
4460       m--;
4461       continue;
4462     }
4463     do {
4464       DUMPBITS(t->bits)
4465       if (e & 16)
4466       {
4467         /* get extra bits for length */
4468         e &= 15;
4469         c = t->base + ((uInt)b & inflate_mask[e]);
4470         DUMPBITS(e)
4471         Tracevv((stderr, "inflate:         * length %u\n", c));
4472 
4473         /* decode distance base of block to copy */
4474         GRABBITS(15);           /* max bits for distance code */
4475         e = (t = td + ((uInt)b & md))->exop;
4476         do {
4477           DUMPBITS(t->bits)
4478           if (e & 16)
4479           {
4480             /* get extra bits to add to distance base */
4481             e &= 15;
4482             GRABBITS(e)         /* get extra bits (up to 13) */
4483             d = t->base + ((uInt)b & inflate_mask[e]);
4484             DUMPBITS(e)
4485             Tracevv((stderr, "inflate:         * distance %u\n", d));
4486 
4487             /* do the copy */
4488             m -= c;
4489             if ((uInt)(q - s->window) >= d)     /* offset before dest */
4490             {                                   /*  just copy */
4491               r = q - d;
4492               *q++ = *r++;  c--;        /* minimum count is three, */
4493               *q++ = *r++;  c--;        /*  so unroll loop a little */
4494             }
4495             else                        /* else offset after destination */
4496             {
4497               e = d - (q - s->window);  /* bytes from offset to end */
4498               r = s->end - e;           /* pointer to offset */
4499               if (c > e)                /* if source crosses, */
4500               {
4501                 c -= e;                 /* copy to end of window */
4502                 do {
4503                   *q++ = *r++;
4504                 } while (--e);
4505                 r = s->window;          /* copy rest from start of window */
4506               }
4507             }
4508             do {                        /* copy all or what's left */
4509               *q++ = *r++;
4510             } while (--c);
4511             break;
4512           }
4513           else if ((e & 64) == 0)
4514             e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
4515           else
4516           {
4517             z->msg = "invalid distance code";
4518             UNGRAB
4519             UPDATE
4520             return Z_DATA_ERROR;
4521           }
4522         } while (1);
4523         break;
4524       }
4525       if ((e & 64) == 0)
4526       {
4527         if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
4528         {
4529           DUMPBITS(t->bits)
4530           Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4531                     "inflate:         * literal '%c'\n" :
4532                     "inflate:         * literal 0x%02x\n", t->base));
4533           *q++ = (Byte)t->base;
4534           m--;
4535           break;
4536         }
4537       }
4538       else if (e & 32)
4539       {
4540         Tracevv((stderr, "inflate:         * end of block\n"));
4541         UNGRAB
4542         UPDATE
4543         return Z_STREAM_END;
4544       }
4545       else
4546       {
4547         z->msg = "invalid literal/length code";
4548         UNGRAB
4549         UPDATE
4550         return Z_DATA_ERROR;
4551       }
4552     } while (1);
4553   } while (m >= 258 && n >= 10);
4554 
4555   /* not enough input or output--restore pointers and return */
4556   UNGRAB
4557   UPDATE
4558   return Z_OK;
4559 }
4560 
4561 
4562 /*+++++*/
4563 /* zutil.c -- target dependent utility functions for the compression library
4564  * Copyright (C) 1995 Jean-loup Gailly.
4565  * For conditions of distribution and use, see copyright notice in zlib.h
4566  */
4567 
4568 /* From: zutil.c,v 1.8 1995/05/03 17:27:12 jloup Exp */
4569 
4570 char *zlib_version = ZLIB_VERSION;
4571 
4572 char *z_errmsg[] = {
4573 "stream end",          /* Z_STREAM_END    1 */
4574 "",                    /* Z_OK            0 */
4575 "file error",          /* Z_ERRNO        (-1) */
4576 "stream error",        /* Z_STREAM_ERROR (-2) */
4577 "data error",          /* Z_DATA_ERROR   (-3) */
4578 "insufficient memory", /* Z_MEM_ERROR    (-4) */
4579 "buffer error",        /* Z_BUF_ERROR    (-5) */
4580 ""};
4581 
4582 
4583 /*+++++*/
4584 /* adler32.c -- compute the Adler-32 checksum of a data stream
4585  * Copyright (C) 1995 Mark Adler
4586  * For conditions of distribution and use, see copyright notice in zlib.h
4587  */
4588 
4589 /* From: adler32.c,v 1.6 1995/05/03 17:27:08 jloup Exp */
4590 
4591 #define BASE 65521L /* largest prime smaller than 65536 */
4592 #define NMAX 5552
4593 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
4594 
4595 #define DO1(buf)  {s1 += *buf++; s2 += s1;}
4596 #define DO2(buf)  DO1(buf); DO1(buf);
4597 #define DO4(buf)  DO2(buf); DO2(buf);
4598 #define DO8(buf)  DO4(buf); DO4(buf);
4599 #define DO16(buf) DO8(buf); DO8(buf);
4600 
4601 /* ========================================================================= */
4602 uLong adler32(adler, buf, len)
4603     uLong adler;
4604     Bytef *buf;
4605     uInt len;
4606 {
4607     unsigned long s1 = adler & 0xffff;
4608     unsigned long s2 = (adler >> 16) & 0xffff;
4609     int k;
4610 
4611     if (buf == Z_NULL) return 1L;
4612 
4613     while (len > 0) {
4614         k = len < NMAX ? len : NMAX;
4615         len -= k;
4616         while (k >= 16) {
4617             DO16(buf);
4618             k -= 16;
4619         }
4620         if (k != 0) do {
4621             DO1(buf);
4622         } while (--k);
4623         s1 %= BASE;
4624         s2 %= BASE;
4625     }
4626     return (s2 << 16) | s1;
4627 }
4628