xref: /netbsd-src/sys/net/zlib.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: zlib.c,v 1.13 2001/02/05 10:42:43 chs Exp $	*/
2 /*
3  * This file is derived from various .h and .c files from the zlib-1.0.4
4  * distribution by Jean-loup Gailly and Mark Adler, with some additions
5  * by Paul Mackerras to aid in implementing Deflate compression and
6  * decompression for PPP packets.  See zlib.h for conditions of
7  * distribution and use.
8  *
9  * Changes that have been made include:
10  * - added Z_PACKET_FLUSH (see zlib.h for details)
11  * - added inflateIncomp and deflateOutputPending
12  * - allow strm->next_out to be NULL, meaning discard the output
13  *
14  * $Id: zlib.c,v 1.13 2001/02/05 10:42:43 chs Exp $
15  */
16 
17 /*
18  *  ==FILEVERSION 971210==
19  *
20  * This marker is used by the Linux installation script to determine
21  * whether an up-to-date version of this file is already installed.
22  */
23 
24 #define NO_DUMMY_DECL
25 #define NO_ZCFUNCS
26 #define MY_ZCALLOC
27 
28 #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
29 #define inflate	inflate_ppp	/* FreeBSD already has an inflate :-( */
30 #endif
31 
32 
33 /* +++ zutil.h */
34 /* zutil.h -- internal interface and configuration of the compression library
35  * Copyright (C) 1995-1996 Jean-loup Gailly.
36  * For conditions of distribution and use, see copyright notice in zlib.h
37  */
38 
39 /* WARNING: this file should *not* be used by applications. It is
40    part of the implementation of the compression library and is
41    subject to change. Applications should only use zlib.h.
42  */
43 
44 /* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
45 
46 #ifndef _Z_UTIL_H
47 #define _Z_UTIL_H
48 
49 #include "zlib.h"
50 
51 #if defined(KERNEL) || defined(_KERNEL)
52 /* Assume this is a *BSD or SVR4 kernel */
53 #include <sys/param.h>
54 #include <sys/time.h>
55 #include <sys/systm.h>
56 #  define HAVE_MEMCPY
57 #  define memcpy(d, s, n)	bcopy((s), (d), (n))
58 #  define memset(d, v, n)	bzero((d), (n))
59 #  define memcmp		bcmp
60 
61 #else
62 #if defined(__KERNEL__)
63 /* Assume this is a Linux kernel */
64 #include <linux/string.h>
65 #define HAVE_MEMCPY
66 
67 #else /* not kernel */
68 
69 #if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS)
70 #   include <stddef.h>
71 #   include <errno.h>
72 #else
73     extern int errno;
74 #endif
75 #ifdef STDC
76 #  include <string.h>
77 #  include <stdlib.h>
78 #endif
79 #endif /* __KERNEL__ */
80 #endif /* _KERNEL || KERNEL */
81 
82 #ifndef local
83 #  define local static
84 #endif
85 /* compile with -Dlocal if your debugger can't find static symbols */
86 
87 typedef unsigned char  uch;
88 typedef uch FAR uchf;
89 typedef unsigned short ush;
90 typedef ush FAR ushf;
91 typedef unsigned long  ulg;
92 
93 extern const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
94 /* (size given to avoid silly warnings with Visual C++) */
95 
96 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
97 
98 #define ERR_RETURN(strm,err) \
99   return (strm->msg = (char*)ERR_MSG(err), (err))
100 /* To be used only when the state is known to be valid */
101 
102         /* common constants */
103 
104 #ifndef DEF_WBITS
105 #  define DEF_WBITS MAX_WBITS
106 #endif
107 /* default windowBits for decompression. MAX_WBITS is for compression only */
108 
109 #if MAX_MEM_LEVEL >= 8
110 #  define DEF_MEM_LEVEL 8
111 #else
112 #  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
113 #endif
114 /* default memLevel */
115 
116 #define STORED_BLOCK 0
117 #define STATIC_TREES 1
118 #define DYN_TREES    2
119 /* The three kinds of block type */
120 
121 #define MIN_MATCH  3
122 #define MAX_MATCH  258
123 /* The minimum and maximum match lengths */
124 
125 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
126 
127         /* target dependencies */
128 
129 #ifdef MSDOS
130 #  define OS_CODE  0x00
131 #  ifdef __TURBOC__
132 #    include <alloc.h>
133 #  else /* MSC or DJGPP */
134 #    include <malloc.h>
135 #  endif
136 #endif
137 
138 #ifdef OS2
139 #  define OS_CODE  0x06
140 #endif
141 
142 #ifdef WIN32 /* Window 95 & Windows NT */
143 #  define OS_CODE  0x0b
144 #endif
145 
146 #if defined(VAXC) || defined(VMS)
147 #  define OS_CODE  0x02
148 #  define FOPEN(name, mode) \
149      fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
150 #endif
151 
152 #ifdef AMIGA
153 #  define OS_CODE  0x01
154 #endif
155 
156 #if defined(ATARI) || defined(atarist)
157 #  define OS_CODE  0x05
158 #endif
159 
160 #ifdef MACOS
161 #  define OS_CODE  0x07
162 #endif
163 
164 #ifdef __50SERIES /* Prime/PRIMOS */
165 #  define OS_CODE  0x0F
166 #endif
167 
168 #ifdef TOPS20
169 #  define OS_CODE  0x0a
170 #endif
171 
172 #if defined(_BEOS_) || defined(RISCOS)
173 #  define fdopen(fd,mode) NULL /* No fdopen() */
174 #endif
175 
176         /* Common defaults */
177 
178 #ifndef OS_CODE
179 #  define OS_CODE  0x03  /* assume Unix */
180 #endif
181 
182 #ifndef FOPEN
183 #  define FOPEN(name, mode) fopen((name), (mode))
184 #endif
185 
186          /* functions */
187 
188 #ifdef HAVE_STRERROR
189    extern char *strerror OF((int));
190 #  define zstrerror(errnum) strerror(errnum)
191 #else
192 #  define zstrerror(errnum) ""
193 #endif
194 
195 #if defined(pyr)
196 #  define NO_MEMCPY
197 #endif
198 #if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
199  /* Use our own functions for small and medium model with MSC <= 5.0.
200   * You may have to use the same strategy for Borland C (untested).
201   */
202 #  define NO_MEMCPY
203 #endif
204 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
205 #  define HAVE_MEMCPY
206 #endif
207 #ifdef HAVE_MEMCPY
208 #  ifdef SMALL_MEDIUM /* MSDOS small or medium model */
209 #    define zmemcpy _fmemcpy
210 #    define zmemcmp _fmemcmp
211 #    define zmemzero(dest, len) _fmemset(dest, 0, len)
212 #  else
213 #    define zmemcpy memcpy
214 #    define zmemcmp memcmp
215 #    define zmemzero(dest, len) memset(dest, 0, len)
216 #  endif
217 #else
218    extern void zmemcpy  OF((Bytef* dest, Bytef* source, uInt len));
219    extern int  zmemcmp  OF((Bytef* s1,   Bytef* s2, uInt len));
220    extern void zmemzero OF((Bytef* dest, uInt len));
221 #endif
222 
223 /* Diagnostic functions */
224 #ifdef DEBUG_ZLIB
225 #  include <stdio.h>
226 #  ifndef verbose
227 #    define verbose 0
228 #  endif
229    extern void z_error    OF((char *m));
230 #  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
231 #  define Trace(x) fprintf x
232 #  define Tracev(x) {if (verbose) fprintf x ;}
233 #  define Tracevv(x) {if (verbose>1) fprintf x ;}
234 #  define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
235 #  define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
236 #else
237 #  define Assert(cond,msg)
238 #  define Trace(x)
239 #  define Tracev(x)
240 #  define Tracevv(x)
241 #  define Tracec(c,x)
242 #  define Tracecv(c,x)
243 #endif
244 
245 
246 typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
247 
248 voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
249 void   zcfree  OF((voidpf opaque, voidpf ptr));
250 
251 #define ZALLOC(strm, items, size) \
252            (*((strm)->zalloc))((strm)->opaque, (items), (size))
253 #define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
254 #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
255 
256 #endif /* _Z_UTIL_H */
257 /* --- zutil.h */
258 
259 /* +++ deflate.h */
260 /* deflate.h -- internal compression state
261  * Copyright (C) 1995-1996 Jean-loup Gailly
262  * For conditions of distribution and use, see copyright notice in zlib.h
263  */
264 
265 /* WARNING: this file should *not* be used by applications. It is
266    part of the implementation of the compression library and is
267    subject to change. Applications should only use zlib.h.
268  */
269 
270 /* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
271 
272 #ifndef _DEFLATE_H
273 #define _DEFLATE_H
274 
275 /* #include "zutil.h" */
276 
277 /* ===========================================================================
278  * Internal compression state.
279  */
280 
281 #define LENGTH_CODES 29
282 /* number of length codes, not counting the special END_BLOCK code */
283 
284 #define LITERALS  256
285 /* number of literal bytes 0..255 */
286 
287 #define L_CODES (LITERALS+1+LENGTH_CODES)
288 /* number of Literal or Length codes, including the END_BLOCK code */
289 
290 #define D_CODES   30
291 /* number of distance codes */
292 
293 #define BL_CODES  19
294 /* number of codes used to transfer the bit lengths */
295 
296 #define HEAP_SIZE (2*L_CODES+1)
297 /* maximum heap size */
298 
299 #define MAX_BITS 15
300 /* All codes must not exceed MAX_BITS bits */
301 
302 #define INIT_STATE    42
303 #define BUSY_STATE   113
304 #define FINISH_STATE 666
305 /* Stream status */
306 
307 
308 /* Data structure describing a single value and its code string. */
309 typedef struct ct_data_s {
310     union {
311         ush  freq;       /* frequency count */
312         ush  code;       /* bit string */
313     } fc;
314     union {
315         ush  dad;        /* father node in Huffman tree */
316         ush  len;        /* length of bit string */
317     } dl;
318 } FAR ct_data;
319 
320 #define Freq fc.freq
321 #define Code fc.code
322 #define Dad  dl.dad
323 #define Len  dl.len
324 
325 typedef struct static_tree_desc_s  static_tree_desc;
326 
327 typedef struct tree_desc_s {
328     ct_data *dyn_tree;           /* the dynamic tree */
329     int     max_code;            /* largest code with non zero frequency */
330     static_tree_desc *stat_desc; /* the corresponding static tree */
331 } FAR tree_desc;
332 
333 typedef ush Pos;
334 typedef Pos FAR Posf;
335 typedef unsigned IPos;
336 
337 /* A Pos is an index in the character window. We use short instead of int to
338  * save space in the various tables. IPos is used only for parameter passing.
339  */
340 
341 typedef struct deflate_state {
342     z_streamp strm;      /* pointer back to this zlib stream */
343     int   status;        /* as the name implies */
344     Bytef *pending_buf;  /* output still pending */
345     ulg   pending_buf_size; /* size of pending_buf */
346     Bytef *pending_out;  /* next pending byte to output to the stream */
347     int   pending;       /* nb of bytes in the pending buffer */
348     int   noheader;      /* suppress zlib header and adler32 */
349     Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
350     Byte  method;        /* STORED (for zip only) or DEFLATED */
351     int   last_flush;    /* value of flush param for previous deflate call */
352 
353                 /* used by deflate.c: */
354 
355     uInt  w_size;        /* LZ77 window size (32K by default) */
356     uInt  w_bits;        /* log2(w_size)  (8..16) */
357     uInt  w_mask;        /* w_size - 1 */
358 
359     Bytef *window;
360     /* Sliding window. Input bytes are read into the second half of the window,
361      * and move to the first half later to keep a dictionary of at least wSize
362      * bytes. With this organization, matches are limited to a distance of
363      * wSize-MAX_MATCH bytes, but this ensures that IO is always
364      * performed with a length multiple of the block size. Also, it limits
365      * the window size to 64K, which is quite useful on MSDOS.
366      * To do: use the user input buffer as sliding window.
367      */
368 
369     ulg window_size;
370     /* Actual size of window: 2*wSize, except when the user input buffer
371      * is directly used as sliding window.
372      */
373 
374     Posf *prev;
375     /* Link to older string with same hash index. To limit the size of this
376      * array to 64K, this link is maintained only for the last 32K strings.
377      * An index in this array is thus a window index modulo 32K.
378      */
379 
380     Posf *head; /* Heads of the hash chains or NIL. */
381 
382     uInt  ins_h;          /* hash index of string to be inserted */
383     uInt  hash_size;      /* number of elements in hash table */
384     uInt  hash_bits;      /* log2(hash_size) */
385     uInt  hash_mask;      /* hash_size-1 */
386 
387     uInt  hash_shift;
388     /* Number of bits by which ins_h must be shifted at each input
389      * step. It must be such that after MIN_MATCH steps, the oldest
390      * byte no longer takes part in the hash key, that is:
391      *   hash_shift * MIN_MATCH >= hash_bits
392      */
393 
394     long block_start;
395     /* Window position at the beginning of the current output block. Gets
396      * negative when the window is moved backwards.
397      */
398 
399     uInt match_length;           /* length of best match */
400     IPos prev_match;             /* previous match */
401     int match_available;         /* set if previous match exists */
402     uInt strstart;               /* start of string to insert */
403     uInt match_start;            /* start of matching string */
404     uInt lookahead;              /* number of valid bytes ahead in window */
405 
406     uInt prev_length;
407     /* Length of the best match at previous step. Matches not greater than this
408      * are discarded. This is used in the lazy match evaluation.
409      */
410 
411     uInt max_chain_length;
412     /* To speed up deflation, hash chains are never searched beyond this
413      * length.  A higher limit improves compression ratio but degrades the
414      * speed.
415      */
416 
417     uInt max_lazy_match;
418     /* Attempt to find a better match only when the current match is strictly
419      * smaller than this value. This mechanism is used only for compression
420      * levels >= 4.
421      */
422 #   define max_insert_length  max_lazy_match
423     /* Insert new strings in the hash table only if the match length is not
424      * greater than this length. This saves time but degrades compression.
425      * max_insert_length is used only for compression levels <= 3.
426      */
427 
428     int level;    /* compression level (1..9) */
429     int strategy; /* favor or force Huffman coding*/
430 
431     uInt good_match;
432     /* Use a faster search when the previous match is longer than this */
433 
434     int nice_match; /* Stop searching when current match exceeds this */
435 
436                 /* used by trees.c: */
437     /* Didn't use ct_data typedef below to supress compiler warning */
438     struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
439     struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
440     struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
441 
442     struct tree_desc_s l_desc;               /* desc. for literal tree */
443     struct tree_desc_s d_desc;               /* desc. for distance tree */
444     struct tree_desc_s bl_desc;              /* desc. for bit length tree */
445 
446     ush bl_count[MAX_BITS+1];
447     /* number of codes at each bit length for an optimal tree */
448 
449     int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
450     int heap_len;               /* number of elements in the heap */
451     int heap_max;               /* element of largest frequency */
452     /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
453      * The same heap array is used to build all trees.
454      */
455 
456     uch depth[2*L_CODES+1];
457     /* Depth of each subtree used as tie breaker for trees of equal frequency
458      */
459 
460     uchf *l_buf;          /* buffer for literals or lengths */
461 
462     uInt  lit_bufsize;
463     /* Size of match buffer for literals/lengths.  There are 4 reasons for
464      * limiting lit_bufsize to 64K:
465      *   - frequencies can be kept in 16 bit counters
466      *   - if compression is not successful for the first block, all input
467      *     data is still in the window so we can still emit a stored block even
468      *     when input comes from standard input.  (This can also be done for
469      *     all blocks if lit_bufsize is not greater than 32K.)
470      *   - if compression is not successful for a file smaller than 64K, we can
471      *     even emit a stored file instead of a stored block (saving 5 bytes).
472      *     This is applicable only for zip (not gzip or zlib).
473      *   - creating new Huffman trees less frequently may not provide fast
474      *     adaptation to changes in the input data statistics. (Take for
475      *     example a binary file with poorly compressible code followed by
476      *     a highly compressible string table.) Smaller buffer sizes give
477      *     fast adaptation but have of course the overhead of transmitting
478      *     trees more frequently.
479      *   - I can't count above 4
480      */
481 
482     uInt last_lit;      /* running index in l_buf */
483 
484     ushf *d_buf;
485     /* Buffer for distances. To simplify the code, d_buf and l_buf have
486      * the same number of elements. To use different lengths, an extra flag
487      * array would be necessary.
488      */
489 
490     ulg opt_len;        /* bit length of current block with optimal trees */
491     ulg static_len;     /* bit length of current block with static trees */
492     ulg compressed_len; /* total bit length of compressed file */
493     uInt matches;       /* number of string matches in current block */
494     int last_eob_len;   /* bit length of EOB code for last block */
495 
496 #ifdef DEBUG_ZLIB
497     ulg bits_sent;      /* bit length of the compressed data */
498 #endif
499 
500     ush bi_buf;
501     /* Output buffer. bits are inserted starting at the bottom (least
502      * significant bits).
503      */
504     int bi_valid;
505     /* Number of valid bits in bi_buf.  All bits above the last valid bit
506      * are always zero.
507      */
508 
509 } FAR deflate_state;
510 
511 /* Output a byte on the stream.
512  * IN assertion: there is enough room in pending_buf.
513  */
514 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
515 
516 
517 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
518 /* Minimum amount of lookahead, except at the end of the input file.
519  * See deflate.c for comments about the MIN_MATCH+1.
520  */
521 
522 #define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
523 /* In order to simplify the code, particularly on 16 bit machines, match
524  * distances are limited to MAX_DIST instead of WSIZE.
525  */
526 
527         /* in trees.c */
528 void _tr_init         OF((deflate_state *s));
529 int  _tr_tally        OF((deflate_state *s, unsigned dist, unsigned lc));
530 ulg  _tr_flush_block  OF((deflate_state *s, charf *buf, ulg stored_len,
531 			  int eof));
532 void _tr_align        OF((deflate_state *s));
533 void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
534                           int eof));
535 void _tr_stored_type_only OF((deflate_state *));
536 
537 #endif
538 /* --- deflate.h */
539 
540 /* +++ deflate.c */
541 /* deflate.c -- compress data using the deflation algorithm
542  * Copyright (C) 1995-1996 Jean-loup Gailly.
543  * For conditions of distribution and use, see copyright notice in zlib.h
544  */
545 
546 /*
547  *  ALGORITHM
548  *
549  *      The "deflation" process depends on being able to identify portions
550  *      of the input text which are identical to earlier input (within a
551  *      sliding window trailing behind the input currently being processed).
552  *
553  *      The most straightforward technique turns out to be the fastest for
554  *      most input files: try all possible matches and select the longest.
555  *      The key feature of this algorithm is that insertions into the string
556  *      dictionary are very simple and thus fast, and deletions are avoided
557  *      completely. Insertions are performed at each input character, whereas
558  *      string matches are performed only when the previous match ends. So it
559  *      is preferable to spend more time in matches to allow very fast string
560  *      insertions and avoid deletions. The matching algorithm for small
561  *      strings is inspired from that of Rabin & Karp. A brute force approach
562  *      is used to find longer strings when a small match has been found.
563  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
564  *      (by Leonid Broukhis).
565  *         A previous version of this file used a more sophisticated algorithm
566  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
567  *      time, but has a larger average cost, uses more memory and is patented.
568  *      However the F&G algorithm may be faster for some highly redundant
569  *      files if the parameter max_chain_length (described below) is too large.
570  *
571  *  ACKNOWLEDGEMENTS
572  *
573  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
574  *      I found it in 'freeze' written by Leonid Broukhis.
575  *      Thanks to many people for bug reports and testing.
576  *
577  *  REFERENCES
578  *
579  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
580  *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
581  *
582  *      A description of the Rabin and Karp algorithm is given in the book
583  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
584  *
585  *      Fiala,E.R., and Greene,D.H.
586  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
587  *
588  */
589 
590 /* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
591 
592 /* #include "deflate.h" */
593 
594 const char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
595 /*
596   If you use the zlib library in a product, an acknowledgment is welcome
597   in the documentation of your product. If for some reason you cannot
598   include such an acknowledgment, I would appreciate that you keep this
599   copyright string in the executable of your product.
600  */
601 
602 /* ===========================================================================
603  *  Function prototypes.
604  */
605 typedef enum {
606     need_more,      /* block not completed, need more input or more output */
607     block_done,     /* block flush performed */
608     finish_started, /* finish started, need only more output at next deflate */
609     finish_done     /* finish done, accept no more input or output */
610 } block_state;
611 
612 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
613 /* Compression function. Returns the block state after the call. */
614 
615 local void fill_window    OF((deflate_state *s));
616 local block_state deflate_stored OF((deflate_state *s, int flush));
617 local block_state deflate_fast   OF((deflate_state *s, int flush));
618 local block_state deflate_slow   OF((deflate_state *s, int flush));
619 local void lm_init        OF((deflate_state *s));
620 local void putShortMSB    OF((deflate_state *s, uInt b));
621 local void flush_pending  OF((z_streamp strm));
622 local int read_buf        OF((z_streamp strm, charf *buf, unsigned size));
623 #ifdef ASMV
624       void match_init OF((void)); /* asm code initialization */
625       uInt longest_match  OF((deflate_state *s, IPos cur_match));
626 #else
627 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
628 #endif
629 
630 #ifdef DEBUG_ZLIB
631 local  void check_match OF((deflate_state *s, IPos start, IPos match,
632                             int length));
633 #endif
634 
635 /* ===========================================================================
636  * Local data
637  */
638 
639 #define NIL 0
640 /* Tail of hash chains */
641 
642 #ifndef TOO_FAR
643 #  define TOO_FAR 4096
644 #endif
645 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
646 
647 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
648 /* Minimum amount of lookahead, except at the end of the input file.
649  * See deflate.c for comments about the MIN_MATCH+1.
650  */
651 
652 /* Values for max_lazy_match, good_match and max_chain_length, depending on
653  * the desired pack level (0..9). The values given below have been tuned to
654  * exclude worst case performance for pathological files. Better values may be
655  * found for specific files.
656  */
657 typedef struct config_s {
658    ush good_length; /* reduce lazy search above this match length */
659    ush max_lazy;    /* do not perform lazy search above this match length */
660    ush nice_length; /* quit search above this match length */
661    ush max_chain;
662    compress_func func;
663 } config;
664 
665 const local config configuration_table[10] = {
666 /*      good lazy nice chain */
667 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
668 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
669 /* 2 */ {4,    5, 16,    8, deflate_fast},
670 /* 3 */ {4,    6, 32,   32, deflate_fast},
671 
672 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
673 /* 5 */ {8,   16, 32,   32, deflate_slow},
674 /* 6 */ {8,   16, 128, 128, deflate_slow},
675 /* 7 */ {8,   32, 128, 256, deflate_slow},
676 /* 8 */ {32, 128, 258, 1024, deflate_slow},
677 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
678 
679 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
680  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
681  * meaning.
682  */
683 
684 #define EQUAL 0
685 /* result of memcmp for equal strings */
686 
687 #ifndef NO_DUMMY_DECL
688 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
689 #endif
690 
691 /* ===========================================================================
692  * Update a hash value with the given input byte
693  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
694  *    input characters, so that a running hash key can be computed from the
695  *    previous key instead of complete recalculation each time.
696  */
697 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
698 
699 
700 /* ===========================================================================
701  * Insert string str in the dictionary and set match_head to the previous head
702  * of the hash chain (the most recent string with same hash key). Return
703  * the previous length of the hash chain.
704  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
705  *    input characters and the first MIN_MATCH bytes of str are valid
706  *    (except for the last MIN_MATCH-1 bytes of the input file).
707  */
708 #define INSERT_STRING(s, str, match_head) \
709    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
710     s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
711     s->head[s->ins_h] = (Pos)(str))
712 
713 /* ===========================================================================
714  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
715  * prev[] will be initialized on the fly.
716  */
717 #define CLEAR_HASH(s) \
718     s->head[s->hash_size-1] = NIL; \
719     zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
720 
721 /* ========================================================================= */
722 int deflateInit_(strm, level, version, stream_size)
723     z_streamp strm;
724     int level;
725     const char *version;
726     int stream_size;
727 {
728     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
729 			 Z_DEFAULT_STRATEGY, version, stream_size);
730     /* To do: ignore strm->next_in if we use it as window */
731 }
732 
733 /* ========================================================================= */
734 int deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
735 		  version, stream_size)
736     z_streamp strm;
737     int  level;
738     int  method;
739     int  windowBits;
740     int  memLevel;
741     int  strategy;
742     const char *version;
743     int stream_size;
744 {
745     deflate_state *s;
746     int noheader = 0;
747     static char* my_version = ZLIB_VERSION;
748 
749     ushf *overlay;
750     /* We overlay pending_buf and d_buf+l_buf. This works since the average
751      * output size for (length,distance) codes is <= 24 bits.
752      */
753 
754     if (version == Z_NULL || version[0] != my_version[0] ||
755         stream_size != sizeof(z_stream)) {
756 	return Z_VERSION_ERROR;
757     }
758     if (strm == Z_NULL) return Z_STREAM_ERROR;
759 
760     strm->msg = Z_NULL;
761 #ifndef NO_ZCFUNCS
762     if (strm->zalloc == Z_NULL) {
763 	strm->zalloc = zcalloc;
764 	strm->opaque = (voidpf)0;
765     }
766     if (strm->zfree == Z_NULL) strm->zfree = zcfree;
767 #endif
768 
769     if (level == Z_DEFAULT_COMPRESSION) level = 6;
770 
771     if (windowBits < 0) { /* undocumented feature: suppress zlib header */
772         noheader = 1;
773         windowBits = -windowBits;
774     }
775     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
776         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
777 	strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
778         return Z_STREAM_ERROR;
779     }
780     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
781     if (s == Z_NULL) return Z_MEM_ERROR;
782     strm->state = (struct internal_state FAR *)s;
783     s->strm = strm;
784 
785     s->noheader = noheader;
786     s->w_bits = windowBits;
787     s->w_size = 1 << s->w_bits;
788     s->w_mask = s->w_size - 1;
789 
790     s->hash_bits = memLevel + 7;
791     s->hash_size = 1 << s->hash_bits;
792     s->hash_mask = s->hash_size - 1;
793     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
794 
795     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
796     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
797     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
798 
799     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
800 
801     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
802     s->pending_buf = (uchf *) overlay;
803     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
804 
805     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
806         s->pending_buf == Z_NULL) {
807         strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
808         deflateEnd (strm);
809         return Z_MEM_ERROR;
810     }
811     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
812     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
813 
814     s->level = level;
815     s->strategy = strategy;
816     s->method = (Byte)method;
817 
818     return deflateReset(strm);
819 }
820 
821 /* ========================================================================= */
822 int deflateSetDictionary (strm, dictionary, dictLength)
823     z_streamp strm;
824     const Bytef *dictionary;
825     uInt  dictLength;
826 {
827     deflate_state *s;
828     uInt length = dictLength;
829     uInt n;
830     IPos hash_head = 0;
831 
832     if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
833 	return Z_STREAM_ERROR;
834 
835     s = (deflate_state *) strm->state;
836     if (s->status != INIT_STATE) return Z_STREAM_ERROR;
837 
838     strm->adler = adler32(strm->adler, dictionary, dictLength);
839 
840     if (length < MIN_MATCH) return Z_OK;
841     if (length > MAX_DIST(s)) {
842 	length = MAX_DIST(s);
843 #ifndef USE_DICT_HEAD
844 	dictionary += dictLength - length; /* use the tail of the dictionary */
845 #endif
846     }
847     zmemcpy((charf *)s->window, dictionary, length);
848     s->strstart = length;
849     s->block_start = (long)length;
850 
851     /* Insert all strings in the hash table (except for the last two bytes).
852      * s->lookahead stays null, so s->ins_h will be recomputed at the next
853      * call of fill_window.
854      */
855     s->ins_h = s->window[0];
856     UPDATE_HASH(s, s->ins_h, s->window[1]);
857     for (n = 0; n <= length - MIN_MATCH; n++) {
858 	INSERT_STRING(s, n, hash_head);
859     }
860     if (hash_head) hash_head = 0;  /* to make compiler happy */
861     return Z_OK;
862 }
863 
864 /* ========================================================================= */
865 int deflateReset (strm)
866     z_streamp strm;
867 {
868     deflate_state *s;
869 
870     if (strm == Z_NULL || strm->state == Z_NULL ||
871         strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
872 
873     strm->total_in = strm->total_out = 0;
874     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
875     strm->data_type = Z_UNKNOWN;
876 
877     s = (deflate_state *)strm->state;
878     s->pending = 0;
879     s->pending_out = s->pending_buf;
880 
881     if (s->noheader < 0) {
882         s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
883     }
884     s->status = s->noheader ? BUSY_STATE : INIT_STATE;
885     strm->adler = 1;
886     s->last_flush = Z_NO_FLUSH;
887 
888     _tr_init(s);
889     lm_init(s);
890 
891     return Z_OK;
892 }
893 
894 /* ========================================================================= */
895 int deflateParams(strm, level, strategy)
896     z_streamp strm;
897     int level;
898     int strategy;
899 {
900     deflate_state *s;
901     compress_func func;
902     int err = Z_OK;
903 
904     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
905     s = (deflate_state *) strm->state;
906 
907     if (level == Z_DEFAULT_COMPRESSION) {
908 	level = 6;
909     }
910     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
911 	return Z_STREAM_ERROR;
912     }
913     func = configuration_table[s->level].func;
914 
915     if (func != configuration_table[level].func && strm->total_in != 0) {
916 	/* Flush the last buffer: */
917 	err = deflate(strm, Z_PARTIAL_FLUSH);
918     }
919     if (s->level != level) {
920 	s->level = level;
921 	s->max_lazy_match   = configuration_table[level].max_lazy;
922 	s->good_match       = configuration_table[level].good_length;
923 	s->nice_match       = configuration_table[level].nice_length;
924 	s->max_chain_length = configuration_table[level].max_chain;
925     }
926     s->strategy = strategy;
927     return err;
928 }
929 
930 /* =========================================================================
931  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
932  * IN assertion: the stream state is correct and there is enough room in
933  * pending_buf.
934  */
935 local void putShortMSB (s, b)
936     deflate_state *s;
937     uInt b;
938 {
939     put_byte(s, (Byte)(b >> 8));
940     put_byte(s, (Byte)(b & 0xff));
941 }
942 
943 /* =========================================================================
944  * Flush as much pending output as possible. All deflate() output goes
945  * through this function so some applications may wish to modify it
946  * to avoid allocating a large strm->next_out buffer and copying into it.
947  * (See also read_buf()).
948  */
949 local void flush_pending(strm)
950     z_streamp strm;
951 {
952     deflate_state *s = (deflate_state *) strm->state;
953     unsigned len = s->pending;
954 
955     if (len > strm->avail_out) len = strm->avail_out;
956     if (len == 0) return;
957 
958     if (strm->next_out != Z_NULL) {
959 	zmemcpy(strm->next_out, s->pending_out, len);
960 	strm->next_out += len;
961     }
962     s->pending_out += len;
963     strm->total_out += len;
964     strm->avail_out  -= len;
965     s->pending -= len;
966     if (s->pending == 0) {
967         s->pending_out = s->pending_buf;
968     }
969 }
970 
971 /* ========================================================================= */
972 int deflate (strm, flush)
973     z_streamp strm;
974     int flush;
975 {
976     int old_flush; /* value of flush param for previous deflate call */
977     deflate_state *s;
978 
979     if (strm == Z_NULL || strm->state == Z_NULL ||
980 	flush > Z_FINISH || flush < 0) {
981         return Z_STREAM_ERROR;
982     }
983     s = (deflate_state *) strm->state;
984 
985     if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
986 	(s->status == FINISH_STATE && flush != Z_FINISH)) {
987         ERR_RETURN(strm, Z_STREAM_ERROR);
988     }
989     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
990 
991     s->strm = strm; /* just in case */
992     old_flush = s->last_flush;
993     s->last_flush = flush;
994 
995     /* Write the zlib header */
996     if (s->status == INIT_STATE) {
997 
998         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
999         uInt level_flags = (s->level-1) >> 1;
1000 
1001         if (level_flags > 3) level_flags = 3;
1002         header |= (level_flags << 6);
1003 	if (s->strstart != 0) header |= PRESET_DICT;
1004         header += 31 - (header % 31);
1005 
1006         s->status = BUSY_STATE;
1007         putShortMSB(s, header);
1008 
1009 	/* Save the adler32 of the preset dictionary: */
1010 	if (s->strstart != 0) {
1011 	    putShortMSB(s, (uInt)(strm->adler >> 16));
1012 	    putShortMSB(s, (uInt)(strm->adler & 0xffff));
1013 	}
1014 	strm->adler = 1L;
1015     }
1016 
1017     /* Flush as much pending output as possible */
1018     if (s->pending != 0) {
1019         flush_pending(strm);
1020         if (strm->avail_out == 0) {
1021 	    /* Since avail_out is 0, deflate will be called again with
1022 	     * more output space, but possibly with both pending and
1023 	     * avail_in equal to zero. There won't be anything to do,
1024 	     * but this is not an error situation so make sure we
1025 	     * return OK instead of BUF_ERROR at next call of deflate:
1026              */
1027 	    s->last_flush = -1;
1028 	    return Z_OK;
1029 	}
1030 
1031     /* Make sure there is something to do and avoid duplicate consecutive
1032      * flushes. For repeated and useless calls with Z_FINISH, we keep
1033      * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1034      */
1035     } else if (strm->avail_in == 0 && flush <= old_flush &&
1036 	       flush != Z_FINISH) {
1037         ERR_RETURN(strm, Z_BUF_ERROR);
1038     }
1039 
1040     /* User must not provide more input after the first FINISH: */
1041     if (s->status == FINISH_STATE && strm->avail_in != 0) {
1042         ERR_RETURN(strm, Z_BUF_ERROR);
1043     }
1044 
1045     /* Start a new block or continue the current one.
1046      */
1047     if (strm->avail_in != 0 || s->lookahead != 0 ||
1048         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1049         block_state bstate;
1050 
1051 	bstate = (*(configuration_table[s->level].func))(s, flush);
1052 
1053         if (bstate == finish_started || bstate == finish_done) {
1054             s->status = FINISH_STATE;
1055         }
1056         if (bstate == need_more || bstate == finish_started) {
1057 	    if (strm->avail_out == 0) {
1058 	        s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1059 	    }
1060 	    return Z_OK;
1061 	    /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1062 	     * of deflate should use the same flush parameter to make sure
1063 	     * that the flush is complete. So we don't have to output an
1064 	     * empty block here, this will be done at next call. This also
1065 	     * ensures that for a very small output buffer, we emit at most
1066 	     * one empty block.
1067 	     */
1068 	}
1069         if (bstate == block_done) {
1070             if (flush == Z_PARTIAL_FLUSH) {
1071                 _tr_align(s);
1072 	    } else if (flush == Z_PACKET_FLUSH) {
1073 		/* Output just the 3-bit `stored' block type value,
1074 		   but not a zero length. */
1075 		_tr_stored_type_only(s);
1076             } else { /* FULL_FLUSH or SYNC_FLUSH */
1077                 _tr_stored_block(s, (char*)0, 0L, 0);
1078                 /* For a full flush, this empty block will be recognized
1079                  * as a special marker by inflate_sync().
1080                  */
1081                 if (flush == Z_FULL_FLUSH) {
1082                     CLEAR_HASH(s);             /* forget history */
1083                 }
1084             }
1085             flush_pending(strm);
1086 	    if (strm->avail_out == 0) {
1087 	      s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1088 	      return Z_OK;
1089 	    }
1090         }
1091     }
1092     Assert(strm->avail_out > 0, "bug2");
1093 
1094     if (flush != Z_FINISH) return Z_OK;
1095     if (s->noheader) return Z_STREAM_END;
1096 
1097     /* Write the zlib trailer (adler32) */
1098     putShortMSB(s, (uInt)(strm->adler >> 16));
1099     putShortMSB(s, (uInt)(strm->adler & 0xffff));
1100     flush_pending(strm);
1101     /* If avail_out is zero, the application will call deflate again
1102      * to flush the rest.
1103      */
1104     s->noheader = -1; /* write the trailer only once! */
1105     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1106 }
1107 
1108 /* ========================================================================= */
1109 int deflateEnd (strm)
1110     z_streamp strm;
1111 {
1112     int status;
1113     deflate_state *s;
1114 
1115     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1116     s = (deflate_state *) strm->state;
1117 
1118     status = s->status;
1119     if (status != INIT_STATE && status != BUSY_STATE &&
1120 	status != FINISH_STATE) {
1121       return Z_STREAM_ERROR;
1122     }
1123 
1124     /* Deallocate in reverse order of allocations: */
1125     TRY_FREE(strm, s->pending_buf);
1126     TRY_FREE(strm, s->head);
1127     TRY_FREE(strm, s->prev);
1128     TRY_FREE(strm, s->window);
1129 
1130     ZFREE(strm, s);
1131     strm->state = Z_NULL;
1132 
1133     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1134 }
1135 
1136 /* =========================================================================
1137  * Copy the source state to the destination state.
1138  */
1139 int deflateCopy (dest, source)
1140     z_streamp dest;
1141     z_streamp source;
1142 {
1143     deflate_state *ds;
1144     deflate_state *ss;
1145     ushf *overlay;
1146 
1147     if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1148         return Z_STREAM_ERROR;
1149     ss = (deflate_state *) source->state;
1150 
1151     zmemcpy(dest, source, sizeof(*dest));
1152 
1153     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1154     if (ds == Z_NULL) return Z_MEM_ERROR;
1155     dest->state = (struct internal_state FAR *) ds;
1156     zmemcpy(ds, ss, sizeof(*ds));
1157     ds->strm = dest;
1158 
1159     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1160     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1161     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1162     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1163     ds->pending_buf = (uchf *) overlay;
1164 
1165     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1166         ds->pending_buf == Z_NULL) {
1167         deflateEnd (dest);
1168         return Z_MEM_ERROR;
1169     }
1170     /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
1171     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1172     zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1173     zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1174     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1175 
1176     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1177     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1178     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1179 
1180     ds->l_desc.dyn_tree = ds->dyn_ltree;
1181     ds->d_desc.dyn_tree = ds->dyn_dtree;
1182     ds->bl_desc.dyn_tree = ds->bl_tree;
1183 
1184     return Z_OK;
1185 }
1186 
1187 /* ===========================================================================
1188  * Return the number of bytes of output which are immediately available
1189  * for output from the decompressor.
1190  */
1191 int deflateOutputPending (strm)
1192     z_streamp strm;
1193 {
1194     if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1195 
1196     return ((deflate_state *)(strm->state))->pending;
1197 }
1198 
1199 /* ===========================================================================
1200  * Read a new buffer from the current input stream, update the adler32
1201  * and total number of bytes read.  All deflate() input goes through
1202  * this function so some applications may wish to modify it to avoid
1203  * allocating a large strm->next_in buffer and copying from it.
1204  * (See also flush_pending()).
1205  */
1206 local int read_buf(strm, buf, size)
1207     z_streamp strm;
1208     charf *buf;
1209     unsigned size;
1210 {
1211     unsigned len = strm->avail_in;
1212 
1213     if (len > size) len = size;
1214     if (len == 0) return 0;
1215 
1216     strm->avail_in  -= len;
1217 
1218     if (!((deflate_state *)(strm->state))->noheader) {
1219         strm->adler = adler32(strm->adler, strm->next_in, len);
1220     }
1221     zmemcpy(buf, strm->next_in, len);
1222     strm->next_in  += len;
1223     strm->total_in += len;
1224 
1225     return (int)len;
1226 }
1227 
1228 /* ===========================================================================
1229  * Initialize the "longest match" routines for a new zlib stream
1230  */
1231 local void lm_init (s)
1232     deflate_state *s;
1233 {
1234     s->window_size = (ulg)2L*s->w_size;
1235 
1236     CLEAR_HASH(s);
1237 
1238     /* Set the default configuration parameters:
1239      */
1240     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1241     s->good_match       = configuration_table[s->level].good_length;
1242     s->nice_match       = configuration_table[s->level].nice_length;
1243     s->max_chain_length = configuration_table[s->level].max_chain;
1244 
1245     s->strstart = 0;
1246     s->block_start = 0L;
1247     s->lookahead = 0;
1248     s->match_length = s->prev_length = MIN_MATCH-1;
1249     s->match_available = 0;
1250     s->ins_h = 0;
1251 #ifdef ASMV
1252     match_init(); /* initialize the asm code */
1253 #endif
1254 }
1255 
1256 /* ===========================================================================
1257  * Set match_start to the longest match starting at the given string and
1258  * return its length. Matches shorter or equal to prev_length are discarded,
1259  * in which case the result is equal to prev_length and match_start is
1260  * garbage.
1261  * IN assertions: cur_match is the head of the hash chain for the current
1262  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1263  * OUT assertion: the match length is not greater than s->lookahead.
1264  */
1265 #ifndef ASMV
1266 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1267  * match.S. The code will be functionally equivalent.
1268  */
1269 local uInt longest_match(s, cur_match)
1270     deflate_state *s;
1271     IPos cur_match;                             /* current match */
1272 {
1273     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1274     Bytef *scan = s->window + s->strstart; 	/* current string */
1275     Bytef *match;                       	/* matched string */
1276     int len;                           		/* length of current match */
1277     int best_len = s->prev_length;              /* best match length so far */
1278     int nice_match = s->nice_match;             /* stop if match long enough */
1279     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1280         s->strstart - (IPos)MAX_DIST(s) : NIL;
1281     /* Stop when cur_match becomes <= limit. To simplify the code,
1282      * we prevent matches with the string of window index 0.
1283      */
1284     Posf *prev = s->prev;
1285     uInt wmask = s->w_mask;
1286 
1287 #ifdef UNALIGNED_OK
1288     /* Compare two bytes at a time. Note: this is not always beneficial.
1289      * Try with and without -DUNALIGNED_OK to check.
1290      */
1291     Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1292     ush scan_start = *(ushf*)scan;
1293     ush scan_end   = *(ushf*)(scan+best_len-1);
1294 #else
1295     Bytef *strend = s->window + s->strstart + MAX_MATCH;
1296     Byte scan_end1  = scan[best_len-1];
1297     Byte scan_end   = scan[best_len];
1298 #endif
1299 
1300     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1301      * It is easy to get rid of this optimization if necessary.
1302      */
1303     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1304 
1305     /* Do not waste too much time if we already have a good match: */
1306     if (s->prev_length >= s->good_match) {
1307         chain_length >>= 2;
1308     }
1309     /* Do not look for matches beyond the end of the input. This is necessary
1310      * to make deflate deterministic.
1311      */
1312     if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1313 
1314     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1315 
1316     do {
1317         Assert(cur_match < s->strstart, "no future");
1318         match = s->window + cur_match;
1319 
1320         /* Skip to next match if the match length cannot increase
1321          * or if the match length is less than 2:
1322          */
1323 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1324         /* This code assumes sizeof(unsigned short) == 2. Do not use
1325          * UNALIGNED_OK if your compiler uses a different size.
1326          */
1327         if (*(ushf*)(match+best_len-1) != scan_end ||
1328             *(ushf*)match != scan_start) continue;
1329 
1330         /* It is not necessary to compare scan[2] and match[2] since they are
1331          * always equal when the other bytes match, given that the hash keys
1332          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1333          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1334          * lookahead only every 4th comparison; the 128th check will be made
1335          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1336          * necessary to put more guard bytes at the end of the window, or
1337          * to check more often for insufficient lookahead.
1338          */
1339         Assert(scan[2] == match[2], "scan[2]?");
1340         scan++, match++;
1341         do {
1342         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1343                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1344                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1345                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1346                  scan < strend);
1347         /* The funny "do {}" generates better code on most compilers */
1348 
1349         /* Here, scan <= window+strstart+257 */
1350         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1351         if (*scan == *match) scan++;
1352 
1353         len = (MAX_MATCH - 1) - (int)(strend-scan);
1354         scan = strend - (MAX_MATCH-1);
1355 
1356 #else /* UNALIGNED_OK */
1357 
1358         if (match[best_len]   != scan_end  ||
1359             match[best_len-1] != scan_end1 ||
1360             *match            != *scan     ||
1361             *++match          != scan[1])      continue;
1362 
1363         /* The check at best_len-1 can be removed because it will be made
1364          * again later. (This heuristic is not always a win.)
1365          * It is not necessary to compare scan[2] and match[2] since they
1366          * are always equal when the other bytes match, given that
1367          * the hash keys are equal and that HASH_BITS >= 8.
1368          */
1369         scan += 2, match++;
1370         Assert(*scan == *match, "match[2]?");
1371 
1372         /* We check for insufficient lookahead only every 8th comparison;
1373          * the 256th check will be made at strstart+258.
1374          */
1375         do {
1376         } while (*++scan == *++match && *++scan == *++match &&
1377                  *++scan == *++match && *++scan == *++match &&
1378                  *++scan == *++match && *++scan == *++match &&
1379                  *++scan == *++match && *++scan == *++match &&
1380                  scan < strend);
1381 
1382         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1383 
1384         len = MAX_MATCH - (int)(strend - scan);
1385         scan = strend - MAX_MATCH;
1386 
1387 #endif /* UNALIGNED_OK */
1388 
1389         if (len > best_len) {
1390             s->match_start = cur_match;
1391             best_len = len;
1392             if (len >= nice_match) break;
1393 #ifdef UNALIGNED_OK
1394             scan_end = *(ushf*)(scan+best_len-1);
1395 #else
1396             scan_end1  = scan[best_len-1];
1397             scan_end   = scan[best_len];
1398 #endif
1399         }
1400     } while ((cur_match = prev[cur_match & wmask]) > limit
1401              && --chain_length != 0);
1402 
1403     if ((uInt)best_len <= s->lookahead) return best_len;
1404     return s->lookahead;
1405 }
1406 #endif /* ASMV */
1407 
1408 #ifdef DEBUG_ZLIB
1409 /* ===========================================================================
1410  * Check that the match at match_start is indeed a match.
1411  */
1412 local void check_match(s, start, match, length)
1413     deflate_state *s;
1414     IPos start, match;
1415     int length;
1416 {
1417     /* check that the match is indeed a match */
1418     if (zmemcmp((charf *)s->window + match,
1419                 (charf *)s->window + start, length) != EQUAL) {
1420         fprintf(stderr, " start %u, match %u, length %d\n",
1421 		start, match, length);
1422         do {
1423 	    fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1424 	} while (--length != 0);
1425         z_error("invalid match");
1426     }
1427     if (z_verbose > 1) {
1428         fprintf(stderr,"\\[%d,%d]", start-match, length);
1429         do { putc(s->window[start++], stderr); } while (--length != 0);
1430     }
1431 }
1432 #else
1433 #  define check_match(s, start, match, length)
1434 #endif
1435 
1436 /* ===========================================================================
1437  * Fill the window when the lookahead becomes insufficient.
1438  * Updates strstart and lookahead.
1439  *
1440  * IN assertion: lookahead < MIN_LOOKAHEAD
1441  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1442  *    At least one byte has been read, or avail_in == 0; reads are
1443  *    performed for at least two bytes (required for the zip translate_eol
1444  *    option -- not supported here).
1445  */
1446 local void fill_window(s)
1447     deflate_state *s;
1448 {
1449     unsigned n, m;
1450     Posf *p;
1451     unsigned more;    /* Amount of free space at the end of the window. */
1452     uInt wsize = s->w_size;
1453 
1454     do {
1455         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1456 
1457         /* Deal with !@#$% 64K limit: */
1458         if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1459             more = wsize;
1460 
1461         } else if (more == (unsigned)(-1)) {
1462             /* Very unlikely, but possible on 16 bit machine if strstart == 0
1463              * and lookahead == 1 (input done one byte at time)
1464              */
1465             more--;
1466 
1467         /* If the window is almost full and there is insufficient lookahead,
1468          * move the upper half to the lower one to make room in the upper half.
1469          */
1470         } else if (s->strstart >= wsize+MAX_DIST(s)) {
1471 
1472             zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1473                    (unsigned)wsize);
1474             s->match_start -= wsize;
1475             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1476             s->block_start -= (long) wsize;
1477 
1478             /* Slide the hash table (could be avoided with 32 bit values
1479                at the expense of memory usage). We slide even when level == 0
1480                to keep the hash table consistent if we switch back to level > 0
1481                later. (Using level 0 permanently is not an optimal usage of
1482                zlib, so we don't care about this pathological case.)
1483              */
1484             n = s->hash_size;
1485             p = &s->head[n];
1486             do {
1487                 m = *--p;
1488                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1489             } while (--n);
1490 
1491             n = wsize;
1492             p = &s->prev[n];
1493             do {
1494                 m = *--p;
1495                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1496                 /* If n is not on any hash chain, prev[n] is garbage but
1497                  * its value will never be used.
1498                  */
1499             } while (--n);
1500             more += wsize;
1501         }
1502         if (s->strm->avail_in == 0) return;
1503 
1504         /* If there was no sliding:
1505          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1506          *    more == window_size - lookahead - strstart
1507          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1508          * => more >= window_size - 2*WSIZE + 2
1509          * In the BIG_MEM or MMAP case (not yet supported),
1510          *   window_size == input_size + MIN_LOOKAHEAD  &&
1511          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1512          * Otherwise, window_size == 2*WSIZE so more >= 2.
1513          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1514          */
1515         Assert(more >= 2, "more < 2");
1516 
1517         n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1518                      more);
1519         s->lookahead += n;
1520 
1521         /* Initialize the hash value now that we have some input: */
1522         if (s->lookahead >= MIN_MATCH) {
1523             s->ins_h = s->window[s->strstart];
1524             UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1525 #if MIN_MATCH != 3
1526             Call UPDATE_HASH() MIN_MATCH-3 more times
1527 #endif
1528         }
1529         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1530          * but this is not important since only literal bytes will be emitted.
1531          */
1532 
1533     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1534 }
1535 
1536 /* ===========================================================================
1537  * Flush the current block, with given end-of-file flag.
1538  * IN assertion: strstart is set to the end of the current match.
1539  */
1540 #define FLUSH_BLOCK_ONLY(s, eof) { \
1541    _tr_flush_block(s, (s->block_start >= 0L ? \
1542                    (charf *)&s->window[(unsigned)s->block_start] : \
1543                    (charf *)Z_NULL), \
1544 		(ulg)((long)s->strstart - s->block_start), \
1545 		(eof)); \
1546    s->block_start = s->strstart; \
1547    flush_pending(s->strm); \
1548    Tracev((stderr,"[FLUSH]")); \
1549 }
1550 
1551 /* Same but force premature exit if necessary. */
1552 #define FLUSH_BLOCK(s, eof) { \
1553    FLUSH_BLOCK_ONLY(s, eof); \
1554    if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1555 }
1556 
1557 /* ===========================================================================
1558  * Copy without compression as much as possible from the input stream, return
1559  * the current block state.
1560  * This function does not insert new strings in the dictionary since
1561  * uncompressible data is probably not useful. This function is used
1562  * only for the level=0 compression option.
1563  * NOTE: this function should be optimized to avoid extra copying from
1564  * window to pending_buf.
1565  */
1566 local block_state deflate_stored(s, flush)
1567     deflate_state *s;
1568     int flush;
1569 {
1570     /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1571      * to pending_buf_size, and each stored block has a 5 byte header:
1572      */
1573     ulg max_block_size = 0xffff;
1574     ulg max_start;
1575 
1576     if (max_block_size > s->pending_buf_size - 5) {
1577         max_block_size = s->pending_buf_size - 5;
1578     }
1579 
1580     /* Copy as much as possible from input to output: */
1581     for (;;) {
1582         /* Fill the window as much as possible: */
1583         if (s->lookahead <= 1) {
1584 
1585             Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1586 		   s->block_start >= (long)s->w_size, "slide too late");
1587 
1588             fill_window(s);
1589             if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1590 
1591             if (s->lookahead == 0) break; /* flush the current block */
1592         }
1593 	Assert(s->block_start >= 0L, "block gone");
1594 
1595 	s->strstart += s->lookahead;
1596 	s->lookahead = 0;
1597 
1598 	/* Emit a stored block if pending_buf will be full: */
1599  	max_start = s->block_start + max_block_size;
1600         if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1601 	    /* strstart == 0 is possible when wraparound on 16-bit machine */
1602 	    s->lookahead = (uInt)(s->strstart - max_start);
1603 	    s->strstart = (uInt)max_start;
1604             FLUSH_BLOCK(s, 0);
1605 	}
1606 	/* Flush if we may have to slide, otherwise block_start may become
1607          * negative and the data will be gone:
1608          */
1609         if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1610             FLUSH_BLOCK(s, 0);
1611 	}
1612     }
1613     FLUSH_BLOCK(s, flush == Z_FINISH);
1614     return flush == Z_FINISH ? finish_done : block_done;
1615 }
1616 
1617 /* ===========================================================================
1618  * Compress as much as possible from the input stream, return the current
1619  * block state.
1620  * This function does not perform lazy evaluation of matches and inserts
1621  * new strings in the dictionary only for unmatched strings or for short
1622  * matches. It is used only for the fast compression options.
1623  */
1624 local block_state deflate_fast(s, flush)
1625     deflate_state *s;
1626     int flush;
1627 {
1628     IPos hash_head = NIL; /* head of the hash chain */
1629     int bflush;           /* set if current block must be flushed */
1630 
1631     for (;;) {
1632         /* Make sure that we always have enough lookahead, except
1633          * at the end of the input file. We need MAX_MATCH bytes
1634          * for the next match, plus MIN_MATCH bytes to insert the
1635          * string following the next match.
1636          */
1637         if (s->lookahead < MIN_LOOKAHEAD) {
1638             fill_window(s);
1639             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1640 	        return need_more;
1641 	    }
1642             if (s->lookahead == 0) break; /* flush the current block */
1643         }
1644 
1645         /* Insert the string window[strstart .. strstart+2] in the
1646          * dictionary, and set hash_head to the head of the hash chain:
1647          */
1648         if (s->lookahead >= MIN_MATCH) {
1649             INSERT_STRING(s, s->strstart, hash_head);
1650         }
1651 
1652         /* Find the longest match, discarding those <= prev_length.
1653          * At this point we have always match_length < MIN_MATCH
1654          */
1655         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1656             /* To simplify the code, we prevent matches with the string
1657              * of window index 0 (in particular we have to avoid a match
1658              * of the string with itself at the start of the input file).
1659              */
1660             if (s->strategy != Z_HUFFMAN_ONLY) {
1661                 s->match_length = longest_match (s, hash_head);
1662             }
1663             /* longest_match() sets match_start */
1664         }
1665         if (s->match_length >= MIN_MATCH) {
1666             check_match(s, s->strstart, s->match_start, s->match_length);
1667 
1668             bflush = _tr_tally(s, s->strstart - s->match_start,
1669                                s->match_length - MIN_MATCH);
1670 
1671             s->lookahead -= s->match_length;
1672 
1673             /* Insert new strings in the hash table only if the match length
1674              * is not too large. This saves time but degrades compression.
1675              */
1676             if (s->match_length <= s->max_insert_length &&
1677                 s->lookahead >= MIN_MATCH) {
1678                 s->match_length--; /* string at strstart already in hash table */
1679                 do {
1680                     s->strstart++;
1681                     INSERT_STRING(s, s->strstart, hash_head);
1682                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1683                      * always MIN_MATCH bytes ahead.
1684                      */
1685                 } while (--s->match_length != 0);
1686                 s->strstart++;
1687             } else {
1688                 s->strstart += s->match_length;
1689                 s->match_length = 0;
1690                 s->ins_h = s->window[s->strstart];
1691                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1692 #if MIN_MATCH != 3
1693                 Call UPDATE_HASH() MIN_MATCH-3 more times
1694 #endif
1695                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1696                  * matter since it will be recomputed at next deflate call.
1697                  */
1698             }
1699         } else {
1700             /* No match, output a literal byte */
1701             Tracevv((stderr,"%c", s->window[s->strstart]));
1702             bflush = _tr_tally (s, 0, s->window[s->strstart]);
1703             s->lookahead--;
1704             s->strstart++;
1705         }
1706         if (bflush) FLUSH_BLOCK(s, 0);
1707     }
1708     FLUSH_BLOCK(s, flush == Z_FINISH);
1709     return flush == Z_FINISH ? finish_done : block_done;
1710 }
1711 
1712 /* ===========================================================================
1713  * Same as above, but achieves better compression. We use a lazy
1714  * evaluation for matches: a match is finally adopted only if there is
1715  * no better match at the next window position.
1716  */
1717 local block_state deflate_slow(s, flush)
1718     deflate_state *s;
1719     int flush;
1720 {
1721     IPos hash_head = NIL;    /* head of hash chain */
1722     int bflush;              /* set if current block must be flushed */
1723 
1724     /* Process the input block. */
1725     for (;;) {
1726         /* Make sure that we always have enough lookahead, except
1727          * at the end of the input file. We need MAX_MATCH bytes
1728          * for the next match, plus MIN_MATCH bytes to insert the
1729          * string following the next match.
1730          */
1731         if (s->lookahead < MIN_LOOKAHEAD) {
1732             fill_window(s);
1733             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1734 	        return need_more;
1735 	    }
1736             if (s->lookahead == 0) break; /* flush the current block */
1737         }
1738 
1739         /* Insert the string window[strstart .. strstart+2] in the
1740          * dictionary, and set hash_head to the head of the hash chain:
1741          */
1742         if (s->lookahead >= MIN_MATCH) {
1743             INSERT_STRING(s, s->strstart, hash_head);
1744         }
1745 
1746         /* Find the longest match, discarding those <= prev_length.
1747          */
1748         s->prev_length = s->match_length, s->prev_match = s->match_start;
1749         s->match_length = MIN_MATCH-1;
1750 
1751         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1752             s->strstart - hash_head <= MAX_DIST(s)) {
1753             /* To simplify the code, we prevent matches with the string
1754              * of window index 0 (in particular we have to avoid a match
1755              * of the string with itself at the start of the input file).
1756              */
1757             if (s->strategy != Z_HUFFMAN_ONLY) {
1758                 s->match_length = longest_match (s, hash_head);
1759             }
1760             /* longest_match() sets match_start */
1761 
1762             if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1763                  (s->match_length == MIN_MATCH &&
1764                   s->strstart - s->match_start > TOO_FAR))) {
1765 
1766                 /* If prev_match is also MIN_MATCH, match_start is garbage
1767                  * but we will ignore the current match anyway.
1768                  */
1769                 s->match_length = MIN_MATCH-1;
1770             }
1771         }
1772         /* If there was a match at the previous step and the current
1773          * match is not better, output the previous match:
1774          */
1775         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1776             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1777             /* Do not insert strings in hash table beyond this. */
1778 
1779             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1780 
1781             bflush = _tr_tally(s, s->strstart -1 - s->prev_match,
1782                                s->prev_length - MIN_MATCH);
1783 
1784             /* Insert in hash table all strings up to the end of the match.
1785              * strstart-1 and strstart are already inserted. If there is not
1786              * enough lookahead, the last two strings are not inserted in
1787              * the hash table.
1788              */
1789             s->lookahead -= s->prev_length-1;
1790             s->prev_length -= 2;
1791             do {
1792                 if (++s->strstart <= max_insert) {
1793                     INSERT_STRING(s, s->strstart, hash_head);
1794                 }
1795             } while (--s->prev_length != 0);
1796             s->match_available = 0;
1797             s->match_length = MIN_MATCH-1;
1798             s->strstart++;
1799 
1800             if (bflush) FLUSH_BLOCK(s, 0);
1801 
1802         } else if (s->match_available) {
1803             /* If there was no match at the previous position, output a
1804              * single literal. If there was a match but the current match
1805              * is longer, truncate the previous match to a single literal.
1806              */
1807             Tracevv((stderr,"%c", s->window[s->strstart-1]));
1808             if (_tr_tally (s, 0, s->window[s->strstart-1])) {
1809                 FLUSH_BLOCK_ONLY(s, 0);
1810             }
1811             s->strstart++;
1812             s->lookahead--;
1813             if (s->strm->avail_out == 0) return need_more;
1814         } else {
1815             /* There is no previous match to compare with, wait for
1816              * the next step to decide.
1817              */
1818             s->match_available = 1;
1819             s->strstart++;
1820             s->lookahead--;
1821         }
1822     }
1823     Assert (flush != Z_NO_FLUSH, "no flush?");
1824     if (s->match_available) {
1825         Tracevv((stderr,"%c", s->window[s->strstart-1]));
1826         _tr_tally (s, 0, s->window[s->strstart-1]);
1827         s->match_available = 0;
1828     }
1829     FLUSH_BLOCK(s, flush == Z_FINISH);
1830     return flush == Z_FINISH ? finish_done : block_done;
1831 }
1832 /* --- deflate.c */
1833 
1834 /* +++ trees.c */
1835 /* trees.c -- output deflated data using Huffman coding
1836  * Copyright (C) 1995-1996 Jean-loup Gailly
1837  * For conditions of distribution and use, see copyright notice in zlib.h
1838  */
1839 
1840 /*
1841  *  ALGORITHM
1842  *
1843  *      The "deflation" process uses several Huffman trees. The more
1844  *      common source values are represented by shorter bit sequences.
1845  *
1846  *      Each code tree is stored in a compressed form which is itself
1847  * a Huffman encoding of the lengths of all the code strings (in
1848  * ascending order by source values).  The actual code strings are
1849  * reconstructed from the lengths in the inflate process, as described
1850  * in the deflate specification.
1851  *
1852  *  REFERENCES
1853  *
1854  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1855  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1856  *
1857  *      Storer, James A.
1858  *          Data Compression:  Methods and Theory, pp. 49-50.
1859  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
1860  *
1861  *      Sedgewick, R.
1862  *          Algorithms, p290.
1863  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
1864  */
1865 
1866 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
1867 
1868 /* #include "deflate.h" */
1869 
1870 #ifdef DEBUG_ZLIB
1871 #  include <ctype.h>
1872 #endif
1873 
1874 /* ===========================================================================
1875  * Constants
1876  */
1877 
1878 #define MAX_BL_BITS 7
1879 /* Bit length codes must not exceed MAX_BL_BITS bits */
1880 
1881 #define END_BLOCK 256
1882 /* end of block literal code */
1883 
1884 #define REP_3_6      16
1885 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
1886 
1887 #define REPZ_3_10    17
1888 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
1889 
1890 #define REPZ_11_138  18
1891 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
1892 
1893 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1894    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1895 
1896 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
1897    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1898 
1899 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1900    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1901 
1902 local const uch bl_order[BL_CODES]
1903    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1904 /* The lengths of the bit length codes are sent in order of decreasing
1905  * probability, to avoid transmitting the lengths for unused bit length codes.
1906  */
1907 
1908 #define Buf_size (8 * 2*sizeof(char))
1909 /* Number of bits used within bi_buf. (bi_buf might be implemented on
1910  * more than 16 bits on some systems.)
1911  */
1912 
1913 /* ===========================================================================
1914  * Local data. These are initialized only once.
1915  */
1916 
1917 local ct_data static_ltree[L_CODES+2];
1918 /* The static literal tree. Since the bit lengths are imposed, there is no
1919  * need for the L_CODES extra codes used during heap construction. However
1920  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
1921  * below).
1922  */
1923 
1924 local ct_data static_dtree[D_CODES];
1925 /* The static distance tree. (Actually a trivial tree since all codes use
1926  * 5 bits.)
1927  */
1928 
1929 local uch dist_code[512];
1930 /* distance codes. The first 256 values correspond to the distances
1931  * 3 .. 258, the last 256 values correspond to the top 8 bits of
1932  * the 15 bit distances.
1933  */
1934 
1935 local uch length_code[MAX_MATCH-MIN_MATCH+1];
1936 /* length code for each normalized match length (0 == MIN_MATCH) */
1937 
1938 local int base_length[LENGTH_CODES];
1939 /* First normalized length for each code (0 = MIN_MATCH) */
1940 
1941 local int base_dist[D_CODES];
1942 /* First normalized distance for each code (0 = distance of 1) */
1943 
1944 struct static_tree_desc_s {
1945     ct_data *static_tree;        /* static tree or NULL */
1946     const intf    *extra_bits;         /* extra bits for each code or NULL */
1947     int     extra_base;          /* base index for extra_bits */
1948     int     elems;               /* max number of elements in the tree */
1949     int     max_length;          /* max bit length for the codes */
1950 };
1951 
1952 local static_tree_desc  static_l_desc =
1953 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1954 
1955 local static_tree_desc  static_d_desc =
1956 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
1957 
1958 local static_tree_desc  static_bl_desc =
1959 {(ct_data *)0, extra_blbits, 0,      BL_CODES, MAX_BL_BITS};
1960 
1961 /* ===========================================================================
1962  * Local (static) routines in this file.
1963  */
1964 
1965 local void tr_static_init OF((void));
1966 local void init_block     OF((deflate_state *s));
1967 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
1968 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
1969 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
1970 local void build_tree     OF((deflate_state *s, tree_desc *desc));
1971 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1972 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1973 local int  build_bl_tree  OF((deflate_state *s));
1974 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1975                               int blcodes));
1976 local void compress_block OF((deflate_state *s, ct_data *ltree,
1977                               ct_data *dtree));
1978 local void set_data_type  OF((deflate_state *s));
1979 local unsigned bi_reverse OF((unsigned value, int length));
1980 local void bi_windup      OF((deflate_state *s));
1981 local void bi_flush       OF((deflate_state *s));
1982 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
1983                               int header));
1984 
1985 #ifndef DEBUG_ZLIB
1986 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1987    /* Send a code of the given tree. c and tree must not have side effects */
1988 
1989 #else /* DEBUG_ZLIB */
1990 #  define send_code(s, c, tree) \
1991      { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
1992        send_bits(s, tree[c].Code, tree[c].Len); }
1993 #endif
1994 
1995 #define d_code(dist) \
1996    ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1997 /* Mapping from a distance to a distance code. dist is the distance - 1 and
1998  * must not have side effects. dist_code[256] and dist_code[257] are never
1999  * used.
2000  */
2001 
2002 /* ===========================================================================
2003  * Output a short LSB first on the stream.
2004  * IN assertion: there is enough room in pendingBuf.
2005  */
2006 #define put_short(s, w) { \
2007     put_byte(s, (uch)((w) & 0xff)); \
2008     put_byte(s, (uch)((ush)(w) >> 8)); \
2009 }
2010 
2011 /* ===========================================================================
2012  * Send a value on a given number of bits.
2013  * IN assertion: length <= 16 and value fits in length bits.
2014  */
2015 #ifdef DEBUG_ZLIB
2016 local void send_bits      OF((deflate_state *s, int value, int length));
2017 
2018 local void send_bits(s, value, length)
2019     deflate_state *s;
2020     int value;  /* value to send */
2021     int length; /* number of bits */
2022 {
2023     Tracevv((stderr," l %2d v %4x ", length, value));
2024     Assert(length > 0 && length <= 15, "invalid length");
2025     s->bits_sent += (ulg)length;
2026 
2027     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2028      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2029      * unused bits in value.
2030      */
2031     if (s->bi_valid > (int)Buf_size - length) {
2032         s->bi_buf |= (value << s->bi_valid);
2033         put_short(s, s->bi_buf);
2034         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2035         s->bi_valid += length - Buf_size;
2036     } else {
2037         s->bi_buf |= value << s->bi_valid;
2038         s->bi_valid += length;
2039     }
2040 }
2041 #else /* !DEBUG_ZLIB */
2042 
2043 #define send_bits(s, value, length) \
2044 { int len = length;\
2045   if (s->bi_valid > (int)Buf_size - len) {\
2046     int val = value;\
2047     s->bi_buf |= (val << s->bi_valid);\
2048     put_short(s, s->bi_buf);\
2049     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2050     s->bi_valid += len - Buf_size;\
2051   } else {\
2052     s->bi_buf |= (value) << s->bi_valid;\
2053     s->bi_valid += len;\
2054   }\
2055 }
2056 #endif /* DEBUG_ZLIB */
2057 
2058 /* ===========================================================================
2059  * Initialize the various 'constant' tables. In a multi-threaded environment,
2060  * this function may be called by two threads concurrently, but this is
2061  * harmless since both invocations do exactly the same thing.
2062  */
2063 local void tr_static_init()
2064 {
2065     static int static_init_done = 0;
2066     int n;        /* iterates over tree elements */
2067     int bits;     /* bit counter */
2068     int length;   /* length value */
2069     int code;     /* code value */
2070     int dist;     /* distance index */
2071     ush bl_count[MAX_BITS+1];
2072     /* number of codes at each bit length for an optimal tree */
2073 
2074     if (static_init_done) return;
2075 
2076     /* Initialize the mapping length (0..255) -> length code (0..28) */
2077     length = 0;
2078     for (code = 0; code < LENGTH_CODES-1; code++) {
2079         base_length[code] = length;
2080         for (n = 0; n < (1<<extra_lbits[code]); n++) {
2081             length_code[length++] = (uch)code;
2082         }
2083     }
2084     Assert (length == 256, "tr_static_init: length != 256");
2085     /* Note that the length 255 (match length 258) can be represented
2086      * in two different ways: code 284 + 5 bits or code 285, so we
2087      * overwrite length_code[255] to use the best encoding:
2088      */
2089     length_code[length-1] = (uch)code;
2090 
2091     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2092     dist = 0;
2093     for (code = 0 ; code < 16; code++) {
2094         base_dist[code] = dist;
2095         for (n = 0; n < (1<<extra_dbits[code]); n++) {
2096             dist_code[dist++] = (uch)code;
2097         }
2098     }
2099     Assert (dist == 256, "tr_static_init: dist != 256");
2100     dist >>= 7; /* from now on, all distances are divided by 128 */
2101     for ( ; code < D_CODES; code++) {
2102         base_dist[code] = dist << 7;
2103         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2104             dist_code[256 + dist++] = (uch)code;
2105         }
2106     }
2107     Assert (dist == 256, "tr_static_init: 256+dist != 512");
2108 
2109     /* Construct the codes of the static literal tree */
2110     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2111     n = 0;
2112     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2113     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2114     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2115     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2116     /* Codes 286 and 287 do not exist, but we must include them in the
2117      * tree construction to get a canonical Huffman tree (longest code
2118      * all ones)
2119      */
2120     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2121 
2122     /* The static distance tree is trivial: */
2123     for (n = 0; n < D_CODES; n++) {
2124         static_dtree[n].Len = 5;
2125         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2126     }
2127     static_init_done = 1;
2128 }
2129 
2130 /* ===========================================================================
2131  * Initialize the tree data structures for a new zlib stream.
2132  */
2133 void _tr_init(s)
2134     deflate_state *s;
2135 {
2136     tr_static_init();
2137 
2138     s->compressed_len = 0L;
2139 
2140     s->l_desc.dyn_tree = s->dyn_ltree;
2141     s->l_desc.stat_desc = &static_l_desc;
2142 
2143     s->d_desc.dyn_tree = s->dyn_dtree;
2144     s->d_desc.stat_desc = &static_d_desc;
2145 
2146     s->bl_desc.dyn_tree = s->bl_tree;
2147     s->bl_desc.stat_desc = &static_bl_desc;
2148 
2149     s->bi_buf = 0;
2150     s->bi_valid = 0;
2151     s->last_eob_len = 8; /* enough lookahead for inflate */
2152 #ifdef DEBUG_ZLIB
2153     s->bits_sent = 0L;
2154 #endif
2155 
2156     /* Initialize the first block of the first file: */
2157     init_block(s);
2158 }
2159 
2160 /* ===========================================================================
2161  * Initialize a new block.
2162  */
2163 local void init_block(s)
2164     deflate_state *s;
2165 {
2166     int n; /* iterates over tree elements */
2167 
2168     /* Initialize the trees. */
2169     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
2170     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
2171     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2172 
2173     s->dyn_ltree[END_BLOCK].Freq = 1;
2174     s->opt_len = s->static_len = 0L;
2175     s->last_lit = s->matches = 0;
2176 }
2177 
2178 #define SMALLEST 1
2179 /* Index within the heap array of least frequent node in the Huffman tree */
2180 
2181 
2182 /* ===========================================================================
2183  * Remove the smallest element from the heap and recreate the heap with
2184  * one less element. Updates heap and heap_len.
2185  */
2186 #define pqremove(s, tree, top) \
2187 {\
2188     top = s->heap[SMALLEST]; \
2189     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2190     pqdownheap(s, tree, SMALLEST); \
2191 }
2192 
2193 /* ===========================================================================
2194  * Compares to subtrees, using the tree depth as tie breaker when
2195  * the subtrees have equal frequency. This minimizes the worst case length.
2196  */
2197 #define smaller(tree, n, m, depth) \
2198    (tree[n].Freq < tree[m].Freq || \
2199    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2200 
2201 /* ===========================================================================
2202  * Restore the heap property by moving down the tree starting at node k,
2203  * exchanging a node with the smallest of its two sons if necessary, stopping
2204  * when the heap property is re-established (each father smaller than its
2205  * two sons).
2206  */
2207 local void pqdownheap(s, tree, k)
2208     deflate_state *s;
2209     ct_data *tree;  /* the tree to restore */
2210     int k;               /* node to move down */
2211 {
2212     int v = s->heap[k];
2213     int j = k << 1;  /* left son of k */
2214     while (j <= s->heap_len) {
2215         /* Set j to the smallest of the two sons: */
2216         if (j < s->heap_len &&
2217             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2218             j++;
2219         }
2220         /* Exit if v is smaller than both sons */
2221         if (smaller(tree, v, s->heap[j], s->depth)) break;
2222 
2223         /* Exchange v with the smallest son */
2224         s->heap[k] = s->heap[j];  k = j;
2225 
2226         /* And continue down the tree, setting j to the left son of k */
2227         j <<= 1;
2228     }
2229     s->heap[k] = v;
2230 }
2231 
2232 /* ===========================================================================
2233  * Compute the optimal bit lengths for a tree and update the total bit length
2234  * for the current block.
2235  * IN assertion: the fields freq and dad are set, heap[heap_max] and
2236  *    above are the tree nodes sorted by increasing frequency.
2237  * OUT assertions: the field len is set to the optimal bit length, the
2238  *     array bl_count contains the frequencies for each bit length.
2239  *     The length opt_len is updated; static_len is also updated if stree is
2240  *     not null.
2241  */
2242 local void gen_bitlen(s, desc)
2243     deflate_state *s;
2244     tree_desc *desc;    /* the tree descriptor */
2245 {
2246     ct_data *tree  = desc->dyn_tree;
2247     int max_code   = desc->max_code;
2248     ct_data *stree = desc->stat_desc->static_tree;
2249     const intf *extra    = desc->stat_desc->extra_bits;
2250     int base       = desc->stat_desc->extra_base;
2251     int max_length = desc->stat_desc->max_length;
2252     int h;              /* heap index */
2253     int n, m;           /* iterate over the tree elements */
2254     int bits;           /* bit length */
2255     int xbits;          /* extra bits */
2256     ush f;              /* frequency */
2257     int overflow = 0;   /* number of elements with bit length too large */
2258 
2259     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2260 
2261     /* In a first pass, compute the optimal bit lengths (which may
2262      * overflow in the case of the bit length tree).
2263      */
2264     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2265 
2266     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2267         n = s->heap[h];
2268         bits = tree[tree[n].Dad].Len + 1;
2269         if (bits > max_length) bits = max_length, overflow++;
2270         tree[n].Len = (ush)bits;
2271         /* We overwrite tree[n].Dad which is no longer needed */
2272 
2273         if (n > max_code) continue; /* not a leaf node */
2274 
2275         s->bl_count[bits]++;
2276         xbits = 0;
2277         if (n >= base) xbits = extra[n-base];
2278         f = tree[n].Freq;
2279         s->opt_len += (ulg)f * (bits + xbits);
2280         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2281     }
2282     if (overflow == 0) return;
2283 
2284     Trace((stderr,"\nbit length overflow\n"));
2285     /* This happens for example on obj2 and pic of the Calgary corpus */
2286 
2287     /* Find the first bit length which could increase: */
2288     do {
2289         bits = max_length-1;
2290         while (s->bl_count[bits] == 0) bits--;
2291         s->bl_count[bits]--;      /* move one leaf down the tree */
2292         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2293         s->bl_count[max_length]--;
2294         /* The brother of the overflow item also moves one step up,
2295          * but this does not affect bl_count[max_length]
2296          */
2297         overflow -= 2;
2298     } while (overflow > 0);
2299 
2300     /* Now recompute all bit lengths, scanning in increasing frequency.
2301      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2302      * lengths instead of fixing only the wrong ones. This idea is taken
2303      * from 'ar' written by Haruhiko Okumura.)
2304      */
2305     for (bits = max_length; bits != 0; bits--) {
2306         n = s->bl_count[bits];
2307         while (n != 0) {
2308             m = s->heap[--h];
2309             if (m > max_code) continue;
2310             if (tree[m].Len != (unsigned) bits) {
2311                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2312                 s->opt_len += ((long)bits - (long)tree[m].Len)
2313                               *(long)tree[m].Freq;
2314                 tree[m].Len = (ush)bits;
2315             }
2316             n--;
2317         }
2318     }
2319 }
2320 
2321 /* ===========================================================================
2322  * Generate the codes for a given tree and bit counts (which need not be
2323  * optimal).
2324  * IN assertion: the array bl_count contains the bit length statistics for
2325  * the given tree and the field len is set for all tree elements.
2326  * OUT assertion: the field code is set for all tree elements of non
2327  *     zero code length.
2328  */
2329 local void gen_codes (tree, max_code, bl_count)
2330     ct_data *tree;             /* the tree to decorate */
2331     int max_code;              /* largest code with non zero frequency */
2332     ushf *bl_count;            /* number of codes at each bit length */
2333 {
2334     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2335     ush code = 0;              /* running code value */
2336     int bits;                  /* bit index */
2337     int n;                     /* code index */
2338 
2339     /* The distribution counts are first used to generate the code values
2340      * without bit reversal.
2341      */
2342     for (bits = 1; bits <= MAX_BITS; bits++) {
2343         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2344     }
2345     /* Check that the bit counts in bl_count are consistent. The last code
2346      * must be all ones.
2347      */
2348     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2349             "inconsistent bit counts");
2350     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2351 
2352     for (n = 0;  n <= max_code; n++) {
2353         int len = tree[n].Len;
2354         if (len == 0) continue;
2355         /* Now reverse the bits */
2356         tree[n].Code = bi_reverse(next_code[len]++, len);
2357 
2358         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2359              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2360     }
2361 }
2362 
2363 /* ===========================================================================
2364  * Construct one Huffman tree and assigns the code bit strings and lengths.
2365  * Update the total bit length for the current block.
2366  * IN assertion: the field freq is set for all tree elements.
2367  * OUT assertions: the fields len and code are set to the optimal bit length
2368  *     and corresponding code. The length opt_len is updated; static_len is
2369  *     also updated if stree is not null. The field max_code is set.
2370  */
2371 local void build_tree(s, desc)
2372     deflate_state *s;
2373     tree_desc *desc; /* the tree descriptor */
2374 {
2375     ct_data *tree   = desc->dyn_tree;
2376     ct_data *stree  = desc->stat_desc->static_tree;
2377     int elems       = desc->stat_desc->elems;
2378     int n, m;          /* iterate over heap elements */
2379     int max_code = -1; /* largest code with non zero frequency */
2380     int node;          /* new node being created */
2381 
2382     /* Construct the initial heap, with least frequent element in
2383      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2384      * heap[0] is not used.
2385      */
2386     s->heap_len = 0, s->heap_max = HEAP_SIZE;
2387 
2388     for (n = 0; n < elems; n++) {
2389         if (tree[n].Freq != 0) {
2390             s->heap[++(s->heap_len)] = max_code = n;
2391             s->depth[n] = 0;
2392         } else {
2393             tree[n].Len = 0;
2394         }
2395     }
2396 
2397     /* The pkzip format requires that at least one distance code exists,
2398      * and that at least one bit should be sent even if there is only one
2399      * possible code. So to avoid special checks later on we force at least
2400      * two codes of non zero frequency.
2401      */
2402     while (s->heap_len < 2) {
2403         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2404         tree[node].Freq = 1;
2405         s->depth[node] = 0;
2406         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2407         /* node is 0 or 1 so it does not have extra bits */
2408     }
2409     desc->max_code = max_code;
2410 
2411     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2412      * establish sub-heaps of increasing lengths:
2413      */
2414     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2415 
2416     /* Construct the Huffman tree by repeatedly combining the least two
2417      * frequent nodes.
2418      */
2419     node = elems;              /* next internal node of the tree */
2420     do {
2421         pqremove(s, tree, n);  /* n = node of least frequency */
2422         m = s->heap[SMALLEST]; /* m = node of next least frequency */
2423 
2424         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2425         s->heap[--(s->heap_max)] = m;
2426 
2427         /* Create a new node father of n and m */
2428         tree[node].Freq = tree[n].Freq + tree[m].Freq;
2429         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2430         tree[n].Dad = tree[m].Dad = (ush)node;
2431 #ifdef DUMP_BL_TREE
2432         if (tree == s->bl_tree) {
2433             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2434                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2435         }
2436 #endif
2437         /* and insert the new node in the heap */
2438         s->heap[SMALLEST] = node++;
2439         pqdownheap(s, tree, SMALLEST);
2440 
2441     } while (s->heap_len >= 2);
2442 
2443     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2444 
2445     /* At this point, the fields freq and dad are set. We can now
2446      * generate the bit lengths.
2447      */
2448     gen_bitlen(s, (tree_desc *)desc);
2449 
2450     /* The field len is now set, we can generate the bit codes */
2451     gen_codes ((ct_data *)tree, max_code, s->bl_count);
2452 }
2453 
2454 /* ===========================================================================
2455  * Scan a literal or distance tree to determine the frequencies of the codes
2456  * in the bit length tree.
2457  */
2458 local void scan_tree (s, tree, max_code)
2459     deflate_state *s;
2460     ct_data *tree;   /* the tree to be scanned */
2461     int max_code;    /* and its largest code of non zero frequency */
2462 {
2463     int n;                     /* iterates over all tree elements */
2464     int prevlen = -1;          /* last emitted length */
2465     int curlen;                /* length of current code */
2466     int nextlen = tree[0].Len; /* length of next code */
2467     int count = 0;             /* repeat count of the current code */
2468     int max_count = 7;         /* max repeat count */
2469     int min_count = 4;         /* min repeat count */
2470 
2471     if (nextlen == 0) max_count = 138, min_count = 3;
2472     tree[max_code+1].Len = (ush)0xffff; /* guard */
2473 
2474     for (n = 0; n <= max_code; n++) {
2475         curlen = nextlen; nextlen = tree[n+1].Len;
2476         if (++count < max_count && curlen == nextlen) {
2477             continue;
2478         } else if (count < min_count) {
2479             s->bl_tree[curlen].Freq += count;
2480         } else if (curlen != 0) {
2481             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2482             s->bl_tree[REP_3_6].Freq++;
2483         } else if (count <= 10) {
2484             s->bl_tree[REPZ_3_10].Freq++;
2485         } else {
2486             s->bl_tree[REPZ_11_138].Freq++;
2487         }
2488         count = 0; prevlen = curlen;
2489         if (nextlen == 0) {
2490             max_count = 138, min_count = 3;
2491         } else if (curlen == nextlen) {
2492             max_count = 6, min_count = 3;
2493         } else {
2494             max_count = 7, min_count = 4;
2495         }
2496     }
2497 }
2498 
2499 /* ===========================================================================
2500  * Send a literal or distance tree in compressed form, using the codes in
2501  * bl_tree.
2502  */
2503 local void send_tree (s, tree, max_code)
2504     deflate_state *s;
2505     ct_data *tree; /* the tree to be scanned */
2506     int max_code;       /* and its largest code of non zero frequency */
2507 {
2508     int n;                     /* iterates over all tree elements */
2509     int prevlen = -1;          /* last emitted length */
2510     int curlen;                /* length of current code */
2511     int nextlen = tree[0].Len; /* length of next code */
2512     int count = 0;             /* repeat count of the current code */
2513     int max_count = 7;         /* max repeat count */
2514     int min_count = 4;         /* min repeat count */
2515 
2516     /* tree[max_code+1].Len = -1; */  /* guard already set */
2517     if (nextlen == 0) max_count = 138, min_count = 3;
2518 
2519     for (n = 0; n <= max_code; n++) {
2520         curlen = nextlen; nextlen = tree[n+1].Len;
2521         if (++count < max_count && curlen == nextlen) {
2522             continue;
2523         } else if (count < min_count) {
2524             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2525 
2526         } else if (curlen != 0) {
2527             if (curlen != prevlen) {
2528                 send_code(s, curlen, s->bl_tree); count--;
2529             }
2530             Assert(count >= 3 && count <= 6, " 3_6?");
2531             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2532 
2533         } else if (count <= 10) {
2534             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2535 
2536         } else {
2537             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2538         }
2539         count = 0; prevlen = curlen;
2540         if (nextlen == 0) {
2541             max_count = 138, min_count = 3;
2542         } else if (curlen == nextlen) {
2543             max_count = 6, min_count = 3;
2544         } else {
2545             max_count = 7, min_count = 4;
2546         }
2547     }
2548 }
2549 
2550 /* ===========================================================================
2551  * Construct the Huffman tree for the bit lengths and return the index in
2552  * bl_order of the last bit length code to send.
2553  */
2554 local int build_bl_tree(s)
2555     deflate_state *s;
2556 {
2557     int max_blindex;  /* index of last bit length code of non zero freq */
2558 
2559     /* Determine the bit length frequencies for literal and distance trees */
2560     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2561     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2562 
2563     /* Build the bit length tree: */
2564     build_tree(s, (tree_desc *)(&(s->bl_desc)));
2565     /* opt_len now includes the length of the tree representations, except
2566      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2567      */
2568 
2569     /* Determine the number of bit length codes to send. The pkzip format
2570      * requires that at least 4 bit length codes be sent. (appnote.txt says
2571      * 3 but the actual value used is 4.)
2572      */
2573     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2574         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2575     }
2576     /* Update opt_len to include the bit length tree and counts */
2577     s->opt_len += 3*(max_blindex+1) + 5+5+4;
2578     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2579             s->opt_len, s->static_len));
2580 
2581     return max_blindex;
2582 }
2583 
2584 /* ===========================================================================
2585  * Send the header for a block using dynamic Huffman trees: the counts, the
2586  * lengths of the bit length codes, the literal tree and the distance tree.
2587  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2588  */
2589 local void send_all_trees(s, lcodes, dcodes, blcodes)
2590     deflate_state *s;
2591     int lcodes, dcodes, blcodes; /* number of codes for each tree */
2592 {
2593     int rank;                    /* index in bl_order */
2594 
2595     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2596     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2597             "too many codes");
2598     Tracev((stderr, "\nbl counts: "));
2599     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2600     send_bits(s, dcodes-1,   5);
2601     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
2602     for (rank = 0; rank < blcodes; rank++) {
2603         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2604         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2605     }
2606     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2607 
2608     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2609     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2610 
2611     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2612     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2613 }
2614 
2615 /* ===========================================================================
2616  * Send a stored block
2617  */
2618 void _tr_stored_block(s, buf, stored_len, eof)
2619     deflate_state *s;
2620     charf *buf;       /* input block */
2621     ulg stored_len;   /* length of input block */
2622     int eof;          /* true if this is the last block for a file */
2623 {
2624     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
2625     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
2626     s->compressed_len += (stored_len + 4) << 3;
2627 
2628     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2629 }
2630 
2631 /* Send just the `stored block' type code without any length bytes or data.
2632  */
2633 void _tr_stored_type_only(s)
2634     deflate_state *s;
2635 {
2636     send_bits(s, (STORED_BLOCK << 1), 3);
2637     bi_windup(s);
2638     s->compressed_len = (s->compressed_len + 3) & ~7L;
2639 }
2640 
2641 
2642 /* ===========================================================================
2643  * Send one empty static block to give enough lookahead for inflate.
2644  * This takes 10 bits, of which 7 may remain in the bit buffer.
2645  * The current inflate code requires 9 bits of lookahead. If the
2646  * last two codes for the previous block (real code plus EOB) were coded
2647  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
2648  * the last real code. In this case we send two empty static blocks instead
2649  * of one. (There are no problems if the previous block is stored or fixed.)
2650  * To simplify the code, we assume the worst case of last real code encoded
2651  * on one bit only.
2652  */
2653 void _tr_align(s)
2654     deflate_state *s;
2655 {
2656     send_bits(s, STATIC_TREES<<1, 3);
2657     send_code(s, END_BLOCK, static_ltree);
2658     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2659     bi_flush(s);
2660     /* Of the 10 bits for the empty block, we have already sent
2661      * (10 - bi_valid) bits. The lookahead for the last real code (before
2662      * the EOB of the previous block) was thus at least one plus the length
2663      * of the EOB plus what we have just sent of the empty static block.
2664      */
2665     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
2666         send_bits(s, STATIC_TREES<<1, 3);
2667         send_code(s, END_BLOCK, static_ltree);
2668         s->compressed_len += 10L;
2669         bi_flush(s);
2670     }
2671     s->last_eob_len = 7;
2672 }
2673 
2674 /* ===========================================================================
2675  * Determine the best encoding for the current block: dynamic trees, static
2676  * trees or store, and output the encoded block to the zip file. This function
2677  * returns the total compressed length for the file so far.
2678  */
2679 ulg _tr_flush_block(s, buf, stored_len, eof)
2680     deflate_state *s;
2681     charf *buf;       /* input block, or NULL if too old */
2682     ulg stored_len;   /* length of input block */
2683     int eof;          /* true if this is the last block for a file */
2684 {
2685     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2686     int max_blindex = 0;  /* index of last bit length code of non zero freq */
2687 
2688     /* Build the Huffman trees unless a stored block is forced */
2689     if (s->level > 0) {
2690 
2691 	 /* Check if the file is ascii or binary */
2692 	if (s->data_type == Z_UNKNOWN) set_data_type(s);
2693 
2694 	/* Construct the literal and distance trees */
2695 	build_tree(s, (tree_desc *)(&(s->l_desc)));
2696 	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2697 		s->static_len));
2698 
2699 	build_tree(s, (tree_desc *)(&(s->d_desc)));
2700 	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2701 		s->static_len));
2702 	/* At this point, opt_len and static_len are the total bit lengths of
2703 	 * the compressed block data, excluding the tree representations.
2704 	 */
2705 
2706 	/* Build the bit length tree for the above two trees, and get the index
2707 	 * in bl_order of the last bit length code to send.
2708 	 */
2709 	max_blindex = build_bl_tree(s);
2710 
2711 	/* Determine the best encoding. Compute first the block length in bytes*/
2712 	opt_lenb = (s->opt_len+3+7)>>3;
2713 	static_lenb = (s->static_len+3+7)>>3;
2714 
2715 	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2716 		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2717 		s->last_lit));
2718 
2719 	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2720 
2721     } else {
2722         Assert(buf != (char*)0, "lost buf");
2723 	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
2724     }
2725 
2726     /* If compression failed and this is the first and last block,
2727      * and if the .zip file can be seeked (to rewrite the local header),
2728      * the whole file is transformed into a stored file:
2729      */
2730 #ifdef STORED_FILE_OK
2731 #  ifdef FORCE_STORED_FILE
2732     if (eof && s->compressed_len == 0L) { /* force stored file */
2733 #  else
2734     if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
2735 #  endif
2736         /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2737         if (buf == (charf*)0) error ("block vanished");
2738 
2739         copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
2740         s->compressed_len = stored_len << 3;
2741         s->method = STORED;
2742     } else
2743 #endif /* STORED_FILE_OK */
2744 
2745 #ifdef FORCE_STORED
2746     if (buf != (char*)0) { /* force stored block */
2747 #else
2748     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
2749                        /* 4: two words for the lengths */
2750 #endif
2751         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2752          * Otherwise we can't have processed more than WSIZE input bytes since
2753          * the last block flush, because compression would have been
2754          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2755          * transform a block into a stored block.
2756          */
2757         _tr_stored_block(s, buf, stored_len, eof);
2758 
2759 #ifdef FORCE_STATIC
2760     } else if (static_lenb >= 0) { /* force static trees */
2761 #else
2762     } else if (static_lenb == opt_lenb) {
2763 #endif
2764         send_bits(s, (STATIC_TREES<<1)+eof, 3);
2765         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2766         s->compressed_len += 3 + s->static_len;
2767     } else {
2768         send_bits(s, (DYN_TREES<<1)+eof, 3);
2769         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2770                        max_blindex+1);
2771         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2772         s->compressed_len += 3 + s->opt_len;
2773     }
2774     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2775     init_block(s);
2776 
2777     if (eof) {
2778         bi_windup(s);
2779         s->compressed_len += 7;  /* align on byte boundary */
2780     }
2781     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2782            s->compressed_len-7*eof));
2783 
2784     return s->compressed_len >> 3;
2785 }
2786 
2787 /* ===========================================================================
2788  * Save the match info and tally the frequency counts. Return true if
2789  * the current block must be flushed.
2790  */
2791 int _tr_tally (s, dist, lc)
2792     deflate_state *s;
2793     unsigned dist;  /* distance of matched string */
2794     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
2795 {
2796     s->d_buf[s->last_lit] = (ush)dist;
2797     s->l_buf[s->last_lit++] = (uch)lc;
2798     if (dist == 0) {
2799         /* lc is the unmatched char */
2800         s->dyn_ltree[lc].Freq++;
2801     } else {
2802         s->matches++;
2803         /* Here, lc is the match length - MIN_MATCH */
2804         dist--;             /* dist = match distance - 1 */
2805         Assert((ush)dist < (ush)MAX_DIST(s) &&
2806                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2807                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
2808 
2809         s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2810         s->dyn_dtree[d_code(dist)].Freq++;
2811     }
2812 
2813     /* Try to guess if it is profitable to stop the current block here */
2814     if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2815         /* Compute an upper bound for the compressed length */
2816         ulg out_length = (ulg)s->last_lit*8L;
2817         ulg in_length = (ulg)((long)s->strstart - s->block_start);
2818         int dcode;
2819         for (dcode = 0; dcode < D_CODES; dcode++) {
2820             out_length += (ulg)s->dyn_dtree[dcode].Freq *
2821                 (5L+extra_dbits[dcode]);
2822         }
2823         out_length >>= 3;
2824         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2825                s->last_lit, in_length, out_length,
2826                100L - out_length*100L/in_length));
2827         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2828     }
2829     return (s->last_lit == s->lit_bufsize-1);
2830     /* We avoid equality with lit_bufsize because of wraparound at 64K
2831      * on 16 bit machines and because stored blocks are restricted to
2832      * 64K-1 bytes.
2833      */
2834 }
2835 
2836 /* ===========================================================================
2837  * Send the block data compressed using the given Huffman trees
2838  */
2839 local void compress_block(s, ltree, dtree)
2840     deflate_state *s;
2841     ct_data *ltree; /* literal tree */
2842     ct_data *dtree; /* distance tree */
2843 {
2844     unsigned dist;      /* distance of matched string */
2845     int lc;             /* match length or unmatched char (if dist == 0) */
2846     unsigned lx = 0;    /* running index in l_buf */
2847     unsigned code;      /* the code to send */
2848     int extra;          /* number of extra bits to send */
2849 
2850     if (s->last_lit != 0) do {
2851         dist = s->d_buf[lx];
2852         lc = s->l_buf[lx++];
2853         if (dist == 0) {
2854             send_code(s, lc, ltree); /* send a literal byte */
2855             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2856         } else {
2857             /* Here, lc is the match length - MIN_MATCH */
2858             code = length_code[lc];
2859             send_code(s, code+LITERALS+1, ltree); /* send the length code */
2860             extra = extra_lbits[code];
2861             if (extra != 0) {
2862                 lc -= base_length[code];
2863                 send_bits(s, lc, extra);       /* send the extra length bits */
2864             }
2865             dist--; /* dist is now the match distance - 1 */
2866             code = d_code(dist);
2867             Assert (code < D_CODES, "bad d_code");
2868 
2869             send_code(s, code, dtree);       /* send the distance code */
2870             extra = extra_dbits[code];
2871             if (extra != 0) {
2872                 dist -= base_dist[code];
2873                 send_bits(s, dist, extra);   /* send the extra distance bits */
2874             }
2875         } /* literal or match pair ? */
2876 
2877         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2878         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2879 
2880     } while (lx < s->last_lit);
2881 
2882     send_code(s, END_BLOCK, ltree);
2883     s->last_eob_len = ltree[END_BLOCK].Len;
2884 }
2885 
2886 /* ===========================================================================
2887  * Set the data type to ASCII or BINARY, using a crude approximation:
2888  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2889  * IN assertion: the fields freq of dyn_ltree are set and the total of all
2890  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2891  */
2892 local void set_data_type(s)
2893     deflate_state *s;
2894 {
2895     int n = 0;
2896     unsigned ascii_freq = 0;
2897     unsigned bin_freq = 0;
2898     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
2899     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
2900     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2901     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
2902 }
2903 
2904 /* ===========================================================================
2905  * Reverse the first len bits of a code, using straightforward code (a faster
2906  * method would use a table)
2907  * IN assertion: 1 <= len <= 15
2908  */
2909 local unsigned bi_reverse(code, len)
2910     unsigned code; /* the value to invert */
2911     int len;       /* its bit length */
2912 {
2913     unsigned res = 0;
2914     do {
2915         res |= code & 1;
2916         code >>= 1, res <<= 1;
2917     } while (--len > 0);
2918     return res >> 1;
2919 }
2920 
2921 /* ===========================================================================
2922  * Flush the bit buffer, keeping at most 7 bits in it.
2923  */
2924 local void bi_flush(s)
2925     deflate_state *s;
2926 {
2927     if (s->bi_valid == 16) {
2928         put_short(s, s->bi_buf);
2929         s->bi_buf = 0;
2930         s->bi_valid = 0;
2931     } else if (s->bi_valid >= 8) {
2932         put_byte(s, (Byte)s->bi_buf);
2933         s->bi_buf >>= 8;
2934         s->bi_valid -= 8;
2935     }
2936 }
2937 
2938 /* ===========================================================================
2939  * Flush the bit buffer and align the output on a byte boundary
2940  */
2941 local void bi_windup(s)
2942     deflate_state *s;
2943 {
2944     if (s->bi_valid > 8) {
2945         put_short(s, s->bi_buf);
2946     } else if (s->bi_valid > 0) {
2947         put_byte(s, (Byte)s->bi_buf);
2948     }
2949     s->bi_buf = 0;
2950     s->bi_valid = 0;
2951 #ifdef DEBUG_ZLIB
2952     s->bits_sent = (s->bits_sent+7) & ~7;
2953 #endif
2954 }
2955 
2956 /* ===========================================================================
2957  * Copy a stored block, storing first the length and its
2958  * one's complement if requested.
2959  */
2960 local void copy_block(s, buf, len, header)
2961     deflate_state *s;
2962     charf    *buf;    /* the input data */
2963     unsigned len;     /* its length */
2964     int      header;  /* true if block header must be written */
2965 {
2966     bi_windup(s);        /* align on byte boundary */
2967     s->last_eob_len = 8; /* enough lookahead for inflate */
2968 
2969     if (header) {
2970         put_short(s, (ush)len);
2971         put_short(s, (ush)~len);
2972 #ifdef DEBUG_ZLIB
2973         s->bits_sent += 2*16;
2974 #endif
2975     }
2976 #ifdef DEBUG_ZLIB
2977     s->bits_sent += (ulg)len<<3;
2978 #endif
2979     /* bundle up the put_byte(s, *buf++) calls */
2980     zmemcpy(&s->pending_buf[s->pending], buf, len);
2981     s->pending += len;
2982 }
2983 /* --- trees.c */
2984 
2985 /* +++ inflate.c */
2986 /* inflate.c -- zlib interface to inflate modules
2987  * Copyright (C) 1995-1996 Mark Adler
2988  * For conditions of distribution and use, see copyright notice in zlib.h
2989  */
2990 
2991 /* #include "zutil.h" */
2992 
2993 /* +++ infblock.h */
2994 /* infblock.h -- header to use infblock.c
2995  * Copyright (C) 1995-1996 Mark Adler
2996  * For conditions of distribution and use, see copyright notice in zlib.h
2997  */
2998 
2999 /* WARNING: this file should *not* be used by applications. It is
3000    part of the implementation of the compression library and is
3001    subject to change. Applications should only use zlib.h.
3002  */
3003 
3004 struct inflate_blocks_state;
3005 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3006 
3007 extern inflate_blocks_statef * inflate_blocks_new OF((
3008     z_streamp z,
3009     check_func c,               /* check function */
3010     uInt w));                   /* window size */
3011 
3012 extern int inflate_blocks OF((
3013     inflate_blocks_statef *,
3014     z_streamp ,
3015     int));                      /* initial return code */
3016 
3017 extern void inflate_blocks_reset OF((
3018     inflate_blocks_statef *,
3019     z_streamp ,
3020     uLongf *));                  /* check value on output */
3021 
3022 extern int inflate_blocks_free OF((
3023     inflate_blocks_statef *,
3024     z_streamp ,
3025     uLongf *));                  /* check value on output */
3026 
3027 extern void inflate_set_dictionary OF((
3028     inflate_blocks_statef *s,
3029     const Bytef *d,  /* dictionary */
3030     uInt  n));       /* dictionary length */
3031 
3032 extern int inflate_addhistory OF((
3033     inflate_blocks_statef *,
3034     z_streamp));
3035 
3036 extern int inflate_packet_flush OF((
3037     inflate_blocks_statef *));
3038 /* --- infblock.h */
3039 
3040 #ifndef NO_DUMMY_DECL
3041 struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3042 #endif
3043 
3044 /* inflate private state */
3045 struct internal_state {
3046 
3047   /* mode */
3048   enum {
3049       METHOD,   /* waiting for method byte */
3050       FLAG,     /* waiting for flag byte */
3051       DICT4,    /* four dictionary check bytes to go */
3052       DICT3,    /* three dictionary check bytes to go */
3053       DICT2,    /* two dictionary check bytes to go */
3054       DICT1,    /* one dictionary check byte to go */
3055       DICT0,    /* waiting for inflateSetDictionary */
3056       BLOCKS,   /* decompressing blocks */
3057       CHECK4,   /* four check bytes to go */
3058       CHECK3,   /* three check bytes to go */
3059       CHECK2,   /* two check bytes to go */
3060       CHECK1,   /* one check byte to go */
3061       DONE,     /* finished check, done */
3062       BAD}      /* got an error--stay here */
3063     mode;               /* current inflate mode */
3064 
3065   /* mode dependent information */
3066   union {
3067     uInt method;        /* if FLAGS, method byte */
3068     struct {
3069       uLong was;                /* computed check value */
3070       uLong need;               /* stream check value */
3071     } check;            /* if CHECK, check values to compare */
3072     uInt marker;        /* if BAD, inflateSync's marker bytes count */
3073   } sub;        /* submode */
3074 
3075   /* mode independent information */
3076   int  nowrap;          /* flag for no wrapper */
3077   uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
3078   inflate_blocks_statef
3079     *blocks;            /* current inflate_blocks state */
3080 
3081 };
3082 
3083 
3084 int inflateReset(z)
3085 z_streamp z;
3086 {
3087   uLong c;
3088 
3089   if (z == Z_NULL || z->state == Z_NULL)
3090     return Z_STREAM_ERROR;
3091   z->total_in = z->total_out = 0;
3092   z->msg = Z_NULL;
3093   z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3094   inflate_blocks_reset(z->state->blocks, z, &c);
3095   Trace((stderr, "inflate: reset\n"));
3096   return Z_OK;
3097 }
3098 
3099 
3100 int inflateEnd(z)
3101 z_streamp z;
3102 {
3103   uLong c;
3104 
3105   if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3106     return Z_STREAM_ERROR;
3107   if (z->state->blocks != Z_NULL)
3108     inflate_blocks_free(z->state->blocks, z, &c);
3109   ZFREE(z, z->state);
3110   z->state = Z_NULL;
3111   Trace((stderr, "inflate: end\n"));
3112   return Z_OK;
3113 }
3114 
3115 
3116 int inflateInit2_(z, w, version, stream_size)
3117 z_streamp z;
3118 int w;
3119 const char *version;
3120 int stream_size;
3121 {
3122   if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3123       stream_size != sizeof(z_stream))
3124       return Z_VERSION_ERROR;
3125 
3126   /* initialize state */
3127   if (z == Z_NULL)
3128     return Z_STREAM_ERROR;
3129   z->msg = Z_NULL;
3130 #ifndef NO_ZCFUNCS
3131   if (z->zalloc == Z_NULL)
3132   {
3133     z->zalloc = zcalloc;
3134     z->opaque = (voidpf)0;
3135   }
3136   if (z->zfree == Z_NULL) z->zfree = zcfree;
3137 #endif
3138   if ((z->state = (struct internal_state FAR *)
3139        ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3140     return Z_MEM_ERROR;
3141   z->state->blocks = Z_NULL;
3142 
3143   /* handle undocumented nowrap option (no zlib header or check) */
3144   z->state->nowrap = 0;
3145   if (w < 0)
3146   {
3147     w = - w;
3148     z->state->nowrap = 1;
3149   }
3150 
3151   /* set window size */
3152   if (w < 8 || w > 15)
3153   {
3154     inflateEnd(z);
3155     return Z_STREAM_ERROR;
3156   }
3157   z->state->wbits = (uInt)w;
3158 
3159   /* create inflate_blocks state */
3160   if ((z->state->blocks =
3161       inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3162       == Z_NULL)
3163   {
3164     inflateEnd(z);
3165     return Z_MEM_ERROR;
3166   }
3167   Trace((stderr, "inflate: allocated\n"));
3168 
3169   /* reset state */
3170   inflateReset(z);
3171   return Z_OK;
3172 }
3173 
3174 
3175 int inflateInit_(z, version, stream_size)
3176 z_streamp z;
3177 const char *version;
3178 int stream_size;
3179 {
3180   return inflateInit2_(z, DEF_WBITS, version, stream_size);
3181 }
3182 
3183 
3184 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3185 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3186 
3187 int inflate(z, f)
3188 z_streamp z;
3189 int f;
3190 {
3191   int r;
3192   uInt b;
3193 
3194   if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
3195     return Z_STREAM_ERROR;
3196   r = Z_BUF_ERROR;
3197   while (1) switch (z->state->mode)
3198   {
3199     case METHOD:
3200       NEEDBYTE
3201       if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3202       {
3203         z->state->mode = BAD;
3204         z->msg = (char*)"unknown compression method";
3205         z->state->sub.marker = 5;       /* can't try inflateSync */
3206         break;
3207       }
3208       if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3209       {
3210         z->state->mode = BAD;
3211         z->msg = (char*)"invalid window size";
3212         z->state->sub.marker = 5;       /* can't try inflateSync */
3213         break;
3214       }
3215       z->state->mode = FLAG;
3216     case FLAG:
3217       NEEDBYTE
3218       b = NEXTBYTE;
3219       if (((z->state->sub.method << 8) + b) % 31)
3220       {
3221         z->state->mode = BAD;
3222         z->msg = (char*)"incorrect header check";
3223         z->state->sub.marker = 5;       /* can't try inflateSync */
3224         break;
3225       }
3226       Trace((stderr, "inflate: zlib header ok\n"));
3227       if (!(b & PRESET_DICT))
3228       {
3229         z->state->mode = BLOCKS;
3230 	break;
3231       }
3232       z->state->mode = DICT4;
3233     case DICT4:
3234       NEEDBYTE
3235       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3236       z->state->mode = DICT3;
3237     case DICT3:
3238       NEEDBYTE
3239       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3240       z->state->mode = DICT2;
3241     case DICT2:
3242       NEEDBYTE
3243       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3244       z->state->mode = DICT1;
3245     case DICT1:
3246       NEEDBYTE
3247       z->state->sub.check.need += (uLong)NEXTBYTE;
3248       z->adler = z->state->sub.check.need;
3249       z->state->mode = DICT0;
3250       return Z_NEED_DICT;
3251     case DICT0:
3252       z->state->mode = BAD;
3253       z->msg = (char*)"need dictionary";
3254       z->state->sub.marker = 0;       /* can try inflateSync */
3255       return Z_STREAM_ERROR;
3256     case BLOCKS:
3257       r = inflate_blocks(z->state->blocks, z, r);
3258       if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3259 	  r = inflate_packet_flush(z->state->blocks);
3260       if (r == Z_DATA_ERROR)
3261       {
3262         z->state->mode = BAD;
3263         z->state->sub.marker = 0;       /* can try inflateSync */
3264         break;
3265       }
3266       if (r != Z_STREAM_END)
3267         return r;
3268       r = Z_OK;
3269       inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3270       if (z->state->nowrap)
3271       {
3272         z->state->mode = DONE;
3273         break;
3274       }
3275       z->state->mode = CHECK4;
3276     case CHECK4:
3277       NEEDBYTE
3278       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3279       z->state->mode = CHECK3;
3280     case CHECK3:
3281       NEEDBYTE
3282       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3283       z->state->mode = CHECK2;
3284     case CHECK2:
3285       NEEDBYTE
3286       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3287       z->state->mode = CHECK1;
3288     case CHECK1:
3289       NEEDBYTE
3290       z->state->sub.check.need += (uLong)NEXTBYTE;
3291 
3292       if (z->state->sub.check.was != z->state->sub.check.need)
3293       {
3294         z->state->mode = BAD;
3295         z->msg = (char*)"incorrect data check";
3296         z->state->sub.marker = 5;       /* can't try inflateSync */
3297         break;
3298       }
3299       Trace((stderr, "inflate: zlib check ok\n"));
3300       z->state->mode = DONE;
3301     case DONE:
3302       return Z_STREAM_END;
3303     case BAD:
3304       return Z_DATA_ERROR;
3305     default:
3306       return Z_STREAM_ERROR;
3307   }
3308 
3309  empty:
3310   if (f != Z_PACKET_FLUSH)
3311     return r;
3312   z->state->mode = BAD;
3313   z->msg = (char *)"need more for packet flush";
3314   z->state->sub.marker = 0;       /* can try inflateSync */
3315   return Z_DATA_ERROR;
3316 }
3317 
3318 
3319 int inflateSetDictionary(z, dictionary, dictLength)
3320 z_streamp z;
3321 const Bytef *dictionary;
3322 uInt  dictLength;
3323 {
3324   uInt length = dictLength;
3325 
3326   if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3327     return Z_STREAM_ERROR;
3328 
3329   if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3330   z->adler = 1L;
3331 
3332   if (length >= ((uInt)1<<z->state->wbits))
3333   {
3334     length = (1<<z->state->wbits)-1;
3335     dictionary += dictLength - length;
3336   }
3337   inflate_set_dictionary(z->state->blocks, dictionary, length);
3338   z->state->mode = BLOCKS;
3339   return Z_OK;
3340 }
3341 
3342 /*
3343  * This subroutine adds the data at next_in/avail_in to the output history
3344  * without performing any output.  The output buffer must be "caught up";
3345  * i.e. no pending output (hence s->read equals s->write), and the state must
3346  * be BLOCKS (i.e. we should be willing to see the start of a series of
3347  * BLOCKS).  On exit, the output will also be caught up, and the checksum
3348  * will have been updated if need be.
3349  */
3350 
3351 int inflateIncomp(z)
3352 z_stream *z;
3353 {
3354     if (z->state->mode != BLOCKS)
3355 	return Z_DATA_ERROR;
3356     return inflate_addhistory(z->state->blocks, z);
3357 }
3358 
3359 
3360 int inflateSync(z)
3361 z_streamp z;
3362 {
3363   uInt n;       /* number of bytes to look at */
3364   Bytef *p;     /* pointer to bytes */
3365   uInt m;       /* number of marker bytes found in a row */
3366   uLong r, w;   /* temporaries to save total_in and total_out */
3367 
3368   /* set up */
3369   if (z == Z_NULL || z->state == Z_NULL)
3370     return Z_STREAM_ERROR;
3371   if (z->state->mode != BAD)
3372   {
3373     z->state->mode = BAD;
3374     z->state->sub.marker = 0;
3375   }
3376   if ((n = z->avail_in) == 0)
3377     return Z_BUF_ERROR;
3378   p = z->next_in;
3379   m = z->state->sub.marker;
3380 
3381   /* search */
3382   while (n && m < 4)
3383   {
3384     if (*p == (Byte)(m < 2 ? 0 : 0xff))
3385       m++;
3386     else if (*p)
3387       m = 0;
3388     else
3389       m = 4 - m;
3390     p++, n--;
3391   }
3392 
3393   /* restore */
3394   z->total_in += p - z->next_in;
3395   z->next_in = p;
3396   z->avail_in = n;
3397   z->state->sub.marker = m;
3398 
3399   /* return no joy or set up to restart on a new block */
3400   if (m != 4)
3401     return Z_DATA_ERROR;
3402   r = z->total_in;  w = z->total_out;
3403   inflateReset(z);
3404   z->total_in = r;  z->total_out = w;
3405   z->state->mode = BLOCKS;
3406   return Z_OK;
3407 }
3408 
3409 #undef NEEDBYTE
3410 #undef NEXTBYTE
3411 /* --- inflate.c */
3412 
3413 /* +++ infblock.c */
3414 /* infblock.c -- interpret and process block types to last block
3415  * Copyright (C) 1995-1996 Mark Adler
3416  * For conditions of distribution and use, see copyright notice in zlib.h
3417  */
3418 
3419 /* #include "zutil.h" */
3420 /* #include "infblock.h" */
3421 
3422 /* +++ inftrees.h */
3423 /* inftrees.h -- header to use inftrees.c
3424  * Copyright (C) 1995-1996 Mark Adler
3425  * For conditions of distribution and use, see copyright notice in zlib.h
3426  */
3427 
3428 /* WARNING: this file should *not* be used by applications. It is
3429    part of the implementation of the compression library and is
3430    subject to change. Applications should only use zlib.h.
3431  */
3432 
3433 /* Huffman code lookup table entry--this entry is four bytes for machines
3434    that have 16-bit pointers (e.g. PC's in the small or medium model). */
3435 
3436 typedef struct inflate_huft_s FAR inflate_huft;
3437 
3438 struct inflate_huft_s {
3439   union {
3440     struct {
3441       Byte Exop;        /* number of extra bits or operation */
3442       Byte Bits;        /* number of bits in this code or subcode */
3443     } what;
3444     Bytef *pad;         /* pad structure to a power of 2 (4 bytes for */
3445   } word;               /*  16-bit, 8 bytes for 32-bit machines) */
3446   union {
3447     uInt Base;          /* literal, length base, or distance base */
3448     inflate_huft *Next; /* pointer to next level of table */
3449   } more;
3450 };
3451 
3452 #ifdef DEBUG_ZLIB
3453   extern uInt inflate_hufts;
3454 #endif
3455 
3456 extern int inflate_trees_bits OF((
3457     uIntf *,                    /* 19 code lengths */
3458     uIntf *,                    /* bits tree desired/actual depth */
3459     inflate_huft * FAR *,       /* bits tree result */
3460     z_streamp ));               /* for zalloc, zfree functions */
3461 
3462 extern int inflate_trees_dynamic OF((
3463     uInt,                       /* number of literal/length codes */
3464     uInt,                       /* number of distance codes */
3465     uIntf *,                    /* that many (total) code lengths */
3466     uIntf *,                    /* literal desired/actual bit depth */
3467     uIntf *,                    /* distance desired/actual bit depth */
3468     inflate_huft * FAR *,       /* literal/length tree result */
3469     inflate_huft * FAR *,       /* distance tree result */
3470     z_streamp ));               /* for zalloc, zfree functions */
3471 
3472 extern int inflate_trees_fixed OF((
3473     uIntf *,                    /* literal desired/actual bit depth */
3474     uIntf *,                    /* distance desired/actual bit depth */
3475     inflate_huft * FAR *,       /* literal/length tree result */
3476     inflate_huft * FAR *));     /* distance tree result */
3477 
3478 extern int inflate_trees_free OF((
3479     inflate_huft *,             /* tables to free */
3480     z_streamp ));               /* for zfree function */
3481 
3482 /* --- inftrees.h */
3483 
3484 /* +++ infcodes.h */
3485 /* infcodes.h -- header to use infcodes.c
3486  * Copyright (C) 1995-1996 Mark Adler
3487  * For conditions of distribution and use, see copyright notice in zlib.h
3488  */
3489 
3490 /* WARNING: this file should *not* be used by applications. It is
3491    part of the implementation of the compression library and is
3492    subject to change. Applications should only use zlib.h.
3493  */
3494 
3495 struct inflate_codes_state;
3496 typedef struct inflate_codes_state FAR inflate_codes_statef;
3497 
3498 extern inflate_codes_statef *inflate_codes_new OF((
3499     uInt, uInt,
3500     inflate_huft *, inflate_huft *,
3501     z_streamp ));
3502 
3503 extern int inflate_codes OF((
3504     inflate_blocks_statef *,
3505     z_streamp ,
3506     int));
3507 
3508 extern void inflate_codes_free OF((
3509     inflate_codes_statef *,
3510     z_streamp ));
3511 
3512 /* --- infcodes.h */
3513 
3514 /* +++ infutil.h */
3515 /* infutil.h -- types and macros common to blocks and codes
3516  * Copyright (C) 1995-1996 Mark Adler
3517  * For conditions of distribution and use, see copyright notice in zlib.h
3518  */
3519 
3520 /* WARNING: this file should *not* be used by applications. It is
3521    part of the implementation of the compression library and is
3522    subject to change. Applications should only use zlib.h.
3523  */
3524 
3525 #ifndef _INFUTIL_H
3526 #define _INFUTIL_H
3527 
3528 typedef enum {
3529       TYPE,     /* get type bits (3, including end bit) */
3530       LENS,     /* get lengths for stored */
3531       STORED,   /* processing stored block */
3532       TABLE,    /* get table lengths */
3533       BTREE,    /* get bit lengths tree for a dynamic block */
3534       DTREE,    /* get length, distance trees for a dynamic block */
3535       CODES,    /* processing fixed or dynamic block */
3536       DRY,      /* output remaining window bytes */
3537       DONEB,    /* finished last block, done */
3538       BADB}     /* got a data error--stuck here */
3539 inflate_block_mode;
3540 
3541 /* inflate blocks semi-private state */
3542 struct inflate_blocks_state {
3543 
3544   /* mode */
3545   inflate_block_mode  mode;     /* current inflate_block mode */
3546 
3547   /* mode dependent information */
3548   union {
3549     uInt left;          /* if STORED, bytes left to copy */
3550     struct {
3551       uInt table;               /* table lengths (14 bits) */
3552       uInt index;               /* index into blens (or border) */
3553       uIntf *blens;             /* bit lengths of codes */
3554       uInt bb;                  /* bit length tree depth */
3555       inflate_huft *tb;         /* bit length decoding tree */
3556     } trees;            /* if DTREE, decoding info for trees */
3557     struct {
3558       inflate_huft *tl;
3559       inflate_huft *td;         /* trees to free */
3560       inflate_codes_statef
3561          *codes;
3562     } decode;           /* if CODES, current state */
3563   } sub;                /* submode */
3564   uInt last;            /* true if this block is the last block */
3565 
3566   /* mode independent information */
3567   uInt bitk;            /* bits in bit buffer */
3568   uLong bitb;           /* bit buffer */
3569   Bytef *window;        /* sliding window */
3570   Bytef *end;           /* one byte after sliding window */
3571   Bytef *read;          /* window read pointer */
3572   Bytef *write;         /* window write pointer */
3573   check_func checkfn;   /* check function */
3574   uLong check;          /* check on output */
3575 
3576 };
3577 
3578 
3579 /* defines for inflate input/output */
3580 /*   update pointers and return */
3581 #define UPDBITS {s->bitb=b;s->bitk=k;}
3582 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3583 #define UPDOUT {s->write=q;}
3584 #define UPDATE {UPDBITS UPDIN UPDOUT}
3585 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3586 /*   get bytes and bits */
3587 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3588 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3589 #define NEXTBYTE (n--,*p++)
3590 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3591 #define DUMPBITS(j) {b>>=(j);k-=(j);}
3592 /*   output bytes */
3593 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3594 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3595 #define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3596 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3597 #define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
3598 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3599 /*   load local pointers */
3600 #define LOAD {LOADIN LOADOUT}
3601 
3602 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3603 extern const uInt inflate_mask[17];
3604 
3605 /* copy as much as possible from the sliding window to the output area */
3606 extern int inflate_flush OF((
3607     inflate_blocks_statef *,
3608     z_streamp ,
3609     int));
3610 
3611 #ifndef NO_DUMMY_DECL
3612 struct internal_state      {int dummy;}; /* for buggy compilers */
3613 #endif
3614 
3615 #endif
3616 /* --- infutil.h */
3617 
3618 #ifndef NO_DUMMY_DECL
3619 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
3620 #endif
3621 
3622 /* Table for deflate from PKZIP's appnote.txt. */
3623 local const uInt border[] = { /* Order of the bit length code lengths */
3624         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3625 
3626 /*
3627    Notes beyond the 1.93a appnote.txt:
3628 
3629    1. Distance pointers never point before the beginning of the output
3630       stream.
3631    2. Distance pointers can point back across blocks, up to 32k away.
3632    3. There is an implied maximum of 7 bits for the bit length table and
3633       15 bits for the actual data.
3634    4. If only one code exists, then it is encoded using one bit.  (Zero
3635       would be more efficient, but perhaps a little confusing.)  If two
3636       codes exist, they are coded using one bit each (0 and 1).
3637    5. There is no way of sending zero distance codes--a dummy must be
3638       sent if there are none.  (History: a pre 2.0 version of PKZIP would
3639       store blocks with no distance codes, but this was discovered to be
3640       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
3641       zero distance codes, which is sent as one code of zero bits in
3642       length.
3643    6. There are up to 286 literal/length codes.  Code 256 represents the
3644       end-of-block.  Note however that the static length tree defines
3645       288 codes just to fill out the Huffman codes.  Codes 286 and 287
3646       cannot be used though, since there is no length base or extra bits
3647       defined for them.  Similarily, there are up to 30 distance codes.
3648       However, static trees define 32 codes (all 5 bits) to fill out the
3649       Huffman codes, but the last two had better not show up in the data.
3650    7. Unzip can check dynamic Huffman blocks for complete code sets.
3651       The exception is that a single code would not be complete (see #4).
3652    8. The five bits following the block type is really the number of
3653       literal codes sent minus 257.
3654    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3655       (1+6+6).  Therefore, to output three times the length, you output
3656       three codes (1+1+1), whereas to output four times the same length,
3657       you only need two codes (1+3).  Hmm.
3658   10. In the tree reconstruction algorithm, Code = Code + Increment
3659       only if BitLength(i) is not zero.  (Pretty obvious.)
3660   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
3661   12. Note: length code 284 can represent 227-258, but length code 285
3662       really is 258.  The last length deserves its own, short code
3663       since it gets used a lot in very redundant files.  The length
3664       258 is special since 258 - 3 (the min match length) is 255.
3665   13. The literal/length and distance code bit lengths are read as a
3666       single stream of lengths.  It is possible (and advantageous) for
3667       a repeat code (16, 17, or 18) to go across the boundary between
3668       the two sets of lengths.
3669  */
3670 
3671 
3672 void inflate_blocks_reset(s, z, c)
3673 inflate_blocks_statef *s;
3674 z_streamp z;
3675 uLongf *c;
3676 {
3677   if (s->checkfn != Z_NULL)
3678     *c = s->check;
3679   if (s->mode == BTREE || s->mode == DTREE)
3680     ZFREE(z, s->sub.trees.blens);
3681   if (s->mode == CODES)
3682   {
3683     inflate_codes_free(s->sub.decode.codes, z);
3684     inflate_trees_free(s->sub.decode.td, z);
3685     inflate_trees_free(s->sub.decode.tl, z);
3686   }
3687   s->mode = TYPE;
3688   s->bitk = 0;
3689   s->bitb = 0;
3690   s->read = s->write = s->window;
3691   if (s->checkfn != Z_NULL)
3692     z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
3693   Trace((stderr, "inflate:   blocks reset\n"));
3694 }
3695 
3696 
3697 inflate_blocks_statef *inflate_blocks_new(z, c, w)
3698 z_streamp z;
3699 check_func c;
3700 uInt w;
3701 {
3702   inflate_blocks_statef *s;
3703 
3704   if ((s = (inflate_blocks_statef *)ZALLOC
3705        (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3706     return s;
3707   if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3708   {
3709     ZFREE(z, s);
3710     return Z_NULL;
3711   }
3712   s->end = s->window + w;
3713   s->checkfn = c;
3714   s->mode = TYPE;
3715   Trace((stderr, "inflate:   blocks allocated\n"));
3716   inflate_blocks_reset(s, z, &s->check);
3717   return s;
3718 }
3719 
3720 
3721 #ifdef DEBUG_ZLIB
3722   extern uInt inflate_hufts;
3723 #endif
3724 int inflate_blocks(s, z, r)
3725 inflate_blocks_statef *s;
3726 z_streamp z;
3727 int r;
3728 {
3729   uInt t;               /* temporary storage */
3730   uLong b;              /* bit buffer */
3731   uInt k;               /* bits in bit buffer */
3732   Bytef *p;             /* input data pointer */
3733   uInt n;               /* bytes available there */
3734   Bytef *q;             /* output window write pointer */
3735   uInt m;               /* bytes to end of window or read pointer */
3736 
3737   /* copy input/output information to locals (UPDATE macro restores) */
3738   LOAD
3739 
3740   /* process input based on current state */
3741   while (1) switch (s->mode)
3742   {
3743     case TYPE:
3744       NEEDBITS(3)
3745       t = (uInt)b & 7;
3746       s->last = t & 1;
3747       switch (t >> 1)
3748       {
3749         case 0:                         /* stored */
3750           Trace((stderr, "inflate:     stored block%s\n",
3751                  s->last ? " (last)" : ""));
3752           DUMPBITS(3)
3753           t = k & 7;                    /* go to byte boundary */
3754           DUMPBITS(t)
3755           s->mode = LENS;               /* get length of stored block */
3756           break;
3757         case 1:                         /* fixed */
3758           Trace((stderr, "inflate:     fixed codes block%s\n",
3759                  s->last ? " (last)" : ""));
3760           {
3761             uInt bl, bd;
3762             inflate_huft *tl, *td;
3763 
3764             inflate_trees_fixed(&bl, &bd, &tl, &td);
3765             s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3766             if (s->sub.decode.codes == Z_NULL)
3767             {
3768               r = Z_MEM_ERROR;
3769               LEAVE
3770             }
3771             s->sub.decode.tl = Z_NULL;  /* don't try to free these */
3772             s->sub.decode.td = Z_NULL;
3773           }
3774           DUMPBITS(3)
3775           s->mode = CODES;
3776           break;
3777         case 2:                         /* dynamic */
3778           Trace((stderr, "inflate:     dynamic codes block%s\n",
3779                  s->last ? " (last)" : ""));
3780           DUMPBITS(3)
3781           s->mode = TABLE;
3782           break;
3783         case 3:                         /* illegal */
3784           DUMPBITS(3)
3785           s->mode = BADB;
3786           z->msg = (char*)"invalid block type";
3787           r = Z_DATA_ERROR;
3788           LEAVE
3789       }
3790       break;
3791     case LENS:
3792       NEEDBITS(32)
3793       if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
3794       {
3795         s->mode = BADB;
3796         z->msg = (char*)"invalid stored block lengths";
3797         r = Z_DATA_ERROR;
3798         LEAVE
3799       }
3800       s->sub.left = (uInt)b & 0xffff;
3801       b = k = 0;                      /* dump bits */
3802       Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
3803       s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
3804       break;
3805     case STORED:
3806       if (n == 0)
3807         LEAVE
3808       NEEDOUT
3809       t = s->sub.left;
3810       if (t > n) t = n;
3811       if (t > m) t = m;
3812       zmemcpy(q, p, t);
3813       p += t;  n -= t;
3814       q += t;  m -= t;
3815       if ((s->sub.left -= t) != 0)
3816         break;
3817       Tracev((stderr, "inflate:       stored end, %lu total out\n",
3818               z->total_out + (q >= s->read ? q - s->read :
3819               (s->end - s->read) + (q - s->window))));
3820       s->mode = s->last ? DRY : TYPE;
3821       break;
3822     case TABLE:
3823       NEEDBITS(14)
3824       s->sub.trees.table = t = (uInt)b & 0x3fff;
3825 #ifndef PKZIP_BUG_WORKAROUND
3826       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3827       {
3828         s->mode = BADB;
3829         z->msg = (char*)"too many length or distance symbols";
3830         r = Z_DATA_ERROR;
3831         LEAVE
3832       }
3833 #endif
3834       t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3835       if (t < 19)
3836         t = 19;
3837       if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3838       {
3839         r = Z_MEM_ERROR;
3840         LEAVE
3841       }
3842       DUMPBITS(14)
3843       s->sub.trees.index = 0;
3844       Tracev((stderr, "inflate:       table sizes ok\n"));
3845       s->mode = BTREE;
3846     case BTREE:
3847       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3848       {
3849         NEEDBITS(3)
3850         s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3851         DUMPBITS(3)
3852       }
3853       while (s->sub.trees.index < 19)
3854         s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3855       s->sub.trees.bb = 7;
3856       t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3857                              &s->sub.trees.tb, z);
3858       if (t != Z_OK)
3859       {
3860         ZFREE(z, s->sub.trees.blens);
3861         r = t;
3862         if (r == Z_DATA_ERROR)
3863           s->mode = BADB;
3864         LEAVE
3865       }
3866       s->sub.trees.index = 0;
3867       Tracev((stderr, "inflate:       bits tree ok\n"));
3868       s->mode = DTREE;
3869     case DTREE:
3870       while (t = s->sub.trees.table,
3871              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3872       {
3873         inflate_huft *h;
3874         uInt i, j, c;
3875 
3876         t = s->sub.trees.bb;
3877         NEEDBITS(t)
3878         h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3879         t = h->word.what.Bits;
3880         c = h->more.Base;
3881         if (c < 16)
3882         {
3883           DUMPBITS(t)
3884           s->sub.trees.blens[s->sub.trees.index++] = c;
3885         }
3886         else /* c == 16..18 */
3887         {
3888           i = c == 18 ? 7 : c - 14;
3889           j = c == 18 ? 11 : 3;
3890           NEEDBITS(t + i)
3891           DUMPBITS(t)
3892           j += (uInt)b & inflate_mask[i];
3893           DUMPBITS(i)
3894           i = s->sub.trees.index;
3895           t = s->sub.trees.table;
3896           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3897               (c == 16 && i < 1))
3898           {
3899             inflate_trees_free(s->sub.trees.tb, z);
3900             ZFREE(z, s->sub.trees.blens);
3901             s->mode = BADB;
3902             z->msg = (char*)"invalid bit length repeat";
3903             r = Z_DATA_ERROR;
3904             LEAVE
3905           }
3906           c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3907           do {
3908             s->sub.trees.blens[i++] = c;
3909           } while (--j);
3910           s->sub.trees.index = i;
3911         }
3912       }
3913       inflate_trees_free(s->sub.trees.tb, z);
3914       s->sub.trees.tb = Z_NULL;
3915       {
3916         uInt bl, bd;
3917         inflate_huft *tl, *td;
3918         inflate_codes_statef *c;
3919 
3920         bl = 9;         /* must be <= 9 for lookahead assumptions */
3921         bd = 6;         /* must be <= 9 for lookahead assumptions */
3922         t = s->sub.trees.table;
3923 #ifdef DEBUG_ZLIB
3924       inflate_hufts = 0;
3925 #endif
3926         t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3927                                   s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3928         ZFREE(z, s->sub.trees.blens);
3929         if (t != Z_OK)
3930         {
3931           if (t == (uInt)Z_DATA_ERROR)
3932             s->mode = BADB;
3933           r = t;
3934           LEAVE
3935         }
3936         Tracev((stderr, "inflate:       trees ok, %d * %d bytes used\n",
3937               inflate_hufts, sizeof(inflate_huft)));
3938         if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3939         {
3940           inflate_trees_free(td, z);
3941           inflate_trees_free(tl, z);
3942           r = Z_MEM_ERROR;
3943           LEAVE
3944         }
3945         s->sub.decode.codes = c;
3946         s->sub.decode.tl = tl;
3947         s->sub.decode.td = td;
3948       }
3949       s->mode = CODES;
3950     case CODES:
3951       UPDATE
3952       if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3953         return inflate_flush(s, z, r);
3954       r = Z_OK;
3955       inflate_codes_free(s->sub.decode.codes, z);
3956       inflate_trees_free(s->sub.decode.td, z);
3957       inflate_trees_free(s->sub.decode.tl, z);
3958       LOAD
3959       Tracev((stderr, "inflate:       codes end, %lu total out\n",
3960               z->total_out + (q >= s->read ? q - s->read :
3961               (s->end - s->read) + (q - s->window))));
3962       if (!s->last)
3963       {
3964         s->mode = TYPE;
3965         break;
3966       }
3967       if (k > 7)              /* return unused byte, if any */
3968       {
3969         Assert(k < 16, "inflate_codes grabbed too many bytes")
3970         k -= 8;
3971         n++;
3972         p--;                    /* can always return one */
3973       }
3974       s->mode = DRY;
3975     case DRY:
3976       FLUSH
3977       if (s->read != s->write)
3978         LEAVE
3979       s->mode = DONEB;
3980     case DONEB:
3981       r = Z_STREAM_END;
3982       LEAVE
3983     case BADB:
3984       r = Z_DATA_ERROR;
3985       LEAVE
3986     default:
3987       r = Z_STREAM_ERROR;
3988       LEAVE
3989   }
3990 }
3991 
3992 
3993 int inflate_blocks_free(s, z, c)
3994 inflate_blocks_statef *s;
3995 z_streamp z;
3996 uLongf *c;
3997 {
3998   inflate_blocks_reset(s, z, c);
3999   ZFREE(z, s->window);
4000   ZFREE(z, s);
4001   Trace((stderr, "inflate:   blocks freed\n"));
4002   return Z_OK;
4003 }
4004 
4005 
4006 void inflate_set_dictionary(s, d, n)
4007 inflate_blocks_statef *s;
4008 const Bytef *d;
4009 uInt  n;
4010 {
4011   zmemcpy((charf *)s->window, d, n);
4012   s->read = s->write = s->window + n;
4013 }
4014 
4015 /*
4016  * This subroutine adds the data at next_in/avail_in to the output history
4017  * without performing any output.  The output buffer must be "caught up";
4018  * i.e. no pending output (hence s->read equals s->write), and the state must
4019  * be BLOCKS (i.e. we should be willing to see the start of a series of
4020  * BLOCKS).  On exit, the output will also be caught up, and the checksum
4021  * will have been updated if need be.
4022  */
4023 int inflate_addhistory(s, z)
4024 inflate_blocks_statef *s;
4025 z_stream *z;
4026 {
4027     uLong b;              /* bit buffer */  /* NOT USED HERE */
4028     uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
4029     uInt t;               /* temporary storage */
4030     Bytef *p;             /* input data pointer */
4031     uInt n;               /* bytes available there */
4032     Bytef *q;             /* output window write pointer */
4033     uInt m;               /* bytes to end of window or read pointer */
4034 
4035     if (s->read != s->write)
4036 	return Z_STREAM_ERROR;
4037     if (s->mode != TYPE)
4038 	return Z_DATA_ERROR;
4039 
4040     /* we're ready to rock */
4041     LOAD
4042     /* while there is input ready, copy to output buffer, moving
4043      * pointers as needed.
4044      */
4045     while (n) {
4046 	t = n;  /* how many to do */
4047 	/* is there room until end of buffer? */
4048 	if (t > m) t = m;
4049 	/* update check information */
4050 	if (s->checkfn != Z_NULL)
4051 	    s->check = (*s->checkfn)(s->check, q, t);
4052 	zmemcpy(q, p, t);
4053 	q += t;
4054 	p += t;
4055 	n -= t;
4056 	z->total_out += t;
4057 	s->read = q;    /* drag read pointer forward */
4058 /*      WWRAP  */ 	/* expand WWRAP macro by hand to handle s->read */
4059 	if (q == s->end) {
4060 	    s->read = q = s->window;
4061 	    m = WAVAIL;
4062 	}
4063     }
4064     UPDATE
4065     return Z_OK;
4066 }
4067 
4068 
4069 /*
4070  * At the end of a Deflate-compressed PPP packet, we expect to have seen
4071  * a `stored' block type value but not the (zero) length bytes.
4072  */
4073 int inflate_packet_flush(s)
4074     inflate_blocks_statef *s;
4075 {
4076     if (s->mode != LENS)
4077 	return Z_DATA_ERROR;
4078     s->mode = TYPE;
4079     return Z_OK;
4080 }
4081 /* --- infblock.c */
4082 
4083 /* +++ inftrees.c */
4084 /* inftrees.c -- generate Huffman trees for efficient decoding
4085  * Copyright (C) 1995-1996 Mark Adler
4086  * For conditions of distribution and use, see copyright notice in zlib.h
4087  */
4088 
4089 /* #include "zutil.h" */
4090 /* #include "inftrees.h" */
4091 
4092 char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
4093 /*
4094   If you use the zlib library in a product, an acknowledgment is welcome
4095   in the documentation of your product. If for some reason you cannot
4096   include such an acknowledgment, I would appreciate that you keep this
4097   copyright string in the executable of your product.
4098  */
4099 
4100 #ifndef NO_DUMMY_DECL
4101 struct internal_state  {int dummy;}; /* for buggy compilers */
4102 #endif
4103 
4104 /* simplify the use of the inflate_huft type with some defines */
4105 #define base more.Base
4106 #define next more.Next
4107 #define exop word.what.Exop
4108 #define bits word.what.Bits
4109 
4110 
4111 local int huft_build OF((
4112     uIntf *,            /* code lengths in bits */
4113     uInt,               /* number of codes */
4114     uInt,               /* number of "simple" codes */
4115     const uIntf *,      /* list of base values for non-simple codes */
4116     const uIntf *,      /* list of extra bits for non-simple codes */
4117     inflate_huft * FAR*,/* result: starting table */
4118     uIntf *,            /* maximum lookup bits (returns actual) */
4119     z_streamp ));       /* for zalloc function */
4120 
4121 local voidpf falloc OF((
4122     voidpf,             /* opaque pointer (not used) */
4123     uInt,               /* number of items */
4124     uInt));             /* size of item */
4125 
4126 /* Tables for deflate from PKZIP's appnote.txt. */
4127 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4128         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4129         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4130         /* see note #13 above about 258 */
4131 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4132         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4133         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4134 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4135         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4136         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4137         8193, 12289, 16385, 24577};
4138 local const uInt cpdext[30] = { /* Extra bits for distance codes */
4139         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4140         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4141         12, 12, 13, 13};
4142 
4143 /*
4144    Huffman code decoding is performed using a multi-level table lookup.
4145    The fastest way to decode is to simply build a lookup table whose
4146    size is determined by the longest code.  However, the time it takes
4147    to build this table can also be a factor if the data being decoded
4148    is not very long.  The most common codes are necessarily the
4149    shortest codes, so those codes dominate the decoding time, and hence
4150    the speed.  The idea is you can have a shorter table that decodes the
4151    shorter, more probable codes, and then point to subsidiary tables for
4152    the longer codes.  The time it costs to decode the longer codes is
4153    then traded against the time it takes to make longer tables.
4154 
4155    This results of this trade are in the variables lbits and dbits
4156    below.  lbits is the number of bits the first level table for literal/
4157    length codes can decode in one step, and dbits is the same thing for
4158    the distance codes.  Subsequent tables are also less than or equal to
4159    those sizes.  These values may be adjusted either when all of the
4160    codes are shorter than that, in which case the longest code length in
4161    bits is used, or when the shortest code is *longer* than the requested
4162    table size, in which case the length of the shortest code in bits is
4163    used.
4164 
4165    There are two different values for the two tables, since they code a
4166    different number of possibilities each.  The literal/length table
4167    codes 286 possible values, or in a flat code, a little over eight
4168    bits.  The distance table codes 30 possible values, or a little less
4169    than five bits, flat.  The optimum values for speed end up being
4170    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4171    The optimum values may differ though from machine to machine, and
4172    possibly even between compilers.  Your mileage may vary.
4173  */
4174 
4175 
4176 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4177 #define BMAX 15         /* maximum bit length of any code */
4178 #define N_MAX 288       /* maximum number of codes in any set */
4179 
4180 #ifdef DEBUG_ZLIB
4181   uInt inflate_hufts;
4182 #endif
4183 
4184 local int huft_build(b, n, s, d, e, t, m, zs)
4185 uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
4186 uInt n;                 /* number of codes (assumed <= N_MAX) */
4187 uInt s;                 /* number of simple-valued codes (0..s-1) */
4188 const uIntf *d;         /* list of base values for non-simple codes */
4189 const uIntf *e;         /* list of extra bits for non-simple codes */
4190 inflate_huft * FAR *t;  /* result: starting table */
4191 uIntf *m;               /* maximum lookup bits, returns actual */
4192 z_streamp zs;           /* for zalloc function */
4193 /* Given a list of code lengths and a maximum table size, make a set of
4194    tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
4195    if the given code set is incomplete (the tables are still built in this
4196    case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
4197    lengths), or Z_MEM_ERROR if not enough memory. */
4198 {
4199 
4200   uInt a;                       /* counter for codes of length k */
4201   uInt c[BMAX+1];               /* bit length count table */
4202   uInt f;                       /* i repeats in table every f entries */
4203   int g;                        /* maximum code length */
4204   int h;                        /* table level */
4205   uInt i;              		/* counter, current code */
4206   uInt j;              		/* counter */
4207   int k;               		/* number of bits in current code */
4208   int l;                        /* bits per table (returned in m) */
4209   uIntf *p;            		/* pointer into c[], b[], or v[] */
4210   inflate_huft *q;              /* points to current table */
4211   struct inflate_huft_s r;      /* table entry for structure assignment */
4212   inflate_huft *u[BMAX];        /* table stack */
4213   uInt v[N_MAX];                /* values in order of bit length */
4214   int w;               		/* bits before this table == (l * h) */
4215   uInt x[BMAX+1];               /* bit offsets, then code stack */
4216   uIntf *xp;                    /* pointer into x */
4217   int y;                        /* number of dummy codes added */
4218   uInt z;                       /* number of entries in current table */
4219 
4220 
4221   /* Generate counts for each bit length */
4222   p = c;
4223 #define C0 *p++ = 0;
4224 #define C2 C0 C0 C0 C0
4225 #define C4 C2 C2 C2 C2
4226   C4                            /* clear c[]--assume BMAX+1 is 16 */
4227   p = b;  i = n;
4228   do {
4229     c[*p++]++;                  /* assume all entries <= BMAX */
4230   } while (--i);
4231   if (c[0] == n)                /* null input--all zero length codes */
4232   {
4233     *t = (inflate_huft *)Z_NULL;
4234     *m = 0;
4235     return Z_OK;
4236   }
4237 
4238 
4239   /* Find minimum and maximum length, bound *m by those */
4240   l = *m;
4241   for (j = 1; j <= BMAX; j++)
4242     if (c[j])
4243       break;
4244   k = j;                        /* minimum code length */
4245   if ((uInt)l < j)
4246     l = j;
4247   for (i = BMAX; i; i--)
4248     if (c[i])
4249       break;
4250   g = i;                        /* maximum code length */
4251   if ((uInt)l > i)
4252     l = i;
4253   *m = l;
4254 
4255 
4256   /* Adjust last length count to fill out codes, if needed */
4257   for (y = 1 << j; j < i; j++, y <<= 1)
4258     if ((y -= c[j]) < 0)
4259       return Z_DATA_ERROR;
4260   if ((y -= c[i]) < 0)
4261     return Z_DATA_ERROR;
4262   c[i] += y;
4263 
4264 
4265   /* Generate starting offsets into the value table for each length */
4266   x[1] = j = 0;
4267   p = c + 1;  xp = x + 2;
4268   while (--i) {                 /* note that i == g from above */
4269     *xp++ = (j += *p++);
4270   }
4271 
4272 
4273   /* Make a table of values in order of bit lengths */
4274   p = b;  i = 0;
4275   do {
4276     if ((j = *p++) != 0)
4277       v[x[j]++] = i;
4278   } while (++i < n);
4279   n = x[g];                   /* set n to length of v */
4280 
4281 
4282   /* Generate the Huffman codes and for each, make the table entries */
4283   x[0] = i = 0;                 /* first Huffman code is zero */
4284   p = v;                        /* grab values in bit order */
4285   h = -1;                       /* no tables yet--level -1 */
4286   w = -l;                       /* bits decoded == (l * h) */
4287   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
4288   q = (inflate_huft *)Z_NULL;   /* ditto */
4289   z = 0;                        /* ditto */
4290 
4291   /* go through the bit lengths (k already is bits in shortest code) */
4292   for (; k <= g; k++)
4293   {
4294     a = c[k];
4295     while (a--)
4296     {
4297       /* here i is the Huffman code of length k bits for value *p */
4298       /* make tables up to required level */
4299       while (k > w + l)
4300       {
4301         h++;
4302         w += l;                 /* previous table always l bits */
4303 
4304         /* compute minimum size table less than or equal to l bits */
4305         z = g - w;
4306         z = z > (uInt)l ? l : z;        /* table size upper limit */
4307         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
4308         {                       /* too few codes for k-w bit table */
4309           f -= a + 1;           /* deduct codes from patterns left */
4310           xp = c + k;
4311           if (j < z)
4312             while (++j < z)     /* try smaller tables up to z bits */
4313             {
4314               if ((f <<= 1) <= *++xp)
4315                 break;          /* enough codes to use up j bits */
4316               f -= *xp;         /* else deduct codes from patterns */
4317             }
4318         }
4319         z = 1 << j;             /* table entries for j-bit table */
4320 
4321         /* allocate and link in new table */
4322         if ((q = (inflate_huft *)ZALLOC
4323              (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
4324         {
4325           if (h)
4326             inflate_trees_free(u[0], zs);
4327           return Z_MEM_ERROR;   /* not enough memory */
4328         }
4329 #ifdef DEBUG_ZLIB
4330         inflate_hufts += z + 1;
4331 #endif
4332         *t = q + 1;             /* link to list for huft_free() */
4333         *(t = &(q->next)) = Z_NULL;
4334         u[h] = ++q;             /* table starts after link */
4335 
4336         /* connect to last table, if there is one */
4337         if (h)
4338         {
4339           x[h] = i;             /* save pattern for backing up */
4340           r.bits = (Byte)l;     /* bits to dump before this table */
4341           r.exop = (Byte)j;     /* bits in this table */
4342           r.next = q;           /* pointer to this table */
4343           j = i >> (w - l);     /* (get around Turbo C bug) */
4344           u[h-1][j] = r;        /* connect to last table */
4345         }
4346       }
4347 
4348       /* set up table entry in r */
4349       r.bits = (Byte)(k - w);
4350       if (p >= v + n)
4351         r.exop = 128 + 64;      /* out of values--invalid code */
4352       else if (*p < s)
4353       {
4354         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
4355         r.base = *p++;          /* simple code is just the value */
4356       }
4357       else
4358       {
4359         r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4360         r.base = d[*p++ - s];
4361       }
4362 
4363       /* fill code-like entries with r */
4364       f = 1 << (k - w);
4365       for (j = i >> w; j < z; j += f)
4366         q[j] = r;
4367 
4368       /* backwards increment the k-bit code i */
4369       for (j = 1 << (k - 1); i & j; j >>= 1)
4370         i ^= j;
4371       i ^= j;
4372 
4373       /* backup over finished tables */
4374       while ((i & ((1 << w) - 1)) != x[h])
4375       {
4376         h--;                    /* don't need to update q */
4377         w -= l;
4378       }
4379     }
4380   }
4381 
4382 
4383   /* Return Z_BUF_ERROR if we were given an incomplete table */
4384   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4385 }
4386 
4387 
4388 int inflate_trees_bits(c, bb, tb, z)
4389 uIntf *c;               /* 19 code lengths */
4390 uIntf *bb;              /* bits tree desired/actual depth */
4391 inflate_huft * FAR *tb; /* bits tree result */
4392 z_streamp z;            /* for zfree function */
4393 {
4394   int r;
4395 
4396   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
4397   if (r == Z_DATA_ERROR)
4398     z->msg = (char*)"oversubscribed dynamic bit lengths tree";
4399   else if (r == Z_BUF_ERROR || *bb == 0)
4400   {
4401     inflate_trees_free(*tb, z);
4402     z->msg = (char*)"incomplete dynamic bit lengths tree";
4403     r = Z_DATA_ERROR;
4404   }
4405   return r;
4406 }
4407 
4408 
4409 int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
4410 uInt nl;                /* number of literal/length codes */
4411 uInt nd;                /* number of distance codes */
4412 uIntf *c;               /* that many (total) code lengths */
4413 uIntf *bl;              /* literal desired/actual bit depth */
4414 uIntf *bd;              /* distance desired/actual bit depth */
4415 inflate_huft * FAR *tl; /* literal/length tree result */
4416 inflate_huft * FAR *td; /* distance tree result */
4417 z_streamp z;            /* for zfree function */
4418 {
4419   int r;
4420 
4421   /* build literal/length tree */
4422   r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z);
4423   if (r != Z_OK || *bl == 0)
4424   {
4425     if (r == Z_DATA_ERROR)
4426       z->msg = (char*)"oversubscribed literal/length tree";
4427     else if (r != Z_MEM_ERROR)
4428     {
4429       inflate_trees_free(*tl, z);
4430       z->msg = (char*)"incomplete literal/length tree";
4431       r = Z_DATA_ERROR;
4432     }
4433     return r;
4434   }
4435 
4436   /* build distance tree */
4437   r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z);
4438   if (r != Z_OK || (*bd == 0 && nl > 257))
4439   {
4440     if (r == Z_DATA_ERROR)
4441       z->msg = (char*)"oversubscribed distance tree";
4442     else if (r == Z_BUF_ERROR) {
4443 #ifdef PKZIP_BUG_WORKAROUND
4444       r = Z_OK;
4445     }
4446 #else
4447       inflate_trees_free(*td, z);
4448       z->msg = (char*)"incomplete distance tree";
4449       r = Z_DATA_ERROR;
4450     }
4451     else if (r != Z_MEM_ERROR)
4452     {
4453       z->msg = (char*)"empty distance tree with lengths";
4454       r = Z_DATA_ERROR;
4455     }
4456     inflate_trees_free(*tl, z);
4457     return r;
4458 #endif
4459   }
4460 
4461   /* done */
4462   return Z_OK;
4463 }
4464 
4465 
4466 /* build fixed tables only once--keep them here */
4467 local int fixed_built = 0;
4468 #define FIXEDH 530      /* number of hufts used by fixed tables */
4469 local inflate_huft fixed_mem[FIXEDH];
4470 local uInt fixed_bl;
4471 local uInt fixed_bd;
4472 local inflate_huft *fixed_tl;
4473 local inflate_huft *fixed_td;
4474 
4475 
4476 local voidpf falloc(q, n, s)
4477 voidpf q;       /* opaque pointer */
4478 uInt n;         /* number of items */
4479 uInt s;         /* size of item */
4480 {
4481   Assert(s == sizeof(inflate_huft) && n <= *(intf *)q,
4482          "inflate_trees falloc overflow");
4483   *(intf *)q -= n+s-s; /* s-s to avoid warning */
4484   return (voidpf)(fixed_mem + *(intf *)q);
4485 }
4486 
4487 
4488 int inflate_trees_fixed(bl, bd, tl, td)
4489 uIntf *bl;               /* literal desired/actual bit depth */
4490 uIntf *bd;               /* distance desired/actual bit depth */
4491 inflate_huft * FAR *tl;  /* literal/length tree result */
4492 inflate_huft * FAR *td;  /* distance tree result */
4493 {
4494   /* build fixed tables if not already (multiple overlapped executions ok) */
4495   if (!fixed_built)
4496   {
4497     int k;              /* temporary variable */
4498     unsigned c[288];    /* length list for huft_build */
4499     z_stream z;         /* for falloc function */
4500     int f = FIXEDH;     /* number of hufts left in fixed_mem */
4501 
4502     /* set up fake z_stream for memory routines */
4503     z.zalloc = falloc;
4504     z.zfree = Z_NULL;
4505     z.opaque = (voidpf)&f;
4506 
4507     /* literal table */
4508     for (k = 0; k < 144; k++)
4509       c[k] = 8;
4510     for (; k < 256; k++)
4511       c[k] = 9;
4512     for (; k < 280; k++)
4513       c[k] = 7;
4514     for (; k < 288; k++)
4515       c[k] = 8;
4516     fixed_bl = 7;
4517     huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4518 
4519     /* distance table */
4520     for (k = 0; k < 30; k++)
4521       c[k] = 5;
4522     fixed_bd = 5;
4523     huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4524 
4525     /* done */
4526     Assert(f == 0, "invalid build of fixed tables");
4527     fixed_built = 1;
4528   }
4529   *bl = fixed_bl;
4530   *bd = fixed_bd;
4531   *tl = fixed_tl;
4532   *td = fixed_td;
4533   return Z_OK;
4534 }
4535 
4536 
4537 int inflate_trees_free(t, z)
4538 inflate_huft *t;        /* table to free */
4539 z_streamp z;            /* for zfree function */
4540 /* Free the malloc'ed tables built by huft_build(), which makes a linked
4541    list of the tables it made, with the links in a dummy first entry of
4542    each table. */
4543 {
4544   inflate_huft *p, *q, *r;
4545 
4546   /* Reverse linked list */
4547   p = Z_NULL;
4548   q = t;
4549   while (q != Z_NULL)
4550   {
4551     r = (q - 1)->next;
4552     (q - 1)->next = p;
4553     p = q;
4554     q = r;
4555   }
4556   /* Go through linked list, freeing from the malloced (t[-1]) address. */
4557   while (p != Z_NULL)
4558   {
4559     q = (--p)->next;
4560     ZFREE(z,p);
4561     p = q;
4562   }
4563   return Z_OK;
4564 }
4565 /* --- inftrees.c */
4566 
4567 /* +++ infcodes.c */
4568 /* infcodes.c -- process literals and length/distance pairs
4569  * Copyright (C) 1995-1996 Mark Adler
4570  * For conditions of distribution and use, see copyright notice in zlib.h
4571  */
4572 
4573 /* #include "zutil.h" */
4574 /* #include "inftrees.h" */
4575 /* #include "infblock.h" */
4576 /* #include "infcodes.h" */
4577 /* #include "infutil.h" */
4578 
4579 /* +++ inffast.h */
4580 /* inffast.h -- header to use inffast.c
4581  * Copyright (C) 1995-1996 Mark Adler
4582  * For conditions of distribution and use, see copyright notice in zlib.h
4583  */
4584 
4585 /* WARNING: this file should *not* be used by applications. It is
4586    part of the implementation of the compression library and is
4587    subject to change. Applications should only use zlib.h.
4588  */
4589 
4590 extern int inflate_fast OF((
4591     uInt,
4592     uInt,
4593     inflate_huft *,
4594     inflate_huft *,
4595     inflate_blocks_statef *,
4596     z_streamp ));
4597 /* --- inffast.h */
4598 
4599 /* simplify the use of the inflate_huft type with some defines */
4600 #define base more.Base
4601 #define next more.Next
4602 #define exop word.what.Exop
4603 #define bits word.what.Bits
4604 
4605 /* inflate codes private state */
4606 struct inflate_codes_state {
4607 
4608   /* mode */
4609   enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4610       START,    /* x: set up for LEN */
4611       LEN,      /* i: get length/literal/eob next */
4612       LENEXT,   /* i: getting length extra (have base) */
4613       DIST,     /* i: get distance next */
4614       DISTEXT,  /* i: getting distance extra */
4615       COPY,     /* o: copying bytes in window, waiting for space */
4616       LIT,      /* o: got literal, waiting for output space */
4617       WASH,     /* o: got eob, possibly still output waiting */
4618       END,      /* x: got eob and all data flushed */
4619       BADCODE}  /* x: got error */
4620     mode;               /* current inflate_codes mode */
4621 
4622   /* mode dependent information */
4623   uInt len;
4624   union {
4625     struct {
4626       inflate_huft *tree;       /* pointer into tree */
4627       uInt need;                /* bits needed */
4628     } code;             /* if LEN or DIST, where in tree */
4629     uInt lit;           /* if LIT, literal */
4630     struct {
4631       uInt get;                 /* bits to get for extra */
4632       uInt dist;                /* distance back to copy from */
4633     } copy;             /* if EXT or COPY, where and how much */
4634   } sub;                /* submode */
4635 
4636   /* mode independent information */
4637   Byte lbits;           /* ltree bits decoded per branch */
4638   Byte dbits;           /* dtree bits decoder per branch */
4639   inflate_huft *ltree;          /* literal/length/eob tree */
4640   inflate_huft *dtree;          /* distance tree */
4641 
4642 };
4643 
4644 
4645 inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4646 uInt bl, bd;
4647 inflate_huft *tl;
4648 inflate_huft *td; /* need separate declaration for Borland C++ */
4649 z_streamp z;
4650 {
4651   inflate_codes_statef *c;
4652 
4653   if ((c = (inflate_codes_statef *)
4654        ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4655   {
4656     c->mode = START;
4657     c->lbits = (Byte)bl;
4658     c->dbits = (Byte)bd;
4659     c->ltree = tl;
4660     c->dtree = td;
4661     Tracev((stderr, "inflate:       codes new\n"));
4662   }
4663   return c;
4664 }
4665 
4666 
4667 int inflate_codes(s, z, r)
4668 inflate_blocks_statef *s;
4669 z_streamp z;
4670 int r;
4671 {
4672   uInt j;               /* temporary storage */
4673   inflate_huft *t;      /* temporary pointer */
4674   uInt e;               /* extra bits or operation */
4675   uLong b;              /* bit buffer */
4676   uInt k;               /* bits in bit buffer */
4677   Bytef *p;             /* input data pointer */
4678   uInt n;               /* bytes available there */
4679   Bytef *q;             /* output window write pointer */
4680   uInt m;               /* bytes to end of window or read pointer */
4681   Bytef *f;             /* pointer to copy strings from */
4682   inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
4683 
4684   /* copy input/output information to locals (UPDATE macro restores) */
4685   LOAD
4686 
4687   /* process input and output based on current state */
4688   while (1) switch (c->mode)
4689   {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4690     case START:         /* x: set up for LEN */
4691 #ifndef SLOW
4692       if (m >= 258 && n >= 10)
4693       {
4694         UPDATE
4695         r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4696         LOAD
4697         if (r != Z_OK)
4698         {
4699           c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4700           break;
4701         }
4702       }
4703 #endif /* !SLOW */
4704       c->sub.code.need = c->lbits;
4705       c->sub.code.tree = c->ltree;
4706       c->mode = LEN;
4707     case LEN:           /* i: get length/literal/eob next */
4708       j = c->sub.code.need;
4709       NEEDBITS(j)
4710       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4711       DUMPBITS(t->bits)
4712       e = (uInt)(t->exop);
4713       if (e == 0)               /* literal */
4714       {
4715         c->sub.lit = t->base;
4716         Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4717                  "inflate:         literal '%c'\n" :
4718                  "inflate:         literal 0x%02x\n", t->base));
4719         c->mode = LIT;
4720         break;
4721       }
4722       if (e & 16)               /* length */
4723       {
4724         c->sub.copy.get = e & 15;
4725         c->len = t->base;
4726         c->mode = LENEXT;
4727         break;
4728       }
4729       if ((e & 64) == 0)        /* next table */
4730       {
4731         c->sub.code.need = e;
4732         c->sub.code.tree = t->next;
4733         break;
4734       }
4735       if (e & 32)               /* end of block */
4736       {
4737         Tracevv((stderr, "inflate:         end of block\n"));
4738         c->mode = WASH;
4739         break;
4740       }
4741       c->mode = BADCODE;        /* invalid code */
4742       z->msg = (char*)"invalid literal/length code";
4743       r = Z_DATA_ERROR;
4744       LEAVE
4745     case LENEXT:        /* i: getting length extra (have base) */
4746       j = c->sub.copy.get;
4747       NEEDBITS(j)
4748       c->len += (uInt)b & inflate_mask[j];
4749       DUMPBITS(j)
4750       c->sub.code.need = c->dbits;
4751       c->sub.code.tree = c->dtree;
4752       Tracevv((stderr, "inflate:         length %u\n", c->len));
4753       c->mode = DIST;
4754     case DIST:          /* i: get distance next */
4755       j = c->sub.code.need;
4756       NEEDBITS(j)
4757       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4758       DUMPBITS(t->bits)
4759       e = (uInt)(t->exop);
4760       if (e & 16)               /* distance */
4761       {
4762         c->sub.copy.get = e & 15;
4763         c->sub.copy.dist = t->base;
4764         c->mode = DISTEXT;
4765         break;
4766       }
4767       if ((e & 64) == 0)        /* next table */
4768       {
4769         c->sub.code.need = e;
4770         c->sub.code.tree = t->next;
4771         break;
4772       }
4773       c->mode = BADCODE;        /* invalid code */
4774       z->msg = (char*)"invalid distance code";
4775       r = Z_DATA_ERROR;
4776       LEAVE
4777     case DISTEXT:       /* i: getting distance extra */
4778       j = c->sub.copy.get;
4779       NEEDBITS(j)
4780       c->sub.copy.dist += (uInt)b & inflate_mask[j];
4781       DUMPBITS(j)
4782       Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
4783       c->mode = COPY;
4784     case COPY:          /* o: copying bytes in window, waiting for space */
4785 #ifndef __TURBOC__ /* Turbo C bug for following expression */
4786       f = (uInt)(q - s->window) < c->sub.copy.dist ?
4787           s->end - (c->sub.copy.dist - (q - s->window)) :
4788           q - c->sub.copy.dist;
4789 #else
4790       f = q - c->sub.copy.dist;
4791       if ((uInt)(q - s->window) < c->sub.copy.dist)
4792         f = s->end - (c->sub.copy.dist - (uInt)(q - s->window));
4793 #endif
4794       while (c->len)
4795       {
4796         NEEDOUT
4797         OUTBYTE(*f++)
4798         if (f == s->end)
4799           f = s->window;
4800         c->len--;
4801       }
4802       c->mode = START;
4803       break;
4804     case LIT:           /* o: got literal, waiting for output space */
4805       NEEDOUT
4806       OUTBYTE(c->sub.lit)
4807       c->mode = START;
4808       break;
4809     case WASH:          /* o: got eob, possibly more output */
4810       FLUSH
4811       if (s->read != s->write)
4812         LEAVE
4813       c->mode = END;
4814     case END:
4815       r = Z_STREAM_END;
4816       LEAVE
4817     case BADCODE:       /* x: got error */
4818       r = Z_DATA_ERROR;
4819       LEAVE
4820     default:
4821       r = Z_STREAM_ERROR;
4822       LEAVE
4823   }
4824 }
4825 
4826 
4827 void inflate_codes_free(c, z)
4828 inflate_codes_statef *c;
4829 z_streamp z;
4830 {
4831   ZFREE(z, c);
4832   Tracev((stderr, "inflate:       codes free\n"));
4833 }
4834 /* --- infcodes.c */
4835 
4836 /* +++ infutil.c */
4837 /* inflate_util.c -- data and routines common to blocks and codes
4838  * Copyright (C) 1995-1996 Mark Adler
4839  * For conditions of distribution and use, see copyright notice in zlib.h
4840  */
4841 
4842 /* #include "zutil.h" */
4843 /* #include "infblock.h" */
4844 /* #include "inftrees.h" */
4845 /* #include "infcodes.h" */
4846 /* #include "infutil.h" */
4847 
4848 #ifndef NO_DUMMY_DECL
4849 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4850 #endif
4851 
4852 /* And'ing with mask[n] masks the lower n bits */
4853 uInt const inflate_mask[17] = {
4854     0x0000,
4855     0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
4856     0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
4857 };
4858 
4859 
4860 /* copy as much as possible from the sliding window to the output area */
4861 int inflate_flush(s, z, r)
4862 inflate_blocks_statef *s;
4863 z_streamp z;
4864 int r;
4865 {
4866   uInt n;
4867   Bytef *p;
4868   Bytef *q;
4869 
4870   /* local copies of source and destination pointers */
4871   p = z->next_out;
4872   q = s->read;
4873 
4874   /* compute number of bytes to copy as far as end of window */
4875   n = (uInt)((q <= s->write ? s->write : s->end) - q);
4876   if (n > z->avail_out) n = z->avail_out;
4877   if (n && r == Z_BUF_ERROR) r = Z_OK;
4878 
4879   /* update counters */
4880   z->avail_out -= n;
4881   z->total_out += n;
4882 
4883   /* update check information */
4884   if (s->checkfn != Z_NULL)
4885     z->adler = s->check = (*s->checkfn)(s->check, q, n);
4886 
4887   /* copy as far as end of window */
4888   if (p != Z_NULL) {
4889     zmemcpy(p, q, n);
4890     p += n;
4891   }
4892   q += n;
4893 
4894   /* see if more to copy at beginning of window */
4895   if (q == s->end)
4896   {
4897     /* wrap pointers */
4898     q = s->window;
4899     if (s->write == s->end)
4900       s->write = s->window;
4901 
4902     /* compute bytes to copy */
4903     n = (uInt)(s->write - q);
4904     if (n > z->avail_out) n = z->avail_out;
4905     if (n && r == Z_BUF_ERROR) r = Z_OK;
4906 
4907     /* update counters */
4908     z->avail_out -= n;
4909     z->total_out += n;
4910 
4911     /* update check information */
4912     if (s->checkfn != Z_NULL)
4913       z->adler = s->check = (*s->checkfn)(s->check, q, n);
4914 
4915     /* copy */
4916     if (p != Z_NULL) {
4917       zmemcpy(p, q, n);
4918       p += n;
4919     }
4920     q += n;
4921   }
4922 
4923   /* update pointers */
4924   z->next_out = p;
4925   s->read = q;
4926 
4927   /* done */
4928   return r;
4929 }
4930 /* --- infutil.c */
4931 
4932 /* +++ inffast.c */
4933 /* inffast.c -- process literals and length/distance pairs fast
4934  * Copyright (C) 1995-1996 Mark Adler
4935  * For conditions of distribution and use, see copyright notice in zlib.h
4936  */
4937 
4938 /* #include "zutil.h" */
4939 /* #include "inftrees.h" */
4940 /* #include "infblock.h" */
4941 /* #include "infcodes.h" */
4942 /* #include "infutil.h" */
4943 /* #include "inffast.h" */
4944 
4945 #ifndef NO_DUMMY_DECL
4946 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4947 #endif
4948 
4949 /* simplify the use of the inflate_huft type with some defines */
4950 #define base more.Base
4951 #define next more.Next
4952 #define exop word.what.Exop
4953 #define bits word.what.Bits
4954 
4955 /* macros for bit input with no checking and for returning unused bytes */
4956 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4957 #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4958 
4959 /* Called with number of bytes left to write in window at least 258
4960    (the maximum string length) and number of input bytes available
4961    at least ten.  The ten bytes are six bytes for the longest length/
4962    distance pair plus four bytes for overloading the bit buffer. */
4963 
4964 int inflate_fast(bl, bd, tl, td, s, z)
4965 uInt bl, bd;
4966 inflate_huft *tl;
4967 inflate_huft *td; /* need separate declaration for Borland C++ */
4968 inflate_blocks_statef *s;
4969 z_streamp z;
4970 {
4971   inflate_huft *t;      /* temporary pointer */
4972   uInt e;               /* extra bits or operation */
4973   uLong b;              /* bit buffer */
4974   uInt k;               /* bits in bit buffer */
4975   Bytef *p;             /* input data pointer */
4976   uInt n;               /* bytes available there */
4977   Bytef *q;             /* output window write pointer */
4978   uInt m;               /* bytes to end of window or read pointer */
4979   uInt ml;              /* mask for literal/length tree */
4980   uInt md;              /* mask for distance tree */
4981   uInt c;               /* bytes to copy */
4982   uInt d;               /* distance back to copy from */
4983   Bytef *r;             /* copy source pointer */
4984 
4985   /* load input, output, bit values */
4986   LOAD
4987 
4988   /* initialize masks */
4989   ml = inflate_mask[bl];
4990   md = inflate_mask[bd];
4991 
4992   /* do until not enough input or output space for fast loop */
4993   do {                          /* assume called with m >= 258 && n >= 10 */
4994     /* get literal/length code */
4995     GRABBITS(20)                /* max bits for literal/length code */
4996     if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
4997     {
4998       DUMPBITS(t->bits)
4999       Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5000                 "inflate:         * literal '%c'\n" :
5001                 "inflate:         * literal 0x%02x\n", t->base));
5002       *q++ = (Byte)t->base;
5003       m--;
5004       continue;
5005     }
5006     do {
5007       DUMPBITS(t->bits)
5008       if (e & 16)
5009       {
5010         /* get extra bits for length */
5011         e &= 15;
5012         c = t->base + ((uInt)b & inflate_mask[e]);
5013         DUMPBITS(e)
5014         Tracevv((stderr, "inflate:         * length %u\n", c));
5015 
5016         /* decode distance base of block to copy */
5017         GRABBITS(15);           /* max bits for distance code */
5018         e = (t = td + ((uInt)b & md))->exop;
5019         do {
5020           DUMPBITS(t->bits)
5021           if (e & 16)
5022           {
5023             /* get extra bits to add to distance base */
5024             e &= 15;
5025             GRABBITS(e)         /* get extra bits (up to 13) */
5026             d = t->base + ((uInt)b & inflate_mask[e]);
5027             DUMPBITS(e)
5028             Tracevv((stderr, "inflate:         * distance %u\n", d));
5029 
5030             /* do the copy */
5031             m -= c;
5032             if ((uInt)(q - s->window) >= d)     /* offset before dest */
5033             {                                   /*  just copy */
5034               r = q - d;
5035               *q++ = *r++;  c--;        /* minimum count is three, */
5036               *q++ = *r++;  c--;        /*  so unroll loop a little */
5037             }
5038             else                        /* else offset after destination */
5039             {
5040               e = d - (uInt)(q - s->window); /* bytes from offset to end */
5041               r = s->end - e;           /* pointer to offset */
5042               if (c > e)                /* if source crosses, */
5043               {
5044                 c -= e;                 /* copy to end of window */
5045                 do {
5046                   *q++ = *r++;
5047                 } while (--e);
5048                 r = s->window;          /* copy rest from start of window */
5049               }
5050             }
5051             do {                        /* copy all or what's left */
5052               *q++ = *r++;
5053             } while (--c);
5054             break;
5055           }
5056           else if ((e & 64) == 0)
5057             e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
5058           else
5059           {
5060             z->msg = (char*)"invalid distance code";
5061             UNGRAB
5062             UPDATE
5063             return Z_DATA_ERROR;
5064           }
5065         } while (1);
5066         break;
5067       }
5068       if ((e & 64) == 0)
5069       {
5070         if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
5071         {
5072           DUMPBITS(t->bits)
5073           Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5074                     "inflate:         * literal '%c'\n" :
5075                     "inflate:         * literal 0x%02x\n", t->base));
5076           *q++ = (Byte)t->base;
5077           m--;
5078           break;
5079         }
5080       }
5081       else if (e & 32)
5082       {
5083         Tracevv((stderr, "inflate:         * end of block\n"));
5084         UNGRAB
5085         UPDATE
5086         return Z_STREAM_END;
5087       }
5088       else
5089       {
5090         z->msg = (char*)"invalid literal/length code";
5091         UNGRAB
5092         UPDATE
5093         return Z_DATA_ERROR;
5094       }
5095     } while (1);
5096   } while (m >= 258 && n >= 10);
5097 
5098   /* not enough input or output--restore pointers and return */
5099   UNGRAB
5100   UPDATE
5101   return Z_OK;
5102 }
5103 /* --- inffast.c */
5104 
5105 /* +++ zutil.c */
5106 /* zutil.c -- target dependent utility functions for the compression library
5107  * Copyright (C) 1995-1996 Jean-loup Gailly.
5108  * For conditions of distribution and use, see copyright notice in zlib.h
5109  */
5110 
5111 /* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5112 
5113 #ifdef DEBUG_ZLIB
5114 #include <stdio.h>
5115 #endif
5116 
5117 /* #include "zutil.h" */
5118 
5119 #ifndef NO_DUMMY_DECL
5120 struct internal_state      {int dummy;}; /* for buggy compilers */
5121 #endif
5122 
5123 #ifndef STDC
5124 extern void exit OF((int));
5125 #endif
5126 
5127 const char * const z_errmsg[10] = {
5128 "need dictionary",     /* Z_NEED_DICT       2  */
5129 "stream end",          /* Z_STREAM_END      1  */
5130 "",                    /* Z_OK              0  */
5131 "file error",          /* Z_ERRNO         (-1) */
5132 "stream error",        /* Z_STREAM_ERROR  (-2) */
5133 "data error",          /* Z_DATA_ERROR    (-3) */
5134 "insufficient memory", /* Z_MEM_ERROR     (-4) */
5135 "buffer error",        /* Z_BUF_ERROR     (-5) */
5136 "incompatible version",/* Z_VERSION_ERROR (-6) */
5137 ""};
5138 
5139 
5140 const char *zlibVersion()
5141 {
5142     return ZLIB_VERSION;
5143 }
5144 
5145 #ifdef DEBUG_ZLIB
5146 void z_error (m)
5147     char *m;
5148 {
5149     fprintf(stderr, "%s\n", m);
5150     exit(1);
5151 }
5152 #endif
5153 
5154 #ifndef HAVE_MEMCPY
5155 
5156 void zmemcpy(dest, source, len)
5157     Bytef* dest;
5158     Bytef* source;
5159     uInt  len;
5160 {
5161     if (len == 0) return;
5162     do {
5163         *dest++ = *source++; /* ??? to be unrolled */
5164     } while (--len != 0);
5165 }
5166 
5167 int zmemcmp(s1, s2, len)
5168     Bytef* s1;
5169     Bytef* s2;
5170     uInt  len;
5171 {
5172     uInt j;
5173 
5174     for (j = 0; j < len; j++) {
5175         if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5176     }
5177     return 0;
5178 }
5179 
5180 void zmemzero(dest, len)
5181     Bytef* dest;
5182     uInt  len;
5183 {
5184     if (len == 0) return;
5185     do {
5186         *dest++ = 0;  /* ??? to be unrolled */
5187     } while (--len != 0);
5188 }
5189 #endif
5190 
5191 #ifdef __TURBOC__
5192 #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5193 /* Small and medium model in Turbo C are for now limited to near allocation
5194  * with reduced MAX_WBITS and MAX_MEM_LEVEL
5195  */
5196 #  define MY_ZCALLOC
5197 
5198 /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5199  * and farmalloc(64K) returns a pointer with an offset of 8, so we
5200  * must fix the pointer. Warning: the pointer must be put back to its
5201  * original form in order to free it, use zcfree().
5202  */
5203 
5204 #define MAX_PTR 10
5205 /* 10*64K = 640K */
5206 
5207 local int next_ptr = 0;
5208 
5209 typedef struct ptr_table_s {
5210     voidpf org_ptr;
5211     voidpf new_ptr;
5212 } ptr_table;
5213 
5214 local ptr_table table[MAX_PTR];
5215 /* This table is used to remember the original form of pointers
5216  * to large buffers (64K). Such pointers are normalized with a zero offset.
5217  * Since MSDOS is not a preemptive multitasking OS, this table is not
5218  * protected from concurrent access. This hack doesn't work anyway on
5219  * a protected system like OS/2. Use Microsoft C instead.
5220  */
5221 
5222 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5223 {
5224     voidpf buf = opaque; /* just to make some compilers happy */
5225     ulg bsize = (ulg)items*size;
5226 
5227     /* If we allocate less than 65520 bytes, we assume that farmalloc
5228      * will return a usable pointer which doesn't have to be normalized.
5229      */
5230     if (bsize < 65520L) {
5231         buf = farmalloc(bsize);
5232         if (*(ush*)&buf != 0) return buf;
5233     } else {
5234         buf = farmalloc(bsize + 16L);
5235     }
5236     if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5237     table[next_ptr].org_ptr = buf;
5238 
5239     /* Normalize the pointer to seg:0 */
5240     *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5241     *(ush*)&buf = 0;
5242     table[next_ptr++].new_ptr = buf;
5243     return buf;
5244 }
5245 
5246 void  zcfree (voidpf opaque, voidpf ptr)
5247 {
5248     int n;
5249     if (*(ush*)&ptr != 0) { /* object < 64K */
5250         farfree(ptr);
5251         return;
5252     }
5253     /* Find the original pointer */
5254     for (n = 0; n < next_ptr; n++) {
5255         if (ptr != table[n].new_ptr) continue;
5256 
5257         farfree(table[n].org_ptr);
5258         while (++n < next_ptr) {
5259             table[n-1] = table[n];
5260         }
5261         next_ptr--;
5262         return;
5263     }
5264     ptr = opaque; /* just to make some compilers happy */
5265     Assert(0, "zcfree: ptr not found");
5266 }
5267 #endif
5268 #endif /* __TURBOC__ */
5269 
5270 
5271 #if defined(M_I86) && !defined(__32BIT__)
5272 /* Microsoft C in 16-bit mode */
5273 
5274 #  define MY_ZCALLOC
5275 
5276 #if (!defined(_MSC_VER) || (_MSC_VER < 600))
5277 #  define _halloc  halloc
5278 #  define _hfree   hfree
5279 #endif
5280 
5281 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5282 {
5283     if (opaque) opaque = 0; /* to make compiler happy */
5284     return _halloc((long)items, size);
5285 }
5286 
5287 void  zcfree (voidpf opaque, voidpf ptr)
5288 {
5289     if (opaque) opaque = 0; /* to make compiler happy */
5290     _hfree(ptr);
5291 }
5292 
5293 #endif /* MSC */
5294 
5295 
5296 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
5297 
5298 #ifndef STDC
5299 extern voidp  calloc OF((uInt items, uInt size));
5300 extern void   free   OF((voidpf ptr));
5301 #endif
5302 
5303 voidpf zcalloc (opaque, items, size)
5304     voidpf opaque;
5305     unsigned items;
5306     unsigned size;
5307 {
5308     if (opaque) items += size - size; /* make compiler happy */
5309     return (voidpf)calloc(items, size);
5310 }
5311 
5312 void  zcfree (opaque, ptr)
5313     voidpf opaque;
5314     voidpf ptr;
5315 {
5316     free(ptr);
5317     if (opaque) return; /* make compiler happy */
5318 }
5319 
5320 #endif /* MY_ZCALLOC */
5321 /* --- zutil.c */
5322 
5323 /* +++ adler32.c */
5324 /* adler32.c -- compute the Adler-32 checksum of a data stream
5325  * Copyright (C) 1995-1996 Mark Adler
5326  * For conditions of distribution and use, see copyright notice in zlib.h
5327  */
5328 
5329 /* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
5330 
5331 /* #include "zlib.h" */
5332 
5333 #define BASE 65521L /* largest prime smaller than 65536 */
5334 #define NMAX 5552
5335 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5336 
5337 #define DO1(buf,i)  {s1 += buf[i]; s2 += s1;}
5338 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
5339 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
5340 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
5341 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
5342 
5343 /* ========================================================================= */
5344 uLong adler32(adler, buf, len)
5345     uLong adler;
5346     const Bytef *buf;
5347     uInt len;
5348 {
5349     unsigned long s1 = adler & 0xffff;
5350     unsigned long s2 = (adler >> 16) & 0xffff;
5351     int k;
5352 
5353     if (buf == Z_NULL) return 1L;
5354 
5355     while (len > 0) {
5356         k = len < NMAX ? len : NMAX;
5357         len -= k;
5358         while (k >= 16) {
5359             DO16(buf);
5360 	    buf += 16;
5361             k -= 16;
5362         }
5363         if (k != 0) do {
5364             s1 += *buf++;
5365 	    s2 += s1;
5366         } while (--k);
5367         s1 %= BASE;
5368         s2 %= BASE;
5369     }
5370     return (s2 << 16) | s1;
5371 }
5372 /* --- adler32.c */
5373