xref: /netbsd-src/sys/net/zlib.c (revision 2a399c6883d870daece976daec6ffa7bb7f934ce)
1 /*	$NetBSD: zlib.c,v 1.6 1997/05/17 21:12:14 christos Exp $	*/
2 
3 /*
4  * This file is derived from various .h and .c files from the zlib-0.95
5  * distribution by Jean-loup Gailly and Mark Adler, with some additions
6  * by Paul Mackerras to aid in implementing Deflate compression and
7  * decompression for PPP packets.  See zlib.h for conditions of
8  * distribution and use.
9  *
10  * Changes that have been made include:
11  * - changed functions not used outside this file to "local"
12  * - added minCompression parameter to deflateInit2
13  * - added Z_PACKET_FLUSH (see zlib.h for details)
14  * - added inflateIncomp
15  *
16  * Id: zlib.c,v 1.6 1997/04/30 05:41:19 paulus Exp
17  */
18 
19 /*
20  *  ==FILEVERSION 970421==
21  *
22  * This marker is used by the Linux installation script to determine
23  * whether an up-to-date version of this file is already installed.
24  */
25 
26 /*+++++*/
27 /* zutil.h -- internal interface and configuration of the compression library
28  * Copyright (C) 1995 Jean-loup Gailly.
29  * For conditions of distribution and use, see copyright notice in zlib.h
30  */
31 
32 /* WARNING: this file should *not* be used by applications. It is
33    part of the implementation of the compression library and is
34    subject to change. Applications should only use zlib.h.
35  */
36 
37 /* From: zutil.h,v 1.9 1995/05/03 17:27:12 jloup Exp */
38 
39 #define _Z_UTIL_H
40 
41 #include "zlib.h"
42 
43 #ifndef local
44 #  define local static
45 #endif
46 /* compile with -Dlocal if your debugger can't find static symbols */
47 
48 #define FAR
49 
50 typedef unsigned char  uch;
51 typedef uch FAR uchf;
52 typedef unsigned short ush;
53 typedef ush FAR ushf;
54 typedef unsigned long  ulg;
55 
56 extern char *z_errmsg[]; /* indexed by 1-zlib_error */
57 
58 #define ERR_RETURN(strm,err) return (strm->msg=z_errmsg[1-err], err)
59 /* To be used only when the state is known to be valid */
60 
61 #ifndef NULL
62 #define NULL	((void *) 0)
63 #endif
64 
65         /* common constants */
66 
67 #define DEFLATED   8
68 
69 #ifndef DEF_WBITS
70 #  define DEF_WBITS MAX_WBITS
71 #endif
72 /* default windowBits for decompression. MAX_WBITS is for compression only */
73 
74 #if MAX_MEM_LEVEL >= 8
75 #  define DEF_MEM_LEVEL 8
76 #else
77 #  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
78 #endif
79 /* default memLevel */
80 
81 #define STORED_BLOCK 0
82 #define STATIC_TREES 1
83 #define DYN_TREES    2
84 /* The three kinds of block type */
85 
86 #define MIN_MATCH  3
87 #define MAX_MATCH  258
88 /* The minimum and maximum match lengths */
89 
90          /* functions */
91 
92 #if defined(KERNEL) || defined(_KERNEL)
93 #include <sys/types.h>
94 #include <sys/time.h>
95 #include <sys/systm.h>
96 #  define zmemcpy(d, s, n)	bcopy((s), (d), (n))
97 #  define zmemzero		bzero
98 
99 #else
100 #if defined(__KERNEL__)
101 /* Assume this is Linux */
102 #include <linux/string.h>
103 #define zmemcpy memcpy
104 #define zmemzero(dest, len)	memset(dest, 0, len)
105 
106 #else /* not kernel */
107 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
108 #  define HAVE_MEMCPY
109 #endif
110 #ifdef HAVE_MEMCPY
111 #    define zmemcpy memcpy
112 #    define zmemzero(dest, len) memset(dest, 0, len)
113 #else
114    extern void zmemcpy  OF((Bytef* dest, Bytef* source, uInt len));
115    extern void zmemzero OF((Bytef* dest, uInt len));
116 #endif
117 #endif	/* __KERNEL__ */
118 #endif	/* KERNEL */
119 
120 /* Diagnostic functions */
121 #ifdef DEBUG_ZLIB
122 #  include <stdio.h>
123 #  ifndef verbose
124 #    define verbose 0
125 #  endif
126 #  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
127 #  define Trace(x) fprintf x
128 #  define Tracev(x) {if (verbose) fprintf x ;}
129 #  define Tracevv(x) {if (verbose>1) fprintf x ;}
130 #  define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
131 #  define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
132 #else
133 #  define Assert(cond,msg)
134 #  define Trace(x)
135 #  define Tracev(x)
136 #  define Tracevv(x)
137 #  define Tracec(c,x)
138 #  define Tracecv(c,x)
139 #endif
140 
141 
142 typedef uLong (*check_func) OF((uLong check, Bytef *buf, uInt len));
143 
144 /* voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size)); */
145 /* void   zcfree  OF((voidpf opaque, voidpf ptr)); */
146 
147 #define ZALLOC(strm, items, size) \
148            (*((strm)->zalloc))((strm)->opaque, (items), (size))
149 #define ZALLOC_INIT(strm, items, size) \
150            (*((strm)->zalloc_init))((strm)->opaque, (items), (size))
151 #define ZFREE(strm, addr, size)	\
152 	   (*((strm)->zfree))((strm)->opaque, (voidpf)(addr), (size))
153 #define TRY_FREE(s, p, n) {if (p) ZFREE(s, p, n);}
154 
155 /* deflate.h -- internal compression state
156  * Copyright (C) 1995 Jean-loup Gailly
157  * For conditions of distribution and use, see copyright notice in zlib.h
158  */
159 
160 /* WARNING: this file should *not* be used by applications. It is
161    part of the implementation of the compression library and is
162    subject to change. Applications should only use zlib.h.
163  */
164 
165 
166 /*+++++*/
167 /* From: deflate.h,v 1.5 1995/05/03 17:27:09 jloup Exp */
168 
169 /* ===========================================================================
170  * Internal compression state.
171  */
172 
173 /* Data type */
174 #define Z_BINARY  0
175 #define ASCII   1
176 #define UNKNOWN 2
177 
178 #define LENGTH_CODES 29
179 /* number of length codes, not counting the special END_BLOCK code */
180 
181 #define LITERALS  256
182 /* number of literal bytes 0..255 */
183 
184 #define L_CODES (LITERALS+1+LENGTH_CODES)
185 /* number of Literal or Length codes, including the END_BLOCK code */
186 
187 #define D_CODES   30
188 /* number of distance codes */
189 
190 #define BL_CODES  19
191 /* number of codes used to transfer the bit lengths */
192 
193 #define HEAP_SIZE (2*L_CODES+1)
194 /* maximum heap size */
195 
196 #define MAX_BITS 15
197 /* All codes must not exceed MAX_BITS bits */
198 
199 #define INIT_STATE    42
200 #define BUSY_STATE   113
201 #define FLUSH_STATE  124
202 #define FINISH_STATE 666
203 /* Stream status */
204 
205 
206 /* Data structure describing a single value and its code string. */
207 typedef struct ct_data_s {
208     union {
209         ush  freq;       /* frequency count */
210         ush  code;       /* bit string */
211     } fc;
212     union {
213         ush  dad;        /* father node in Huffman tree */
214         ush  len;        /* length of bit string */
215     } dl;
216 } FAR ct_data;
217 
218 #define Freq fc.freq
219 #define Code fc.code
220 #define Dad  dl.dad
221 #define Len  dl.len
222 
223 typedef struct static_tree_desc_s  static_tree_desc;
224 
225 typedef struct tree_desc_s {
226     ct_data *dyn_tree;           /* the dynamic tree */
227     int     max_code;            /* largest code with non zero frequency */
228     static_tree_desc *stat_desc; /* the corresponding static tree */
229 } FAR tree_desc;
230 
231 typedef ush Pos;
232 typedef Pos FAR Posf;
233 typedef unsigned IPos;
234 
235 /* A Pos is an index in the character window. We use short instead of int to
236  * save space in the various tables. IPos is used only for parameter passing.
237  */
238 
239 typedef struct deflate_state {
240     z_stream *strm;      /* pointer back to this zlib stream */
241     int   status;        /* as the name implies */
242     Bytef *pending_buf;  /* output still pending */
243     Bytef *pending_out;  /* next pending byte to output to the stream */
244     int   pending;       /* nb of bytes in the pending buffer */
245     uLong adler;         /* adler32 of uncompressed data */
246     int   noheader;      /* suppress zlib header and adler32 */
247     Byte  data_type;     /* UNKNOWN, Z_BINARY or ASCII */
248     Byte  method;        /* STORED (for zip only) or DEFLATED */
249     int	  minCompr;	 /* min size decrease for Z_FLUSH_NOSTORE */
250 
251                 /* used by deflate.c: */
252 
253     uInt  w_size;        /* LZ77 window size (32K by default) */
254     uInt  w_bits;        /* log2(w_size)  (8..16) */
255     uInt  w_mask;        /* w_size - 1 */
256 
257     Bytef *window;
258     /* Sliding window. Input bytes are read into the second half of the window,
259      * and move to the first half later to keep a dictionary of at least wSize
260      * bytes. With this organization, matches are limited to a distance of
261      * wSize-MAX_MATCH bytes, but this ensures that IO is always
262      * performed with a length multiple of the block size. Also, it limits
263      * the window size to 64K, which is quite useful on MSDOS.
264      * To do: use the user input buffer as sliding window.
265      */
266 
267     ulg window_size;
268     /* Actual size of window: 2*wSize, except when the user input buffer
269      * is directly used as sliding window.
270      */
271 
272     Posf *prev;
273     /* Link to older string with same hash index. To limit the size of this
274      * array to 64K, this link is maintained only for the last 32K strings.
275      * An index in this array is thus a window index modulo 32K.
276      */
277 
278     Posf *head; /* Heads of the hash chains or NIL. */
279 
280     uInt  ins_h;          /* hash index of string to be inserted */
281     uInt  hash_size;      /* number of elements in hash table */
282     uInt  hash_bits;      /* log2(hash_size) */
283     uInt  hash_mask;      /* hash_size-1 */
284 
285     uInt  hash_shift;
286     /* Number of bits by which ins_h must be shifted at each input
287      * step. It must be such that after MIN_MATCH steps, the oldest
288      * byte no longer takes part in the hash key, that is:
289      *   hash_shift * MIN_MATCH >= hash_bits
290      */
291 
292     long block_start;
293     /* Window position at the beginning of the current output block. Gets
294      * negative when the window is moved backwards.
295      */
296 
297     uInt match_length;           /* length of best match */
298     IPos prev_match;             /* previous match */
299     int match_available;         /* set if previous match exists */
300     uInt strstart;               /* start of string to insert */
301     uInt match_start;            /* start of matching string */
302     uInt lookahead;              /* number of valid bytes ahead in window */
303 
304     uInt prev_length;
305     /* Length of the best match at previous step. Matches not greater than this
306      * are discarded. This is used in the lazy match evaluation.
307      */
308 
309     uInt max_chain_length;
310     /* To speed up deflation, hash chains are never searched beyond this
311      * length.  A higher limit improves compression ratio but degrades the
312      * speed.
313      */
314 
315     uInt max_lazy_match;
316     /* Attempt to find a better match only when the current match is strictly
317      * smaller than this value. This mechanism is used only for compression
318      * levels >= 4.
319      */
320 #   define max_insert_length  max_lazy_match
321     /* Insert new strings in the hash table only if the match length is not
322      * greater than this length. This saves time but degrades compression.
323      * max_insert_length is used only for compression levels <= 3.
324      */
325 
326     int level;    /* compression level (1..9) */
327     int strategy; /* favor or force Huffman coding*/
328 
329     uInt good_match;
330     /* Use a faster search when the previous match is longer than this */
331 
332      int nice_match; /* Stop searching when current match exceeds this */
333 
334                 /* used by trees.c: */
335     /* Didn't use ct_data typedef below to supress compiler warning */
336     struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
337     struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
338     struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
339 
340     struct tree_desc_s l_desc;               /* desc. for literal tree */
341     struct tree_desc_s d_desc;               /* desc. for distance tree */
342     struct tree_desc_s bl_desc;              /* desc. for bit length tree */
343 
344     ush bl_count[MAX_BITS+1];
345     /* number of codes at each bit length for an optimal tree */
346 
347     int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
348     int heap_len;               /* number of elements in the heap */
349     int heap_max;               /* element of largest frequency */
350     /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
351      * The same heap array is used to build all trees.
352      */
353 
354     uch depth[2*L_CODES+1];
355     /* Depth of each subtree used as tie breaker for trees of equal frequency
356      */
357 
358     uchf *l_buf;          /* buffer for literals or lengths */
359 
360     uInt  lit_bufsize;
361     /* Size of match buffer for literals/lengths.  There are 4 reasons for
362      * limiting lit_bufsize to 64K:
363      *   - frequencies can be kept in 16 bit counters
364      *   - if compression is not successful for the first block, all input
365      *     data is still in the window so we can still emit a stored block even
366      *     when input comes from standard input.  (This can also be done for
367      *     all blocks if lit_bufsize is not greater than 32K.)
368      *   - if compression is not successful for a file smaller than 64K, we can
369      *     even emit a stored file instead of a stored block (saving 5 bytes).
370      *     This is applicable only for zip (not gzip or zlib).
371      *   - creating new Huffman trees less frequently may not provide fast
372      *     adaptation to changes in the input data statistics. (Take for
373      *     example a binary file with poorly compressible code followed by
374      *     a highly compressible string table.) Smaller buffer sizes give
375      *     fast adaptation but have of course the overhead of transmitting
376      *     trees more frequently.
377      *   - I can't count above 4
378      */
379 
380     uInt last_lit;      /* running index in l_buf */
381 
382     ushf *d_buf;
383     /* Buffer for distances. To simplify the code, d_buf and l_buf have
384      * the same number of elements. To use different lengths, an extra flag
385      * array would be necessary.
386      */
387 
388     ulg opt_len;        /* bit length of current block with optimal trees */
389     ulg static_len;     /* bit length of current block with static trees */
390     ulg compressed_len; /* total bit length of compressed file */
391     uInt matches;       /* number of string matches in current block */
392     int last_eob_len;   /* bit length of EOB code for last block */
393 
394 #ifdef DEBUG_ZLIB
395     ulg bits_sent;      /* bit length of the compressed data */
396 #endif
397 
398     ush bi_buf;
399     /* Output buffer. bits are inserted starting at the bottom (least
400      * significant bits).
401      */
402     int bi_valid;
403     /* Number of valid bits in bi_buf.  All bits above the last valid bit
404      * are always zero.
405      */
406 
407     uInt blocks_in_packet;
408     /* Number of blocks produced since the last time Z_PACKET_FLUSH
409      * was used.
410      */
411 
412 } FAR deflate_state;
413 
414 /* Output a byte on the stream.
415  * IN assertion: there is enough room in pending_buf.
416  */
417 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
418 
419 
420 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
421 /* Minimum amount of lookahead, except at the end of the input file.
422  * See deflate.c for comments about the MIN_MATCH+1.
423  */
424 
425 #define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
426 /* In order to simplify the code, particularly on 16 bit machines, match
427  * distances are limited to MAX_DIST instead of WSIZE.
428  */
429 
430         /* in trees.c */
431 local void ct_init       OF((deflate_state *s));
432 local int  ct_tally      OF((deflate_state *s, int dist, int lc));
433 local ulg ct_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
434 			     int flush));
435 local void ct_align      OF((deflate_state *s));
436 local void ct_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
437                           int eof));
438 local void ct_stored_type_only OF((deflate_state *s));
439 
440 
441 /*+++++*/
442 /* deflate.c -- compress data using the deflation algorithm
443  * Copyright (C) 1995 Jean-loup Gailly.
444  * For conditions of distribution and use, see copyright notice in zlib.h
445  */
446 
447 /*
448  *  ALGORITHM
449  *
450  *      The "deflation" process depends on being able to identify portions
451  *      of the input text which are identical to earlier input (within a
452  *      sliding window trailing behind the input currently being processed).
453  *
454  *      The most straightforward technique turns out to be the fastest for
455  *      most input files: try all possible matches and select the longest.
456  *      The key feature of this algorithm is that insertions into the string
457  *      dictionary are very simple and thus fast, and deletions are avoided
458  *      completely. Insertions are performed at each input character, whereas
459  *      string matches are performed only when the previous match ends. So it
460  *      is preferable to spend more time in matches to allow very fast string
461  *      insertions and avoid deletions. The matching algorithm for small
462  *      strings is inspired from that of Rabin & Karp. A brute force approach
463  *      is used to find longer strings when a small match has been found.
464  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
465  *      (by Leonid Broukhis).
466  *         A previous version of this file used a more sophisticated algorithm
467  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
468  *      time, but has a larger average cost, uses more memory and is patented.
469  *      However the F&G algorithm may be faster for some highly redundant
470  *      files if the parameter max_chain_length (described below) is too large.
471  *
472  *  ACKNOWLEDGEMENTS
473  *
474  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
475  *      I found it in 'freeze' written by Leonid Broukhis.
476  *      Thanks to many people for bug reports and testing.
477  *
478  *  REFERENCES
479  *
480  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
481  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
482  *
483  *      A description of the Rabin and Karp algorithm is given in the book
484  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
485  *
486  *      Fiala,E.R., and Greene,D.H.
487  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
488  *
489  */
490 
491 /* From: deflate.c,v 1.8 1995/05/03 17:27:08 jloup Exp */
492 
493 #if 0
494 local char zlib_copyright[] = " deflate Copyright 1995 Jean-loup Gailly ";
495 #endif
496 /*
497   If you use the zlib library in a product, an acknowledgment is welcome
498   in the documentation of your product. If for some reason you cannot
499   include such an acknowledgment, I would appreciate that you keep this
500   copyright string in the executable of your product.
501  */
502 
503 #define NIL 0
504 /* Tail of hash chains */
505 
506 #ifndef TOO_FAR
507 #  define TOO_FAR 4096
508 #endif
509 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
510 
511 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
512 /* Minimum amount of lookahead, except at the end of the input file.
513  * See deflate.c for comments about the MIN_MATCH+1.
514  */
515 
516 /* Values for max_lazy_match, good_match and max_chain_length, depending on
517  * the desired pack level (0..9). The values given below have been tuned to
518  * exclude worst case performance for pathological files. Better values may be
519  * found for specific files.
520  */
521 
522 typedef struct config_s {
523    ush good_length; /* reduce lazy search above this match length */
524    ush max_lazy;    /* do not perform lazy search above this match length */
525    ush nice_length; /* quit search above this match length */
526    ush max_chain;
527 } config;
528 
529 local config configuration_table[10] = {
530 /*      good lazy nice chain */
531 /* 0 */ {0,    0,  0,    0},  /* store only */
532 /* 1 */ {4,    4,  8,    4},  /* maximum speed, no lazy matches */
533 /* 2 */ {4,    5, 16,    8},
534 /* 3 */ {4,    6, 32,   32},
535 
536 /* 4 */ {4,    4, 16,   16},  /* lazy matches */
537 /* 5 */ {8,   16, 32,   32},
538 /* 6 */ {8,   16, 128, 128},
539 /* 7 */ {8,   32, 128, 256},
540 /* 8 */ {32, 128, 258, 1024},
541 /* 9 */ {32, 258, 258, 4096}}; /* maximum compression */
542 
543 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
544  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
545  * meaning.
546  */
547 
548 #define EQUAL 0
549 /* result of memcmp for equal strings */
550 
551 /* ===========================================================================
552  *  Prototypes for local functions.
553  */
554 
555 local void fill_window   OF((deflate_state *s));
556 local int  deflate_fast  OF((deflate_state *s, int flush));
557 local int  deflate_slow  OF((deflate_state *s, int flush));
558 local void lm_init       OF((deflate_state *s));
559 local int longest_match  OF((deflate_state *s, IPos cur_match));
560 local void putShortMSB   OF((deflate_state *s, uInt b));
561 local void flush_pending OF((z_stream *strm));
562 local int read_buf       OF((z_stream *strm, charf *buf, unsigned size));
563 #ifdef ASMV
564       void match_init OF((void)); /* asm code initialization */
565 #endif
566 
567 #ifdef DEBUG_ZLIB
568 local  void check_match OF((deflate_state *s, IPos start, IPos match,
569                             int length));
570 #endif
571 
572 
573 /* ===========================================================================
574  * Update a hash value with the given input byte
575  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
576  *    input characters, so that a running hash key can be computed from the
577  *    previous key instead of complete recalculation each time.
578  */
579 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
580 
581 
582 /* ===========================================================================
583  * Insert string str in the dictionary and set match_head to the previous head
584  * of the hash chain (the most recent string with same hash key). Return
585  * the previous length of the hash chain.
586  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
587  *    input characters and the first MIN_MATCH bytes of str are valid
588  *    (except for the last MIN_MATCH-1 bytes of the input file).
589  */
590 #define INSERT_STRING(s, str, match_head) \
591    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
592     s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
593     s->head[s->ins_h] = (str))
594 
595 /* ===========================================================================
596  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
597  * prev[] will be initialized on the fly.
598  */
599 #define CLEAR_HASH(s) \
600     s->head[s->hash_size-1] = NIL; \
601     zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
602 
603 /* ========================================================================= */
604 int deflateInit (strm, level)
605     z_stream *strm;
606     int level;
607 {
608     return deflateInit2 (strm, level, DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
609 			 0, 0);
610     /* To do: ignore strm->next_in if we use it as window */
611 }
612 
613 /* ========================================================================= */
614 int deflateInit2 (strm, level, method, windowBits, memLevel,
615 		  strategy, minCompression)
616     z_stream *strm;
617     int  level;
618     int  method;
619     int  windowBits;
620     int  memLevel;
621     int  strategy;
622     int  minCompression;
623 {
624     deflate_state *s;
625     int noheader = 0;
626 
627     if (strm == Z_NULL) return Z_STREAM_ERROR;
628 
629     strm->msg = Z_NULL;
630 /*    if (strm->zalloc == Z_NULL) strm->zalloc = zcalloc; */
631 /*    if (strm->zfree == Z_NULL) strm->zfree = zcfree; */
632 
633     if (level == Z_DEFAULT_COMPRESSION) level = 6;
634 
635     if (windowBits < 0) { /* undocumented feature: suppress zlib header */
636         noheader = 1;
637         windowBits = -windowBits;
638     }
639     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != DEFLATED ||
640         windowBits < 8 || windowBits > 15 || level < 1 || level > 9) {
641         return Z_STREAM_ERROR;
642     }
643     s = (deflate_state *) ZALLOC_INIT(strm, 1, sizeof(deflate_state));
644     if (s == Z_NULL) return Z_MEM_ERROR;
645     strm->state = (struct internal_state FAR *)s;
646     s->strm = strm;
647 
648     s->noheader = noheader;
649     s->w_bits = windowBits;
650     s->w_size = 1 << s->w_bits;
651     s->w_mask = s->w_size - 1;
652 
653     s->hash_bits = memLevel + 7;
654     s->hash_size = 1 << s->hash_bits;
655     s->hash_mask = s->hash_size - 1;
656     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
657 
658     s->window = (Bytef *) ZALLOC_INIT(strm, s->w_size, 2*sizeof(Byte));
659     s->prev   = (Posf *)  ZALLOC_INIT(strm, s->w_size, sizeof(Pos));
660     s->head   = (Posf *)  ZALLOC_INIT(strm, s->hash_size, sizeof(Pos));
661 
662     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
663 
664     s->pending_buf = (uchf *) ZALLOC_INIT(strm, s->lit_bufsize, 2*sizeof(ush));
665 
666     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
667         s->pending_buf == Z_NULL) {
668         strm->msg = z_errmsg[1-Z_MEM_ERROR];
669         deflateEnd (strm);
670         return Z_MEM_ERROR;
671     }
672     s->d_buf = (ushf *) &(s->pending_buf[s->lit_bufsize]);
673     s->l_buf = (uchf *) &(s->pending_buf[3*s->lit_bufsize]);
674     /* We overlay pending_buf and d_buf+l_buf. This works since the average
675      * output size for (length,distance) codes is <= 32 bits (worst case
676      * is 15+15+13=33).
677      */
678 
679     s->level = level;
680     s->strategy = strategy;
681     s->method = (Byte)method;
682     s->minCompr = minCompression;
683     s->blocks_in_packet = 0;
684 
685     return deflateReset(strm);
686 }
687 
688 /* ========================================================================= */
689 int deflateReset (strm)
690     z_stream *strm;
691 {
692     deflate_state *s;
693 
694     if (strm == Z_NULL || strm->state == Z_NULL ||
695         strm->zalloc == Z_NULL || strm->zfree == Z_NULL ||
696 	strm->zalloc_init == Z_NULL) return Z_STREAM_ERROR;
697 
698     strm->total_in = strm->total_out = 0;
699     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
700     strm->data_type = Z_UNKNOWN;
701 
702     s = (deflate_state *)strm->state;
703     s->pending = 0;
704     s->pending_out = s->pending_buf;
705 
706     if (s->noheader < 0) {
707         s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
708     }
709     s->status = s->noheader ? BUSY_STATE : INIT_STATE;
710     s->adler = 1;
711 
712     ct_init(s);
713     lm_init(s);
714 
715     return Z_OK;
716 }
717 
718 /* =========================================================================
719  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
720  * IN assertion: the stream state is correct and there is enough room in
721  * pending_buf.
722  */
723 local void putShortMSB (s, b)
724     deflate_state *s;
725     uInt b;
726 {
727     put_byte(s, (Byte)(b >> 8));
728     put_byte(s, (Byte)(b & 0xff));
729 }
730 
731 /* =========================================================================
732  * Flush as much pending output as possible.
733  */
734 local void flush_pending(strm)
735     z_stream *strm;
736 {
737     deflate_state *state = (deflate_state *) strm->state;
738     unsigned len = state->pending;
739 
740     if (len > strm->avail_out) len = strm->avail_out;
741     if (len == 0) return;
742 
743     if (strm->next_out != NULL) {
744 	zmemcpy(strm->next_out, state->pending_out, len);
745 	strm->next_out += len;
746     }
747     state->pending_out += len;
748     strm->total_out += len;
749     strm->avail_out -= len;
750     state->pending -= len;
751     if (state->pending == 0) {
752         state->pending_out = state->pending_buf;
753     }
754 }
755 
756 /* ========================================================================= */
757 int deflate (strm, flush)
758     z_stream *strm;
759     int flush;
760 {
761     deflate_state *state = (deflate_state *) strm->state;
762 
763     if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
764 
765     if (strm->next_in == Z_NULL && strm->avail_in != 0) {
766         ERR_RETURN(strm, Z_STREAM_ERROR);
767     }
768     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
769 
770     state->strm = strm; /* just in case */
771 
772     /* Write the zlib header */
773     if (state->status == INIT_STATE) {
774 
775         uInt header = (DEFLATED + ((state->w_bits-8)<<4)) << 8;
776         uInt level_flags = (state->level-1) >> 1;
777 
778         if (level_flags > 3) level_flags = 3;
779         header |= (level_flags << 6);
780         header += 31 - (header % 31);
781 
782         state->status = BUSY_STATE;
783         putShortMSB(state, header);
784     }
785 
786     /* Flush as much pending output as possible */
787     if (state->pending != 0) {
788         flush_pending(strm);
789         if (strm->avail_out == 0) return Z_OK;
790     }
791 
792     /* If we came back in here to get the last output from
793      * a previous flush, we're done for now.
794      */
795     if (state->status == FLUSH_STATE) {
796 	state->status = BUSY_STATE;
797 	if (flush != Z_NO_FLUSH && flush != Z_FINISH)
798 	    return Z_OK;
799     }
800 
801     /* User must not provide more input after the first FINISH: */
802     if (state->status == FINISH_STATE && strm->avail_in != 0) {
803         ERR_RETURN(strm, Z_BUF_ERROR);
804     }
805 
806     /* Start a new block or continue the current one.
807      */
808     if (strm->avail_in != 0 || state->lookahead != 0 ||
809         (flush == Z_FINISH && state->status != FINISH_STATE)) {
810         int quit;
811 
812         if (flush == Z_FINISH) {
813             state->status = FINISH_STATE;
814         }
815         if (state->level <= 3) {
816             quit = deflate_fast(state, flush);
817         } else {
818             quit = deflate_slow(state, flush);
819         }
820         if (quit || strm->avail_out == 0)
821 	    return Z_OK;
822         /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
823          * of deflate should use the same flush parameter to make sure
824          * that the flush is complete. So we don't have to output an
825          * empty block here, this will be done at next call. This also
826          * ensures that for a very small output buffer, we emit at most
827          * one empty block.
828          */
829     }
830 
831     /* If a flush was requested, we have a little more to output now. */
832     if (flush != Z_NO_FLUSH && flush != Z_FINISH
833 	&& state->status != FINISH_STATE) {
834 	switch (flush) {
835 	case Z_PARTIAL_FLUSH:
836 	    ct_align(state);
837 	    break;
838 	case Z_PACKET_FLUSH:
839 	    /* Output just the 3-bit `stored' block type value,
840 	       but not a zero length. */
841 	    ct_stored_type_only(state);
842 	    break;
843 	default:
844 	    ct_stored_block(state, (char*)0, 0L, 0);
845 	    /* For a full flush, this empty block will be recognized
846 	     * as a special marker by inflate_sync().
847 	     */
848 	    if (flush == Z_FULL_FLUSH) {
849 		CLEAR_HASH(state);             /* forget history */
850 	    }
851 	}
852 	flush_pending(strm);
853 	if (strm->avail_out == 0) {
854 	    /* We'll have to come back to get the rest of the output;
855 	     * this ensures we don't output a second zero-length stored
856 	     * block (or whatever).
857 	     */
858 	    state->status = FLUSH_STATE;
859 	    return Z_OK;
860 	}
861     }
862 
863     Assert(strm->avail_out > 0, "bug2");
864 
865     if (flush != Z_FINISH) return Z_OK;
866     if (state->noheader) return Z_STREAM_END;
867 
868     /* Write the zlib trailer (adler32) */
869     putShortMSB(state, (uInt)(state->adler >> 16));
870     putShortMSB(state, (uInt)(state->adler & 0xffff));
871     flush_pending(strm);
872     /* If avail_out is zero, the application will call deflate again
873      * to flush the rest.
874      */
875     state->noheader = -1; /* write the trailer only once! */
876     return state->pending != 0 ? Z_OK : Z_STREAM_END;
877 }
878 
879 /* ========================================================================= */
880 int deflateEnd (strm)
881     z_stream *strm;
882 {
883     deflate_state *state = (deflate_state *) strm->state;
884 
885     if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
886 
887     TRY_FREE(strm, state->window, state->w_size * 2 * sizeof(Byte));
888     TRY_FREE(strm, state->prev, state->w_size * sizeof(Pos));
889     TRY_FREE(strm, state->head, state->hash_size * sizeof(Pos));
890     TRY_FREE(strm, state->pending_buf, state->lit_bufsize * 2 * sizeof(ush));
891 
892     ZFREE(strm, state, sizeof(deflate_state));
893     strm->state = Z_NULL;
894 
895     return Z_OK;
896 }
897 
898 /* ===========================================================================
899  * Read a new buffer from the current input stream, update the adler32
900  * and total number of bytes read.
901  */
902 local int read_buf(strm, buf, size)
903     z_stream *strm;
904     charf *buf;
905     unsigned size;
906 {
907     unsigned len = strm->avail_in;
908     deflate_state *state = (deflate_state *) strm->state;
909 
910     if (len > size) len = size;
911     if (len == 0) return 0;
912 
913     strm->avail_in  -= len;
914 
915     if (!state->noheader) {
916         state->adler = adler32(state->adler, strm->next_in, len);
917     }
918     zmemcpy(buf, strm->next_in, len);
919     strm->next_in  += len;
920     strm->total_in += len;
921 
922     return (int)len;
923 }
924 
925 /* ===========================================================================
926  * Initialize the "longest match" routines for a new zlib stream
927  */
928 local void lm_init (s)
929     deflate_state *s;
930 {
931     s->window_size = (ulg)2L*s->w_size;
932 
933     CLEAR_HASH(s);
934 
935     /* Set the default configuration parameters:
936      */
937     s->max_lazy_match   = configuration_table[s->level].max_lazy;
938     s->good_match       = configuration_table[s->level].good_length;
939     s->nice_match       = configuration_table[s->level].nice_length;
940     s->max_chain_length = configuration_table[s->level].max_chain;
941 
942     s->strstart = 0;
943     s->block_start = 0L;
944     s->lookahead = 0;
945     s->match_length = MIN_MATCH-1;
946     s->match_available = 0;
947     s->ins_h = 0;
948 #ifdef ASMV
949     match_init(); /* initialize the asm code */
950 #endif
951 }
952 
953 /* ===========================================================================
954  * Set match_start to the longest match starting at the given string and
955  * return its length. Matches shorter or equal to prev_length are discarded,
956  * in which case the result is equal to prev_length and match_start is
957  * garbage.
958  * IN assertions: cur_match is the head of the hash chain for the current
959  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
960  */
961 #ifndef ASMV
962 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
963  * match.S. The code will be functionally equivalent.
964  */
965 local int longest_match(s, cur_match)
966     deflate_state *s;
967     IPos cur_match;                             /* current match */
968 {
969     unsigned chain_length = s->max_chain_length;/* max hash chain length */
970     register Bytef *scan = s->window + s->strstart; /* current string */
971     register Bytef *match;                       /* matched string */
972     register int len;                           /* length of current match */
973     int best_len = s->prev_length;              /* best match length so far */
974     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
975         s->strstart - (IPos)MAX_DIST(s) : NIL;
976     /* Stop when cur_match becomes <= limit. To simplify the code,
977      * we prevent matches with the string of window index 0.
978      */
979     Posf *prev = s->prev;
980     uInt wmask = s->w_mask;
981 
982 #ifdef UNALIGNED_OK
983     /* Compare two bytes at a time. Note: this is not always beneficial.
984      * Try with and without -DUNALIGNED_OK to check.
985      */
986     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
987     register ush scan_start = *(ushf*)scan;
988     register ush scan_end   = *(ushf*)(scan+best_len-1);
989 #else
990     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
991     register Byte scan_end1  = scan[best_len-1];
992     register Byte scan_end   = scan[best_len];
993 #endif
994 
995     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
996      * It is easy to get rid of this optimization if necessary.
997      */
998     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
999 
1000     /* Do not waste too much time if we already have a good match: */
1001     if (s->prev_length >= s->good_match) {
1002         chain_length >>= 2;
1003     }
1004     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1005 
1006     do {
1007         Assert(cur_match < s->strstart, "no future");
1008         match = s->window + cur_match;
1009 
1010         /* Skip to next match if the match length cannot increase
1011          * or if the match length is less than 2:
1012          */
1013 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1014         /* This code assumes sizeof(unsigned short) == 2. Do not use
1015          * UNALIGNED_OK if your compiler uses a different size.
1016          */
1017         if (*(ushf*)(match+best_len-1) != scan_end ||
1018             *(ushf*)match != scan_start) continue;
1019 
1020         /* It is not necessary to compare scan[2] and match[2] since they are
1021          * always equal when the other bytes match, given that the hash keys
1022          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1023          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1024          * lookahead only every 4th comparison; the 128th check will be made
1025          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1026          * necessary to put more guard bytes at the end of the window, or
1027          * to check more often for insufficient lookahead.
1028          */
1029         Assert(scan[2] == match[2], "scan[2]?");
1030         scan++, match++;
1031         do {
1032         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1033                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1034                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1035                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1036                  scan < strend);
1037         /* The funny "do {}" generates better code on most compilers */
1038 
1039         /* Here, scan <= window+strstart+257 */
1040         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1041         if (*scan == *match) scan++;
1042 
1043         len = (MAX_MATCH - 1) - (int)(strend-scan);
1044         scan = strend - (MAX_MATCH-1);
1045 
1046 #else /* UNALIGNED_OK */
1047 
1048         if (match[best_len]   != scan_end  ||
1049             match[best_len-1] != scan_end1 ||
1050             *match            != *scan     ||
1051             *++match          != scan[1])      continue;
1052 
1053         /* The check at best_len-1 can be removed because it will be made
1054          * again later. (This heuristic is not always a win.)
1055          * It is not necessary to compare scan[2] and match[2] since they
1056          * are always equal when the other bytes match, given that
1057          * the hash keys are equal and that HASH_BITS >= 8.
1058          */
1059         scan += 2, match++;
1060         Assert(*scan == *match, "match[2]?");
1061 
1062         /* We check for insufficient lookahead only every 8th comparison;
1063          * the 256th check will be made at strstart+258.
1064          */
1065         do {
1066         } while (*++scan == *++match && *++scan == *++match &&
1067                  *++scan == *++match && *++scan == *++match &&
1068                  *++scan == *++match && *++scan == *++match &&
1069                  *++scan == *++match && *++scan == *++match &&
1070                  scan < strend);
1071 
1072         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1073 
1074         len = MAX_MATCH - (int)(strend - scan);
1075         scan = strend - MAX_MATCH;
1076 
1077 #endif /* UNALIGNED_OK */
1078 
1079         if (len > best_len) {
1080             s->match_start = cur_match;
1081             best_len = len;
1082             if (len >= s->nice_match) break;
1083 #ifdef UNALIGNED_OK
1084             scan_end = *(ushf*)(scan+best_len-1);
1085 #else
1086             scan_end1  = scan[best_len-1];
1087             scan_end   = scan[best_len];
1088 #endif
1089         }
1090     } while ((cur_match = prev[cur_match & wmask]) > limit
1091              && --chain_length != 0);
1092 
1093     return best_len;
1094 }
1095 #endif /* ASMV */
1096 
1097 #ifdef DEBUG_ZLIB
1098 /* ===========================================================================
1099  * Check that the match at match_start is indeed a match.
1100  */
1101 local void check_match(s, start, match, length)
1102     deflate_state *s;
1103     IPos start, match;
1104     int length;
1105 {
1106     /* check that the match is indeed a match */
1107     if (memcmp((charf *)s->window + match,
1108                 (charf *)s->window + start, length) != EQUAL) {
1109         fprintf(stderr,
1110             " start %u, match %u, length %d\n",
1111             start, match, length);
1112         do { fprintf(stderr, "%c%c", s->window[match++],
1113                      s->window[start++]); } while (--length != 0);
1114         z_error("invalid match");
1115     }
1116     if (verbose > 1) {
1117         fprintf(stderr,"\\[%d,%d]", start-match, length);
1118         do { putc(s->window[start++], stderr); } while (--length != 0);
1119     }
1120 }
1121 #else
1122 #  define check_match(s, start, match, length)
1123 #endif
1124 
1125 /* ===========================================================================
1126  * Fill the window when the lookahead becomes insufficient.
1127  * Updates strstart and lookahead.
1128  *
1129  * IN assertion: lookahead < MIN_LOOKAHEAD
1130  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1131  *    At least one byte has been read, or avail_in == 0; reads are
1132  *    performed for at least two bytes (required for the zip translate_eol
1133  *    option -- not supported here).
1134  */
1135 local void fill_window(s)
1136     deflate_state *s;
1137 {
1138     register unsigned n, m;
1139     register Posf *p;
1140     unsigned more;    /* Amount of free space at the end of the window. */
1141     uInt wsize = s->w_size;
1142 
1143     do {
1144         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1145 
1146         /* Deal with !@#$% 64K limit: */
1147         if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1148             more = wsize;
1149         } else if (more == (unsigned)(-1)) {
1150             /* Very unlikely, but possible on 16 bit machine if strstart == 0
1151              * and lookahead == 1 (input done one byte at time)
1152              */
1153             more--;
1154 
1155         /* If the window is almost full and there is insufficient lookahead,
1156          * move the upper half to the lower one to make room in the upper half.
1157          */
1158         } else if (s->strstart >= wsize+MAX_DIST(s)) {
1159 
1160             /* By the IN assertion, the window is not empty so we can't confuse
1161              * more == 0 with more == 64K on a 16 bit machine.
1162              */
1163             zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1164                    (unsigned)wsize);
1165             s->match_start -= wsize;
1166             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1167 
1168             s->block_start -= (long) wsize;
1169 
1170             /* Slide the hash table (could be avoided with 32 bit values
1171                at the expense of memory usage):
1172              */
1173             n = s->hash_size;
1174             p = &s->head[n];
1175             do {
1176                 m = *--p;
1177                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1178             } while (--n);
1179 
1180             n = wsize;
1181             p = &s->prev[n];
1182             do {
1183                 m = *--p;
1184                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1185                 /* If n is not on any hash chain, prev[n] is garbage but
1186                  * its value will never be used.
1187                  */
1188             } while (--n);
1189 
1190             more += wsize;
1191         }
1192         if (s->strm->avail_in == 0) return;
1193 
1194         /* If there was no sliding:
1195          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1196          *    more == window_size - lookahead - strstart
1197          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1198          * => more >= window_size - 2*WSIZE + 2
1199          * In the BIG_MEM or MMAP case (not yet supported),
1200          *   window_size == input_size + MIN_LOOKAHEAD  &&
1201          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1202          * Otherwise, window_size == 2*WSIZE so more >= 2.
1203          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1204          */
1205         Assert(more >= 2, "more < 2");
1206 
1207         n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1208                      more);
1209         s->lookahead += n;
1210 
1211         /* Initialize the hash value now that we have some input: */
1212         if (s->lookahead >= MIN_MATCH) {
1213             s->ins_h = s->window[s->strstart];
1214             UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1215 #if MIN_MATCH != 3
1216             Call UPDATE_HASH() MIN_MATCH-3 more times
1217 #endif
1218         }
1219         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1220          * but this is not important since only literal bytes will be emitted.
1221          */
1222 
1223     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1224 }
1225 
1226 /* ===========================================================================
1227  * Flush the current block, with given end-of-file flag.
1228  * IN assertion: strstart is set to the end of the current match.
1229  */
1230 #define FLUSH_BLOCK_ONLY(s, flush) { \
1231    ct_flush_block(s, (s->block_start >= 0L ? \
1232            (charf *)&s->window[(unsigned)s->block_start] : \
1233            (charf *)Z_NULL), (long)s->strstart - s->block_start, (flush)); \
1234    s->block_start = s->strstart; \
1235    flush_pending(s->strm); \
1236    Tracev((stderr,"[FLUSH]")); \
1237 }
1238 
1239 /* Same but force premature exit if necessary. */
1240 #define FLUSH_BLOCK(s, flush) { \
1241    FLUSH_BLOCK_ONLY(s, flush); \
1242    if (s->strm->avail_out == 0) return 1; \
1243 }
1244 
1245 /* ===========================================================================
1246  * Compress as much as possible from the input stream, return true if
1247  * processing was terminated prematurely (no more input or output space).
1248  * This function does not perform lazy evaluationof matches and inserts
1249  * new strings in the dictionary only for unmatched strings or for short
1250  * matches. It is used only for the fast compression options.
1251  */
1252 local int deflate_fast(s, flush)
1253     deflate_state *s;
1254     int flush;
1255 {
1256     IPos hash_head = NIL; /* head of the hash chain */
1257     int bflush;     /* set if current block must be flushed */
1258 
1259     s->prev_length = MIN_MATCH-1;
1260 
1261     for (;;) {
1262         /* Make sure that we always have enough lookahead, except
1263          * at the end of the input file. We need MAX_MATCH bytes
1264          * for the next match, plus MIN_MATCH bytes to insert the
1265          * string following the next match.
1266          */
1267         if (s->lookahead < MIN_LOOKAHEAD) {
1268             fill_window(s);
1269             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
1270 
1271             if (s->lookahead == 0) break; /* flush the current block */
1272         }
1273 
1274         /* Insert the string window[strstart .. strstart+2] in the
1275          * dictionary, and set hash_head to the head of the hash chain:
1276          */
1277         if (s->lookahead >= MIN_MATCH) {
1278             INSERT_STRING(s, s->strstart, hash_head);
1279         }
1280 
1281         /* Find the longest match, discarding those <= prev_length.
1282          * At this point we have always match_length < MIN_MATCH
1283          */
1284         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1285             /* To simplify the code, we prevent matches with the string
1286              * of window index 0 (in particular we have to avoid a match
1287              * of the string with itself at the start of the input file).
1288              */
1289             if (s->strategy != Z_HUFFMAN_ONLY) {
1290                 s->match_length = longest_match (s, hash_head);
1291             }
1292             /* longest_match() sets match_start */
1293 
1294             if (s->match_length > s->lookahead) s->match_length = s->lookahead;
1295         }
1296         if (s->match_length >= MIN_MATCH) {
1297             check_match(s, s->strstart, s->match_start, s->match_length);
1298 
1299             bflush = ct_tally(s, s->strstart - s->match_start,
1300                               s->match_length - MIN_MATCH);
1301 
1302             s->lookahead -= s->match_length;
1303 
1304             /* Insert new strings in the hash table only if the match length
1305              * is not too large. This saves time but degrades compression.
1306              */
1307             if (s->match_length <= s->max_insert_length &&
1308                 s->lookahead >= MIN_MATCH) {
1309                 s->match_length--; /* string at strstart already in hash table */
1310                 do {
1311                     s->strstart++;
1312                     INSERT_STRING(s, s->strstart, hash_head);
1313                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1314                      * always MIN_MATCH bytes ahead.
1315                      */
1316                 } while (--s->match_length != 0);
1317                 s->strstart++;
1318             } else {
1319                 s->strstart += s->match_length;
1320                 s->match_length = 0;
1321                 s->ins_h = s->window[s->strstart];
1322                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1323 #if MIN_MATCH != 3
1324                 Call UPDATE_HASH() MIN_MATCH-3 more times
1325 #endif
1326                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1327                  * matter since it will be recomputed at next deflate call.
1328                  */
1329             }
1330         } else {
1331             /* No match, output a literal byte */
1332             Tracevv((stderr,"%c", s->window[s->strstart]));
1333             bflush = ct_tally (s, 0, s->window[s->strstart]);
1334             s->lookahead--;
1335             s->strstart++;
1336         }
1337         if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
1338     }
1339     FLUSH_BLOCK(s, flush);
1340     return 0; /* normal exit */
1341 }
1342 
1343 /* ===========================================================================
1344  * Same as above, but achieves better compression. We use a lazy
1345  * evaluation for matches: a match is finally adopted only if there is
1346  * no better match at the next window position.
1347  */
1348 local int deflate_slow(s, flush)
1349     deflate_state *s;
1350     int flush;
1351 {
1352     IPos hash_head = NIL;    /* head of hash chain */
1353     int bflush;              /* set if current block must be flushed */
1354 
1355     /* Process the input block. */
1356     for (;;) {
1357         /* Make sure that we always have enough lookahead, except
1358          * at the end of the input file. We need MAX_MATCH bytes
1359          * for the next match, plus MIN_MATCH bytes to insert the
1360          * string following the next match.
1361          */
1362         if (s->lookahead < MIN_LOOKAHEAD) {
1363             fill_window(s);
1364             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
1365 
1366             if (s->lookahead == 0) break; /* flush the current block */
1367         }
1368 
1369         /* Insert the string window[strstart .. strstart+2] in the
1370          * dictionary, and set hash_head to the head of the hash chain:
1371          */
1372         if (s->lookahead >= MIN_MATCH) {
1373             INSERT_STRING(s, s->strstart, hash_head);
1374         }
1375 
1376         /* Find the longest match, discarding those <= prev_length.
1377          */
1378         s->prev_length = s->match_length, s->prev_match = s->match_start;
1379         s->match_length = MIN_MATCH-1;
1380 
1381         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1382             s->strstart - hash_head <= MAX_DIST(s)) {
1383             /* To simplify the code, we prevent matches with the string
1384              * of window index 0 (in particular we have to avoid a match
1385              * of the string with itself at the start of the input file).
1386              */
1387             if (s->strategy != Z_HUFFMAN_ONLY) {
1388                 s->match_length = longest_match (s, hash_head);
1389             }
1390             /* longest_match() sets match_start */
1391             if (s->match_length > s->lookahead) s->match_length = s->lookahead;
1392 
1393             if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1394                  (s->match_length == MIN_MATCH &&
1395                   s->strstart - s->match_start > TOO_FAR))) {
1396 
1397                 /* If prev_match is also MIN_MATCH, match_start is garbage
1398                  * but we will ignore the current match anyway.
1399                  */
1400                 s->match_length = MIN_MATCH-1;
1401             }
1402         }
1403         /* If there was a match at the previous step and the current
1404          * match is not better, output the previous match:
1405          */
1406         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1407             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1408             /* Do not insert strings in hash table beyond this. */
1409 
1410             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1411 
1412             bflush = ct_tally(s, s->strstart -1 - s->prev_match,
1413                               s->prev_length - MIN_MATCH);
1414 
1415             /* Insert in hash table all strings up to the end of the match.
1416              * strstart-1 and strstart are already inserted. If there is not
1417              * enough lookahead, the last two strings are not inserted in
1418              * the hash table.
1419              */
1420             s->lookahead -= s->prev_length-1;
1421             s->prev_length -= 2;
1422             do {
1423                 if (++s->strstart <= max_insert) {
1424                     INSERT_STRING(s, s->strstart, hash_head);
1425                 }
1426             } while (--s->prev_length != 0);
1427             s->match_available = 0;
1428             s->match_length = MIN_MATCH-1;
1429             s->strstart++;
1430 
1431             if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
1432 
1433         } else if (s->match_available) {
1434             /* If there was no match at the previous position, output a
1435              * single literal. If there was a match but the current match
1436              * is longer, truncate the previous match to a single literal.
1437              */
1438             Tracevv((stderr,"%c", s->window[s->strstart-1]));
1439             if (ct_tally (s, 0, s->window[s->strstart-1])) {
1440                 FLUSH_BLOCK_ONLY(s, Z_NO_FLUSH);
1441             }
1442             s->strstart++;
1443             s->lookahead--;
1444             if (s->strm->avail_out == 0) return 1;
1445         } else {
1446             /* There is no previous match to compare with, wait for
1447              * the next step to decide.
1448              */
1449             s->match_available = 1;
1450             s->strstart++;
1451             s->lookahead--;
1452         }
1453     }
1454     Assert (flush != Z_NO_FLUSH, "no flush?");
1455     if (s->match_available) {
1456         Tracevv((stderr,"%c", s->window[s->strstart-1]));
1457         ct_tally (s, 0, s->window[s->strstart-1]);
1458         s->match_available = 0;
1459     }
1460     FLUSH_BLOCK(s, flush);
1461     return 0;
1462 }
1463 
1464 
1465 /*+++++*/
1466 /* trees.c -- output deflated data using Huffman coding
1467  * Copyright (C) 1995 Jean-loup Gailly
1468  * For conditions of distribution and use, see copyright notice in zlib.h
1469  */
1470 
1471 /*
1472  *  ALGORITHM
1473  *
1474  *      The "deflation" process uses several Huffman trees. The more
1475  *      common source values are represented by shorter bit sequences.
1476  *
1477  *      Each code tree is stored in a compressed form which is itself
1478  * a Huffman encoding of the lengths of all the code strings (in
1479  * ascending order by source values).  The actual code strings are
1480  * reconstructed from the lengths in the inflate process, as described
1481  * in the deflate specification.
1482  *
1483  *  REFERENCES
1484  *
1485  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1486  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1487  *
1488  *      Storer, James A.
1489  *          Data Compression:  Methods and Theory, pp. 49-50.
1490  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
1491  *
1492  *      Sedgewick, R.
1493  *          Algorithms, p290.
1494  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
1495  */
1496 
1497 /* From: trees.c,v 1.5 1995/05/03 17:27:12 jloup Exp */
1498 
1499 #ifdef DEBUG_ZLIB
1500 #  include <ctype.h>
1501 #endif
1502 
1503 /* ===========================================================================
1504  * Constants
1505  */
1506 
1507 #define MAX_BL_BITS 7
1508 /* Bit length codes must not exceed MAX_BL_BITS bits */
1509 
1510 #define END_BLOCK 256
1511 /* end of block literal code */
1512 
1513 #define REP_3_6      16
1514 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
1515 
1516 #define REPZ_3_10    17
1517 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
1518 
1519 #define REPZ_11_138  18
1520 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
1521 
1522 local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1523    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1524 
1525 local int extra_dbits[D_CODES] /* extra bits for each distance code */
1526    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1527 
1528 local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1529    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1530 
1531 local uch bl_order[BL_CODES]
1532    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1533 /* The lengths of the bit length codes are sent in order of decreasing
1534  * probability, to avoid transmitting the lengths for unused bit length codes.
1535  */
1536 
1537 #define Buf_size (8 * 2*sizeof(char))
1538 /* Number of bits used within bi_buf. (bi_buf might be implemented on
1539  * more than 16 bits on some systems.)
1540  */
1541 
1542 /* ===========================================================================
1543  * Local data. These are initialized only once.
1544  * To do: initialize at compile time to be completely reentrant. ???
1545  */
1546 
1547 local ct_data static_ltree[L_CODES+2];
1548 /* The static literal tree. Since the bit lengths are imposed, there is no
1549  * need for the L_CODES extra codes used during heap construction. However
1550  * The codes 286 and 287 are needed to build a canonical tree (see ct_init
1551  * below).
1552  */
1553 
1554 local ct_data static_dtree[D_CODES];
1555 /* The static distance tree. (Actually a trivial tree since all codes use
1556  * 5 bits.)
1557  */
1558 
1559 local uch dist_code[512];
1560 /* distance codes. The first 256 values correspond to the distances
1561  * 3 .. 258, the last 256 values correspond to the top 8 bits of
1562  * the 15 bit distances.
1563  */
1564 
1565 local uch length_code[MAX_MATCH-MIN_MATCH+1];
1566 /* length code for each normalized match length (0 == MIN_MATCH) */
1567 
1568 local int base_length[LENGTH_CODES];
1569 /* First normalized length for each code (0 = MIN_MATCH) */
1570 
1571 local int base_dist[D_CODES];
1572 /* First normalized distance for each code (0 = distance of 1) */
1573 
1574 struct static_tree_desc_s {
1575     ct_data *static_tree;        /* static tree or NULL */
1576     intf    *extra_bits;         /* extra bits for each code or NULL */
1577     int     extra_base;          /* base index for extra_bits */
1578     int     elems;               /* max number of elements in the tree */
1579     int     max_length;          /* max bit length for the codes */
1580 };
1581 
1582 local static_tree_desc  static_l_desc =
1583 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1584 
1585 local static_tree_desc  static_d_desc =
1586 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
1587 
1588 local static_tree_desc  static_bl_desc =
1589 {(ct_data *)0, extra_blbits, 0,      BL_CODES, MAX_BL_BITS};
1590 
1591 /* ===========================================================================
1592  * Local (static) routines in this file.
1593  */
1594 
1595 local void ct_static_init OF((void));
1596 local void init_block     OF((deflate_state *s));
1597 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
1598 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
1599 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
1600 local void build_tree     OF((deflate_state *s, tree_desc *desc));
1601 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1602 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1603 local int  build_bl_tree  OF((deflate_state *s));
1604 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1605                               int blcodes));
1606 local void compress_block OF((deflate_state *s, ct_data *ltree,
1607                               ct_data *dtree));
1608 local void set_data_type  OF((deflate_state *s));
1609 local unsigned bi_reverse OF((unsigned value, int length));
1610 local void bi_windup      OF((deflate_state *s));
1611 local void bi_flush       OF((deflate_state *s));
1612 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
1613                               int header));
1614 
1615 #ifndef DEBUG_ZLIB
1616 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1617    /* Send a code of the given tree. c and tree must not have side effects */
1618 
1619 #else /* DEBUG_ZLIB */
1620 #  define send_code(s, c, tree) \
1621      { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \
1622        send_bits(s, tree[c].Code, tree[c].Len); }
1623 #endif
1624 
1625 #define d_code(dist) \
1626    ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1627 /* Mapping from a distance to a distance code. dist is the distance - 1 and
1628  * must not have side effects. dist_code[256] and dist_code[257] are never
1629  * used.
1630  */
1631 
1632 /* ===========================================================================
1633  * Output a short LSB first on the stream.
1634  * IN assertion: there is enough room in pendingBuf.
1635  */
1636 #define put_short(s, w) { \
1637     put_byte(s, (uch)((w) & 0xff)); \
1638     put_byte(s, (uch)((ush)(w) >> 8)); \
1639 }
1640 
1641 /* ===========================================================================
1642  * Send a value on a given number of bits.
1643  * IN assertion: length <= 16 and value fits in length bits.
1644  */
1645 #ifdef DEBUG_ZLIB
1646 local void send_bits      OF((deflate_state *s, int value, int length));
1647 
1648 local void send_bits(s, value, length)
1649     deflate_state *s;
1650     int value;  /* value to send */
1651     int length; /* number of bits */
1652 {
1653     Tracev((stderr," l %2d v %4x ", length, value));
1654     Assert(length > 0 && length <= 15, "invalid length");
1655     s->bits_sent += (ulg)length;
1656 
1657     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
1658      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
1659      * unused bits in value.
1660      */
1661     if (s->bi_valid > (int)Buf_size - length) {
1662         s->bi_buf |= (value << s->bi_valid);
1663         put_short(s, s->bi_buf);
1664         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
1665         s->bi_valid += length - Buf_size;
1666     } else {
1667         s->bi_buf |= value << s->bi_valid;
1668         s->bi_valid += length;
1669     }
1670 }
1671 #else /* !DEBUG_ZLIB */
1672 
1673 #define send_bits(s, value, length) \
1674 { int len = length;\
1675   if (s->bi_valid > (int)Buf_size - len) {\
1676     int val = value;\
1677     s->bi_buf |= (val << s->bi_valid);\
1678     put_short(s, s->bi_buf);\
1679     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
1680     s->bi_valid += len - Buf_size;\
1681   } else {\
1682     s->bi_buf |= (value) << s->bi_valid;\
1683     s->bi_valid += len;\
1684   }\
1685 }
1686 #endif /* DEBUG_ZLIB */
1687 
1688 
1689 #define MAX(a,b) (a >= b ? a : b)
1690 /* the arguments must not have side effects */
1691 
1692 /* ===========================================================================
1693  * Initialize the various 'constant' tables.
1694  * To do: do this at compile time.
1695  */
1696 local void ct_static_init()
1697 {
1698     int n;        /* iterates over tree elements */
1699     int bits;     /* bit counter */
1700     int length;   /* length value */
1701     int code;     /* code value */
1702     int dist;     /* distance index */
1703     ush bl_count[MAX_BITS+1];
1704     /* number of codes at each bit length for an optimal tree */
1705 
1706     /* Initialize the mapping length (0..255) -> length code (0..28) */
1707     length = 0;
1708     for (code = 0; code < LENGTH_CODES-1; code++) {
1709         base_length[code] = length;
1710         for (n = 0; n < (1<<extra_lbits[code]); n++) {
1711             length_code[length++] = (uch)code;
1712         }
1713     }
1714     Assert (length == 256, "ct_static_init: length != 256");
1715     /* Note that the length 255 (match length 258) can be represented
1716      * in two different ways: code 284 + 5 bits or code 285, so we
1717      * overwrite length_code[255] to use the best encoding:
1718      */
1719     length_code[length-1] = (uch)code;
1720 
1721     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1722     dist = 0;
1723     for (code = 0 ; code < 16; code++) {
1724         base_dist[code] = dist;
1725         for (n = 0; n < (1<<extra_dbits[code]); n++) {
1726             dist_code[dist++] = (uch)code;
1727         }
1728     }
1729     Assert (dist == 256, "ct_static_init: dist != 256");
1730     dist >>= 7; /* from now on, all distances are divided by 128 */
1731     for ( ; code < D_CODES; code++) {
1732         base_dist[code] = dist << 7;
1733         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
1734             dist_code[256 + dist++] = (uch)code;
1735         }
1736     }
1737     Assert (dist == 256, "ct_static_init: 256+dist != 512");
1738 
1739     /* Construct the codes of the static literal tree */
1740     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
1741     n = 0;
1742     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
1743     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
1744     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
1745     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
1746     /* Codes 286 and 287 do not exist, but we must include them in the
1747      * tree construction to get a canonical Huffman tree (longest code
1748      * all ones)
1749      */
1750     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
1751 
1752     /* The static distance tree is trivial: */
1753     for (n = 0; n < D_CODES; n++) {
1754         static_dtree[n].Len = 5;
1755         static_dtree[n].Code = bi_reverse(n, 5);
1756     }
1757 }
1758 
1759 /* ===========================================================================
1760  * Initialize the tree data structures for a new zlib stream.
1761  */
1762 local void ct_init(s)
1763     deflate_state *s;
1764 {
1765     if (static_dtree[0].Len == 0) {
1766         ct_static_init();              /* To do: at compile time */
1767     }
1768 
1769     s->compressed_len = 0L;
1770 
1771     s->l_desc.dyn_tree = s->dyn_ltree;
1772     s->l_desc.stat_desc = &static_l_desc;
1773 
1774     s->d_desc.dyn_tree = s->dyn_dtree;
1775     s->d_desc.stat_desc = &static_d_desc;
1776 
1777     s->bl_desc.dyn_tree = s->bl_tree;
1778     s->bl_desc.stat_desc = &static_bl_desc;
1779 
1780     s->bi_buf = 0;
1781     s->bi_valid = 0;
1782     s->last_eob_len = 8; /* enough lookahead for inflate */
1783 #ifdef DEBUG_ZLIB
1784     s->bits_sent = 0L;
1785 #endif
1786     s->blocks_in_packet = 0;
1787 
1788     /* Initialize the first block of the first file: */
1789     init_block(s);
1790 }
1791 
1792 /* ===========================================================================
1793  * Initialize a new block.
1794  */
1795 local void init_block(s)
1796     deflate_state *s;
1797 {
1798     int n; /* iterates over tree elements */
1799 
1800     /* Initialize the trees. */
1801     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
1802     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
1803     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
1804 
1805     s->dyn_ltree[END_BLOCK].Freq = 1;
1806     s->opt_len = s->static_len = 0L;
1807     s->last_lit = s->matches = 0;
1808 }
1809 
1810 #define SMALLEST 1
1811 /* Index within the heap array of least frequent node in the Huffman tree */
1812 
1813 
1814 /* ===========================================================================
1815  * Remove the smallest element from the heap and recreate the heap with
1816  * one less element. Updates heap and heap_len.
1817  */
1818 #define pqremove(s, tree, top) \
1819 {\
1820     top = s->heap[SMALLEST]; \
1821     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
1822     pqdownheap(s, tree, SMALLEST); \
1823 }
1824 
1825 /* ===========================================================================
1826  * Compares to subtrees, using the tree depth as tie breaker when
1827  * the subtrees have equal frequency. This minimizes the worst case length.
1828  */
1829 #define smaller(tree, n, m, depth) \
1830    (tree[n].Freq < tree[m].Freq || \
1831    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
1832 
1833 /* ===========================================================================
1834  * Restore the heap property by moving down the tree starting at node k,
1835  * exchanging a node with the smallest of its two sons if necessary, stopping
1836  * when the heap property is re-established (each father smaller than its
1837  * two sons).
1838  */
1839 local void pqdownheap(s, tree, k)
1840     deflate_state *s;
1841     ct_data *tree;  /* the tree to restore */
1842     int k;               /* node to move down */
1843 {
1844     int v = s->heap[k];
1845     int j = k << 1;  /* left son of k */
1846     while (j <= s->heap_len) {
1847         /* Set j to the smallest of the two sons: */
1848         if (j < s->heap_len &&
1849             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
1850             j++;
1851         }
1852         /* Exit if v is smaller than both sons */
1853         if (smaller(tree, v, s->heap[j], s->depth)) break;
1854 
1855         /* Exchange v with the smallest son */
1856         s->heap[k] = s->heap[j];  k = j;
1857 
1858         /* And continue down the tree, setting j to the left son of k */
1859         j <<= 1;
1860     }
1861     s->heap[k] = v;
1862 }
1863 
1864 /* ===========================================================================
1865  * Compute the optimal bit lengths for a tree and update the total bit length
1866  * for the current block.
1867  * IN assertion: the fields freq and dad are set, heap[heap_max] and
1868  *    above are the tree nodes sorted by increasing frequency.
1869  * OUT assertions: the field len is set to the optimal bit length, the
1870  *     array bl_count contains the frequencies for each bit length.
1871  *     The length opt_len is updated; static_len is also updated if stree is
1872  *     not null.
1873  */
1874 local void gen_bitlen(s, desc)
1875     deflate_state *s;
1876     tree_desc *desc;    /* the tree descriptor */
1877 {
1878     ct_data *tree  = desc->dyn_tree;
1879     int max_code   = desc->max_code;
1880     ct_data *stree = desc->stat_desc->static_tree;
1881     intf *extra    = desc->stat_desc->extra_bits;
1882     int base       = desc->stat_desc->extra_base;
1883     int max_length = desc->stat_desc->max_length;
1884     int h;              /* heap index */
1885     int n, m;           /* iterate over the tree elements */
1886     int bits;           /* bit length */
1887     int xbits;          /* extra bits */
1888     ush f;              /* frequency */
1889     int overflow = 0;   /* number of elements with bit length too large */
1890 
1891     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
1892 
1893     /* In a first pass, compute the optimal bit lengths (which may
1894      * overflow in the case of the bit length tree).
1895      */
1896     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
1897 
1898     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
1899         n = s->heap[h];
1900         bits = tree[tree[n].Dad].Len + 1;
1901         if (bits > max_length) bits = max_length, overflow++;
1902         tree[n].Len = (ush)bits;
1903         /* We overwrite tree[n].Dad which is no longer needed */
1904 
1905         if (n > max_code) continue; /* not a leaf node */
1906 
1907         s->bl_count[bits]++;
1908         xbits = 0;
1909         if (n >= base) xbits = extra[n-base];
1910         f = tree[n].Freq;
1911         s->opt_len += (ulg)f * (bits + xbits);
1912         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
1913     }
1914     if (overflow == 0) return;
1915 
1916     Trace((stderr,"\nbit length overflow\n"));
1917     /* This happens for example on obj2 and pic of the Calgary corpus */
1918 
1919     /* Find the first bit length which could increase: */
1920     do {
1921         bits = max_length-1;
1922         while (s->bl_count[bits] == 0) bits--;
1923         s->bl_count[bits]--;      /* move one leaf down the tree */
1924         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
1925         s->bl_count[max_length]--;
1926         /* The brother of the overflow item also moves one step up,
1927          * but this does not affect bl_count[max_length]
1928          */
1929         overflow -= 2;
1930     } while (overflow > 0);
1931 
1932     /* Now recompute all bit lengths, scanning in increasing frequency.
1933      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1934      * lengths instead of fixing only the wrong ones. This idea is taken
1935      * from 'ar' written by Haruhiko Okumura.)
1936      */
1937     for (bits = max_length; bits != 0; bits--) {
1938         n = s->bl_count[bits];
1939         while (n != 0) {
1940             m = s->heap[--h];
1941             if (m > max_code) continue;
1942             if (tree[m].Len != (unsigned) bits) {
1943                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
1944                 s->opt_len += ((long)bits - (long)tree[m].Len)
1945                               *(long)tree[m].Freq;
1946                 tree[m].Len = (ush)bits;
1947             }
1948             n--;
1949         }
1950     }
1951 }
1952 
1953 /* ===========================================================================
1954  * Generate the codes for a given tree and bit counts (which need not be
1955  * optimal).
1956  * IN assertion: the array bl_count contains the bit length statistics for
1957  * the given tree and the field len is set for all tree elements.
1958  * OUT assertion: the field code is set for all tree elements of non
1959  *     zero code length.
1960  */
1961 local void gen_codes (tree, max_code, bl_count)
1962     ct_data *tree;             /* the tree to decorate */
1963     int max_code;              /* largest code with non zero frequency */
1964     ushf *bl_count;            /* number of codes at each bit length */
1965 {
1966     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
1967     ush code = 0;              /* running code value */
1968     int bits;                  /* bit index */
1969     int n;                     /* code index */
1970 
1971     /* The distribution counts are first used to generate the code values
1972      * without bit reversal.
1973      */
1974     for (bits = 1; bits <= MAX_BITS; bits++) {
1975         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
1976     }
1977     /* Check that the bit counts in bl_count are consistent. The last code
1978      * must be all ones.
1979      */
1980     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
1981             "inconsistent bit counts");
1982     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
1983 
1984     for (n = 0;  n <= max_code; n++) {
1985         int len = tree[n].Len;
1986         if (len == 0) continue;
1987         /* Now reverse the bits */
1988         tree[n].Code = bi_reverse(next_code[len]++, len);
1989 
1990         Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
1991              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
1992     }
1993 }
1994 
1995 /* ===========================================================================
1996  * Construct one Huffman tree and assigns the code bit strings and lengths.
1997  * Update the total bit length for the current block.
1998  * IN assertion: the field freq is set for all tree elements.
1999  * OUT assertions: the fields len and code are set to the optimal bit length
2000  *     and corresponding code. The length opt_len is updated; static_len is
2001  *     also updated if stree is not null. The field max_code is set.
2002  */
2003 local void build_tree(s, desc)
2004     deflate_state *s;
2005     tree_desc *desc; /* the tree descriptor */
2006 {
2007     ct_data *tree   = desc->dyn_tree;
2008     ct_data *stree  = desc->stat_desc->static_tree;
2009     int elems       = desc->stat_desc->elems;
2010     int n, m;          /* iterate over heap elements */
2011     int max_code = -1; /* largest code with non zero frequency */
2012     int node;          /* new node being created */
2013 
2014     /* Construct the initial heap, with least frequent element in
2015      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2016      * heap[0] is not used.
2017      */
2018     s->heap_len = 0, s->heap_max = HEAP_SIZE;
2019 
2020     for (n = 0; n < elems; n++) {
2021         if (tree[n].Freq != 0) {
2022             s->heap[++(s->heap_len)] = max_code = n;
2023             s->depth[n] = 0;
2024         } else {
2025             tree[n].Len = 0;
2026         }
2027     }
2028 
2029     /* The pkzip format requires that at least one distance code exists,
2030      * and that at least one bit should be sent even if there is only one
2031      * possible code. So to avoid special checks later on we force at least
2032      * two codes of non zero frequency.
2033      */
2034     while (s->heap_len < 2) {
2035         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2036         tree[node].Freq = 1;
2037         s->depth[node] = 0;
2038         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2039         /* node is 0 or 1 so it does not have extra bits */
2040     }
2041     desc->max_code = max_code;
2042 
2043     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2044      * establish sub-heaps of increasing lengths:
2045      */
2046     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2047 
2048     /* Construct the Huffman tree by repeatedly combining the least two
2049      * frequent nodes.
2050      */
2051     node = elems;              /* next internal node of the tree */
2052     do {
2053         pqremove(s, tree, n);  /* n = node of least frequency */
2054         m = s->heap[SMALLEST]; /* m = node of next least frequency */
2055 
2056         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2057         s->heap[--(s->heap_max)] = m;
2058 
2059         /* Create a new node father of n and m */
2060         tree[node].Freq = tree[n].Freq + tree[m].Freq;
2061         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2062         tree[n].Dad = tree[m].Dad = (ush)node;
2063 #ifdef DUMP_BL_TREE
2064         if (tree == s->bl_tree) {
2065             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2066                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2067         }
2068 #endif
2069         /* and insert the new node in the heap */
2070         s->heap[SMALLEST] = node++;
2071         pqdownheap(s, tree, SMALLEST);
2072 
2073     } while (s->heap_len >= 2);
2074 
2075     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2076 
2077     /* At this point, the fields freq and dad are set. We can now
2078      * generate the bit lengths.
2079      */
2080     gen_bitlen(s, (tree_desc *)desc);
2081 
2082     /* The field len is now set, we can generate the bit codes */
2083     gen_codes ((ct_data *)tree, max_code, s->bl_count);
2084 }
2085 
2086 /* ===========================================================================
2087  * Scan a literal or distance tree to determine the frequencies of the codes
2088  * in the bit length tree.
2089  */
2090 local void scan_tree (s, tree, max_code)
2091     deflate_state *s;
2092     ct_data *tree;   /* the tree to be scanned */
2093     int max_code;    /* and its largest code of non zero frequency */
2094 {
2095     int n;                     /* iterates over all tree elements */
2096     int prevlen = -1;          /* last emitted length */
2097     int curlen;                /* length of current code */
2098     int nextlen = tree[0].Len; /* length of next code */
2099     int count = 0;             /* repeat count of the current code */
2100     int max_count = 7;         /* max repeat count */
2101     int min_count = 4;         /* min repeat count */
2102 
2103     if (nextlen == 0) max_count = 138, min_count = 3;
2104     tree[max_code+1].Len = (ush)0xffff; /* guard */
2105 
2106     for (n = 0; n <= max_code; n++) {
2107         curlen = nextlen; nextlen = tree[n+1].Len;
2108         if (++count < max_count && curlen == nextlen) {
2109             continue;
2110         } else if (count < min_count) {
2111             s->bl_tree[curlen].Freq += count;
2112         } else if (curlen != 0) {
2113             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2114             s->bl_tree[REP_3_6].Freq++;
2115         } else if (count <= 10) {
2116             s->bl_tree[REPZ_3_10].Freq++;
2117         } else {
2118             s->bl_tree[REPZ_11_138].Freq++;
2119         }
2120         count = 0; prevlen = curlen;
2121         if (nextlen == 0) {
2122             max_count = 138, min_count = 3;
2123         } else if (curlen == nextlen) {
2124             max_count = 6, min_count = 3;
2125         } else {
2126             max_count = 7, min_count = 4;
2127         }
2128     }
2129 }
2130 
2131 /* ===========================================================================
2132  * Send a literal or distance tree in compressed form, using the codes in
2133  * bl_tree.
2134  */
2135 local void send_tree (s, tree, max_code)
2136     deflate_state *s;
2137     ct_data *tree; /* the tree to be scanned */
2138     int max_code;       /* and its largest code of non zero frequency */
2139 {
2140     int n;                     /* iterates over all tree elements */
2141     int prevlen = -1;          /* last emitted length */
2142     int curlen;                /* length of current code */
2143     int nextlen = tree[0].Len; /* length of next code */
2144     int count = 0;             /* repeat count of the current code */
2145     int max_count = 7;         /* max repeat count */
2146     int min_count = 4;         /* min repeat count */
2147 
2148     /* tree[max_code+1].Len = -1; */  /* guard already set */
2149     if (nextlen == 0) max_count = 138, min_count = 3;
2150 
2151     for (n = 0; n <= max_code; n++) {
2152         curlen = nextlen; nextlen = tree[n+1].Len;
2153         if (++count < max_count && curlen == nextlen) {
2154             continue;
2155         } else if (count < min_count) {
2156             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2157 
2158         } else if (curlen != 0) {
2159             if (curlen != prevlen) {
2160                 send_code(s, curlen, s->bl_tree); count--;
2161             }
2162             Assert(count >= 3 && count <= 6, " 3_6?");
2163             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2164 
2165         } else if (count <= 10) {
2166             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2167 
2168         } else {
2169             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2170         }
2171         count = 0; prevlen = curlen;
2172         if (nextlen == 0) {
2173             max_count = 138, min_count = 3;
2174         } else if (curlen == nextlen) {
2175             max_count = 6, min_count = 3;
2176         } else {
2177             max_count = 7, min_count = 4;
2178         }
2179     }
2180 }
2181 
2182 /* ===========================================================================
2183  * Construct the Huffman tree for the bit lengths and return the index in
2184  * bl_order of the last bit length code to send.
2185  */
2186 local int build_bl_tree(s)
2187     deflate_state *s;
2188 {
2189     int max_blindex;  /* index of last bit length code of non zero freq */
2190 
2191     /* Determine the bit length frequencies for literal and distance trees */
2192     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2193     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2194 
2195     /* Build the bit length tree: */
2196     build_tree(s, (tree_desc *)(&(s->bl_desc)));
2197     /* opt_len now includes the length of the tree representations, except
2198      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2199      */
2200 
2201     /* Determine the number of bit length codes to send. The pkzip format
2202      * requires that at least 4 bit length codes be sent. (appnote.txt says
2203      * 3 but the actual value used is 4.)
2204      */
2205     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2206         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2207     }
2208     /* Update opt_len to include the bit length tree and counts */
2209     s->opt_len += 3*(max_blindex+1) + 5+5+4;
2210     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2211             s->opt_len, s->static_len));
2212 
2213     return max_blindex;
2214 }
2215 
2216 /* ===========================================================================
2217  * Send the header for a block using dynamic Huffman trees: the counts, the
2218  * lengths of the bit length codes, the literal tree and the distance tree.
2219  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2220  */
2221 local void send_all_trees(s, lcodes, dcodes, blcodes)
2222     deflate_state *s;
2223     int lcodes, dcodes, blcodes; /* number of codes for each tree */
2224 {
2225     int rank;                    /* index in bl_order */
2226 
2227     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2228     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2229             "too many codes");
2230     Tracev((stderr, "\nbl counts: "));
2231     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2232     send_bits(s, dcodes-1,   5);
2233     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
2234     for (rank = 0; rank < blcodes; rank++) {
2235         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2236         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2237     }
2238     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2239 
2240     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2241     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2242 
2243     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2244     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2245 }
2246 
2247 /* ===========================================================================
2248  * Send a stored block
2249  */
2250 local void ct_stored_block(s, buf, stored_len, eof)
2251     deflate_state *s;
2252     charf *buf;       /* input block */
2253     ulg stored_len;   /* length of input block */
2254     int eof;          /* true if this is the last block for a file */
2255 {
2256     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
2257     s->compressed_len = (s->compressed_len + 3 + 7) & ~7L;
2258     s->compressed_len += (stored_len + 4) << 3;
2259 
2260     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2261 }
2262 
2263 /* Send just the `stored block' type code without any length bytes or data.
2264  */
2265 local void ct_stored_type_only(s)
2266     deflate_state *s;
2267 {
2268     send_bits(s, (STORED_BLOCK << 1), 3);
2269     bi_windup(s);
2270     s->compressed_len = (s->compressed_len + 3) & ~7L;
2271 }
2272 
2273 
2274 /* ===========================================================================
2275  * Send one empty static block to give enough lookahead for inflate.
2276  * This takes 10 bits, of which 7 may remain in the bit buffer.
2277  * The current inflate code requires 9 bits of lookahead. If the EOB
2278  * code for the previous block was coded on 5 bits or less, inflate
2279  * may have only 5+3 bits of lookahead to decode this EOB.
2280  * (There are no problems if the previous block is stored or fixed.)
2281  */
2282 local void ct_align(s)
2283     deflate_state *s;
2284 {
2285     send_bits(s, STATIC_TREES<<1, 3);
2286     send_code(s, END_BLOCK, static_ltree);
2287     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2288     bi_flush(s);
2289     /* Of the 10 bits for the empty block, we have already sent
2290      * (10 - bi_valid) bits. The lookahead for the EOB of the previous
2291      * block was thus its length plus what we have just sent.
2292      */
2293     if (s->last_eob_len + 10 - s->bi_valid < 9) {
2294         send_bits(s, STATIC_TREES<<1, 3);
2295         send_code(s, END_BLOCK, static_ltree);
2296         s->compressed_len += 10L;
2297         bi_flush(s);
2298     }
2299     s->last_eob_len = 7;
2300 }
2301 
2302 /* ===========================================================================
2303  * Determine the best encoding for the current block: dynamic trees, static
2304  * trees or store, and output the encoded block to the zip file. This function
2305  * returns the total compressed length for the file so far.
2306  */
2307 local ulg ct_flush_block(s, buf, stored_len, flush)
2308     deflate_state *s;
2309     charf *buf;       /* input block, or NULL if too old */
2310     ulg stored_len;   /* length of input block */
2311     int flush;        /* Z_FINISH if this is the last block for a file */
2312 {
2313     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2314     int max_blindex;  /* index of last bit length code of non zero freq */
2315     int eof = flush == Z_FINISH;
2316 
2317     ++s->blocks_in_packet;
2318 
2319     /* Check if the file is ascii or binary */
2320     if (s->data_type == UNKNOWN) set_data_type(s);
2321 
2322     /* Construct the literal and distance trees */
2323     build_tree(s, (tree_desc *)(&(s->l_desc)));
2324     Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2325             s->static_len));
2326 
2327     build_tree(s, (tree_desc *)(&(s->d_desc)));
2328     Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2329             s->static_len));
2330     /* At this point, opt_len and static_len are the total bit lengths of
2331      * the compressed block data, excluding the tree representations.
2332      */
2333 
2334     /* Build the bit length tree for the above two trees, and get the index
2335      * in bl_order of the last bit length code to send.
2336      */
2337     max_blindex = build_bl_tree(s);
2338 
2339     /* Determine the best encoding. Compute first the block length in bytes */
2340     opt_lenb = (s->opt_len+3+7)>>3;
2341     static_lenb = (s->static_len+3+7)>>3;
2342 
2343     Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2344             opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2345             s->last_lit));
2346 
2347     if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2348 
2349     /* If compression failed and this is the first and last block,
2350      * and if the .zip file can be seeked (to rewrite the local header),
2351      * the whole file is transformed into a stored file:
2352      */
2353 #ifdef STORED_FILE_OK
2354 #  ifdef FORCE_STORED_FILE
2355     if (eof && compressed_len == 0L) /* force stored file */
2356 #  else
2357     if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable())
2358 #  endif
2359     {
2360         /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2361         if (buf == (charf*)0) error ("block vanished");
2362 
2363         copy_block(buf, (unsigned)stored_len, 0); /* without header */
2364         s->compressed_len = stored_len << 3;
2365         s->method = STORED;
2366     } else
2367 #endif /* STORED_FILE_OK */
2368 
2369     /* For Z_PACKET_FLUSH, if we don't achieve the required minimum
2370      * compression, and this block contains all the data since the last
2371      * time we used Z_PACKET_FLUSH, then just omit this block completely
2372      * from the output.
2373      */
2374     if (flush == Z_PACKET_FLUSH && s->blocks_in_packet == 1
2375 	&& opt_lenb > stored_len - s->minCompr) {
2376 	s->blocks_in_packet = 0;
2377 	/* output nothing */
2378     } else
2379 
2380 #ifdef FORCE_STORED
2381     if (buf != (char*)0) /* force stored block */
2382 #else
2383     if (stored_len+4 <= opt_lenb && buf != (char*)0)
2384                        /* 4: two words for the lengths */
2385 #endif
2386     {
2387         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2388          * Otherwise we can't have processed more than WSIZE input bytes since
2389          * the last block flush, because compression would have been
2390          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2391          * transform a block into a stored block.
2392          */
2393         ct_stored_block(s, buf, stored_len, eof);
2394     } else
2395 
2396 #ifdef FORCE_STATIC
2397     if (static_lenb >= 0) /* force static trees */
2398 #else
2399     if (static_lenb == opt_lenb)
2400 #endif
2401     {
2402         send_bits(s, (STATIC_TREES<<1)+eof, 3);
2403         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2404         s->compressed_len += 3 + s->static_len;
2405     } else {
2406         send_bits(s, (DYN_TREES<<1)+eof, 3);
2407         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2408                        max_blindex+1);
2409         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2410         s->compressed_len += 3 + s->opt_len;
2411     }
2412     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2413     init_block(s);
2414 
2415     if (eof) {
2416         bi_windup(s);
2417         s->compressed_len += 7;  /* align on byte boundary */
2418     }
2419     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2420            s->compressed_len-7*eof));
2421 
2422     return s->compressed_len >> 3;
2423 }
2424 
2425 /* ===========================================================================
2426  * Save the match info and tally the frequency counts. Return true if
2427  * the current block must be flushed.
2428  */
2429 local int ct_tally (s, dist, lc)
2430     deflate_state *s;
2431     int dist;  /* distance of matched string */
2432     int lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
2433 {
2434     s->d_buf[s->last_lit] = (ush)dist;
2435     s->l_buf[s->last_lit++] = (uch)lc;
2436     if (dist == 0) {
2437         /* lc is the unmatched char */
2438         s->dyn_ltree[lc].Freq++;
2439     } else {
2440         s->matches++;
2441         /* Here, lc is the match length - MIN_MATCH */
2442         dist--;             /* dist = match distance - 1 */
2443         Assert((ush)dist < (ush)MAX_DIST(s) &&
2444                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2445                (ush)d_code(dist) < (ush)D_CODES,  "ct_tally: bad match");
2446 
2447         s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2448         s->dyn_dtree[d_code(dist)].Freq++;
2449     }
2450 
2451     /* Try to guess if it is profitable to stop the current block here */
2452     if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2453         /* Compute an upper bound for the compressed length */
2454         ulg out_length = (ulg)s->last_lit*8L;
2455         ulg in_length = (ulg)s->strstart - s->block_start;
2456         int dcode;
2457         for (dcode = 0; dcode < D_CODES; dcode++) {
2458             out_length += (ulg)s->dyn_dtree[dcode].Freq *
2459                 (5L+extra_dbits[dcode]);
2460         }
2461         out_length >>= 3;
2462         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2463                s->last_lit, in_length, out_length,
2464                100L - out_length*100L/in_length));
2465         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2466     }
2467     return (s->last_lit == s->lit_bufsize-1);
2468     /* We avoid equality with lit_bufsize because of wraparound at 64K
2469      * on 16 bit machines and because stored blocks are restricted to
2470      * 64K-1 bytes.
2471      */
2472 }
2473 
2474 /* ===========================================================================
2475  * Send the block data compressed using the given Huffman trees
2476  */
2477 local void compress_block(s, ltree, dtree)
2478     deflate_state *s;
2479     ct_data *ltree; /* literal tree */
2480     ct_data *dtree; /* distance tree */
2481 {
2482     unsigned dist;      /* distance of matched string */
2483     int lc;             /* match length or unmatched char (if dist == 0) */
2484     unsigned lx = 0;    /* running index in l_buf */
2485     unsigned code;      /* the code to send */
2486     int extra;          /* number of extra bits to send */
2487 
2488     if (s->last_lit != 0) do {
2489         dist = s->d_buf[lx];
2490         lc = s->l_buf[lx++];
2491         if (dist == 0) {
2492             send_code(s, lc, ltree); /* send a literal byte */
2493             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2494         } else {
2495             /* Here, lc is the match length - MIN_MATCH */
2496             code = length_code[lc];
2497             send_code(s, code+LITERALS+1, ltree); /* send the length code */
2498             extra = extra_lbits[code];
2499             if (extra != 0) {
2500                 lc -= base_length[code];
2501                 send_bits(s, lc, extra);       /* send the extra length bits */
2502             }
2503             dist--; /* dist is now the match distance - 1 */
2504             code = d_code(dist);
2505             Assert (code < D_CODES, "bad d_code");
2506 
2507             send_code(s, code, dtree);       /* send the distance code */
2508             extra = extra_dbits[code];
2509             if (extra != 0) {
2510                 dist -= base_dist[code];
2511                 send_bits(s, dist, extra);   /* send the extra distance bits */
2512             }
2513         } /* literal or match pair ? */
2514 
2515         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2516         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2517 
2518     } while (lx < s->last_lit);
2519 
2520     send_code(s, END_BLOCK, ltree);
2521     s->last_eob_len = ltree[END_BLOCK].Len;
2522 }
2523 
2524 /* ===========================================================================
2525  * Set the data type to ASCII or Z_BINARY, using a crude approximation:
2526  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2527  * IN assertion: the fields freq of dyn_ltree are set and the total of all
2528  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2529  */
2530 local void set_data_type(s)
2531     deflate_state *s;
2532 {
2533     int n = 0;
2534     unsigned ascii_freq = 0;
2535     unsigned bin_freq = 0;
2536     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
2537     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
2538     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2539     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : ASCII);
2540 }
2541 
2542 /* ===========================================================================
2543  * Reverse the first len bits of a code, using straightforward code (a faster
2544  * method would use a table)
2545  * IN assertion: 1 <= len <= 15
2546  */
2547 local unsigned bi_reverse(code, len)
2548     unsigned code; /* the value to invert */
2549     int len;       /* its bit length */
2550 {
2551     register unsigned res = 0;
2552     do {
2553         res |= code & 1;
2554         code >>= 1, res <<= 1;
2555     } while (--len > 0);
2556     return res >> 1;
2557 }
2558 
2559 /* ===========================================================================
2560  * Flush the bit buffer, keeping at most 7 bits in it.
2561  */
2562 local void bi_flush(s)
2563     deflate_state *s;
2564 {
2565     if (s->bi_valid == 16) {
2566         put_short(s, s->bi_buf);
2567         s->bi_buf = 0;
2568         s->bi_valid = 0;
2569     } else if (s->bi_valid >= 8) {
2570         put_byte(s, (Byte)s->bi_buf);
2571         s->bi_buf >>= 8;
2572         s->bi_valid -= 8;
2573     }
2574 }
2575 
2576 /* ===========================================================================
2577  * Flush the bit buffer and align the output on a byte boundary
2578  */
2579 local void bi_windup(s)
2580     deflate_state *s;
2581 {
2582     if (s->bi_valid > 8) {
2583         put_short(s, s->bi_buf);
2584     } else if (s->bi_valid > 0) {
2585         put_byte(s, (Byte)s->bi_buf);
2586     }
2587     s->bi_buf = 0;
2588     s->bi_valid = 0;
2589 #ifdef DEBUG_ZLIB
2590     s->bits_sent = (s->bits_sent+7) & ~7;
2591 #endif
2592 }
2593 
2594 /* ===========================================================================
2595  * Copy a stored block, storing first the length and its
2596  * one's complement if requested.
2597  */
2598 local void copy_block(s, buf, len, header)
2599     deflate_state *s;
2600     charf    *buf;    /* the input data */
2601     unsigned len;     /* its length */
2602     int      header;  /* true if block header must be written */
2603 {
2604     bi_windup(s);        /* align on byte boundary */
2605     s->last_eob_len = 8; /* enough lookahead for inflate */
2606 
2607     if (header) {
2608         put_short(s, (ush)len);
2609         put_short(s, (ush)~len);
2610 #ifdef DEBUG_ZLIB
2611         s->bits_sent += 2*16;
2612 #endif
2613     }
2614 #ifdef DEBUG_ZLIB
2615     s->bits_sent += (ulg)len<<3;
2616 #endif
2617     while (len--) {
2618         put_byte(s, *buf++);
2619     }
2620 }
2621 
2622 
2623 /*+++++*/
2624 /* infblock.h -- header to use infblock.c
2625  * Copyright (C) 1995 Mark Adler
2626  * For conditions of distribution and use, see copyright notice in zlib.h
2627  */
2628 
2629 /* WARNING: this file should *not* be used by applications. It is
2630    part of the implementation of the compression library and is
2631    subject to change. Applications should only use zlib.h.
2632  */
2633 
2634 struct inflate_blocks_state;
2635 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
2636 
2637 local inflate_blocks_statef * inflate_blocks_new OF((
2638     z_stream *z,
2639     check_func c,               /* check function */
2640     uInt w));                   /* window size */
2641 
2642 local int inflate_blocks OF((
2643     inflate_blocks_statef *,
2644     z_stream *,
2645     int));                      /* initial return code */
2646 
2647 local void inflate_blocks_reset OF((
2648     inflate_blocks_statef *,
2649     z_stream *,
2650     uLongf *));                  /* check value on output */
2651 
2652 local int inflate_blocks_free OF((
2653     inflate_blocks_statef *,
2654     z_stream *,
2655     uLongf *));                  /* check value on output */
2656 
2657 local int inflate_addhistory OF((
2658     inflate_blocks_statef *,
2659     z_stream *));
2660 
2661 local int inflate_packet_flush OF((
2662     inflate_blocks_statef *));
2663 
2664 /*+++++*/
2665 /* inftrees.h -- header to use inftrees.c
2666  * Copyright (C) 1995 Mark Adler
2667  * For conditions of distribution and use, see copyright notice in zlib.h
2668  */
2669 
2670 /* WARNING: this file should *not* be used by applications. It is
2671    part of the implementation of the compression library and is
2672    subject to change. Applications should only use zlib.h.
2673  */
2674 
2675 /* Huffman code lookup table entry--this entry is four bytes for machines
2676    that have 16-bit pointers (e.g. PC's in the small or medium model). */
2677 
2678 typedef struct inflate_huft_s FAR inflate_huft;
2679 
2680 struct inflate_huft_s {
2681   union {
2682     struct {
2683       Byte Exop;        /* number of extra bits or operation */
2684       Byte Bits;        /* number of bits in this code or subcode */
2685     } what;
2686     uInt Nalloc;	/* number of these allocated here */
2687     Bytef *pad;         /* pad structure to a power of 2 (4 bytes for */
2688   } word;               /*  16-bit, 8 bytes for 32-bit machines) */
2689   union {
2690     uInt Base;          /* literal, length base, or distance base */
2691     inflate_huft *Next; /* pointer to next level of table */
2692   } more;
2693 };
2694 
2695 #ifdef DEBUG_ZLIB
2696   local uInt inflate_hufts;
2697 #endif
2698 
2699 local int inflate_trees_bits OF((
2700     uIntf *,                    /* 19 code lengths */
2701     uIntf *,                    /* bits tree desired/actual depth */
2702     inflate_huft * FAR *,       /* bits tree result */
2703     z_stream *));               /* for zalloc, zfree functions */
2704 
2705 local int inflate_trees_dynamic OF((
2706     uInt,                       /* number of literal/length codes */
2707     uInt,                       /* number of distance codes */
2708     uIntf *,                    /* that many (total) code lengths */
2709     uIntf *,                    /* literal desired/actual bit depth */
2710     uIntf *,                    /* distance desired/actual bit depth */
2711     inflate_huft * FAR *,       /* literal/length tree result */
2712     inflate_huft * FAR *,       /* distance tree result */
2713     z_stream *));               /* for zalloc, zfree functions */
2714 
2715 local int inflate_trees_fixed OF((
2716     uIntf *,                    /* literal desired/actual bit depth */
2717     uIntf *,                    /* distance desired/actual bit depth */
2718     inflate_huft * FAR *,       /* literal/length tree result */
2719     inflate_huft * FAR *));     /* distance tree result */
2720 
2721 local int inflate_trees_free OF((
2722     inflate_huft *,             /* tables to free */
2723     z_stream *));               /* for zfree function */
2724 
2725 
2726 /*+++++*/
2727 /* infcodes.h -- header to use infcodes.c
2728  * Copyright (C) 1995 Mark Adler
2729  * For conditions of distribution and use, see copyright notice in zlib.h
2730  */
2731 
2732 /* WARNING: this file should *not* be used by applications. It is
2733    part of the implementation of the compression library and is
2734    subject to change. Applications should only use zlib.h.
2735  */
2736 
2737 struct inflate_codes_state;
2738 typedef struct inflate_codes_state FAR inflate_codes_statef;
2739 
2740 local inflate_codes_statef *inflate_codes_new OF((
2741     uInt, uInt,
2742     inflate_huft *, inflate_huft *,
2743     z_stream *));
2744 
2745 local int inflate_codes OF((
2746     inflate_blocks_statef *,
2747     z_stream *,
2748     int));
2749 
2750 local void inflate_codes_free OF((
2751     inflate_codes_statef *,
2752     z_stream *));
2753 
2754 
2755 /*+++++*/
2756 /* inflate.c -- zlib interface to inflate modules
2757  * Copyright (C) 1995 Mark Adler
2758  * For conditions of distribution and use, see copyright notice in zlib.h
2759  */
2760 
2761 /* inflate private state */
2762 struct internal_state {
2763 
2764   /* mode */
2765   enum {
2766       METHOD,   /* waiting for method byte */
2767       FLAG,     /* waiting for flag byte */
2768       BLOCKS,   /* decompressing blocks */
2769       CHECK4,   /* four check bytes to go */
2770       CHECK3,   /* three check bytes to go */
2771       CHECK2,   /* two check bytes to go */
2772       CHECK1,   /* one check byte to go */
2773       DONE,     /* finished check, done */
2774       BAD}      /* got an error--stay here */
2775     mode;               /* current inflate mode */
2776 
2777   /* mode dependent information */
2778   union {
2779     uInt method;        /* if FLAGS, method byte */
2780     struct {
2781       uLong was;                /* computed check value */
2782       uLong need;               /* stream check value */
2783     } check;            /* if CHECK, check values to compare */
2784     uInt marker;        /* if BAD, inflateSync's marker bytes count */
2785   } sub;        /* submode */
2786 
2787   /* mode independent information */
2788   int  nowrap;          /* flag for no wrapper */
2789   uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
2790   inflate_blocks_statef
2791     *blocks;            /* current inflate_blocks state */
2792 
2793 };
2794 
2795 
2796 int inflateReset(z)
2797 z_stream *z;
2798 {
2799   uLong c;
2800 
2801   if (z == Z_NULL || z->state == Z_NULL)
2802     return Z_STREAM_ERROR;
2803   z->total_in = z->total_out = 0;
2804   z->msg = Z_NULL;
2805   z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
2806   inflate_blocks_reset(z->state->blocks, z, &c);
2807   Trace((stderr, "inflate: reset\n"));
2808   return Z_OK;
2809 }
2810 
2811 
2812 int inflateEnd(z)
2813 z_stream *z;
2814 {
2815   uLong c;
2816 
2817   if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
2818     return Z_STREAM_ERROR;
2819   if (z->state->blocks != Z_NULL)
2820     inflate_blocks_free(z->state->blocks, z, &c);
2821   ZFREE(z, z->state, sizeof(struct internal_state));
2822   z->state = Z_NULL;
2823   Trace((stderr, "inflate: end\n"));
2824   return Z_OK;
2825 }
2826 
2827 
2828 int inflateInit2(z, w)
2829 z_stream *z;
2830 int w;
2831 {
2832   /* initialize state */
2833   if (z == Z_NULL)
2834     return Z_STREAM_ERROR;
2835 /*  if (z->zalloc == Z_NULL) z->zalloc = zcalloc; */
2836 /*  if (z->zfree == Z_NULL) z->zfree = zcfree; */
2837   if ((z->state = (struct internal_state FAR *)
2838        ZALLOC_INIT(z,1,sizeof(struct internal_state))) == Z_NULL)
2839     return Z_MEM_ERROR;
2840   z->state->blocks = Z_NULL;
2841 
2842   /* handle undocumented nowrap option (no zlib header or check) */
2843   z->state->nowrap = 0;
2844   if (w < 0)
2845   {
2846     w = - w;
2847     z->state->nowrap = 1;
2848   }
2849 
2850   /* set window size */
2851   if (w < 8 || w > 15)
2852   {
2853     inflateEnd(z);
2854     return Z_STREAM_ERROR;
2855   }
2856   z->state->wbits = (uInt)w;
2857 
2858   /* create inflate_blocks state */
2859   if ((z->state->blocks =
2860        inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, 1 << w))
2861       == Z_NULL)
2862   {
2863     inflateEnd(z);
2864     return Z_MEM_ERROR;
2865   }
2866   Trace((stderr, "inflate: allocated\n"));
2867 
2868   /* reset state */
2869   inflateReset(z);
2870   return Z_OK;
2871 }
2872 
2873 
2874 int inflateInit(z)
2875 z_stream *z;
2876 {
2877   return inflateInit2(z, DEF_WBITS);
2878 }
2879 
2880 
2881 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
2882 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
2883 
2884 int inflate(z, f)
2885 z_stream *z;
2886 int f;
2887 {
2888   int r;
2889   uInt b;
2890 
2891   if (z == Z_NULL || z->next_in == Z_NULL)
2892     return Z_STREAM_ERROR;
2893   r = Z_BUF_ERROR;
2894   while (1) switch (z->state->mode)
2895   {
2896     case METHOD:
2897       NEEDBYTE
2898       if (((z->state->sub.method = NEXTBYTE) & 0xf) != DEFLATED)
2899       {
2900         z->state->mode = BAD;
2901         z->msg = "unknown compression method";
2902         z->state->sub.marker = 5;       /* can't try inflateSync */
2903         break;
2904       }
2905       if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
2906       {
2907         z->state->mode = BAD;
2908         z->msg = "invalid window size";
2909         z->state->sub.marker = 5;       /* can't try inflateSync */
2910         break;
2911       }
2912       z->state->mode = FLAG;
2913     case FLAG:
2914       NEEDBYTE
2915       if ((b = NEXTBYTE) & 0x20)
2916       {
2917         z->state->mode = BAD;
2918         z->msg = "invalid reserved bit";
2919         z->state->sub.marker = 5;       /* can't try inflateSync */
2920         break;
2921       }
2922       if (((z->state->sub.method << 8) + b) % 31)
2923       {
2924         z->state->mode = BAD;
2925         z->msg = "incorrect header check";
2926         z->state->sub.marker = 5;       /* can't try inflateSync */
2927         break;
2928       }
2929       Trace((stderr, "inflate: zlib header ok\n"));
2930       z->state->mode = BLOCKS;
2931     case BLOCKS:
2932       r = inflate_blocks(z->state->blocks, z, r);
2933       if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
2934 	  r = inflate_packet_flush(z->state->blocks);
2935       if (r == Z_DATA_ERROR)
2936       {
2937         z->state->mode = BAD;
2938         z->state->sub.marker = 0;       /* can try inflateSync */
2939         break;
2940       }
2941       if (r != Z_STREAM_END)
2942         return r;
2943       r = Z_OK;
2944       inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
2945       if (z->state->nowrap)
2946       {
2947         z->state->mode = DONE;
2948         break;
2949       }
2950       z->state->mode = CHECK4;
2951     case CHECK4:
2952       NEEDBYTE
2953       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
2954       z->state->mode = CHECK3;
2955     case CHECK3:
2956       NEEDBYTE
2957       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
2958       z->state->mode = CHECK2;
2959     case CHECK2:
2960       NEEDBYTE
2961       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
2962       z->state->mode = CHECK1;
2963     case CHECK1:
2964       NEEDBYTE
2965       z->state->sub.check.need += (uLong)NEXTBYTE;
2966 
2967       if (z->state->sub.check.was != z->state->sub.check.need)
2968       {
2969         z->state->mode = BAD;
2970         z->msg = "incorrect data check";
2971         z->state->sub.marker = 5;       /* can't try inflateSync */
2972         break;
2973       }
2974       Trace((stderr, "inflate: zlib check ok\n"));
2975       z->state->mode = DONE;
2976     case DONE:
2977       return Z_STREAM_END;
2978     case BAD:
2979       return Z_DATA_ERROR;
2980     default:
2981       return Z_STREAM_ERROR;
2982   }
2983 
2984  empty:
2985   if (f != Z_PACKET_FLUSH)
2986     return r;
2987   z->state->mode = BAD;
2988   z->state->sub.marker = 0;       /* can try inflateSync */
2989   return Z_DATA_ERROR;
2990 }
2991 
2992 /*
2993  * This subroutine adds the data at next_in/avail_in to the output history
2994  * without performing any output.  The output buffer must be "caught up";
2995  * i.e. no pending output (hence s->read equals s->write), and the state must
2996  * be BLOCKS (i.e. we should be willing to see the start of a series of
2997  * BLOCKS).  On exit, the output will also be caught up, and the checksum
2998  * will have been updated if need be.
2999  */
3000 
3001 int inflateIncomp(z)
3002 z_stream *z;
3003 {
3004     if (z->state->mode != BLOCKS)
3005 	return Z_DATA_ERROR;
3006     return inflate_addhistory(z->state->blocks, z);
3007 }
3008 
3009 
3010 int inflateSync(z)
3011 z_stream *z;
3012 {
3013   uInt n;       /* number of bytes to look at */
3014   Bytef *p;     /* pointer to bytes */
3015   uInt m;       /* number of marker bytes found in a row */
3016   uLong r, w;   /* temporaries to save total_in and total_out */
3017 
3018   /* set up */
3019   if (z == Z_NULL || z->state == Z_NULL)
3020     return Z_STREAM_ERROR;
3021   if (z->state->mode != BAD)
3022   {
3023     z->state->mode = BAD;
3024     z->state->sub.marker = 0;
3025   }
3026   if ((n = z->avail_in) == 0)
3027     return Z_BUF_ERROR;
3028   p = z->next_in;
3029   m = z->state->sub.marker;
3030 
3031   /* search */
3032   while (n && m < 4)
3033   {
3034     if (*p == (Byte)(m < 2 ? 0 : 0xff))
3035       m++;
3036     else if (*p)
3037       m = 0;
3038     else
3039       m = 4 - m;
3040     p++, n--;
3041   }
3042 
3043   /* restore */
3044   z->total_in += p - z->next_in;
3045   z->next_in = p;
3046   z->avail_in = n;
3047   z->state->sub.marker = m;
3048 
3049   /* return no joy or set up to restart on a new block */
3050   if (m != 4)
3051     return Z_DATA_ERROR;
3052   r = z->total_in;  w = z->total_out;
3053   inflateReset(z);
3054   z->total_in = r;  z->total_out = w;
3055   z->state->mode = BLOCKS;
3056   return Z_OK;
3057 }
3058 
3059 #undef NEEDBYTE
3060 #undef NEXTBYTE
3061 
3062 /*+++++*/
3063 /* infutil.h -- types and macros common to blocks and codes
3064  * Copyright (C) 1995 Mark Adler
3065  * For conditions of distribution and use, see copyright notice in zlib.h
3066  */
3067 
3068 /* WARNING: this file should *not* be used by applications. It is
3069    part of the implementation of the compression library and is
3070    subject to change. Applications should only use zlib.h.
3071  */
3072 
3073 /* inflate blocks semi-private state */
3074 struct inflate_blocks_state {
3075 
3076   /* mode */
3077   enum {
3078       TYPE,     /* get type bits (3, including end bit) */
3079       LENS,     /* get lengths for stored */
3080       STORED,   /* processing stored block */
3081       TABLE,    /* get table lengths */
3082       BTREE,    /* get bit lengths tree for a dynamic block */
3083       DTREE,    /* get length, distance trees for a dynamic block */
3084       CODES,    /* processing fixed or dynamic block */
3085       DRY,      /* output remaining window bytes */
3086       DONEB,     /* finished last block, done */
3087       BADB}      /* got a data error--stuck here */
3088     mode;               /* current inflate_block mode */
3089 
3090   /* mode dependent information */
3091   union {
3092     uInt left;          /* if STORED, bytes left to copy */
3093     struct {
3094       uInt table;               /* table lengths (14 bits) */
3095       uInt index;               /* index into blens (or border) */
3096       uIntf *blens;             /* bit lengths of codes */
3097       uInt bb;                  /* bit length tree depth */
3098       inflate_huft *tb;         /* bit length decoding tree */
3099       int nblens;		/* # elements allocated at blens */
3100     } trees;            /* if DTREE, decoding info for trees */
3101     struct {
3102       inflate_huft *tl, *td;    /* trees to free */
3103       inflate_codes_statef
3104          *codes;
3105     } decode;           /* if CODES, current state */
3106   } sub;                /* submode */
3107   uInt last;            /* true if this block is the last block */
3108 
3109   /* mode independent information */
3110   uInt bitk;            /* bits in bit buffer */
3111   uLong bitb;           /* bit buffer */
3112   Bytef *window;        /* sliding window */
3113   Bytef *end;           /* one byte after sliding window */
3114   Bytef *read;          /* window read pointer */
3115   Bytef *write;         /* window write pointer */
3116   check_func checkfn;   /* check function */
3117   uLong check;          /* check on output */
3118 
3119 };
3120 
3121 
3122 /* defines for inflate input/output */
3123 /*   update pointers and return */
3124 #define UPDBITS {s->bitb=b;s->bitk=k;}
3125 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3126 #define UPDOUT {s->write=q;}
3127 #define UPDATE {UPDBITS UPDIN UPDOUT}
3128 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3129 /*   get bytes and bits */
3130 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3131 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3132 #define NEXTBYTE (n--,*p++)
3133 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3134 #define DUMPBITS(j) {b>>=(j);k-=(j);}
3135 /*   output bytes */
3136 #define WAVAIL (q<s->read?s->read-q-1:s->end-q)
3137 #define LOADOUT {q=s->write;m=WAVAIL;}
3138 #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=WAVAIL;}}
3139 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3140 #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
3141 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3142 /*   load local pointers */
3143 #define LOAD {LOADIN LOADOUT}
3144 
3145 /* And'ing with mask[n] masks the lower n bits */
3146 local uInt inflate_mask[] = {
3147     0x0000,
3148     0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
3149     0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
3150 };
3151 
3152 /* copy as much as possible from the sliding window to the output area */
3153 local int inflate_flush OF((
3154     inflate_blocks_statef *,
3155     z_stream *,
3156     int));
3157 
3158 /*+++++*/
3159 /* inffast.h -- header to use inffast.c
3160  * Copyright (C) 1995 Mark Adler
3161  * For conditions of distribution and use, see copyright notice in zlib.h
3162  */
3163 
3164 /* WARNING: this file should *not* be used by applications. It is
3165    part of the implementation of the compression library and is
3166    subject to change. Applications should only use zlib.h.
3167  */
3168 
3169 local int inflate_fast OF((
3170     uInt,
3171     uInt,
3172     inflate_huft *,
3173     inflate_huft *,
3174     inflate_blocks_statef *,
3175     z_stream *));
3176 
3177 
3178 /*+++++*/
3179 /* infblock.c -- interpret and process block types to last block
3180  * Copyright (C) 1995 Mark Adler
3181  * For conditions of distribution and use, see copyright notice in zlib.h
3182  */
3183 
3184 /* Table for deflate from PKZIP's appnote.txt. */
3185 local uInt border[] = { /* Order of the bit length code lengths */
3186         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3187 
3188 /*
3189    Notes beyond the 1.93a appnote.txt:
3190 
3191    1. Distance pointers never point before the beginning of the output
3192       stream.
3193    2. Distance pointers can point back across blocks, up to 32k away.
3194    3. There is an implied maximum of 7 bits for the bit length table and
3195       15 bits for the actual data.
3196    4. If only one code exists, then it is encoded using one bit.  (Zero
3197       would be more efficient, but perhaps a little confusing.)  If two
3198       codes exist, they are coded using one bit each (0 and 1).
3199    5. There is no way of sending zero distance codes--a dummy must be
3200       sent if there are none.  (History: a pre 2.0 version of PKZIP would
3201       store blocks with no distance codes, but this was discovered to be
3202       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
3203       zero distance codes, which is sent as one code of zero bits in
3204       length.
3205    6. There are up to 286 literal/length codes.  Code 256 represents the
3206       end-of-block.  Note however that the static length tree defines
3207       288 codes just to fill out the Huffman codes.  Codes 286 and 287
3208       cannot be used though, since there is no length base or extra bits
3209       defined for them.  Similarily, there are up to 30 distance codes.
3210       However, static trees define 32 codes (all 5 bits) to fill out the
3211       Huffman codes, but the last two had better not show up in the data.
3212    7. Unzip can check dynamic Huffman blocks for complete code sets.
3213       The exception is that a single code would not be complete (see #4).
3214    8. The five bits following the block type is really the number of
3215       literal codes sent minus 257.
3216    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3217       (1+6+6).  Therefore, to output three times the length, you output
3218       three codes (1+1+1), whereas to output four times the same length,
3219       you only need two codes (1+3).  Hmm.
3220   10. In the tree reconstruction algorithm, Code = Code + Increment
3221       only if BitLength(i) is not zero.  (Pretty obvious.)
3222   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
3223   12. Note: length code 284 can represent 227-258, but length code 285
3224       really is 258.  The last length deserves its own, short code
3225       since it gets used a lot in very redundant files.  The length
3226       258 is special since 258 - 3 (the min match length) is 255.
3227   13. The literal/length and distance code bit lengths are read as a
3228       single stream of lengths.  It is possible (and advantageous) for
3229       a repeat code (16, 17, or 18) to go across the boundary between
3230       the two sets of lengths.
3231  */
3232 
3233 
3234 local void inflate_blocks_reset(s, z, c)
3235 inflate_blocks_statef *s;
3236 z_stream *z;
3237 uLongf *c;
3238 {
3239   if (s->checkfn != Z_NULL)
3240     *c = s->check;
3241   if (s->mode == BTREE || s->mode == DTREE)
3242     ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
3243   if (s->mode == CODES)
3244   {
3245     inflate_codes_free(s->sub.decode.codes, z);
3246     inflate_trees_free(s->sub.decode.td, z);
3247     inflate_trees_free(s->sub.decode.tl, z);
3248   }
3249   s->mode = TYPE;
3250   s->bitk = 0;
3251   s->bitb = 0;
3252   s->read = s->write = s->window;
3253   if (s->checkfn != Z_NULL)
3254     s->check = (*s->checkfn)(0L, Z_NULL, 0);
3255   Trace((stderr, "inflate:   blocks reset\n"));
3256 }
3257 
3258 
3259 local inflate_blocks_statef *inflate_blocks_new(z, c, w)
3260 z_stream *z;
3261 check_func c;
3262 uInt w;
3263 {
3264   inflate_blocks_statef *s;
3265 
3266   if ((s = (inflate_blocks_statef *)ZALLOC_INIT
3267        (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3268     return s;
3269   if ((s->window = (Bytef *)ZALLOC_INIT(z, 1, w)) == Z_NULL)
3270   {
3271     ZFREE(z, s, sizeof(struct inflate_blocks_state));
3272     return Z_NULL;
3273   }
3274   s->end = s->window + w;
3275   s->checkfn = c;
3276   s->mode = TYPE;
3277   Trace((stderr, "inflate:   blocks allocated\n"));
3278   inflate_blocks_reset(s, z, &s->check);
3279   return s;
3280 }
3281 
3282 
3283 local int inflate_blocks(s, z, r)
3284 inflate_blocks_statef *s;
3285 z_stream *z;
3286 int r;
3287 {
3288   uInt t;               /* temporary storage */
3289   uLong b;              /* bit buffer */
3290   uInt k;               /* bits in bit buffer */
3291   Bytef *p;             /* input data pointer */
3292   uInt n;               /* bytes available there */
3293   Bytef *q;             /* output window write pointer */
3294   uInt m;               /* bytes to end of window or read pointer */
3295 
3296   /* copy input/output information to locals (UPDATE macro restores) */
3297   LOAD
3298 
3299   /* process input based on current state */
3300   while (1) switch (s->mode)
3301   {
3302     case TYPE:
3303       NEEDBITS(3)
3304       t = (uInt)b & 7;
3305       s->last = t & 1;
3306       switch (t >> 1)
3307       {
3308         case 0:                         /* stored */
3309           Trace((stderr, "inflate:     stored block%s\n",
3310                  s->last ? " (last)" : ""));
3311           DUMPBITS(3)
3312           t = k & 7;                    /* go to byte boundary */
3313           DUMPBITS(t)
3314           s->mode = LENS;               /* get length of stored block */
3315           break;
3316         case 1:                         /* fixed */
3317           Trace((stderr, "inflate:     fixed codes block%s\n",
3318                  s->last ? " (last)" : ""));
3319           {
3320             uInt bl, bd;
3321             inflate_huft *tl, *td;
3322 
3323             inflate_trees_fixed(&bl, &bd, &tl, &td);
3324             s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3325             if (s->sub.decode.codes == Z_NULL)
3326             {
3327               r = Z_MEM_ERROR;
3328               LEAVE
3329             }
3330             s->sub.decode.tl = Z_NULL;  /* don't try to free these */
3331             s->sub.decode.td = Z_NULL;
3332           }
3333           DUMPBITS(3)
3334           s->mode = CODES;
3335           break;
3336         case 2:                         /* dynamic */
3337           Trace((stderr, "inflate:     dynamic codes block%s\n",
3338                  s->last ? " (last)" : ""));
3339           DUMPBITS(3)
3340           s->mode = TABLE;
3341           break;
3342         case 3:                         /* illegal */
3343           DUMPBITS(3)
3344           s->mode = BADB;
3345           z->msg = "invalid block type";
3346           r = Z_DATA_ERROR;
3347           LEAVE
3348       }
3349       break;
3350     case LENS:
3351       NEEDBITS(32)
3352       if (((~b) >> 16) != (b & 0xffff))
3353       {
3354         s->mode = BADB;
3355         z->msg = "invalid stored block lengths";
3356         r = Z_DATA_ERROR;
3357         LEAVE
3358       }
3359       s->sub.left = (uInt)b & 0xffff;
3360       b = k = 0;                      /* dump bits */
3361       Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
3362       s->mode = s->sub.left ? STORED : TYPE;
3363       break;
3364     case STORED:
3365       if (n == 0)
3366         LEAVE
3367       NEEDOUT
3368       t = s->sub.left;
3369       if (t > n) t = n;
3370       if (t > m) t = m;
3371       zmemcpy(q, p, t);
3372       p += t;  n -= t;
3373       q += t;  m -= t;
3374       if ((s->sub.left -= t) != 0)
3375         break;
3376       Tracev((stderr, "inflate:       stored end, %lu total out\n",
3377               z->total_out + (q >= s->read ? q - s->read :
3378               (s->end - s->read) + (q - s->window))));
3379       s->mode = s->last ? DRY : TYPE;
3380       break;
3381     case TABLE:
3382       NEEDBITS(14)
3383       s->sub.trees.table = t = (uInt)b & 0x3fff;
3384 #ifndef PKZIP_BUG_WORKAROUND
3385       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3386       {
3387         s->mode = BADB;
3388         z->msg = "too many length or distance symbols";
3389         r = Z_DATA_ERROR;
3390         LEAVE
3391       }
3392 #endif
3393       t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3394       if (t < 19)
3395         t = 19;
3396       if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3397       {
3398         r = Z_MEM_ERROR;
3399         LEAVE
3400       }
3401       s->sub.trees.nblens = t;
3402       DUMPBITS(14)
3403       s->sub.trees.index = 0;
3404       Tracev((stderr, "inflate:       table sizes ok\n"));
3405       s->mode = BTREE;
3406     case BTREE:
3407       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3408       {
3409         NEEDBITS(3)
3410         s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3411         DUMPBITS(3)
3412       }
3413       while (s->sub.trees.index < 19)
3414         s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3415       s->sub.trees.bb = 7;
3416       t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3417                              &s->sub.trees.tb, z);
3418       if (t != Z_OK)
3419       {
3420         r = t;
3421         if (r == Z_DATA_ERROR)
3422           s->mode = BADB;
3423         LEAVE
3424       }
3425       s->sub.trees.index = 0;
3426       Tracev((stderr, "inflate:       bits tree ok\n"));
3427       s->mode = DTREE;
3428     case DTREE:
3429       while (t = s->sub.trees.table,
3430              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3431       {
3432         inflate_huft *h;
3433         uInt i, j, c;
3434 
3435         t = s->sub.trees.bb;
3436         NEEDBITS(t)
3437         h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3438         t = h->word.what.Bits;
3439         c = h->more.Base;
3440         if (c < 16)
3441         {
3442           DUMPBITS(t)
3443           s->sub.trees.blens[s->sub.trees.index++] = c;
3444         }
3445         else /* c == 16..18 */
3446         {
3447           i = c == 18 ? 7 : c - 14;
3448           j = c == 18 ? 11 : 3;
3449           NEEDBITS(t + i)
3450           DUMPBITS(t)
3451           j += (uInt)b & inflate_mask[i];
3452           DUMPBITS(i)
3453           i = s->sub.trees.index;
3454           t = s->sub.trees.table;
3455           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3456               (c == 16 && i < 1))
3457           {
3458             s->mode = BADB;
3459             z->msg = "invalid bit length repeat";
3460             r = Z_DATA_ERROR;
3461             LEAVE
3462           }
3463           c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3464           do {
3465             s->sub.trees.blens[i++] = c;
3466           } while (--j);
3467           s->sub.trees.index = i;
3468         }
3469       }
3470       inflate_trees_free(s->sub.trees.tb, z);
3471       s->sub.trees.tb = Z_NULL;
3472       {
3473         uInt bl, bd;
3474         inflate_huft *tl, *td;
3475         inflate_codes_statef *c;
3476 
3477         bl = 9;         /* must be <= 9 for lookahead assumptions */
3478         bd = 6;         /* must be <= 9 for lookahead assumptions */
3479         t = s->sub.trees.table;
3480         t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3481                                   s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3482         if (t != Z_OK)
3483         {
3484           if (t == (uInt)Z_DATA_ERROR)
3485             s->mode = BADB;
3486           r = t;
3487           LEAVE
3488         }
3489         Tracev((stderr, "inflate:       trees ok\n"));
3490         if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3491         {
3492           inflate_trees_free(td, z);
3493           inflate_trees_free(tl, z);
3494           r = Z_MEM_ERROR;
3495           LEAVE
3496         }
3497         ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
3498         s->sub.decode.codes = c;
3499         s->sub.decode.tl = tl;
3500         s->sub.decode.td = td;
3501       }
3502       s->mode = CODES;
3503     case CODES:
3504       UPDATE
3505       if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3506         return inflate_flush(s, z, r);
3507       r = Z_OK;
3508       inflate_codes_free(s->sub.decode.codes, z);
3509       inflate_trees_free(s->sub.decode.td, z);
3510       inflate_trees_free(s->sub.decode.tl, z);
3511       LOAD
3512       Tracev((stderr, "inflate:       codes end, %lu total out\n",
3513               z->total_out + (q >= s->read ? q - s->read :
3514               (s->end - s->read) + (q - s->window))));
3515       if (!s->last)
3516       {
3517         s->mode = TYPE;
3518         break;
3519       }
3520       if (k > 7)              /* return unused byte, if any */
3521       {
3522         Assert(k < 16, "inflate_codes grabbed too many bytes")
3523         k -= 8;
3524         n++;
3525         p--;                    /* can always return one */
3526       }
3527       s->mode = DRY;
3528     case DRY:
3529       FLUSH
3530       if (s->read != s->write)
3531         LEAVE
3532       s->mode = DONEB;
3533     case DONEB:
3534       r = Z_STREAM_END;
3535       LEAVE
3536     case BADB:
3537       r = Z_DATA_ERROR;
3538       LEAVE
3539     default:
3540       r = Z_STREAM_ERROR;
3541       LEAVE
3542   }
3543 }
3544 
3545 
3546 local int inflate_blocks_free(s, z, c)
3547 inflate_blocks_statef *s;
3548 z_stream *z;
3549 uLongf *c;
3550 {
3551   inflate_blocks_reset(s, z, c);
3552   ZFREE(z, s->window, s->end - s->window);
3553   ZFREE(z, s, sizeof(struct inflate_blocks_state));
3554   Trace((stderr, "inflate:   blocks freed\n"));
3555   return Z_OK;
3556 }
3557 
3558 /*
3559  * This subroutine adds the data at next_in/avail_in to the output history
3560  * without performing any output.  The output buffer must be "caught up";
3561  * i.e. no pending output (hence s->read equals s->write), and the state must
3562  * be BLOCKS (i.e. we should be willing to see the start of a series of
3563  * BLOCKS).  On exit, the output will also be caught up, and the checksum
3564  * will have been updated if need be.
3565  */
3566 local int inflate_addhistory(s, z)
3567 inflate_blocks_statef *s;
3568 z_stream *z;
3569 {
3570     uLong b;              /* bit buffer */  /* NOT USED HERE */
3571     uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
3572     uInt t;               /* temporary storage */
3573     Bytef *p;             /* input data pointer */
3574     uInt n;               /* bytes available there */
3575     Bytef *q;             /* output window write pointer */
3576     uInt m;               /* bytes to end of window or read pointer */
3577 
3578     if (s->read != s->write)
3579 	return Z_STREAM_ERROR;
3580     if (s->mode != TYPE)
3581 	return Z_DATA_ERROR;
3582 
3583     /* we're ready to rock */
3584     LOAD
3585     /* while there is input ready, copy to output buffer, moving
3586      * pointers as needed.
3587      */
3588     while (n) {
3589 	t = n;  /* how many to do */
3590 	/* is there room until end of buffer? */
3591 	if (t > m) t = m;
3592 	/* update check information */
3593 	if (s->checkfn != Z_NULL)
3594 	    s->check = (*s->checkfn)(s->check, q, t);
3595 	zmemcpy(q, p, t);
3596 	q += t;
3597 	p += t;
3598 	n -= t;
3599 	z->total_out += t;
3600 	s->read = q;    /* drag read pointer forward */
3601 /*      WRAP  */ 	/* expand WRAP macro by hand to handle s->read */
3602 	if (q == s->end) {
3603 	    s->read = q = s->window;
3604 	    m = WAVAIL;
3605 	}
3606     }
3607     UPDATE
3608     return Z_OK;
3609 }
3610 
3611 
3612 /*
3613  * At the end of a Deflate-compressed PPP packet, we expect to have seen
3614  * a `stored' block type value but not the (zero) length bytes.
3615  */
3616 local int inflate_packet_flush(s)
3617     inflate_blocks_statef *s;
3618 {
3619     if (s->mode != LENS)
3620 	return Z_DATA_ERROR;
3621     s->mode = TYPE;
3622     return Z_OK;
3623 }
3624 
3625 
3626 /*+++++*/
3627 /* inftrees.c -- generate Huffman trees for efficient decoding
3628  * Copyright (C) 1995 Mark Adler
3629  * For conditions of distribution and use, see copyright notice in zlib.h
3630  */
3631 
3632 /* simplify the use of the inflate_huft type with some defines */
3633 #define base more.Base
3634 #define next more.Next
3635 #define exop word.what.Exop
3636 #define bits word.what.Bits
3637 
3638 
3639 local int huft_build OF((
3640     uIntf *,            /* code lengths in bits */
3641     uInt,               /* number of codes */
3642     uInt,               /* number of "simple" codes */
3643     uIntf *,            /* list of base values for non-simple codes */
3644     uIntf *,            /* list of extra bits for non-simple codes */
3645     inflate_huft * FAR*,/* result: starting table */
3646     uIntf *,            /* maximum lookup bits (returns actual) */
3647     z_stream *));       /* for zalloc function */
3648 
3649 local voidpf falloc OF((
3650     voidpf,             /* opaque pointer (not used) */
3651     uInt,               /* number of items */
3652     uInt));             /* size of item */
3653 
3654 local void ffree OF((
3655     voidpf q,           /* opaque pointer (not used) */
3656     voidpf p,           /* what to free (not used) */
3657     uInt n));		/* number of bytes (not used) */
3658 
3659 /* Tables for deflate from PKZIP's appnote.txt. */
3660 local uInt cplens[] = { /* Copy lengths for literal codes 257..285 */
3661         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
3662         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
3663         /* actually lengths - 2; also see note #13 above about 258 */
3664 local uInt cplext[] = { /* Extra bits for literal codes 257..285 */
3665         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3666         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 192, 192}; /* 192==invalid */
3667 local uInt cpdist[] = { /* Copy offsets for distance codes 0..29 */
3668         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
3669         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
3670         8193, 12289, 16385, 24577};
3671 local uInt cpdext[] = { /* Extra bits for distance codes */
3672         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
3673         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
3674         12, 12, 13, 13};
3675 
3676 /*
3677    Huffman code decoding is performed using a multi-level table lookup.
3678    The fastest way to decode is to simply build a lookup table whose
3679    size is determined by the longest code.  However, the time it takes
3680    to build this table can also be a factor if the data being decoded
3681    is not very long.  The most common codes are necessarily the
3682    shortest codes, so those codes dominate the decoding time, and hence
3683    the speed.  The idea is you can have a shorter table that decodes the
3684    shorter, more probable codes, and then point to subsidiary tables for
3685    the longer codes.  The time it costs to decode the longer codes is
3686    then traded against the time it takes to make longer tables.
3687 
3688    This results of this trade are in the variables lbits and dbits
3689    below.  lbits is the number of bits the first level table for literal/
3690    length codes can decode in one step, and dbits is the same thing for
3691    the distance codes.  Subsequent tables are also less than or equal to
3692    those sizes.  These values may be adjusted either when all of the
3693    codes are shorter than that, in which case the longest code length in
3694    bits is used, or when the shortest code is *longer* than the requested
3695    table size, in which case the length of the shortest code in bits is
3696    used.
3697 
3698    There are two different values for the two tables, since they code a
3699    different number of possibilities each.  The literal/length table
3700    codes 286 possible values, or in a flat code, a little over eight
3701    bits.  The distance table codes 30 possible values, or a little less
3702    than five bits, flat.  The optimum values for speed end up being
3703    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
3704    The optimum values may differ though from machine to machine, and
3705    possibly even between compilers.  Your mileage may vary.
3706  */
3707 
3708 
3709 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
3710 #define BMAX 15         /* maximum bit length of any code */
3711 #define N_MAX 288       /* maximum number of codes in any set */
3712 
3713 #ifdef DEBUG_ZLIB
3714   uInt inflate_hufts;
3715 #endif
3716 
3717 local int huft_build(b, n, s, d, e, t, m, zs)
3718 uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
3719 uInt n;                 /* number of codes (assumed <= N_MAX) */
3720 uInt s;                 /* number of simple-valued codes (0..s-1) */
3721 uIntf *d;               /* list of base values for non-simple codes */
3722 uIntf *e;               /* list of extra bits for non-simple codes */
3723 inflate_huft * FAR *t;  /* result: starting table */
3724 uIntf *m;               /* maximum lookup bits, returns actual */
3725 z_stream *zs;           /* for zalloc function */
3726 /* Given a list of code lengths and a maximum table size, make a set of
3727    tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
3728    if the given code set is incomplete (the tables are still built in this
3729    case), Z_DATA_ERROR if the input is invalid (all zero length codes or an
3730    over-subscribed set of lengths), or Z_MEM_ERROR if not enough memory. */
3731 {
3732 
3733   uInt a;                       /* counter for codes of length k */
3734   uInt c[BMAX+1];               /* bit length count table */
3735   uInt f;                       /* i repeats in table every f entries */
3736   int g;                        /* maximum code length */
3737   int h;                        /* table level */
3738   register uInt i;              /* counter, current code */
3739   register uInt j;              /* counter */
3740   register int k;               /* number of bits in current code */
3741   int l;                        /* bits per table (returned in m) */
3742   register uIntf *p;            /* pointer into c[], b[], or v[] */
3743   inflate_huft *q;              /* points to current table */
3744   struct inflate_huft_s r;      /* table entry for structure assignment */
3745   inflate_huft *u[BMAX];        /* table stack */
3746   uInt v[N_MAX];                /* values in order of bit length */
3747   register int w;               /* bits before this table == (l * h) */
3748   uInt x[BMAX+1];               /* bit offsets, then code stack */
3749   uIntf *xp;                    /* pointer into x */
3750   int y;                        /* number of dummy codes added */
3751   uInt z;                       /* number of entries in current table */
3752 
3753 
3754   /* Generate counts for each bit length */
3755   p = c;
3756 #define C0 *p++ = 0;
3757 #define C2 C0 C0 C0 C0
3758 #define C4 C2 C2 C2 C2
3759   C4                            /* clear c[]--assume BMAX+1 is 16 */
3760   p = b;  i = n;
3761   do {
3762     c[*p++]++;                  /* assume all entries <= BMAX */
3763   } while (--i);
3764   if (c[0] == n)                /* null input--all zero length codes */
3765   {
3766     *t = (inflate_huft *)Z_NULL;
3767     *m = 0;
3768     return Z_OK;
3769   }
3770 
3771 
3772   /* Find minimum and maximum length, bound *m by those */
3773   l = *m;
3774   for (j = 1; j <= BMAX; j++)
3775     if (c[j])
3776       break;
3777   k = j;                        /* minimum code length */
3778   if ((uInt)l < j)
3779     l = j;
3780   for (i = BMAX; i; i--)
3781     if (c[i])
3782       break;
3783   g = i;                        /* maximum code length */
3784   if ((uInt)l > i)
3785     l = i;
3786   *m = l;
3787 
3788 
3789   /* Adjust last length count to fill out codes, if needed */
3790   for (y = 1 << j; j < i; j++, y <<= 1)
3791     if ((y -= c[j]) < 0)
3792       return Z_DATA_ERROR;
3793   if ((y -= c[i]) < 0)
3794     return Z_DATA_ERROR;
3795   c[i] += y;
3796 
3797 
3798   /* Generate starting offsets into the value table for each length */
3799   x[1] = j = 0;
3800   p = c + 1;  xp = x + 2;
3801   while (--i) {                 /* note that i == g from above */
3802     *xp++ = (j += *p++);
3803   }
3804 
3805 
3806   /* Make a table of values in order of bit lengths */
3807   p = b;  i = 0;
3808   do {
3809     if ((j = *p++) != 0)
3810       v[x[j]++] = i;
3811   } while (++i < n);
3812 
3813 
3814   /* Generate the Huffman codes and for each, make the table entries */
3815   x[0] = i = 0;                 /* first Huffman code is zero */
3816   p = v;                        /* grab values in bit order */
3817   h = -1;                       /* no tables yet--level -1 */
3818   w = -l;                       /* bits decoded == (l * h) */
3819   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
3820   q = (inflate_huft *)Z_NULL;   /* ditto */
3821   z = 0;                        /* ditto */
3822 
3823   /* go through the bit lengths (k already is bits in shortest code) */
3824   for (; k <= g; k++)
3825   {
3826     a = c[k];
3827     while (a--)
3828     {
3829       /* here i is the Huffman code of length k bits for value *p */
3830       /* make tables up to required level */
3831       while (k > w + l)
3832       {
3833         h++;
3834         w += l;                 /* previous table always l bits */
3835 
3836         /* compute minimum size table less than or equal to l bits */
3837         z = (z = g - w) > (uInt)l ? l : z;      /* table size upper limit */
3838         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
3839         {                       /* too few codes for k-w bit table */
3840           f -= a + 1;           /* deduct codes from patterns left */
3841           xp = c + k;
3842           if (j < z)
3843             while (++j < z)     /* try smaller tables up to z bits */
3844             {
3845               if ((f <<= 1) <= *++xp)
3846                 break;          /* enough codes to use up j bits */
3847               f -= *xp;         /* else deduct codes from patterns */
3848             }
3849         }
3850         z = 1 << j;             /* table entries for j-bit table */
3851 
3852         /* allocate and link in new table */
3853         if ((q = (inflate_huft *)ZALLOC
3854              (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
3855         {
3856           if (h)
3857             inflate_trees_free(u[0], zs);
3858           return Z_MEM_ERROR;   /* not enough memory */
3859         }
3860 	q->word.Nalloc = z + 1;
3861 #ifdef DEBUG_ZLIB
3862         inflate_hufts += z + 1;
3863 #endif
3864         *t = q + 1;             /* link to list for huft_free() */
3865         *(t = &(q->next)) = Z_NULL;
3866         u[h] = ++q;             /* table starts after link */
3867 
3868         /* connect to last table, if there is one */
3869         if (h)
3870         {
3871           x[h] = i;             /* save pattern for backing up */
3872           r.bits = (Byte)l;     /* bits to dump before this table */
3873           r.exop = (Byte)j;     /* bits in this table */
3874           r.next = q;           /* pointer to this table */
3875           j = i >> (w - l);     /* (get around Turbo C bug) */
3876           u[h-1][j] = r;        /* connect to last table */
3877         }
3878       }
3879 
3880       /* set up table entry in r */
3881       r.bits = (Byte)(k - w);
3882       if (p >= v + n)
3883         r.exop = 128 + 64;      /* out of values--invalid code */
3884       else if (*p < s)
3885       {
3886         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
3887         r.base = *p++;          /* simple code is just the value */
3888       }
3889       else
3890       {
3891         r.exop = (Byte)e[*p - s] + 16 + 64; /* non-simple--look up in lists */
3892         r.base = d[*p++ - s];
3893       }
3894 
3895       /* fill code-like entries with r */
3896       f = 1 << (k - w);
3897       for (j = i >> w; j < z; j += f)
3898         q[j] = r;
3899 
3900       /* backwards increment the k-bit code i */
3901       for (j = 1 << (k - 1); i & j; j >>= 1)
3902         i ^= j;
3903       i ^= j;
3904 
3905       /* backup over finished tables */
3906       while ((i & ((1 << w) - 1)) != x[h])
3907       {
3908         h--;                    /* don't need to update q */
3909         w -= l;
3910       }
3911     }
3912   }
3913 
3914 
3915   /* Return Z_BUF_ERROR if we were given an incomplete table */
3916   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
3917 }
3918 
3919 
3920 local int inflate_trees_bits(c, bb, tb, z)
3921 uIntf *c;               /* 19 code lengths */
3922 uIntf *bb;              /* bits tree desired/actual depth */
3923 inflate_huft * FAR *tb; /* bits tree result */
3924 z_stream *z;            /* for zfree function */
3925 {
3926   int r;
3927 
3928   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
3929   if (r == Z_DATA_ERROR)
3930     z->msg = "oversubscribed dynamic bit lengths tree";
3931   else if (r == Z_BUF_ERROR)
3932   {
3933     inflate_trees_free(*tb, z);
3934     z->msg = "incomplete dynamic bit lengths tree";
3935     r = Z_DATA_ERROR;
3936   }
3937   return r;
3938 }
3939 
3940 
3941 local int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
3942 uInt nl;                /* number of literal/length codes */
3943 uInt nd;                /* number of distance codes */
3944 uIntf *c;               /* that many (total) code lengths */
3945 uIntf *bl;              /* literal desired/actual bit depth */
3946 uIntf *bd;              /* distance desired/actual bit depth */
3947 inflate_huft * FAR *tl; /* literal/length tree result */
3948 inflate_huft * FAR *td; /* distance tree result */
3949 z_stream *z;            /* for zfree function */
3950 {
3951   int r;
3952 
3953   /* build literal/length tree */
3954   if ((r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z)) != Z_OK)
3955   {
3956     if (r == Z_DATA_ERROR)
3957       z->msg = "oversubscribed literal/length tree";
3958     else if (r == Z_BUF_ERROR)
3959     {
3960       inflate_trees_free(*tl, z);
3961       z->msg = "incomplete literal/length tree";
3962       r = Z_DATA_ERROR;
3963     }
3964     return r;
3965   }
3966 
3967   /* build distance tree */
3968   if ((r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z)) != Z_OK)
3969   {
3970     if (r == Z_DATA_ERROR)
3971       z->msg = "oversubscribed literal/length tree";
3972     else if (r == Z_BUF_ERROR) {
3973 #ifdef PKZIP_BUG_WORKAROUND
3974       r = Z_OK;
3975     }
3976 #else
3977       inflate_trees_free(*td, z);
3978       z->msg = "incomplete literal/length tree";
3979       r = Z_DATA_ERROR;
3980     }
3981     inflate_trees_free(*tl, z);
3982     return r;
3983 #endif
3984   }
3985 
3986   /* done */
3987   return Z_OK;
3988 }
3989 
3990 
3991 /* build fixed tables only once--keep them here */
3992 local int fixed_lock = 0;
3993 local int fixed_built = 0;
3994 #define FIXEDH 530      /* number of hufts used by fixed tables */
3995 local uInt fixed_left = FIXEDH;
3996 local inflate_huft fixed_mem[FIXEDH];
3997 local uInt fixed_bl;
3998 local uInt fixed_bd;
3999 local inflate_huft *fixed_tl;
4000 local inflate_huft *fixed_td;
4001 
4002 
4003 local voidpf falloc(q, n, s)
4004 voidpf q;        /* opaque pointer (not used) */
4005 uInt n;         /* number of items */
4006 uInt s;         /* size of item */
4007 {
4008   Assert(s == sizeof(inflate_huft) && n <= fixed_left,
4009          "inflate_trees falloc overflow");
4010   if (q) s++; /* to make some compilers happy */
4011   fixed_left -= n;
4012   return (voidpf)(fixed_mem + fixed_left);
4013 }
4014 
4015 
4016 local void ffree(q, p, n)
4017 voidpf q;
4018 voidpf p;
4019 uInt n;
4020 {
4021   Assert(0, "inflate_trees ffree called!");
4022   if (q) q = p; /* to make some compilers happy */
4023 }
4024 
4025 
4026 local int inflate_trees_fixed(bl, bd, tl, td)
4027 uIntf *bl;               /* literal desired/actual bit depth */
4028 uIntf *bd;               /* distance desired/actual bit depth */
4029 inflate_huft * FAR *tl;  /* literal/length tree result */
4030 inflate_huft * FAR *td;  /* distance tree result */
4031 {
4032   /* build fixed tables if not built already--lock out other instances */
4033   while (++fixed_lock > 1)
4034     fixed_lock--;
4035   if (!fixed_built)
4036   {
4037     int k;              /* temporary variable */
4038     unsigned c[288];    /* length list for huft_build */
4039     z_stream z;         /* for falloc function */
4040 
4041     /* set up fake z_stream for memory routines */
4042     z.zalloc = falloc;
4043     z.zfree = ffree;
4044     z.opaque = Z_NULL;
4045 
4046     /* literal table */
4047     for (k = 0; k < 144; k++)
4048       c[k] = 8;
4049     for (; k < 256; k++)
4050       c[k] = 9;
4051     for (; k < 280; k++)
4052       c[k] = 7;
4053     for (; k < 288; k++)
4054       c[k] = 8;
4055     fixed_bl = 7;
4056     huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4057 
4058     /* distance table */
4059     for (k = 0; k < 30; k++)
4060       c[k] = 5;
4061     fixed_bd = 5;
4062     huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4063 
4064     /* done */
4065     fixed_built = 1;
4066   }
4067   fixed_lock--;
4068   *bl = fixed_bl;
4069   *bd = fixed_bd;
4070   *tl = fixed_tl;
4071   *td = fixed_td;
4072   return Z_OK;
4073 }
4074 
4075 
4076 local int inflate_trees_free(t, z)
4077 inflate_huft *t;        /* table to free */
4078 z_stream *z;            /* for zfree function */
4079 /* Free the malloc'ed tables built by huft_build(), which makes a linked
4080    list of the tables it made, with the links in a dummy first entry of
4081    each table. */
4082 {
4083   register inflate_huft *p, *q;
4084 
4085   /* Go through linked list, freeing from the malloced (t[-1]) address. */
4086   p = t;
4087   while (p != Z_NULL)
4088   {
4089     q = (--p)->next;
4090     ZFREE(z, p, p->word.Nalloc * sizeof(inflate_huft));
4091     p = q;
4092   }
4093   return Z_OK;
4094 }
4095 
4096 /*+++++*/
4097 /* infcodes.c -- process literals and length/distance pairs
4098  * Copyright (C) 1995 Mark Adler
4099  * For conditions of distribution and use, see copyright notice in zlib.h
4100  */
4101 
4102 /* simplify the use of the inflate_huft type with some defines */
4103 #define base more.Base
4104 #define next more.Next
4105 #define exop word.what.Exop
4106 #define bits word.what.Bits
4107 
4108 /* inflate codes private state */
4109 struct inflate_codes_state {
4110 
4111   /* mode */
4112   enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4113       START,    /* x: set up for LEN */
4114       LEN,      /* i: get length/literal/eob next */
4115       LENEXT,   /* i: getting length extra (have base) */
4116       DIST,     /* i: get distance next */
4117       DISTEXT,  /* i: getting distance extra */
4118       COPY,     /* o: copying bytes in window, waiting for space */
4119       LIT,      /* o: got literal, waiting for output space */
4120       WASH,     /* o: got eob, possibly still output waiting */
4121       END,      /* x: got eob and all data flushed */
4122       BADCODE}  /* x: got error */
4123     mode;               /* current inflate_codes mode */
4124 
4125   /* mode dependent information */
4126   uInt len;
4127   union {
4128     struct {
4129       inflate_huft *tree;       /* pointer into tree */
4130       uInt need;                /* bits needed */
4131     } code;             /* if LEN or DIST, where in tree */
4132     uInt lit;           /* if LIT, literal */
4133     struct {
4134       uInt get;                 /* bits to get for extra */
4135       uInt dist;                /* distance back to copy from */
4136     } copy;             /* if EXT or COPY, where and how much */
4137   } sub;                /* submode */
4138 
4139   /* mode independent information */
4140   Byte lbits;           /* ltree bits decoded per branch */
4141   Byte dbits;           /* dtree bits decoder per branch */
4142   inflate_huft *ltree;          /* literal/length/eob tree */
4143   inflate_huft *dtree;          /* distance tree */
4144 
4145 };
4146 
4147 
4148 local inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4149 uInt bl, bd;
4150 inflate_huft *tl, *td;
4151 z_stream *z;
4152 {
4153   inflate_codes_statef *c;
4154 
4155   if ((c = (inflate_codes_statef *)
4156        ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4157   {
4158     c->mode = START;
4159     c->lbits = (Byte)bl;
4160     c->dbits = (Byte)bd;
4161     c->ltree = tl;
4162     c->dtree = td;
4163     Tracev((stderr, "inflate:       codes new\n"));
4164   }
4165   return c;
4166 }
4167 
4168 
4169 local int inflate_codes(s, z, r)
4170 inflate_blocks_statef *s;
4171 z_stream *z;
4172 int r;
4173 {
4174   uInt j;               /* temporary storage */
4175   inflate_huft *t;      /* temporary pointer */
4176   uInt e;               /* extra bits or operation */
4177   uLong b;              /* bit buffer */
4178   uInt k;               /* bits in bit buffer */
4179   Bytef *p;             /* input data pointer */
4180   uInt n;               /* bytes available there */
4181   Bytef *q;             /* output window write pointer */
4182   uInt m;               /* bytes to end of window or read pointer */
4183   Bytef *f;             /* pointer to copy strings from */
4184   inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
4185 
4186   /* copy input/output information to locals (UPDATE macro restores) */
4187   LOAD
4188 
4189   /* process input and output based on current state */
4190   while (1) switch (c->mode)
4191   {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4192     case START:         /* x: set up for LEN */
4193 #ifndef SLOW
4194       if (m >= 258 && n >= 10)
4195       {
4196         UPDATE
4197         r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4198         LOAD
4199         if (r != Z_OK)
4200         {
4201           c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4202           break;
4203         }
4204       }
4205 #endif /* !SLOW */
4206       c->sub.code.need = c->lbits;
4207       c->sub.code.tree = c->ltree;
4208       c->mode = LEN;
4209     case LEN:           /* i: get length/literal/eob next */
4210       j = c->sub.code.need;
4211       NEEDBITS(j)
4212       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4213       DUMPBITS(t->bits)
4214       e = (uInt)(t->exop);
4215       if (e == 0)               /* literal */
4216       {
4217         c->sub.lit = t->base;
4218         Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4219                  "inflate:         literal '%c'\n" :
4220                  "inflate:         literal 0x%02x\n", t->base));
4221         c->mode = LIT;
4222         break;
4223       }
4224       if (e & 16)               /* length */
4225       {
4226         c->sub.copy.get = e & 15;
4227         c->len = t->base;
4228         c->mode = LENEXT;
4229         break;
4230       }
4231       if ((e & 64) == 0)        /* next table */
4232       {
4233         c->sub.code.need = e;
4234         c->sub.code.tree = t->next;
4235         break;
4236       }
4237       if (e & 32)               /* end of block */
4238       {
4239         Tracevv((stderr, "inflate:         end of block\n"));
4240         c->mode = WASH;
4241         break;
4242       }
4243       c->mode = BADCODE;        /* invalid code */
4244       z->msg = "invalid literal/length code";
4245       r = Z_DATA_ERROR;
4246       LEAVE
4247     case LENEXT:        /* i: getting length extra (have base) */
4248       j = c->sub.copy.get;
4249       NEEDBITS(j)
4250       c->len += (uInt)b & inflate_mask[j];
4251       DUMPBITS(j)
4252       c->sub.code.need = c->dbits;
4253       c->sub.code.tree = c->dtree;
4254       Tracevv((stderr, "inflate:         length %u\n", c->len));
4255       c->mode = DIST;
4256     case DIST:          /* i: get distance next */
4257       j = c->sub.code.need;
4258       NEEDBITS(j)
4259       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4260       DUMPBITS(t->bits)
4261       e = (uInt)(t->exop);
4262       if (e & 16)               /* distance */
4263       {
4264         c->sub.copy.get = e & 15;
4265         c->sub.copy.dist = t->base;
4266         c->mode = DISTEXT;
4267         break;
4268       }
4269       if ((e & 64) == 0)        /* next table */
4270       {
4271         c->sub.code.need = e;
4272         c->sub.code.tree = t->next;
4273         break;
4274       }
4275       c->mode = BADCODE;        /* invalid code */
4276       z->msg = "invalid distance code";
4277       r = Z_DATA_ERROR;
4278       LEAVE
4279     case DISTEXT:       /* i: getting distance extra */
4280       j = c->sub.copy.get;
4281       NEEDBITS(j)
4282       c->sub.copy.dist += (uInt)b & inflate_mask[j];
4283       DUMPBITS(j)
4284       Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
4285       c->mode = COPY;
4286     case COPY:          /* o: copying bytes in window, waiting for space */
4287 #ifndef __TURBOC__ /* Turbo C bug for following expression */
4288       f = (uInt)(q - s->window) < c->sub.copy.dist ?
4289           s->end - (c->sub.copy.dist - (q - s->window)) :
4290           q - c->sub.copy.dist;
4291 #else
4292       f = q - c->sub.copy.dist;
4293       if ((uInt)(q - s->window) < c->sub.copy.dist)
4294         f = s->end - (c->sub.copy.dist - (q - s->window));
4295 #endif
4296       while (c->len)
4297       {
4298         NEEDOUT
4299         OUTBYTE(*f++)
4300         if (f == s->end)
4301           f = s->window;
4302         c->len--;
4303       }
4304       c->mode = START;
4305       break;
4306     case LIT:           /* o: got literal, waiting for output space */
4307       NEEDOUT
4308       OUTBYTE(c->sub.lit)
4309       c->mode = START;
4310       break;
4311     case WASH:          /* o: got eob, possibly more output */
4312       FLUSH
4313       if (s->read != s->write)
4314         LEAVE
4315       c->mode = END;
4316     case END:
4317       r = Z_STREAM_END;
4318       LEAVE
4319     case BADCODE:       /* x: got error */
4320       r = Z_DATA_ERROR;
4321       LEAVE
4322     default:
4323       r = Z_STREAM_ERROR;
4324       LEAVE
4325   }
4326 }
4327 
4328 
4329 local void inflate_codes_free(c, z)
4330 inflate_codes_statef *c;
4331 z_stream *z;
4332 {
4333   ZFREE(z, c, sizeof(struct inflate_codes_state));
4334   Tracev((stderr, "inflate:       codes free\n"));
4335 }
4336 
4337 /*+++++*/
4338 /* inflate_util.c -- data and routines common to blocks and codes
4339  * Copyright (C) 1995 Mark Adler
4340  * For conditions of distribution and use, see copyright notice in zlib.h
4341  */
4342 
4343 /* copy as much as possible from the sliding window to the output area */
4344 local int inflate_flush(s, z, r)
4345 inflate_blocks_statef *s;
4346 z_stream *z;
4347 int r;
4348 {
4349   uInt n;
4350   Bytef *p, *q;
4351 
4352   /* local copies of source and destination pointers */
4353   p = z->next_out;
4354   q = s->read;
4355 
4356   /* compute number of bytes to copy as far as end of window */
4357   n = (uInt)((q <= s->write ? s->write : s->end) - q);
4358   if (n > z->avail_out) n = z->avail_out;
4359   if (n && r == Z_BUF_ERROR) r = Z_OK;
4360 
4361   /* update counters */
4362   z->avail_out -= n;
4363   z->total_out += n;
4364 
4365   /* update check information */
4366   if (s->checkfn != Z_NULL)
4367     s->check = (*s->checkfn)(s->check, q, n);
4368 
4369   /* copy as far as end of window */
4370   if (p != NULL) {
4371     zmemcpy(p, q, n);
4372     p += n;
4373   }
4374   q += n;
4375 
4376   /* see if more to copy at beginning of window */
4377   if (q == s->end)
4378   {
4379     /* wrap pointers */
4380     q = s->window;
4381     if (s->write == s->end)
4382       s->write = s->window;
4383 
4384     /* compute bytes to copy */
4385     n = (uInt)(s->write - q);
4386     if (n > z->avail_out) n = z->avail_out;
4387     if (n && r == Z_BUF_ERROR) r = Z_OK;
4388 
4389     /* update counters */
4390     z->avail_out -= n;
4391     z->total_out += n;
4392 
4393     /* update check information */
4394     if (s->checkfn != Z_NULL)
4395       s->check = (*s->checkfn)(s->check, q, n);
4396 
4397     /* copy */
4398     if (p != NULL) {
4399       zmemcpy(p, q, n);
4400       p += n;
4401     }
4402     q += n;
4403   }
4404 
4405   /* update pointers */
4406   z->next_out = p;
4407   s->read = q;
4408 
4409   /* done */
4410   return r;
4411 }
4412 
4413 
4414 /*+++++*/
4415 /* inffast.c -- process literals and length/distance pairs fast
4416  * Copyright (C) 1995 Mark Adler
4417  * For conditions of distribution and use, see copyright notice in zlib.h
4418  */
4419 
4420 /* simplify the use of the inflate_huft type with some defines */
4421 #define base more.Base
4422 #define next more.Next
4423 #define exop word.what.Exop
4424 #define bits word.what.Bits
4425 
4426 /* macros for bit input with no checking and for returning unused bytes */
4427 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4428 #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4429 
4430 /* Called with number of bytes left to write in window at least 258
4431    (the maximum string length) and number of input bytes available
4432    at least ten.  The ten bytes are six bytes for the longest length/
4433    distance pair plus four bytes for overloading the bit buffer. */
4434 
4435 local int inflate_fast(bl, bd, tl, td, s, z)
4436 uInt bl, bd;
4437 inflate_huft *tl, *td;
4438 inflate_blocks_statef *s;
4439 z_stream *z;
4440 {
4441   inflate_huft *t;      /* temporary pointer */
4442   uInt e;               /* extra bits or operation */
4443   uLong b;              /* bit buffer */
4444   uInt k;               /* bits in bit buffer */
4445   Bytef *p;             /* input data pointer */
4446   uInt n;               /* bytes available there */
4447   Bytef *q;             /* output window write pointer */
4448   uInt m;               /* bytes to end of window or read pointer */
4449   uInt ml;              /* mask for literal/length tree */
4450   uInt md;              /* mask for distance tree */
4451   uInt c;               /* bytes to copy */
4452   uInt d;               /* distance back to copy from */
4453   Bytef *r;             /* copy source pointer */
4454 
4455   /* load input, output, bit values */
4456   LOAD
4457 
4458   /* initialize masks */
4459   ml = inflate_mask[bl];
4460   md = inflate_mask[bd];
4461 
4462   /* do until not enough input or output space for fast loop */
4463   do {                          /* assume called with m >= 258 && n >= 10 */
4464     /* get literal/length code */
4465     GRABBITS(20)                /* max bits for literal/length code */
4466     if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
4467     {
4468       DUMPBITS(t->bits)
4469       Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4470                 "inflate:         * literal '%c'\n" :
4471                 "inflate:         * literal 0x%02x\n", t->base));
4472       *q++ = (Byte)t->base;
4473       m--;
4474       continue;
4475     }
4476     do {
4477       DUMPBITS(t->bits)
4478       if (e & 16)
4479       {
4480         /* get extra bits for length */
4481         e &= 15;
4482         c = t->base + ((uInt)b & inflate_mask[e]);
4483         DUMPBITS(e)
4484         Tracevv((stderr, "inflate:         * length %u\n", c));
4485 
4486         /* decode distance base of block to copy */
4487         GRABBITS(15);           /* max bits for distance code */
4488         e = (t = td + ((uInt)b & md))->exop;
4489         do {
4490           DUMPBITS(t->bits)
4491           if (e & 16)
4492           {
4493             /* get extra bits to add to distance base */
4494             e &= 15;
4495             GRABBITS(e)         /* get extra bits (up to 13) */
4496             d = t->base + ((uInt)b & inflate_mask[e]);
4497             DUMPBITS(e)
4498             Tracevv((stderr, "inflate:         * distance %u\n", d));
4499 
4500             /* do the copy */
4501             m -= c;
4502             if ((uInt)(q - s->window) >= d)     /* offset before dest */
4503             {                                   /*  just copy */
4504               r = q - d;
4505               *q++ = *r++;  c--;        /* minimum count is three, */
4506               *q++ = *r++;  c--;        /*  so unroll loop a little */
4507             }
4508             else                        /* else offset after destination */
4509             {
4510               e = d - (q - s->window);  /* bytes from offset to end */
4511               r = s->end - e;           /* pointer to offset */
4512               if (c > e)                /* if source crosses, */
4513               {
4514                 c -= e;                 /* copy to end of window */
4515                 do {
4516                   *q++ = *r++;
4517                 } while (--e);
4518                 r = s->window;          /* copy rest from start of window */
4519               }
4520             }
4521             do {                        /* copy all or what's left */
4522               *q++ = *r++;
4523             } while (--c);
4524             break;
4525           }
4526           else if ((e & 64) == 0)
4527             e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
4528           else
4529           {
4530             z->msg = "invalid distance code";
4531             UNGRAB
4532             UPDATE
4533             return Z_DATA_ERROR;
4534           }
4535         } while (1);
4536         break;
4537       }
4538       if ((e & 64) == 0)
4539       {
4540         if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
4541         {
4542           DUMPBITS(t->bits)
4543           Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4544                     "inflate:         * literal '%c'\n" :
4545                     "inflate:         * literal 0x%02x\n", t->base));
4546           *q++ = (Byte)t->base;
4547           m--;
4548           break;
4549         }
4550       }
4551       else if (e & 32)
4552       {
4553         Tracevv((stderr, "inflate:         * end of block\n"));
4554         UNGRAB
4555         UPDATE
4556         return Z_STREAM_END;
4557       }
4558       else
4559       {
4560         z->msg = "invalid literal/length code";
4561         UNGRAB
4562         UPDATE
4563         return Z_DATA_ERROR;
4564       }
4565     } while (1);
4566   } while (m >= 258 && n >= 10);
4567 
4568   /* not enough input or output--restore pointers and return */
4569   UNGRAB
4570   UPDATE
4571   return Z_OK;
4572 }
4573 
4574 
4575 /*+++++*/
4576 /* zutil.c -- target dependent utility functions for the compression library
4577  * Copyright (C) 1995 Jean-loup Gailly.
4578  * For conditions of distribution and use, see copyright notice in zlib.h
4579  */
4580 
4581 /* From: zutil.c,v 1.8 1995/05/03 17:27:12 jloup Exp */
4582 
4583 char *zlib_version = ZLIB_VERSION;
4584 
4585 char *z_errmsg[] = {
4586 "stream end",          /* Z_STREAM_END    1 */
4587 "",                    /* Z_OK            0 */
4588 "file error",          /* Z_ERRNO        (-1) */
4589 "stream error",        /* Z_STREAM_ERROR (-2) */
4590 "data error",          /* Z_DATA_ERROR   (-3) */
4591 "insufficient memory", /* Z_MEM_ERROR    (-4) */
4592 "buffer error",        /* Z_BUF_ERROR    (-5) */
4593 ""};
4594 
4595 
4596 /*+++++*/
4597 /* adler32.c -- compute the Adler-32 checksum of a data stream
4598  * Copyright (C) 1995 Mark Adler
4599  * For conditions of distribution and use, see copyright notice in zlib.h
4600  */
4601 
4602 /* From: adler32.c,v 1.6 1995/05/03 17:27:08 jloup Exp */
4603 
4604 #define BASE 65521L /* largest prime smaller than 65536 */
4605 #define NMAX 5552
4606 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
4607 
4608 #define DO1(buf)  {s1 += *buf++; s2 += s1;}
4609 #define DO2(buf)  DO1(buf); DO1(buf);
4610 #define DO4(buf)  DO2(buf); DO2(buf);
4611 #define DO8(buf)  DO4(buf); DO4(buf);
4612 #define DO16(buf) DO8(buf); DO8(buf);
4613 
4614 /* ========================================================================= */
4615 uLong adler32(adler, buf, len)
4616     uLong adler;
4617     Bytef *buf;
4618     uInt len;
4619 {
4620     unsigned long s1 = adler & 0xffff;
4621     unsigned long s2 = (adler >> 16) & 0xffff;
4622     int k;
4623 
4624     if (buf == Z_NULL) return 1L;
4625 
4626     while (len > 0) {
4627         k = len < NMAX ? len : NMAX;
4628         len -= k;
4629         while (k >= 16) {
4630             DO16(buf);
4631             k -= 16;
4632         }
4633         if (k != 0) do {
4634             DO1(buf);
4635         } while (--k);
4636         s1 %= BASE;
4637         s2 %= BASE;
4638     }
4639     return (s2 << 16) | s1;
4640 }
4641