1 /* $NetBSD: zlib.c,v 1.15 2001/11/12 23:49:49 lukem Exp $ */ 2 /* 3 * This file is derived from various .h and .c files from the zlib-1.0.4 4 * distribution by Jean-loup Gailly and Mark Adler, with some additions 5 * by Paul Mackerras to aid in implementing Deflate compression and 6 * decompression for PPP packets. See zlib.h for conditions of 7 * distribution and use. 8 * 9 * Changes that have been made include: 10 * - added Z_PACKET_FLUSH (see zlib.h for details) 11 * - added inflateIncomp and deflateOutputPending 12 * - allow strm->next_out to be NULL, meaning discard the output 13 * 14 * $Id: zlib.c,v 1.15 2001/11/12 23:49:49 lukem Exp $ 15 */ 16 17 /* 18 * ==FILEVERSION 971210== 19 * 20 * This marker is used by the Linux installation script to determine 21 * whether an up-to-date version of this file is already installed. 22 */ 23 24 #include <sys/cdefs.h> 25 __KERNEL_RCSID(0, "$NetBSD: zlib.c,v 1.15 2001/11/12 23:49:49 lukem Exp $"); 26 27 #define NO_DUMMY_DECL 28 #define NO_ZCFUNCS 29 #define MY_ZCALLOC 30 31 #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL)) 32 #define inflate inflate_ppp /* FreeBSD already has an inflate :-( */ 33 #endif 34 35 36 /* +++ zutil.h */ 37 /* zutil.h -- internal interface and configuration of the compression library 38 * Copyright (C) 1995-1996 Jean-loup Gailly. 39 * For conditions of distribution and use, see copyright notice in zlib.h 40 */ 41 42 /* WARNING: this file should *not* be used by applications. It is 43 part of the implementation of the compression library and is 44 subject to change. Applications should only use zlib.h. 45 */ 46 47 /* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */ 48 49 #ifndef _Z_UTIL_H 50 #define _Z_UTIL_H 51 52 #include "zlib.h" 53 54 #if defined(KERNEL) || defined(_KERNEL) 55 /* Assume this is a *BSD or SVR4 kernel */ 56 #include <sys/param.h> 57 #include <sys/time.h> 58 #include <sys/systm.h> 59 # define HAVE_MEMCPY 60 # define memcpy(d, s, n) bcopy((s), (d), (n)) 61 # define memset(d, v, n) bzero((d), (n)) 62 # define memcmp bcmp 63 64 #else 65 #if defined(__KERNEL__) 66 /* Assume this is a Linux kernel */ 67 #include <linux/string.h> 68 #define HAVE_MEMCPY 69 70 #else /* not kernel */ 71 72 #if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS) 73 # include <stddef.h> 74 # include <errno.h> 75 #else 76 extern int errno; 77 #endif 78 #ifdef STDC 79 # include <string.h> 80 # include <stdlib.h> 81 #endif 82 #endif /* __KERNEL__ */ 83 #endif /* _KERNEL || KERNEL */ 84 85 #ifndef local 86 # define local static 87 #endif 88 /* compile with -Dlocal if your debugger can't find static symbols */ 89 90 typedef unsigned char uch; 91 typedef uch FAR uchf; 92 typedef unsigned short ush; 93 typedef ush FAR ushf; 94 typedef unsigned long ulg; 95 96 extern const char * const z_errmsg[10]; /* indexed by 2-zlib_error */ 97 /* (size given to avoid silly warnings with Visual C++) */ 98 99 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)] 100 101 #define ERR_RETURN(strm,err) \ 102 return (strm->msg = (char*)ERR_MSG(err), (err)) 103 /* To be used only when the state is known to be valid */ 104 105 /* common constants */ 106 107 #ifndef DEF_WBITS 108 # define DEF_WBITS MAX_WBITS 109 #endif 110 /* default windowBits for decompression. MAX_WBITS is for compression only */ 111 112 #if MAX_MEM_LEVEL >= 8 113 # define DEF_MEM_LEVEL 8 114 #else 115 # define DEF_MEM_LEVEL MAX_MEM_LEVEL 116 #endif 117 /* default memLevel */ 118 119 #define STORED_BLOCK 0 120 #define STATIC_TREES 1 121 #define DYN_TREES 2 122 /* The three kinds of block type */ 123 124 #define MIN_MATCH 3 125 #define MAX_MATCH 258 126 /* The minimum and maximum match lengths */ 127 128 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */ 129 130 /* target dependencies */ 131 132 #ifdef MSDOS 133 # define OS_CODE 0x00 134 # ifdef __TURBOC__ 135 # include <alloc.h> 136 # else /* MSC or DJGPP */ 137 # include <malloc.h> 138 # endif 139 #endif 140 141 #ifdef OS2 142 # define OS_CODE 0x06 143 #endif 144 145 #ifdef WIN32 /* Window 95 & Windows NT */ 146 # define OS_CODE 0x0b 147 #endif 148 149 #if defined(VAXC) || defined(VMS) 150 # define OS_CODE 0x02 151 # define FOPEN(name, mode) \ 152 fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512") 153 #endif 154 155 #ifdef AMIGA 156 # define OS_CODE 0x01 157 #endif 158 159 #if defined(ATARI) || defined(atarist) 160 # define OS_CODE 0x05 161 #endif 162 163 #ifdef MACOS 164 # define OS_CODE 0x07 165 #endif 166 167 #ifdef __50SERIES /* Prime/PRIMOS */ 168 # define OS_CODE 0x0F 169 #endif 170 171 #ifdef TOPS20 172 # define OS_CODE 0x0a 173 #endif 174 175 #if defined(_BEOS_) || defined(RISCOS) 176 # define fdopen(fd,mode) NULL /* No fdopen() */ 177 #endif 178 179 /* Common defaults */ 180 181 #ifndef OS_CODE 182 # define OS_CODE 0x03 /* assume Unix */ 183 #endif 184 185 #ifndef FOPEN 186 # define FOPEN(name, mode) fopen((name), (mode)) 187 #endif 188 189 /* functions */ 190 191 #ifdef HAVE_STRERROR 192 extern char *strerror OF((int)); 193 # define zstrerror(errnum) strerror(errnum) 194 #else 195 # define zstrerror(errnum) "" 196 #endif 197 198 #if defined(pyr) 199 # define NO_MEMCPY 200 #endif 201 #if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER) 202 /* Use our own functions for small and medium model with MSC <= 5.0. 203 * You may have to use the same strategy for Borland C (untested). 204 */ 205 # define NO_MEMCPY 206 #endif 207 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY) 208 # define HAVE_MEMCPY 209 #endif 210 #ifdef HAVE_MEMCPY 211 # ifdef SMALL_MEDIUM /* MSDOS small or medium model */ 212 # define zmemcpy _fmemcpy 213 # define zmemcmp _fmemcmp 214 # define zmemzero(dest, len) _fmemset(dest, 0, len) 215 # else 216 # define zmemcpy memcpy 217 # define zmemcmp memcmp 218 # define zmemzero(dest, len) memset(dest, 0, len) 219 # endif 220 #else 221 extern void zmemcpy OF((Bytef* dest, Bytef* source, uInt len)); 222 extern int zmemcmp OF((Bytef* s1, Bytef* s2, uInt len)); 223 extern void zmemzero OF((Bytef* dest, uInt len)); 224 #endif 225 226 /* Diagnostic functions */ 227 #ifdef DEBUG_ZLIB 228 # include <stdio.h> 229 # ifndef verbose 230 # define verbose 0 231 # endif 232 extern void z_error OF((char *m)); 233 # define Assert(cond,msg) {if(!(cond)) z_error(msg);} 234 # define Trace(x) fprintf x 235 # define Tracev(x) {if (verbose) fprintf x ;} 236 # define Tracevv(x) {if (verbose>1) fprintf x ;} 237 # define Tracec(c,x) {if (verbose && (c)) fprintf x ;} 238 # define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;} 239 #else 240 # define Assert(cond,msg) 241 # define Trace(x) 242 # define Tracev(x) 243 # define Tracevv(x) 244 # define Tracec(c,x) 245 # define Tracecv(c,x) 246 #endif 247 248 249 typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len)); 250 251 voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size)); 252 void zcfree OF((voidpf opaque, voidpf ptr)); 253 254 #define ZALLOC(strm, items, size) \ 255 (*((strm)->zalloc))((strm)->opaque, (items), (size)) 256 #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr)) 257 #define TRY_FREE(s, p) {if (p) ZFREE(s, p);} 258 259 #endif /* _Z_UTIL_H */ 260 /* --- zutil.h */ 261 262 /* +++ deflate.h */ 263 /* deflate.h -- internal compression state 264 * Copyright (C) 1995-1996 Jean-loup Gailly 265 * For conditions of distribution and use, see copyright notice in zlib.h 266 */ 267 268 /* WARNING: this file should *not* be used by applications. It is 269 part of the implementation of the compression library and is 270 subject to change. Applications should only use zlib.h. 271 */ 272 273 /* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */ 274 275 #ifndef _DEFLATE_H 276 #define _DEFLATE_H 277 278 /* #include "zutil.h" */ 279 280 /* =========================================================================== 281 * Internal compression state. 282 */ 283 284 #define LENGTH_CODES 29 285 /* number of length codes, not counting the special END_BLOCK code */ 286 287 #define LITERALS 256 288 /* number of literal bytes 0..255 */ 289 290 #define L_CODES (LITERALS+1+LENGTH_CODES) 291 /* number of Literal or Length codes, including the END_BLOCK code */ 292 293 #define D_CODES 30 294 /* number of distance codes */ 295 296 #define BL_CODES 19 297 /* number of codes used to transfer the bit lengths */ 298 299 #define HEAP_SIZE (2*L_CODES+1) 300 /* maximum heap size */ 301 302 #define MAX_BITS 15 303 /* All codes must not exceed MAX_BITS bits */ 304 305 #define INIT_STATE 42 306 #define BUSY_STATE 113 307 #define FINISH_STATE 666 308 /* Stream status */ 309 310 311 /* Data structure describing a single value and its code string. */ 312 typedef struct ct_data_s { 313 union { 314 ush freq; /* frequency count */ 315 ush code; /* bit string */ 316 } fc; 317 union { 318 ush dad; /* father node in Huffman tree */ 319 ush len; /* length of bit string */ 320 } dl; 321 } FAR ct_data; 322 323 #define Freq fc.freq 324 #define Code fc.code 325 #define Dad dl.dad 326 #define Len dl.len 327 328 typedef struct static_tree_desc_s static_tree_desc; 329 330 typedef struct tree_desc_s { 331 ct_data *dyn_tree; /* the dynamic tree */ 332 int max_code; /* largest code with non zero frequency */ 333 static_tree_desc *stat_desc; /* the corresponding static tree */ 334 } FAR tree_desc; 335 336 typedef ush Pos; 337 typedef Pos FAR Posf; 338 typedef unsigned IPos; 339 340 /* A Pos is an index in the character window. We use short instead of int to 341 * save space in the various tables. IPos is used only for parameter passing. 342 */ 343 344 typedef struct deflate_state { 345 z_streamp strm; /* pointer back to this zlib stream */ 346 int status; /* as the name implies */ 347 Bytef *pending_buf; /* output still pending */ 348 ulg pending_buf_size; /* size of pending_buf */ 349 Bytef *pending_out; /* next pending byte to output to the stream */ 350 int pending; /* nb of bytes in the pending buffer */ 351 int noheader; /* suppress zlib header and adler32 */ 352 Byte data_type; /* UNKNOWN, BINARY or ASCII */ 353 Byte method; /* STORED (for zip only) or DEFLATED */ 354 int last_flush; /* value of flush param for previous deflate call */ 355 356 /* used by deflate.c: */ 357 358 uInt w_size; /* LZ77 window size (32K by default) */ 359 uInt w_bits; /* log2(w_size) (8..16) */ 360 uInt w_mask; /* w_size - 1 */ 361 362 Bytef *window; 363 /* Sliding window. Input bytes are read into the second half of the window, 364 * and move to the first half later to keep a dictionary of at least wSize 365 * bytes. With this organization, matches are limited to a distance of 366 * wSize-MAX_MATCH bytes, but this ensures that IO is always 367 * performed with a length multiple of the block size. Also, it limits 368 * the window size to 64K, which is quite useful on MSDOS. 369 * To do: use the user input buffer as sliding window. 370 */ 371 372 ulg window_size; 373 /* Actual size of window: 2*wSize, except when the user input buffer 374 * is directly used as sliding window. 375 */ 376 377 Posf *prev; 378 /* Link to older string with same hash index. To limit the size of this 379 * array to 64K, this link is maintained only for the last 32K strings. 380 * An index in this array is thus a window index modulo 32K. 381 */ 382 383 Posf *head; /* Heads of the hash chains or NIL. */ 384 385 uInt ins_h; /* hash index of string to be inserted */ 386 uInt hash_size; /* number of elements in hash table */ 387 uInt hash_bits; /* log2(hash_size) */ 388 uInt hash_mask; /* hash_size-1 */ 389 390 uInt hash_shift; 391 /* Number of bits by which ins_h must be shifted at each input 392 * step. It must be such that after MIN_MATCH steps, the oldest 393 * byte no longer takes part in the hash key, that is: 394 * hash_shift * MIN_MATCH >= hash_bits 395 */ 396 397 long block_start; 398 /* Window position at the beginning of the current output block. Gets 399 * negative when the window is moved backwards. 400 */ 401 402 uInt match_length; /* length of best match */ 403 IPos prev_match; /* previous match */ 404 int match_available; /* set if previous match exists */ 405 uInt strstart; /* start of string to insert */ 406 uInt match_start; /* start of matching string */ 407 uInt lookahead; /* number of valid bytes ahead in window */ 408 409 uInt prev_length; 410 /* Length of the best match at previous step. Matches not greater than this 411 * are discarded. This is used in the lazy match evaluation. 412 */ 413 414 uInt max_chain_length; 415 /* To speed up deflation, hash chains are never searched beyond this 416 * length. A higher limit improves compression ratio but degrades the 417 * speed. 418 */ 419 420 uInt max_lazy_match; 421 /* Attempt to find a better match only when the current match is strictly 422 * smaller than this value. This mechanism is used only for compression 423 * levels >= 4. 424 */ 425 # define max_insert_length max_lazy_match 426 /* Insert new strings in the hash table only if the match length is not 427 * greater than this length. This saves time but degrades compression. 428 * max_insert_length is used only for compression levels <= 3. 429 */ 430 431 int level; /* compression level (1..9) */ 432 int strategy; /* favor or force Huffman coding*/ 433 434 uInt good_match; 435 /* Use a faster search when the previous match is longer than this */ 436 437 int nice_match; /* Stop searching when current match exceeds this */ 438 439 /* used by trees.c: */ 440 /* Didn't use ct_data typedef below to supress compiler warning */ 441 struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ 442 struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ 443 struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ 444 445 struct tree_desc_s l_desc; /* desc. for literal tree */ 446 struct tree_desc_s d_desc; /* desc. for distance tree */ 447 struct tree_desc_s bl_desc; /* desc. for bit length tree */ 448 449 ush bl_count[MAX_BITS+1]; 450 /* number of codes at each bit length for an optimal tree */ 451 452 int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ 453 int heap_len; /* number of elements in the heap */ 454 int heap_max; /* element of largest frequency */ 455 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. 456 * The same heap array is used to build all trees. 457 */ 458 459 uch depth[2*L_CODES+1]; 460 /* Depth of each subtree used as tie breaker for trees of equal frequency 461 */ 462 463 uchf *l_buf; /* buffer for literals or lengths */ 464 465 uInt lit_bufsize; 466 /* Size of match buffer for literals/lengths. There are 4 reasons for 467 * limiting lit_bufsize to 64K: 468 * - frequencies can be kept in 16 bit counters 469 * - if compression is not successful for the first block, all input 470 * data is still in the window so we can still emit a stored block even 471 * when input comes from standard input. (This can also be done for 472 * all blocks if lit_bufsize is not greater than 32K.) 473 * - if compression is not successful for a file smaller than 64K, we can 474 * even emit a stored file instead of a stored block (saving 5 bytes). 475 * This is applicable only for zip (not gzip or zlib). 476 * - creating new Huffman trees less frequently may not provide fast 477 * adaptation to changes in the input data statistics. (Take for 478 * example a binary file with poorly compressible code followed by 479 * a highly compressible string table.) Smaller buffer sizes give 480 * fast adaptation but have of course the overhead of transmitting 481 * trees more frequently. 482 * - I can't count above 4 483 */ 484 485 uInt last_lit; /* running index in l_buf */ 486 487 ushf *d_buf; 488 /* Buffer for distances. To simplify the code, d_buf and l_buf have 489 * the same number of elements. To use different lengths, an extra flag 490 * array would be necessary. 491 */ 492 493 ulg opt_len; /* bit length of current block with optimal trees */ 494 ulg static_len; /* bit length of current block with static trees */ 495 ulg compressed_len; /* total bit length of compressed file */ 496 uInt matches; /* number of string matches in current block */ 497 int last_eob_len; /* bit length of EOB code for last block */ 498 499 #ifdef DEBUG_ZLIB 500 ulg bits_sent; /* bit length of the compressed data */ 501 #endif 502 503 ush bi_buf; 504 /* Output buffer. bits are inserted starting at the bottom (least 505 * significant bits). 506 */ 507 int bi_valid; 508 /* Number of valid bits in bi_buf. All bits above the last valid bit 509 * are always zero. 510 */ 511 512 } FAR deflate_state; 513 514 /* Output a byte on the stream. 515 * IN assertion: there is enough room in pending_buf. 516 */ 517 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);} 518 519 520 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) 521 /* Minimum amount of lookahead, except at the end of the input file. 522 * See deflate.c for comments about the MIN_MATCH+1. 523 */ 524 525 #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD) 526 /* In order to simplify the code, particularly on 16 bit machines, match 527 * distances are limited to MAX_DIST instead of WSIZE. 528 */ 529 530 /* in trees.c */ 531 void _tr_init OF((deflate_state *s)); 532 int _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc)); 533 ulg _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len, 534 int eof)); 535 void _tr_align OF((deflate_state *s)); 536 void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len, 537 int eof)); 538 void _tr_stored_type_only OF((deflate_state *)); 539 540 #endif 541 /* --- deflate.h */ 542 543 /* +++ deflate.c */ 544 /* deflate.c -- compress data using the deflation algorithm 545 * Copyright (C) 1995-1996 Jean-loup Gailly. 546 * For conditions of distribution and use, see copyright notice in zlib.h 547 */ 548 549 /* 550 * ALGORITHM 551 * 552 * The "deflation" process depends on being able to identify portions 553 * of the input text which are identical to earlier input (within a 554 * sliding window trailing behind the input currently being processed). 555 * 556 * The most straightforward technique turns out to be the fastest for 557 * most input files: try all possible matches and select the longest. 558 * The key feature of this algorithm is that insertions into the string 559 * dictionary are very simple and thus fast, and deletions are avoided 560 * completely. Insertions are performed at each input character, whereas 561 * string matches are performed only when the previous match ends. So it 562 * is preferable to spend more time in matches to allow very fast string 563 * insertions and avoid deletions. The matching algorithm for small 564 * strings is inspired from that of Rabin & Karp. A brute force approach 565 * is used to find longer strings when a small match has been found. 566 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze 567 * (by Leonid Broukhis). 568 * A previous version of this file used a more sophisticated algorithm 569 * (by Fiala and Greene) which is guaranteed to run in linear amortized 570 * time, but has a larger average cost, uses more memory and is patented. 571 * However the F&G algorithm may be faster for some highly redundant 572 * files if the parameter max_chain_length (described below) is too large. 573 * 574 * ACKNOWLEDGEMENTS 575 * 576 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and 577 * I found it in 'freeze' written by Leonid Broukhis. 578 * Thanks to many people for bug reports and testing. 579 * 580 * REFERENCES 581 * 582 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". 583 * Available in ftp://ds.internic.net/rfc/rfc1951.txt 584 * 585 * A description of the Rabin and Karp algorithm is given in the book 586 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. 587 * 588 * Fiala,E.R., and Greene,D.H. 589 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 590 * 591 */ 592 593 /* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */ 594 595 /* #include "deflate.h" */ 596 597 const char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly "; 598 /* 599 If you use the zlib library in a product, an acknowledgment is welcome 600 in the documentation of your product. If for some reason you cannot 601 include such an acknowledgment, I would appreciate that you keep this 602 copyright string in the executable of your product. 603 */ 604 605 /* =========================================================================== 606 * Function prototypes. 607 */ 608 typedef enum { 609 need_more, /* block not completed, need more input or more output */ 610 block_done, /* block flush performed */ 611 finish_started, /* finish started, need only more output at next deflate */ 612 finish_done /* finish done, accept no more input or output */ 613 } block_state; 614 615 typedef block_state (*compress_func) OF((deflate_state *s, int flush)); 616 /* Compression function. Returns the block state after the call. */ 617 618 local void fill_window OF((deflate_state *s)); 619 local block_state deflate_stored OF((deflate_state *s, int flush)); 620 local block_state deflate_fast OF((deflate_state *s, int flush)); 621 local block_state deflate_slow OF((deflate_state *s, int flush)); 622 local void lm_init OF((deflate_state *s)); 623 local void putShortMSB OF((deflate_state *s, uInt b)); 624 local void flush_pending OF((z_streamp strm)); 625 local int read_buf OF((z_streamp strm, charf *buf, unsigned size)); 626 #ifdef ASMV 627 void match_init OF((void)); /* asm code initialization */ 628 uInt longest_match OF((deflate_state *s, IPos cur_match)); 629 #else 630 local uInt longest_match OF((deflate_state *s, IPos cur_match)); 631 #endif 632 633 #ifdef DEBUG_ZLIB 634 local void check_match OF((deflate_state *s, IPos start, IPos match, 635 int length)); 636 #endif 637 638 /* =========================================================================== 639 * Local data 640 */ 641 642 #define NIL 0 643 /* Tail of hash chains */ 644 645 #ifndef TOO_FAR 646 # define TOO_FAR 4096 647 #endif 648 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ 649 650 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) 651 /* Minimum amount of lookahead, except at the end of the input file. 652 * See deflate.c for comments about the MIN_MATCH+1. 653 */ 654 655 /* Values for max_lazy_match, good_match and max_chain_length, depending on 656 * the desired pack level (0..9). The values given below have been tuned to 657 * exclude worst case performance for pathological files. Better values may be 658 * found for specific files. 659 */ 660 typedef struct config_s { 661 ush good_length; /* reduce lazy search above this match length */ 662 ush max_lazy; /* do not perform lazy search above this match length */ 663 ush nice_length; /* quit search above this match length */ 664 ush max_chain; 665 compress_func func; 666 } config; 667 668 local const config configuration_table[10] = { 669 /* good lazy nice chain */ 670 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ 671 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* maximum speed, no lazy matches */ 672 /* 2 */ {4, 5, 16, 8, deflate_fast}, 673 /* 3 */ {4, 6, 32, 32, deflate_fast}, 674 675 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ 676 /* 5 */ {8, 16, 32, 32, deflate_slow}, 677 /* 6 */ {8, 16, 128, 128, deflate_slow}, 678 /* 7 */ {8, 32, 128, 256, deflate_slow}, 679 /* 8 */ {32, 128, 258, 1024, deflate_slow}, 680 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */ 681 682 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 683 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different 684 * meaning. 685 */ 686 687 #define EQUAL 0 688 /* result of memcmp for equal strings */ 689 690 #ifndef NO_DUMMY_DECL 691 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ 692 #endif 693 694 /* =========================================================================== 695 * Update a hash value with the given input byte 696 * IN assertion: all calls to to UPDATE_HASH are made with consecutive 697 * input characters, so that a running hash key can be computed from the 698 * previous key instead of complete recalculation each time. 699 */ 700 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask) 701 702 703 /* =========================================================================== 704 * Insert string str in the dictionary and set match_head to the previous head 705 * of the hash chain (the most recent string with same hash key). Return 706 * the previous length of the hash chain. 707 * IN assertion: all calls to to INSERT_STRING are made with consecutive 708 * input characters and the first MIN_MATCH bytes of str are valid 709 * (except for the last MIN_MATCH-1 bytes of the input file). 710 */ 711 #define INSERT_STRING(s, str, match_head) \ 712 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ 713 s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \ 714 s->head[s->ins_h] = (Pos)(str)) 715 716 /* =========================================================================== 717 * Initialize the hash table (avoiding 64K overflow for 16 bit systems). 718 * prev[] will be initialized on the fly. 719 */ 720 #define CLEAR_HASH(s) \ 721 s->head[s->hash_size-1] = NIL; \ 722 zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); 723 724 /* ========================================================================= */ 725 int deflateInit_(strm, level, version, stream_size) 726 z_streamp strm; 727 int level; 728 const char *version; 729 int stream_size; 730 { 731 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, 732 Z_DEFAULT_STRATEGY, version, stream_size); 733 /* To do: ignore strm->next_in if we use it as window */ 734 } 735 736 /* ========================================================================= */ 737 int deflateInit2_(strm, level, method, windowBits, memLevel, strategy, 738 version, stream_size) 739 z_streamp strm; 740 int level; 741 int method; 742 int windowBits; 743 int memLevel; 744 int strategy; 745 const char *version; 746 int stream_size; 747 { 748 deflate_state *s; 749 int noheader = 0; 750 static char* my_version = ZLIB_VERSION; 751 752 ushf *overlay; 753 /* We overlay pending_buf and d_buf+l_buf. This works since the average 754 * output size for (length,distance) codes is <= 24 bits. 755 */ 756 757 if (version == Z_NULL || version[0] != my_version[0] || 758 stream_size != sizeof(z_stream)) { 759 return Z_VERSION_ERROR; 760 } 761 if (strm == Z_NULL) return Z_STREAM_ERROR; 762 763 strm->msg = Z_NULL; 764 #ifndef NO_ZCFUNCS 765 if (strm->zalloc == Z_NULL) { 766 strm->zalloc = zcalloc; 767 strm->opaque = (voidpf)0; 768 } 769 if (strm->zfree == Z_NULL) strm->zfree = zcfree; 770 #endif 771 772 if (level == Z_DEFAULT_COMPRESSION) level = 6; 773 774 if (windowBits < 0) { /* undocumented feature: suppress zlib header */ 775 noheader = 1; 776 windowBits = -windowBits; 777 } 778 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || 779 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || 780 strategy < 0 || strategy > Z_HUFFMAN_ONLY) { 781 return Z_STREAM_ERROR; 782 } 783 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); 784 if (s == Z_NULL) return Z_MEM_ERROR; 785 strm->state = (struct internal_state FAR *)s; 786 s->strm = strm; 787 788 s->noheader = noheader; 789 s->w_bits = windowBits; 790 s->w_size = 1 << s->w_bits; 791 s->w_mask = s->w_size - 1; 792 793 s->hash_bits = memLevel + 7; 794 s->hash_size = 1 << s->hash_bits; 795 s->hash_mask = s->hash_size - 1; 796 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); 797 798 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); 799 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); 800 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); 801 802 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ 803 804 overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); 805 s->pending_buf = (uchf *) overlay; 806 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); 807 808 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || 809 s->pending_buf == Z_NULL) { 810 strm->msg = (char*)ERR_MSG(Z_MEM_ERROR); 811 deflateEnd (strm); 812 return Z_MEM_ERROR; 813 } 814 s->d_buf = overlay + s->lit_bufsize/sizeof(ush); 815 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; 816 817 s->level = level; 818 s->strategy = strategy; 819 s->method = (Byte)method; 820 821 return deflateReset(strm); 822 } 823 824 /* ========================================================================= */ 825 int deflateSetDictionary (strm, dictionary, dictLength) 826 z_streamp strm; 827 const Bytef *dictionary; 828 uInt dictLength; 829 { 830 deflate_state *s; 831 uInt length = dictLength; 832 uInt n; 833 IPos hash_head = 0; 834 835 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL) 836 return Z_STREAM_ERROR; 837 838 s = (deflate_state *) strm->state; 839 if (s->status != INIT_STATE) return Z_STREAM_ERROR; 840 841 strm->adler = adler32(strm->adler, dictionary, dictLength); 842 843 if (length < MIN_MATCH) return Z_OK; 844 if (length > MAX_DIST(s)) { 845 length = MAX_DIST(s); 846 #ifndef USE_DICT_HEAD 847 dictionary += dictLength - length; /* use the tail of the dictionary */ 848 #endif 849 } 850 zmemcpy((charf *)s->window, dictionary, length); 851 s->strstart = length; 852 s->block_start = (long)length; 853 854 /* Insert all strings in the hash table (except for the last two bytes). 855 * s->lookahead stays null, so s->ins_h will be recomputed at the next 856 * call of fill_window. 857 */ 858 s->ins_h = s->window[0]; 859 UPDATE_HASH(s, s->ins_h, s->window[1]); 860 for (n = 0; n <= length - MIN_MATCH; n++) { 861 INSERT_STRING(s, n, hash_head); 862 } 863 if (hash_head) hash_head = 0; /* to make compiler happy */ 864 return Z_OK; 865 } 866 867 /* ========================================================================= */ 868 int deflateReset (strm) 869 z_streamp strm; 870 { 871 deflate_state *s; 872 873 if (strm == Z_NULL || strm->state == Z_NULL || 874 strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR; 875 876 strm->total_in = strm->total_out = 0; 877 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ 878 strm->data_type = Z_UNKNOWN; 879 880 s = (deflate_state *)strm->state; 881 s->pending = 0; 882 s->pending_out = s->pending_buf; 883 884 if (s->noheader < 0) { 885 s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */ 886 } 887 s->status = s->noheader ? BUSY_STATE : INIT_STATE; 888 strm->adler = 1; 889 s->last_flush = Z_NO_FLUSH; 890 891 _tr_init(s); 892 lm_init(s); 893 894 return Z_OK; 895 } 896 897 /* ========================================================================= */ 898 int deflateParams(strm, level, strategy) 899 z_streamp strm; 900 int level; 901 int strategy; 902 { 903 deflate_state *s; 904 compress_func func; 905 int err = Z_OK; 906 907 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; 908 s = (deflate_state *) strm->state; 909 910 if (level == Z_DEFAULT_COMPRESSION) { 911 level = 6; 912 } 913 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) { 914 return Z_STREAM_ERROR; 915 } 916 func = configuration_table[s->level].func; 917 918 if (func != configuration_table[level].func && strm->total_in != 0) { 919 /* Flush the last buffer: */ 920 err = deflate(strm, Z_PARTIAL_FLUSH); 921 } 922 if (s->level != level) { 923 s->level = level; 924 s->max_lazy_match = configuration_table[level].max_lazy; 925 s->good_match = configuration_table[level].good_length; 926 s->nice_match = configuration_table[level].nice_length; 927 s->max_chain_length = configuration_table[level].max_chain; 928 } 929 s->strategy = strategy; 930 return err; 931 } 932 933 /* ========================================================================= 934 * Put a short in the pending buffer. The 16-bit value is put in MSB order. 935 * IN assertion: the stream state is correct and there is enough room in 936 * pending_buf. 937 */ 938 local void putShortMSB (s, b) 939 deflate_state *s; 940 uInt b; 941 { 942 put_byte(s, (Byte)(b >> 8)); 943 put_byte(s, (Byte)(b & 0xff)); 944 } 945 946 /* ========================================================================= 947 * Flush as much pending output as possible. All deflate() output goes 948 * through this function so some applications may wish to modify it 949 * to avoid allocating a large strm->next_out buffer and copying into it. 950 * (See also read_buf()). 951 */ 952 local void flush_pending(strm) 953 z_streamp strm; 954 { 955 deflate_state *s = (deflate_state *) strm->state; 956 unsigned len = s->pending; 957 958 if (len > strm->avail_out) len = strm->avail_out; 959 if (len == 0) return; 960 961 if (strm->next_out != Z_NULL) { 962 zmemcpy(strm->next_out, s->pending_out, len); 963 strm->next_out += len; 964 } 965 s->pending_out += len; 966 strm->total_out += len; 967 strm->avail_out -= len; 968 s->pending -= len; 969 if (s->pending == 0) { 970 s->pending_out = s->pending_buf; 971 } 972 } 973 974 /* ========================================================================= */ 975 int deflate (strm, flush) 976 z_streamp strm; 977 int flush; 978 { 979 int old_flush; /* value of flush param for previous deflate call */ 980 deflate_state *s; 981 982 if (strm == Z_NULL || strm->state == Z_NULL || 983 flush > Z_FINISH || flush < 0) { 984 return Z_STREAM_ERROR; 985 } 986 s = (deflate_state *) strm->state; 987 988 if ((strm->next_in == Z_NULL && strm->avail_in != 0) || 989 (s->status == FINISH_STATE && flush != Z_FINISH)) { 990 ERR_RETURN(strm, Z_STREAM_ERROR); 991 } 992 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); 993 994 s->strm = strm; /* just in case */ 995 old_flush = s->last_flush; 996 s->last_flush = flush; 997 998 /* Write the zlib header */ 999 if (s->status == INIT_STATE) { 1000 1001 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; 1002 uInt level_flags = (s->level-1) >> 1; 1003 1004 if (level_flags > 3) level_flags = 3; 1005 header |= (level_flags << 6); 1006 if (s->strstart != 0) header |= PRESET_DICT; 1007 header += 31 - (header % 31); 1008 1009 s->status = BUSY_STATE; 1010 putShortMSB(s, header); 1011 1012 /* Save the adler32 of the preset dictionary: */ 1013 if (s->strstart != 0) { 1014 putShortMSB(s, (uInt)(strm->adler >> 16)); 1015 putShortMSB(s, (uInt)(strm->adler & 0xffff)); 1016 } 1017 strm->adler = 1L; 1018 } 1019 1020 /* Flush as much pending output as possible */ 1021 if (s->pending != 0) { 1022 flush_pending(strm); 1023 if (strm->avail_out == 0) { 1024 /* Since avail_out is 0, deflate will be called again with 1025 * more output space, but possibly with both pending and 1026 * avail_in equal to zero. There won't be anything to do, 1027 * but this is not an error situation so make sure we 1028 * return OK instead of BUF_ERROR at next call of deflate: 1029 */ 1030 s->last_flush = -1; 1031 return Z_OK; 1032 } 1033 1034 /* Make sure there is something to do and avoid duplicate consecutive 1035 * flushes. For repeated and useless calls with Z_FINISH, we keep 1036 * returning Z_STREAM_END instead of Z_BUFF_ERROR. 1037 */ 1038 } else if (strm->avail_in == 0 && flush <= old_flush && 1039 flush != Z_FINISH) { 1040 ERR_RETURN(strm, Z_BUF_ERROR); 1041 } 1042 1043 /* User must not provide more input after the first FINISH: */ 1044 if (s->status == FINISH_STATE && strm->avail_in != 0) { 1045 ERR_RETURN(strm, Z_BUF_ERROR); 1046 } 1047 1048 /* Start a new block or continue the current one. 1049 */ 1050 if (strm->avail_in != 0 || s->lookahead != 0 || 1051 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { 1052 block_state bstate; 1053 1054 bstate = (*(configuration_table[s->level].func))(s, flush); 1055 1056 if (bstate == finish_started || bstate == finish_done) { 1057 s->status = FINISH_STATE; 1058 } 1059 if (bstate == need_more || bstate == finish_started) { 1060 if (strm->avail_out == 0) { 1061 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ 1062 } 1063 return Z_OK; 1064 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call 1065 * of deflate should use the same flush parameter to make sure 1066 * that the flush is complete. So we don't have to output an 1067 * empty block here, this will be done at next call. This also 1068 * ensures that for a very small output buffer, we emit at most 1069 * one empty block. 1070 */ 1071 } 1072 if (bstate == block_done) { 1073 if (flush == Z_PARTIAL_FLUSH) { 1074 _tr_align(s); 1075 } else if (flush == Z_PACKET_FLUSH) { 1076 /* Output just the 3-bit `stored' block type value, 1077 but not a zero length. */ 1078 _tr_stored_type_only(s); 1079 } else { /* FULL_FLUSH or SYNC_FLUSH */ 1080 _tr_stored_block(s, (char*)0, 0L, 0); 1081 /* For a full flush, this empty block will be recognized 1082 * as a special marker by inflate_sync(). 1083 */ 1084 if (flush == Z_FULL_FLUSH) { 1085 CLEAR_HASH(s); /* forget history */ 1086 } 1087 } 1088 flush_pending(strm); 1089 if (strm->avail_out == 0) { 1090 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ 1091 return Z_OK; 1092 } 1093 } 1094 } 1095 Assert(strm->avail_out > 0, "bug2"); 1096 1097 if (flush != Z_FINISH) return Z_OK; 1098 if (s->noheader) return Z_STREAM_END; 1099 1100 /* Write the zlib trailer (adler32) */ 1101 putShortMSB(s, (uInt)(strm->adler >> 16)); 1102 putShortMSB(s, (uInt)(strm->adler & 0xffff)); 1103 flush_pending(strm); 1104 /* If avail_out is zero, the application will call deflate again 1105 * to flush the rest. 1106 */ 1107 s->noheader = -1; /* write the trailer only once! */ 1108 return s->pending != 0 ? Z_OK : Z_STREAM_END; 1109 } 1110 1111 /* ========================================================================= */ 1112 int deflateEnd (strm) 1113 z_streamp strm; 1114 { 1115 int status; 1116 deflate_state *s; 1117 1118 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; 1119 s = (deflate_state *) strm->state; 1120 1121 status = s->status; 1122 if (status != INIT_STATE && status != BUSY_STATE && 1123 status != FINISH_STATE) { 1124 return Z_STREAM_ERROR; 1125 } 1126 1127 /* Deallocate in reverse order of allocations: */ 1128 TRY_FREE(strm, s->pending_buf); 1129 TRY_FREE(strm, s->head); 1130 TRY_FREE(strm, s->prev); 1131 TRY_FREE(strm, s->window); 1132 1133 ZFREE(strm, s); 1134 strm->state = Z_NULL; 1135 1136 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; 1137 } 1138 1139 /* ========================================================================= 1140 * Copy the source state to the destination state. 1141 */ 1142 int deflateCopy (dest, source) 1143 z_streamp dest; 1144 z_streamp source; 1145 { 1146 deflate_state *ds; 1147 deflate_state *ss; 1148 ushf *overlay; 1149 1150 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) 1151 return Z_STREAM_ERROR; 1152 ss = (deflate_state *) source->state; 1153 1154 zmemcpy(dest, source, sizeof(*dest)); 1155 1156 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); 1157 if (ds == Z_NULL) return Z_MEM_ERROR; 1158 dest->state = (struct internal_state FAR *) ds; 1159 zmemcpy(ds, ss, sizeof(*ds)); 1160 ds->strm = dest; 1161 1162 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); 1163 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); 1164 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); 1165 overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); 1166 ds->pending_buf = (uchf *) overlay; 1167 1168 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || 1169 ds->pending_buf == Z_NULL) { 1170 deflateEnd (dest); 1171 return Z_MEM_ERROR; 1172 } 1173 /* ??? following zmemcpy doesn't work for 16-bit MSDOS */ 1174 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); 1175 zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos)); 1176 zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos)); 1177 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); 1178 1179 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); 1180 ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); 1181 ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; 1182 1183 ds->l_desc.dyn_tree = ds->dyn_ltree; 1184 ds->d_desc.dyn_tree = ds->dyn_dtree; 1185 ds->bl_desc.dyn_tree = ds->bl_tree; 1186 1187 return Z_OK; 1188 } 1189 1190 /* =========================================================================== 1191 * Return the number of bytes of output which are immediately available 1192 * for output from the decompressor. 1193 */ 1194 int deflateOutputPending (strm) 1195 z_streamp strm; 1196 { 1197 if (strm == Z_NULL || strm->state == Z_NULL) return 0; 1198 1199 return ((deflate_state *)(strm->state))->pending; 1200 } 1201 1202 /* =========================================================================== 1203 * Read a new buffer from the current input stream, update the adler32 1204 * and total number of bytes read. All deflate() input goes through 1205 * this function so some applications may wish to modify it to avoid 1206 * allocating a large strm->next_in buffer and copying from it. 1207 * (See also flush_pending()). 1208 */ 1209 local int read_buf(strm, buf, size) 1210 z_streamp strm; 1211 charf *buf; 1212 unsigned size; 1213 { 1214 unsigned len = strm->avail_in; 1215 1216 if (len > size) len = size; 1217 if (len == 0) return 0; 1218 1219 strm->avail_in -= len; 1220 1221 if (!((deflate_state *)(strm->state))->noheader) { 1222 strm->adler = adler32(strm->adler, strm->next_in, len); 1223 } 1224 zmemcpy(buf, strm->next_in, len); 1225 strm->next_in += len; 1226 strm->total_in += len; 1227 1228 return (int)len; 1229 } 1230 1231 /* =========================================================================== 1232 * Initialize the "longest match" routines for a new zlib stream 1233 */ 1234 local void lm_init (s) 1235 deflate_state *s; 1236 { 1237 s->window_size = (ulg)2L*s->w_size; 1238 1239 CLEAR_HASH(s); 1240 1241 /* Set the default configuration parameters: 1242 */ 1243 s->max_lazy_match = configuration_table[s->level].max_lazy; 1244 s->good_match = configuration_table[s->level].good_length; 1245 s->nice_match = configuration_table[s->level].nice_length; 1246 s->max_chain_length = configuration_table[s->level].max_chain; 1247 1248 s->strstart = 0; 1249 s->block_start = 0L; 1250 s->lookahead = 0; 1251 s->match_length = s->prev_length = MIN_MATCH-1; 1252 s->match_available = 0; 1253 s->ins_h = 0; 1254 #ifdef ASMV 1255 match_init(); /* initialize the asm code */ 1256 #endif 1257 } 1258 1259 /* =========================================================================== 1260 * Set match_start to the longest match starting at the given string and 1261 * return its length. Matches shorter or equal to prev_length are discarded, 1262 * in which case the result is equal to prev_length and match_start is 1263 * garbage. 1264 * IN assertions: cur_match is the head of the hash chain for the current 1265 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 1266 * OUT assertion: the match length is not greater than s->lookahead. 1267 */ 1268 #ifndef ASMV 1269 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or 1270 * match.S. The code will be functionally equivalent. 1271 */ 1272 local uInt longest_match(s, cur_match) 1273 deflate_state *s; 1274 IPos cur_match; /* current match */ 1275 { 1276 unsigned chain_length = s->max_chain_length;/* max hash chain length */ 1277 Bytef *scan = s->window + s->strstart; /* current string */ 1278 Bytef *match; /* matched string */ 1279 int len; /* length of current match */ 1280 int best_len = s->prev_length; /* best match length so far */ 1281 int nice_match = s->nice_match; /* stop if match long enough */ 1282 IPos limit = s->strstart > (IPos)MAX_DIST(s) ? 1283 s->strstart - (IPos)MAX_DIST(s) : NIL; 1284 /* Stop when cur_match becomes <= limit. To simplify the code, 1285 * we prevent matches with the string of window index 0. 1286 */ 1287 Posf *prev = s->prev; 1288 uInt wmask = s->w_mask; 1289 1290 #ifdef UNALIGNED_OK 1291 /* Compare two bytes at a time. Note: this is not always beneficial. 1292 * Try with and without -DUNALIGNED_OK to check. 1293 */ 1294 Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; 1295 ush scan_start = *(ushf*)scan; 1296 ush scan_end = *(ushf*)(scan+best_len-1); 1297 #else 1298 Bytef *strend = s->window + s->strstart + MAX_MATCH; 1299 Byte scan_end1 = scan[best_len-1]; 1300 Byte scan_end = scan[best_len]; 1301 #endif 1302 1303 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. 1304 * It is easy to get rid of this optimization if necessary. 1305 */ 1306 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); 1307 1308 /* Do not waste too much time if we already have a good match: */ 1309 if (s->prev_length >= s->good_match) { 1310 chain_length >>= 2; 1311 } 1312 /* Do not look for matches beyond the end of the input. This is necessary 1313 * to make deflate deterministic. 1314 */ 1315 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; 1316 1317 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); 1318 1319 do { 1320 Assert(cur_match < s->strstart, "no future"); 1321 match = s->window + cur_match; 1322 1323 /* Skip to next match if the match length cannot increase 1324 * or if the match length is less than 2: 1325 */ 1326 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) 1327 /* This code assumes sizeof(unsigned short) == 2. Do not use 1328 * UNALIGNED_OK if your compiler uses a different size. 1329 */ 1330 if (*(ushf*)(match+best_len-1) != scan_end || 1331 *(ushf*)match != scan_start) continue; 1332 1333 /* It is not necessary to compare scan[2] and match[2] since they are 1334 * always equal when the other bytes match, given that the hash keys 1335 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at 1336 * strstart+3, +5, ... up to strstart+257. We check for insufficient 1337 * lookahead only every 4th comparison; the 128th check will be made 1338 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is 1339 * necessary to put more guard bytes at the end of the window, or 1340 * to check more often for insufficient lookahead. 1341 */ 1342 Assert(scan[2] == match[2], "scan[2]?"); 1343 scan++, match++; 1344 do { 1345 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && 1346 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && 1347 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && 1348 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && 1349 scan < strend); 1350 /* The funny "do {}" generates better code on most compilers */ 1351 1352 /* Here, scan <= window+strstart+257 */ 1353 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); 1354 if (*scan == *match) scan++; 1355 1356 len = (MAX_MATCH - 1) - (int)(strend-scan); 1357 scan = strend - (MAX_MATCH-1); 1358 1359 #else /* UNALIGNED_OK */ 1360 1361 if (match[best_len] != scan_end || 1362 match[best_len-1] != scan_end1 || 1363 *match != *scan || 1364 *++match != scan[1]) continue; 1365 1366 /* The check at best_len-1 can be removed because it will be made 1367 * again later. (This heuristic is not always a win.) 1368 * It is not necessary to compare scan[2] and match[2] since they 1369 * are always equal when the other bytes match, given that 1370 * the hash keys are equal and that HASH_BITS >= 8. 1371 */ 1372 scan += 2, match++; 1373 Assert(*scan == *match, "match[2]?"); 1374 1375 /* We check for insufficient lookahead only every 8th comparison; 1376 * the 256th check will be made at strstart+258. 1377 */ 1378 do { 1379 } while (*++scan == *++match && *++scan == *++match && 1380 *++scan == *++match && *++scan == *++match && 1381 *++scan == *++match && *++scan == *++match && 1382 *++scan == *++match && *++scan == *++match && 1383 scan < strend); 1384 1385 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); 1386 1387 len = MAX_MATCH - (int)(strend - scan); 1388 scan = strend - MAX_MATCH; 1389 1390 #endif /* UNALIGNED_OK */ 1391 1392 if (len > best_len) { 1393 s->match_start = cur_match; 1394 best_len = len; 1395 if (len >= nice_match) break; 1396 #ifdef UNALIGNED_OK 1397 scan_end = *(ushf*)(scan+best_len-1); 1398 #else 1399 scan_end1 = scan[best_len-1]; 1400 scan_end = scan[best_len]; 1401 #endif 1402 } 1403 } while ((cur_match = prev[cur_match & wmask]) > limit 1404 && --chain_length != 0); 1405 1406 if ((uInt)best_len <= s->lookahead) return best_len; 1407 return s->lookahead; 1408 } 1409 #endif /* ASMV */ 1410 1411 #ifdef DEBUG_ZLIB 1412 /* =========================================================================== 1413 * Check that the match at match_start is indeed a match. 1414 */ 1415 local void check_match(s, start, match, length) 1416 deflate_state *s; 1417 IPos start, match; 1418 int length; 1419 { 1420 /* check that the match is indeed a match */ 1421 if (zmemcmp((charf *)s->window + match, 1422 (charf *)s->window + start, length) != EQUAL) { 1423 fprintf(stderr, " start %u, match %u, length %d\n", 1424 start, match, length); 1425 do { 1426 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); 1427 } while (--length != 0); 1428 z_error("invalid match"); 1429 } 1430 if (z_verbose > 1) { 1431 fprintf(stderr,"\\[%d,%d]", start-match, length); 1432 do { putc(s->window[start++], stderr); } while (--length != 0); 1433 } 1434 } 1435 #else 1436 # define check_match(s, start, match, length) 1437 #endif 1438 1439 /* =========================================================================== 1440 * Fill the window when the lookahead becomes insufficient. 1441 * Updates strstart and lookahead. 1442 * 1443 * IN assertion: lookahead < MIN_LOOKAHEAD 1444 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD 1445 * At least one byte has been read, or avail_in == 0; reads are 1446 * performed for at least two bytes (required for the zip translate_eol 1447 * option -- not supported here). 1448 */ 1449 local void fill_window(s) 1450 deflate_state *s; 1451 { 1452 unsigned n, m; 1453 Posf *p; 1454 unsigned more; /* Amount of free space at the end of the window. */ 1455 uInt wsize = s->w_size; 1456 1457 do { 1458 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); 1459 1460 /* Deal with !@#$% 64K limit: */ 1461 if (more == 0 && s->strstart == 0 && s->lookahead == 0) { 1462 more = wsize; 1463 1464 } else if (more == (unsigned)(-1)) { 1465 /* Very unlikely, but possible on 16 bit machine if strstart == 0 1466 * and lookahead == 1 (input done one byte at time) 1467 */ 1468 more--; 1469 1470 /* If the window is almost full and there is insufficient lookahead, 1471 * move the upper half to the lower one to make room in the upper half. 1472 */ 1473 } else if (s->strstart >= wsize+MAX_DIST(s)) { 1474 1475 zmemcpy((charf *)s->window, (charf *)s->window+wsize, 1476 (unsigned)wsize); 1477 s->match_start -= wsize; 1478 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ 1479 s->block_start -= (long) wsize; 1480 1481 /* Slide the hash table (could be avoided with 32 bit values 1482 at the expense of memory usage). We slide even when level == 0 1483 to keep the hash table consistent if we switch back to level > 0 1484 later. (Using level 0 permanently is not an optimal usage of 1485 zlib, so we don't care about this pathological case.) 1486 */ 1487 n = s->hash_size; 1488 p = &s->head[n]; 1489 do { 1490 m = *--p; 1491 *p = (Pos)(m >= wsize ? m-wsize : NIL); 1492 } while (--n); 1493 1494 n = wsize; 1495 p = &s->prev[n]; 1496 do { 1497 m = *--p; 1498 *p = (Pos)(m >= wsize ? m-wsize : NIL); 1499 /* If n is not on any hash chain, prev[n] is garbage but 1500 * its value will never be used. 1501 */ 1502 } while (--n); 1503 more += wsize; 1504 } 1505 if (s->strm->avail_in == 0) return; 1506 1507 /* If there was no sliding: 1508 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && 1509 * more == window_size - lookahead - strstart 1510 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) 1511 * => more >= window_size - 2*WSIZE + 2 1512 * In the BIG_MEM or MMAP case (not yet supported), 1513 * window_size == input_size + MIN_LOOKAHEAD && 1514 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. 1515 * Otherwise, window_size == 2*WSIZE so more >= 2. 1516 * If there was sliding, more >= WSIZE. So in all cases, more >= 2. 1517 */ 1518 Assert(more >= 2, "more < 2"); 1519 1520 n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead, 1521 more); 1522 s->lookahead += n; 1523 1524 /* Initialize the hash value now that we have some input: */ 1525 if (s->lookahead >= MIN_MATCH) { 1526 s->ins_h = s->window[s->strstart]; 1527 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); 1528 #if MIN_MATCH != 3 1529 Call UPDATE_HASH() MIN_MATCH-3 more times 1530 #endif 1531 } 1532 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, 1533 * but this is not important since only literal bytes will be emitted. 1534 */ 1535 1536 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); 1537 } 1538 1539 /* =========================================================================== 1540 * Flush the current block, with given end-of-file flag. 1541 * IN assertion: strstart is set to the end of the current match. 1542 */ 1543 #define FLUSH_BLOCK_ONLY(s, eof) { \ 1544 _tr_flush_block(s, (s->block_start >= 0L ? \ 1545 (charf *)&s->window[(unsigned)s->block_start] : \ 1546 (charf *)Z_NULL), \ 1547 (ulg)((long)s->strstart - s->block_start), \ 1548 (eof)); \ 1549 s->block_start = s->strstart; \ 1550 flush_pending(s->strm); \ 1551 Tracev((stderr,"[FLUSH]")); \ 1552 } 1553 1554 /* Same but force premature exit if necessary. */ 1555 #define FLUSH_BLOCK(s, eof) { \ 1556 FLUSH_BLOCK_ONLY(s, eof); \ 1557 if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \ 1558 } 1559 1560 /* =========================================================================== 1561 * Copy without compression as much as possible from the input stream, return 1562 * the current block state. 1563 * This function does not insert new strings in the dictionary since 1564 * uncompressible data is probably not useful. This function is used 1565 * only for the level=0 compression option. 1566 * NOTE: this function should be optimized to avoid extra copying from 1567 * window to pending_buf. 1568 */ 1569 local block_state deflate_stored(s, flush) 1570 deflate_state *s; 1571 int flush; 1572 { 1573 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited 1574 * to pending_buf_size, and each stored block has a 5 byte header: 1575 */ 1576 ulg max_block_size = 0xffff; 1577 ulg max_start; 1578 1579 if (max_block_size > s->pending_buf_size - 5) { 1580 max_block_size = s->pending_buf_size - 5; 1581 } 1582 1583 /* Copy as much as possible from input to output: */ 1584 for (;;) { 1585 /* Fill the window as much as possible: */ 1586 if (s->lookahead <= 1) { 1587 1588 Assert(s->strstart < s->w_size+MAX_DIST(s) || 1589 s->block_start >= (long)s->w_size, "slide too late"); 1590 1591 fill_window(s); 1592 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; 1593 1594 if (s->lookahead == 0) break; /* flush the current block */ 1595 } 1596 Assert(s->block_start >= 0L, "block gone"); 1597 1598 s->strstart += s->lookahead; 1599 s->lookahead = 0; 1600 1601 /* Emit a stored block if pending_buf will be full: */ 1602 max_start = s->block_start + max_block_size; 1603 if (s->strstart == 0 || (ulg)s->strstart >= max_start) { 1604 /* strstart == 0 is possible when wraparound on 16-bit machine */ 1605 s->lookahead = (uInt)(s->strstart - max_start); 1606 s->strstart = (uInt)max_start; 1607 FLUSH_BLOCK(s, 0); 1608 } 1609 /* Flush if we may have to slide, otherwise block_start may become 1610 * negative and the data will be gone: 1611 */ 1612 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { 1613 FLUSH_BLOCK(s, 0); 1614 } 1615 } 1616 FLUSH_BLOCK(s, flush == Z_FINISH); 1617 return flush == Z_FINISH ? finish_done : block_done; 1618 } 1619 1620 /* =========================================================================== 1621 * Compress as much as possible from the input stream, return the current 1622 * block state. 1623 * This function does not perform lazy evaluation of matches and inserts 1624 * new strings in the dictionary only for unmatched strings or for short 1625 * matches. It is used only for the fast compression options. 1626 */ 1627 local block_state deflate_fast(s, flush) 1628 deflate_state *s; 1629 int flush; 1630 { 1631 IPos hash_head = NIL; /* head of the hash chain */ 1632 int bflush; /* set if current block must be flushed */ 1633 1634 for (;;) { 1635 /* Make sure that we always have enough lookahead, except 1636 * at the end of the input file. We need MAX_MATCH bytes 1637 * for the next match, plus MIN_MATCH bytes to insert the 1638 * string following the next match. 1639 */ 1640 if (s->lookahead < MIN_LOOKAHEAD) { 1641 fill_window(s); 1642 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { 1643 return need_more; 1644 } 1645 if (s->lookahead == 0) break; /* flush the current block */ 1646 } 1647 1648 /* Insert the string window[strstart .. strstart+2] in the 1649 * dictionary, and set hash_head to the head of the hash chain: 1650 */ 1651 if (s->lookahead >= MIN_MATCH) { 1652 INSERT_STRING(s, s->strstart, hash_head); 1653 } 1654 1655 /* Find the longest match, discarding those <= prev_length. 1656 * At this point we have always match_length < MIN_MATCH 1657 */ 1658 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { 1659 /* To simplify the code, we prevent matches with the string 1660 * of window index 0 (in particular we have to avoid a match 1661 * of the string with itself at the start of the input file). 1662 */ 1663 if (s->strategy != Z_HUFFMAN_ONLY) { 1664 s->match_length = longest_match (s, hash_head); 1665 } 1666 /* longest_match() sets match_start */ 1667 } 1668 if (s->match_length >= MIN_MATCH) { 1669 check_match(s, s->strstart, s->match_start, s->match_length); 1670 1671 bflush = _tr_tally(s, s->strstart - s->match_start, 1672 s->match_length - MIN_MATCH); 1673 1674 s->lookahead -= s->match_length; 1675 1676 /* Insert new strings in the hash table only if the match length 1677 * is not too large. This saves time but degrades compression. 1678 */ 1679 if (s->match_length <= s->max_insert_length && 1680 s->lookahead >= MIN_MATCH) { 1681 s->match_length--; /* string at strstart already in hash table */ 1682 do { 1683 s->strstart++; 1684 INSERT_STRING(s, s->strstart, hash_head); 1685 /* strstart never exceeds WSIZE-MAX_MATCH, so there are 1686 * always MIN_MATCH bytes ahead. 1687 */ 1688 } while (--s->match_length != 0); 1689 s->strstart++; 1690 } else { 1691 s->strstart += s->match_length; 1692 s->match_length = 0; 1693 s->ins_h = s->window[s->strstart]; 1694 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); 1695 #if MIN_MATCH != 3 1696 Call UPDATE_HASH() MIN_MATCH-3 more times 1697 #endif 1698 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not 1699 * matter since it will be recomputed at next deflate call. 1700 */ 1701 } 1702 } else { 1703 /* No match, output a literal byte */ 1704 Tracevv((stderr,"%c", s->window[s->strstart])); 1705 bflush = _tr_tally (s, 0, s->window[s->strstart]); 1706 s->lookahead--; 1707 s->strstart++; 1708 } 1709 if (bflush) FLUSH_BLOCK(s, 0); 1710 } 1711 FLUSH_BLOCK(s, flush == Z_FINISH); 1712 return flush == Z_FINISH ? finish_done : block_done; 1713 } 1714 1715 /* =========================================================================== 1716 * Same as above, but achieves better compression. We use a lazy 1717 * evaluation for matches: a match is finally adopted only if there is 1718 * no better match at the next window position. 1719 */ 1720 local block_state deflate_slow(s, flush) 1721 deflate_state *s; 1722 int flush; 1723 { 1724 IPos hash_head = NIL; /* head of hash chain */ 1725 int bflush; /* set if current block must be flushed */ 1726 1727 /* Process the input block. */ 1728 for (;;) { 1729 /* Make sure that we always have enough lookahead, except 1730 * at the end of the input file. We need MAX_MATCH bytes 1731 * for the next match, plus MIN_MATCH bytes to insert the 1732 * string following the next match. 1733 */ 1734 if (s->lookahead < MIN_LOOKAHEAD) { 1735 fill_window(s); 1736 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { 1737 return need_more; 1738 } 1739 if (s->lookahead == 0) break; /* flush the current block */ 1740 } 1741 1742 /* Insert the string window[strstart .. strstart+2] in the 1743 * dictionary, and set hash_head to the head of the hash chain: 1744 */ 1745 if (s->lookahead >= MIN_MATCH) { 1746 INSERT_STRING(s, s->strstart, hash_head); 1747 } 1748 1749 /* Find the longest match, discarding those <= prev_length. 1750 */ 1751 s->prev_length = s->match_length, s->prev_match = s->match_start; 1752 s->match_length = MIN_MATCH-1; 1753 1754 if (hash_head != NIL && s->prev_length < s->max_lazy_match && 1755 s->strstart - hash_head <= MAX_DIST(s)) { 1756 /* To simplify the code, we prevent matches with the string 1757 * of window index 0 (in particular we have to avoid a match 1758 * of the string with itself at the start of the input file). 1759 */ 1760 if (s->strategy != Z_HUFFMAN_ONLY) { 1761 s->match_length = longest_match (s, hash_head); 1762 } 1763 /* longest_match() sets match_start */ 1764 1765 if (s->match_length <= 5 && (s->strategy == Z_FILTERED || 1766 (s->match_length == MIN_MATCH && 1767 s->strstart - s->match_start > TOO_FAR))) { 1768 1769 /* If prev_match is also MIN_MATCH, match_start is garbage 1770 * but we will ignore the current match anyway. 1771 */ 1772 s->match_length = MIN_MATCH-1; 1773 } 1774 } 1775 /* If there was a match at the previous step and the current 1776 * match is not better, output the previous match: 1777 */ 1778 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { 1779 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; 1780 /* Do not insert strings in hash table beyond this. */ 1781 1782 check_match(s, s->strstart-1, s->prev_match, s->prev_length); 1783 1784 bflush = _tr_tally(s, s->strstart -1 - s->prev_match, 1785 s->prev_length - MIN_MATCH); 1786 1787 /* Insert in hash table all strings up to the end of the match. 1788 * strstart-1 and strstart are already inserted. If there is not 1789 * enough lookahead, the last two strings are not inserted in 1790 * the hash table. 1791 */ 1792 s->lookahead -= s->prev_length-1; 1793 s->prev_length -= 2; 1794 do { 1795 if (++s->strstart <= max_insert) { 1796 INSERT_STRING(s, s->strstart, hash_head); 1797 } 1798 } while (--s->prev_length != 0); 1799 s->match_available = 0; 1800 s->match_length = MIN_MATCH-1; 1801 s->strstart++; 1802 1803 if (bflush) FLUSH_BLOCK(s, 0); 1804 1805 } else if (s->match_available) { 1806 /* If there was no match at the previous position, output a 1807 * single literal. If there was a match but the current match 1808 * is longer, truncate the previous match to a single literal. 1809 */ 1810 Tracevv((stderr,"%c", s->window[s->strstart-1])); 1811 if (_tr_tally (s, 0, s->window[s->strstart-1])) { 1812 FLUSH_BLOCK_ONLY(s, 0); 1813 } 1814 s->strstart++; 1815 s->lookahead--; 1816 if (s->strm->avail_out == 0) return need_more; 1817 } else { 1818 /* There is no previous match to compare with, wait for 1819 * the next step to decide. 1820 */ 1821 s->match_available = 1; 1822 s->strstart++; 1823 s->lookahead--; 1824 } 1825 } 1826 Assert (flush != Z_NO_FLUSH, "no flush?"); 1827 if (s->match_available) { 1828 Tracevv((stderr,"%c", s->window[s->strstart-1])); 1829 _tr_tally (s, 0, s->window[s->strstart-1]); 1830 s->match_available = 0; 1831 } 1832 FLUSH_BLOCK(s, flush == Z_FINISH); 1833 return flush == Z_FINISH ? finish_done : block_done; 1834 } 1835 /* --- deflate.c */ 1836 1837 /* +++ trees.c */ 1838 /* trees.c -- output deflated data using Huffman coding 1839 * Copyright (C) 1995-1996 Jean-loup Gailly 1840 * For conditions of distribution and use, see copyright notice in zlib.h 1841 */ 1842 1843 /* 1844 * ALGORITHM 1845 * 1846 * The "deflation" process uses several Huffman trees. The more 1847 * common source values are represented by shorter bit sequences. 1848 * 1849 * Each code tree is stored in a compressed form which is itself 1850 * a Huffman encoding of the lengths of all the code strings (in 1851 * ascending order by source values). The actual code strings are 1852 * reconstructed from the lengths in the inflate process, as described 1853 * in the deflate specification. 1854 * 1855 * REFERENCES 1856 * 1857 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". 1858 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc 1859 * 1860 * Storer, James A. 1861 * Data Compression: Methods and Theory, pp. 49-50. 1862 * Computer Science Press, 1988. ISBN 0-7167-8156-5. 1863 * 1864 * Sedgewick, R. 1865 * Algorithms, p290. 1866 * Addison-Wesley, 1983. ISBN 0-201-06672-6. 1867 */ 1868 1869 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */ 1870 1871 /* #include "deflate.h" */ 1872 1873 #ifdef DEBUG_ZLIB 1874 # include <ctype.h> 1875 #endif 1876 1877 /* =========================================================================== 1878 * Constants 1879 */ 1880 1881 #define MAX_BL_BITS 7 1882 /* Bit length codes must not exceed MAX_BL_BITS bits */ 1883 1884 #define END_BLOCK 256 1885 /* end of block literal code */ 1886 1887 #define REP_3_6 16 1888 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ 1889 1890 #define REPZ_3_10 17 1891 /* repeat a zero length 3-10 times (3 bits of repeat count) */ 1892 1893 #define REPZ_11_138 18 1894 /* repeat a zero length 11-138 times (7 bits of repeat count) */ 1895 1896 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ 1897 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; 1898 1899 local const int extra_dbits[D_CODES] /* extra bits for each distance code */ 1900 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; 1901 1902 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ 1903 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; 1904 1905 local const uch bl_order[BL_CODES] 1906 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; 1907 /* The lengths of the bit length codes are sent in order of decreasing 1908 * probability, to avoid transmitting the lengths for unused bit length codes. 1909 */ 1910 1911 #define Buf_size (8 * 2*sizeof(char)) 1912 /* Number of bits used within bi_buf. (bi_buf might be implemented on 1913 * more than 16 bits on some systems.) 1914 */ 1915 1916 /* =========================================================================== 1917 * Local data. These are initialized only once. 1918 */ 1919 1920 local ct_data static_ltree[L_CODES+2]; 1921 /* The static literal tree. Since the bit lengths are imposed, there is no 1922 * need for the L_CODES extra codes used during heap construction. However 1923 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init 1924 * below). 1925 */ 1926 1927 local ct_data static_dtree[D_CODES]; 1928 /* The static distance tree. (Actually a trivial tree since all codes use 1929 * 5 bits.) 1930 */ 1931 1932 local uch dist_code[512]; 1933 /* distance codes. The first 256 values correspond to the distances 1934 * 3 .. 258, the last 256 values correspond to the top 8 bits of 1935 * the 15 bit distances. 1936 */ 1937 1938 local uch length_code[MAX_MATCH-MIN_MATCH+1]; 1939 /* length code for each normalized match length (0 == MIN_MATCH) */ 1940 1941 local int base_length[LENGTH_CODES]; 1942 /* First normalized length for each code (0 = MIN_MATCH) */ 1943 1944 local int base_dist[D_CODES]; 1945 /* First normalized distance for each code (0 = distance of 1) */ 1946 1947 struct static_tree_desc_s { 1948 ct_data *static_tree; /* static tree or NULL */ 1949 const intf *extra_bits; /* extra bits for each code or NULL */ 1950 int extra_base; /* base index for extra_bits */ 1951 int elems; /* max number of elements in the tree */ 1952 int max_length; /* max bit length for the codes */ 1953 }; 1954 1955 local static_tree_desc static_l_desc = 1956 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; 1957 1958 local static_tree_desc static_d_desc = 1959 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; 1960 1961 local static_tree_desc static_bl_desc = 1962 {(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; 1963 1964 /* =========================================================================== 1965 * Local (static) routines in this file. 1966 */ 1967 1968 local void tr_static_init OF((void)); 1969 local void init_block OF((deflate_state *s)); 1970 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); 1971 local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); 1972 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); 1973 local void build_tree OF((deflate_state *s, tree_desc *desc)); 1974 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); 1975 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); 1976 local int build_bl_tree OF((deflate_state *s)); 1977 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, 1978 int blcodes)); 1979 local void compress_block OF((deflate_state *s, ct_data *ltree, 1980 ct_data *dtree)); 1981 local void set_data_type OF((deflate_state *s)); 1982 local unsigned bi_reverse OF((unsigned value, int length)); 1983 local void bi_windup OF((deflate_state *s)); 1984 local void bi_flush OF((deflate_state *s)); 1985 local void copy_block OF((deflate_state *s, charf *buf, unsigned len, 1986 int header)); 1987 1988 #ifndef DEBUG_ZLIB 1989 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) 1990 /* Send a code of the given tree. c and tree must not have side effects */ 1991 1992 #else /* DEBUG_ZLIB */ 1993 # define send_code(s, c, tree) \ 1994 { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ 1995 send_bits(s, tree[c].Code, tree[c].Len); } 1996 #endif 1997 1998 #define d_code(dist) \ 1999 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)]) 2000 /* Mapping from a distance to a distance code. dist is the distance - 1 and 2001 * must not have side effects. dist_code[256] and dist_code[257] are never 2002 * used. 2003 */ 2004 2005 /* =========================================================================== 2006 * Output a short LSB first on the stream. 2007 * IN assertion: there is enough room in pendingBuf. 2008 */ 2009 #define put_short(s, w) { \ 2010 put_byte(s, (uch)((w) & 0xff)); \ 2011 put_byte(s, (uch)((ush)(w) >> 8)); \ 2012 } 2013 2014 /* =========================================================================== 2015 * Send a value on a given number of bits. 2016 * IN assertion: length <= 16 and value fits in length bits. 2017 */ 2018 #ifdef DEBUG_ZLIB 2019 local void send_bits OF((deflate_state *s, int value, int length)); 2020 2021 local void send_bits(s, value, length) 2022 deflate_state *s; 2023 int value; /* value to send */ 2024 int length; /* number of bits */ 2025 { 2026 Tracevv((stderr," l %2d v %4x ", length, value)); 2027 Assert(length > 0 && length <= 15, "invalid length"); 2028 s->bits_sent += (ulg)length; 2029 2030 /* If not enough room in bi_buf, use (valid) bits from bi_buf and 2031 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) 2032 * unused bits in value. 2033 */ 2034 if (s->bi_valid > (int)Buf_size - length) { 2035 s->bi_buf |= (value << s->bi_valid); 2036 put_short(s, s->bi_buf); 2037 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); 2038 s->bi_valid += length - Buf_size; 2039 } else { 2040 s->bi_buf |= value << s->bi_valid; 2041 s->bi_valid += length; 2042 } 2043 } 2044 #else /* !DEBUG_ZLIB */ 2045 2046 #define send_bits(s, value, length) \ 2047 { int len = length;\ 2048 if (s->bi_valid > (int)Buf_size - len) {\ 2049 int val = value;\ 2050 s->bi_buf |= (val << s->bi_valid);\ 2051 put_short(s, s->bi_buf);\ 2052 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ 2053 s->bi_valid += len - Buf_size;\ 2054 } else {\ 2055 s->bi_buf |= (value) << s->bi_valid;\ 2056 s->bi_valid += len;\ 2057 }\ 2058 } 2059 #endif /* DEBUG_ZLIB */ 2060 2061 /* =========================================================================== 2062 * Initialize the various 'constant' tables. In a multi-threaded environment, 2063 * this function may be called by two threads concurrently, but this is 2064 * harmless since both invocations do exactly the same thing. 2065 */ 2066 local void tr_static_init() 2067 { 2068 static int static_init_done = 0; 2069 int n; /* iterates over tree elements */ 2070 int bits; /* bit counter */ 2071 int length; /* length value */ 2072 int code; /* code value */ 2073 int dist; /* distance index */ 2074 ush bl_count[MAX_BITS+1]; 2075 /* number of codes at each bit length for an optimal tree */ 2076 2077 if (static_init_done) return; 2078 2079 /* Initialize the mapping length (0..255) -> length code (0..28) */ 2080 length = 0; 2081 for (code = 0; code < LENGTH_CODES-1; code++) { 2082 base_length[code] = length; 2083 for (n = 0; n < (1<<extra_lbits[code]); n++) { 2084 length_code[length++] = (uch)code; 2085 } 2086 } 2087 Assert (length == 256, "tr_static_init: length != 256"); 2088 /* Note that the length 255 (match length 258) can be represented 2089 * in two different ways: code 284 + 5 bits or code 285, so we 2090 * overwrite length_code[255] to use the best encoding: 2091 */ 2092 length_code[length-1] = (uch)code; 2093 2094 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ 2095 dist = 0; 2096 for (code = 0 ; code < 16; code++) { 2097 base_dist[code] = dist; 2098 for (n = 0; n < (1<<extra_dbits[code]); n++) { 2099 dist_code[dist++] = (uch)code; 2100 } 2101 } 2102 Assert (dist == 256, "tr_static_init: dist != 256"); 2103 dist >>= 7; /* from now on, all distances are divided by 128 */ 2104 for ( ; code < D_CODES; code++) { 2105 base_dist[code] = dist << 7; 2106 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { 2107 dist_code[256 + dist++] = (uch)code; 2108 } 2109 } 2110 Assert (dist == 256, "tr_static_init: 256+dist != 512"); 2111 2112 /* Construct the codes of the static literal tree */ 2113 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; 2114 n = 0; 2115 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; 2116 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; 2117 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; 2118 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; 2119 /* Codes 286 and 287 do not exist, but we must include them in the 2120 * tree construction to get a canonical Huffman tree (longest code 2121 * all ones) 2122 */ 2123 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); 2124 2125 /* The static distance tree is trivial: */ 2126 for (n = 0; n < D_CODES; n++) { 2127 static_dtree[n].Len = 5; 2128 static_dtree[n].Code = bi_reverse((unsigned)n, 5); 2129 } 2130 static_init_done = 1; 2131 } 2132 2133 /* =========================================================================== 2134 * Initialize the tree data structures for a new zlib stream. 2135 */ 2136 void _tr_init(s) 2137 deflate_state *s; 2138 { 2139 tr_static_init(); 2140 2141 s->compressed_len = 0L; 2142 2143 s->l_desc.dyn_tree = s->dyn_ltree; 2144 s->l_desc.stat_desc = &static_l_desc; 2145 2146 s->d_desc.dyn_tree = s->dyn_dtree; 2147 s->d_desc.stat_desc = &static_d_desc; 2148 2149 s->bl_desc.dyn_tree = s->bl_tree; 2150 s->bl_desc.stat_desc = &static_bl_desc; 2151 2152 s->bi_buf = 0; 2153 s->bi_valid = 0; 2154 s->last_eob_len = 8; /* enough lookahead for inflate */ 2155 #ifdef DEBUG_ZLIB 2156 s->bits_sent = 0L; 2157 #endif 2158 2159 /* Initialize the first block of the first file: */ 2160 init_block(s); 2161 } 2162 2163 /* =========================================================================== 2164 * Initialize a new block. 2165 */ 2166 local void init_block(s) 2167 deflate_state *s; 2168 { 2169 int n; /* iterates over tree elements */ 2170 2171 /* Initialize the trees. */ 2172 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; 2173 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; 2174 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; 2175 2176 s->dyn_ltree[END_BLOCK].Freq = 1; 2177 s->opt_len = s->static_len = 0L; 2178 s->last_lit = s->matches = 0; 2179 } 2180 2181 #define SMALLEST 1 2182 /* Index within the heap array of least frequent node in the Huffman tree */ 2183 2184 2185 /* =========================================================================== 2186 * Remove the smallest element from the heap and recreate the heap with 2187 * one less element. Updates heap and heap_len. 2188 */ 2189 #define pqremove(s, tree, top) \ 2190 {\ 2191 top = s->heap[SMALLEST]; \ 2192 s->heap[SMALLEST] = s->heap[s->heap_len--]; \ 2193 pqdownheap(s, tree, SMALLEST); \ 2194 } 2195 2196 /* =========================================================================== 2197 * Compares to subtrees, using the tree depth as tie breaker when 2198 * the subtrees have equal frequency. This minimizes the worst case length. 2199 */ 2200 #define smaller(tree, n, m, depth) \ 2201 (tree[n].Freq < tree[m].Freq || \ 2202 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) 2203 2204 /* =========================================================================== 2205 * Restore the heap property by moving down the tree starting at node k, 2206 * exchanging a node with the smallest of its two sons if necessary, stopping 2207 * when the heap property is re-established (each father smaller than its 2208 * two sons). 2209 */ 2210 local void pqdownheap(s, tree, k) 2211 deflate_state *s; 2212 ct_data *tree; /* the tree to restore */ 2213 int k; /* node to move down */ 2214 { 2215 int v = s->heap[k]; 2216 int j = k << 1; /* left son of k */ 2217 while (j <= s->heap_len) { 2218 /* Set j to the smallest of the two sons: */ 2219 if (j < s->heap_len && 2220 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { 2221 j++; 2222 } 2223 /* Exit if v is smaller than both sons */ 2224 if (smaller(tree, v, s->heap[j], s->depth)) break; 2225 2226 /* Exchange v with the smallest son */ 2227 s->heap[k] = s->heap[j]; k = j; 2228 2229 /* And continue down the tree, setting j to the left son of k */ 2230 j <<= 1; 2231 } 2232 s->heap[k] = v; 2233 } 2234 2235 /* =========================================================================== 2236 * Compute the optimal bit lengths for a tree and update the total bit length 2237 * for the current block. 2238 * IN assertion: the fields freq and dad are set, heap[heap_max] and 2239 * above are the tree nodes sorted by increasing frequency. 2240 * OUT assertions: the field len is set to the optimal bit length, the 2241 * array bl_count contains the frequencies for each bit length. 2242 * The length opt_len is updated; static_len is also updated if stree is 2243 * not null. 2244 */ 2245 local void gen_bitlen(s, desc) 2246 deflate_state *s; 2247 tree_desc *desc; /* the tree descriptor */ 2248 { 2249 ct_data *tree = desc->dyn_tree; 2250 int max_code = desc->max_code; 2251 ct_data *stree = desc->stat_desc->static_tree; 2252 const intf *extra = desc->stat_desc->extra_bits; 2253 int base = desc->stat_desc->extra_base; 2254 int max_length = desc->stat_desc->max_length; 2255 int h; /* heap index */ 2256 int n, m; /* iterate over the tree elements */ 2257 int bits; /* bit length */ 2258 int xbits; /* extra bits */ 2259 ush f; /* frequency */ 2260 int overflow = 0; /* number of elements with bit length too large */ 2261 2262 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; 2263 2264 /* In a first pass, compute the optimal bit lengths (which may 2265 * overflow in the case of the bit length tree). 2266 */ 2267 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ 2268 2269 for (h = s->heap_max+1; h < HEAP_SIZE; h++) { 2270 n = s->heap[h]; 2271 bits = tree[tree[n].Dad].Len + 1; 2272 if (bits > max_length) bits = max_length, overflow++; 2273 tree[n].Len = (ush)bits; 2274 /* We overwrite tree[n].Dad which is no longer needed */ 2275 2276 if (n > max_code) continue; /* not a leaf node */ 2277 2278 s->bl_count[bits]++; 2279 xbits = 0; 2280 if (n >= base) xbits = extra[n-base]; 2281 f = tree[n].Freq; 2282 s->opt_len += (ulg)f * (bits + xbits); 2283 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); 2284 } 2285 if (overflow == 0) return; 2286 2287 Trace((stderr,"\nbit length overflow\n")); 2288 /* This happens for example on obj2 and pic of the Calgary corpus */ 2289 2290 /* Find the first bit length which could increase: */ 2291 do { 2292 bits = max_length-1; 2293 while (s->bl_count[bits] == 0) bits--; 2294 s->bl_count[bits]--; /* move one leaf down the tree */ 2295 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ 2296 s->bl_count[max_length]--; 2297 /* The brother of the overflow item also moves one step up, 2298 * but this does not affect bl_count[max_length] 2299 */ 2300 overflow -= 2; 2301 } while (overflow > 0); 2302 2303 /* Now recompute all bit lengths, scanning in increasing frequency. 2304 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all 2305 * lengths instead of fixing only the wrong ones. This idea is taken 2306 * from 'ar' written by Haruhiko Okumura.) 2307 */ 2308 for (bits = max_length; bits != 0; bits--) { 2309 n = s->bl_count[bits]; 2310 while (n != 0) { 2311 m = s->heap[--h]; 2312 if (m > max_code) continue; 2313 if (tree[m].Len != (unsigned) bits) { 2314 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); 2315 s->opt_len += ((long)bits - (long)tree[m].Len) 2316 *(long)tree[m].Freq; 2317 tree[m].Len = (ush)bits; 2318 } 2319 n--; 2320 } 2321 } 2322 } 2323 2324 /* =========================================================================== 2325 * Generate the codes for a given tree and bit counts (which need not be 2326 * optimal). 2327 * IN assertion: the array bl_count contains the bit length statistics for 2328 * the given tree and the field len is set for all tree elements. 2329 * OUT assertion: the field code is set for all tree elements of non 2330 * zero code length. 2331 */ 2332 local void gen_codes (tree, max_code, bl_count) 2333 ct_data *tree; /* the tree to decorate */ 2334 int max_code; /* largest code with non zero frequency */ 2335 ushf *bl_count; /* number of codes at each bit length */ 2336 { 2337 ush next_code[MAX_BITS+1]; /* next code value for each bit length */ 2338 ush code = 0; /* running code value */ 2339 int bits; /* bit index */ 2340 int n; /* code index */ 2341 2342 /* The distribution counts are first used to generate the code values 2343 * without bit reversal. 2344 */ 2345 for (bits = 1; bits <= MAX_BITS; bits++) { 2346 next_code[bits] = code = (code + bl_count[bits-1]) << 1; 2347 } 2348 /* Check that the bit counts in bl_count are consistent. The last code 2349 * must be all ones. 2350 */ 2351 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, 2352 "inconsistent bit counts"); 2353 Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); 2354 2355 for (n = 0; n <= max_code; n++) { 2356 int len = tree[n].Len; 2357 if (len == 0) continue; 2358 /* Now reverse the bits */ 2359 tree[n].Code = bi_reverse(next_code[len]++, len); 2360 2361 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", 2362 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); 2363 } 2364 } 2365 2366 /* =========================================================================== 2367 * Construct one Huffman tree and assigns the code bit strings and lengths. 2368 * Update the total bit length for the current block. 2369 * IN assertion: the field freq is set for all tree elements. 2370 * OUT assertions: the fields len and code are set to the optimal bit length 2371 * and corresponding code. The length opt_len is updated; static_len is 2372 * also updated if stree is not null. The field max_code is set. 2373 */ 2374 local void build_tree(s, desc) 2375 deflate_state *s; 2376 tree_desc *desc; /* the tree descriptor */ 2377 { 2378 ct_data *tree = desc->dyn_tree; 2379 ct_data *stree = desc->stat_desc->static_tree; 2380 int elems = desc->stat_desc->elems; 2381 int n, m; /* iterate over heap elements */ 2382 int max_code = -1; /* largest code with non zero frequency */ 2383 int node; /* new node being created */ 2384 2385 /* Construct the initial heap, with least frequent element in 2386 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. 2387 * heap[0] is not used. 2388 */ 2389 s->heap_len = 0, s->heap_max = HEAP_SIZE; 2390 2391 for (n = 0; n < elems; n++) { 2392 if (tree[n].Freq != 0) { 2393 s->heap[++(s->heap_len)] = max_code = n; 2394 s->depth[n] = 0; 2395 } else { 2396 tree[n].Len = 0; 2397 } 2398 } 2399 2400 /* The pkzip format requires that at least one distance code exists, 2401 * and that at least one bit should be sent even if there is only one 2402 * possible code. So to avoid special checks later on we force at least 2403 * two codes of non zero frequency. 2404 */ 2405 while (s->heap_len < 2) { 2406 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); 2407 tree[node].Freq = 1; 2408 s->depth[node] = 0; 2409 s->opt_len--; if (stree) s->static_len -= stree[node].Len; 2410 /* node is 0 or 1 so it does not have extra bits */ 2411 } 2412 desc->max_code = max_code; 2413 2414 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, 2415 * establish sub-heaps of increasing lengths: 2416 */ 2417 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); 2418 2419 /* Construct the Huffman tree by repeatedly combining the least two 2420 * frequent nodes. 2421 */ 2422 node = elems; /* next internal node of the tree */ 2423 do { 2424 pqremove(s, tree, n); /* n = node of least frequency */ 2425 m = s->heap[SMALLEST]; /* m = node of next least frequency */ 2426 2427 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ 2428 s->heap[--(s->heap_max)] = m; 2429 2430 /* Create a new node father of n and m */ 2431 tree[node].Freq = tree[n].Freq + tree[m].Freq; 2432 s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1); 2433 tree[n].Dad = tree[m].Dad = (ush)node; 2434 #ifdef DUMP_BL_TREE 2435 if (tree == s->bl_tree) { 2436 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", 2437 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); 2438 } 2439 #endif 2440 /* and insert the new node in the heap */ 2441 s->heap[SMALLEST] = node++; 2442 pqdownheap(s, tree, SMALLEST); 2443 2444 } while (s->heap_len >= 2); 2445 2446 s->heap[--(s->heap_max)] = s->heap[SMALLEST]; 2447 2448 /* At this point, the fields freq and dad are set. We can now 2449 * generate the bit lengths. 2450 */ 2451 gen_bitlen(s, (tree_desc *)desc); 2452 2453 /* The field len is now set, we can generate the bit codes */ 2454 gen_codes ((ct_data *)tree, max_code, s->bl_count); 2455 } 2456 2457 /* =========================================================================== 2458 * Scan a literal or distance tree to determine the frequencies of the codes 2459 * in the bit length tree. 2460 */ 2461 local void scan_tree (s, tree, max_code) 2462 deflate_state *s; 2463 ct_data *tree; /* the tree to be scanned */ 2464 int max_code; /* and its largest code of non zero frequency */ 2465 { 2466 int n; /* iterates over all tree elements */ 2467 int prevlen = -1; /* last emitted length */ 2468 int curlen; /* length of current code */ 2469 int nextlen = tree[0].Len; /* length of next code */ 2470 int count = 0; /* repeat count of the current code */ 2471 int max_count = 7; /* max repeat count */ 2472 int min_count = 4; /* min repeat count */ 2473 2474 if (nextlen == 0) max_count = 138, min_count = 3; 2475 tree[max_code+1].Len = (ush)0xffff; /* guard */ 2476 2477 for (n = 0; n <= max_code; n++) { 2478 curlen = nextlen; nextlen = tree[n+1].Len; 2479 if (++count < max_count && curlen == nextlen) { 2480 continue; 2481 } else if (count < min_count) { 2482 s->bl_tree[curlen].Freq += count; 2483 } else if (curlen != 0) { 2484 if (curlen != prevlen) s->bl_tree[curlen].Freq++; 2485 s->bl_tree[REP_3_6].Freq++; 2486 } else if (count <= 10) { 2487 s->bl_tree[REPZ_3_10].Freq++; 2488 } else { 2489 s->bl_tree[REPZ_11_138].Freq++; 2490 } 2491 count = 0; prevlen = curlen; 2492 if (nextlen == 0) { 2493 max_count = 138, min_count = 3; 2494 } else if (curlen == nextlen) { 2495 max_count = 6, min_count = 3; 2496 } else { 2497 max_count = 7, min_count = 4; 2498 } 2499 } 2500 } 2501 2502 /* =========================================================================== 2503 * Send a literal or distance tree in compressed form, using the codes in 2504 * bl_tree. 2505 */ 2506 local void send_tree (s, tree, max_code) 2507 deflate_state *s; 2508 ct_data *tree; /* the tree to be scanned */ 2509 int max_code; /* and its largest code of non zero frequency */ 2510 { 2511 int n; /* iterates over all tree elements */ 2512 int prevlen = -1; /* last emitted length */ 2513 int curlen; /* length of current code */ 2514 int nextlen = tree[0].Len; /* length of next code */ 2515 int count = 0; /* repeat count of the current code */ 2516 int max_count = 7; /* max repeat count */ 2517 int min_count = 4; /* min repeat count */ 2518 2519 /* tree[max_code+1].Len = -1; */ /* guard already set */ 2520 if (nextlen == 0) max_count = 138, min_count = 3; 2521 2522 for (n = 0; n <= max_code; n++) { 2523 curlen = nextlen; nextlen = tree[n+1].Len; 2524 if (++count < max_count && curlen == nextlen) { 2525 continue; 2526 } else if (count < min_count) { 2527 do { send_code(s, curlen, s->bl_tree); } while (--count != 0); 2528 2529 } else if (curlen != 0) { 2530 if (curlen != prevlen) { 2531 send_code(s, curlen, s->bl_tree); count--; 2532 } 2533 Assert(count >= 3 && count <= 6, " 3_6?"); 2534 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); 2535 2536 } else if (count <= 10) { 2537 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); 2538 2539 } else { 2540 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); 2541 } 2542 count = 0; prevlen = curlen; 2543 if (nextlen == 0) { 2544 max_count = 138, min_count = 3; 2545 } else if (curlen == nextlen) { 2546 max_count = 6, min_count = 3; 2547 } else { 2548 max_count = 7, min_count = 4; 2549 } 2550 } 2551 } 2552 2553 /* =========================================================================== 2554 * Construct the Huffman tree for the bit lengths and return the index in 2555 * bl_order of the last bit length code to send. 2556 */ 2557 local int build_bl_tree(s) 2558 deflate_state *s; 2559 { 2560 int max_blindex; /* index of last bit length code of non zero freq */ 2561 2562 /* Determine the bit length frequencies for literal and distance trees */ 2563 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); 2564 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); 2565 2566 /* Build the bit length tree: */ 2567 build_tree(s, (tree_desc *)(&(s->bl_desc))); 2568 /* opt_len now includes the length of the tree representations, except 2569 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. 2570 */ 2571 2572 /* Determine the number of bit length codes to send. The pkzip format 2573 * requires that at least 4 bit length codes be sent. (appnote.txt says 2574 * 3 but the actual value used is 4.) 2575 */ 2576 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { 2577 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; 2578 } 2579 /* Update opt_len to include the bit length tree and counts */ 2580 s->opt_len += 3*(max_blindex+1) + 5+5+4; 2581 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", 2582 s->opt_len, s->static_len)); 2583 2584 return max_blindex; 2585 } 2586 2587 /* =========================================================================== 2588 * Send the header for a block using dynamic Huffman trees: the counts, the 2589 * lengths of the bit length codes, the literal tree and the distance tree. 2590 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. 2591 */ 2592 local void send_all_trees(s, lcodes, dcodes, blcodes) 2593 deflate_state *s; 2594 int lcodes, dcodes, blcodes; /* number of codes for each tree */ 2595 { 2596 int rank; /* index in bl_order */ 2597 2598 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); 2599 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, 2600 "too many codes"); 2601 Tracev((stderr, "\nbl counts: ")); 2602 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ 2603 send_bits(s, dcodes-1, 5); 2604 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ 2605 for (rank = 0; rank < blcodes; rank++) { 2606 Tracev((stderr, "\nbl code %2d ", bl_order[rank])); 2607 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); 2608 } 2609 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); 2610 2611 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ 2612 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); 2613 2614 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ 2615 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); 2616 } 2617 2618 /* =========================================================================== 2619 * Send a stored block 2620 */ 2621 void _tr_stored_block(s, buf, stored_len, eof) 2622 deflate_state *s; 2623 charf *buf; /* input block */ 2624 ulg stored_len; /* length of input block */ 2625 int eof; /* true if this is the last block for a file */ 2626 { 2627 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */ 2628 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; 2629 s->compressed_len += (stored_len + 4) << 3; 2630 2631 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ 2632 } 2633 2634 /* Send just the `stored block' type code without any length bytes or data. 2635 */ 2636 void _tr_stored_type_only(s) 2637 deflate_state *s; 2638 { 2639 send_bits(s, (STORED_BLOCK << 1), 3); 2640 bi_windup(s); 2641 s->compressed_len = (s->compressed_len + 3) & ~7L; 2642 } 2643 2644 2645 /* =========================================================================== 2646 * Send one empty static block to give enough lookahead for inflate. 2647 * This takes 10 bits, of which 7 may remain in the bit buffer. 2648 * The current inflate code requires 9 bits of lookahead. If the 2649 * last two codes for the previous block (real code plus EOB) were coded 2650 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode 2651 * the last real code. In this case we send two empty static blocks instead 2652 * of one. (There are no problems if the previous block is stored or fixed.) 2653 * To simplify the code, we assume the worst case of last real code encoded 2654 * on one bit only. 2655 */ 2656 void _tr_align(s) 2657 deflate_state *s; 2658 { 2659 send_bits(s, STATIC_TREES<<1, 3); 2660 send_code(s, END_BLOCK, static_ltree); 2661 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ 2662 bi_flush(s); 2663 /* Of the 10 bits for the empty block, we have already sent 2664 * (10 - bi_valid) bits. The lookahead for the last real code (before 2665 * the EOB of the previous block) was thus at least one plus the length 2666 * of the EOB plus what we have just sent of the empty static block. 2667 */ 2668 if (1 + s->last_eob_len + 10 - s->bi_valid < 9) { 2669 send_bits(s, STATIC_TREES<<1, 3); 2670 send_code(s, END_BLOCK, static_ltree); 2671 s->compressed_len += 10L; 2672 bi_flush(s); 2673 } 2674 s->last_eob_len = 7; 2675 } 2676 2677 /* =========================================================================== 2678 * Determine the best encoding for the current block: dynamic trees, static 2679 * trees or store, and output the encoded block to the zip file. This function 2680 * returns the total compressed length for the file so far. 2681 */ 2682 ulg _tr_flush_block(s, buf, stored_len, eof) 2683 deflate_state *s; 2684 charf *buf; /* input block, or NULL if too old */ 2685 ulg stored_len; /* length of input block */ 2686 int eof; /* true if this is the last block for a file */ 2687 { 2688 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ 2689 int max_blindex = 0; /* index of last bit length code of non zero freq */ 2690 2691 /* Build the Huffman trees unless a stored block is forced */ 2692 if (s->level > 0) { 2693 2694 /* Check if the file is ascii or binary */ 2695 if (s->data_type == Z_UNKNOWN) set_data_type(s); 2696 2697 /* Construct the literal and distance trees */ 2698 build_tree(s, (tree_desc *)(&(s->l_desc))); 2699 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, 2700 s->static_len)); 2701 2702 build_tree(s, (tree_desc *)(&(s->d_desc))); 2703 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, 2704 s->static_len)); 2705 /* At this point, opt_len and static_len are the total bit lengths of 2706 * the compressed block data, excluding the tree representations. 2707 */ 2708 2709 /* Build the bit length tree for the above two trees, and get the index 2710 * in bl_order of the last bit length code to send. 2711 */ 2712 max_blindex = build_bl_tree(s); 2713 2714 /* Determine the best encoding. Compute first the block length in bytes*/ 2715 opt_lenb = (s->opt_len+3+7)>>3; 2716 static_lenb = (s->static_len+3+7)>>3; 2717 2718 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", 2719 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, 2720 s->last_lit)); 2721 2722 if (static_lenb <= opt_lenb) opt_lenb = static_lenb; 2723 2724 } else { 2725 Assert(buf != (char*)0, "lost buf"); 2726 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ 2727 } 2728 2729 /* If compression failed and this is the first and last block, 2730 * and if the .zip file can be seeked (to rewrite the local header), 2731 * the whole file is transformed into a stored file: 2732 */ 2733 #ifdef STORED_FILE_OK 2734 # ifdef FORCE_STORED_FILE 2735 if (eof && s->compressed_len == 0L) { /* force stored file */ 2736 # else 2737 if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) { 2738 # endif 2739 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */ 2740 if (buf == (charf*)0) error ("block vanished"); 2741 2742 copy_block(s, buf, (unsigned)stored_len, 0); /* without header */ 2743 s->compressed_len = stored_len << 3; 2744 s->method = STORED; 2745 } else 2746 #endif /* STORED_FILE_OK */ 2747 2748 #ifdef FORCE_STORED 2749 if (buf != (char*)0) { /* force stored block */ 2750 #else 2751 if (stored_len+4 <= opt_lenb && buf != (char*)0) { 2752 /* 4: two words for the lengths */ 2753 #endif 2754 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. 2755 * Otherwise we can't have processed more than WSIZE input bytes since 2756 * the last block flush, because compression would have been 2757 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to 2758 * transform a block into a stored block. 2759 */ 2760 _tr_stored_block(s, buf, stored_len, eof); 2761 2762 #ifdef FORCE_STATIC 2763 } else if (static_lenb >= 0) { /* force static trees */ 2764 #else 2765 } else if (static_lenb == opt_lenb) { 2766 #endif 2767 send_bits(s, (STATIC_TREES<<1)+eof, 3); 2768 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); 2769 s->compressed_len += 3 + s->static_len; 2770 } else { 2771 send_bits(s, (DYN_TREES<<1)+eof, 3); 2772 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, 2773 max_blindex+1); 2774 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); 2775 s->compressed_len += 3 + s->opt_len; 2776 } 2777 Assert (s->compressed_len == s->bits_sent, "bad compressed size"); 2778 init_block(s); 2779 2780 if (eof) { 2781 bi_windup(s); 2782 s->compressed_len += 7; /* align on byte boundary */ 2783 } 2784 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, 2785 s->compressed_len-7*eof)); 2786 2787 return s->compressed_len >> 3; 2788 } 2789 2790 /* =========================================================================== 2791 * Save the match info and tally the frequency counts. Return true if 2792 * the current block must be flushed. 2793 */ 2794 int _tr_tally (s, dist, lc) 2795 deflate_state *s; 2796 unsigned dist; /* distance of matched string */ 2797 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ 2798 { 2799 s->d_buf[s->last_lit] = (ush)dist; 2800 s->l_buf[s->last_lit++] = (uch)lc; 2801 if (dist == 0) { 2802 /* lc is the unmatched char */ 2803 s->dyn_ltree[lc].Freq++; 2804 } else { 2805 s->matches++; 2806 /* Here, lc is the match length - MIN_MATCH */ 2807 dist--; /* dist = match distance - 1 */ 2808 Assert((ush)dist < (ush)MAX_DIST(s) && 2809 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && 2810 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); 2811 2812 s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++; 2813 s->dyn_dtree[d_code(dist)].Freq++; 2814 } 2815 2816 /* Try to guess if it is profitable to stop the current block here */ 2817 if (s->level > 2 && (s->last_lit & 0xfff) == 0) { 2818 /* Compute an upper bound for the compressed length */ 2819 ulg out_length = (ulg)s->last_lit*8L; 2820 ulg in_length = (ulg)((long)s->strstart - s->block_start); 2821 int dcode; 2822 for (dcode = 0; dcode < D_CODES; dcode++) { 2823 out_length += (ulg)s->dyn_dtree[dcode].Freq * 2824 (5L+extra_dbits[dcode]); 2825 } 2826 out_length >>= 3; 2827 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", 2828 s->last_lit, in_length, out_length, 2829 100L - out_length*100L/in_length)); 2830 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; 2831 } 2832 return (s->last_lit == s->lit_bufsize-1); 2833 /* We avoid equality with lit_bufsize because of wraparound at 64K 2834 * on 16 bit machines and because stored blocks are restricted to 2835 * 64K-1 bytes. 2836 */ 2837 } 2838 2839 /* =========================================================================== 2840 * Send the block data compressed using the given Huffman trees 2841 */ 2842 local void compress_block(s, ltree, dtree) 2843 deflate_state *s; 2844 ct_data *ltree; /* literal tree */ 2845 ct_data *dtree; /* distance tree */ 2846 { 2847 unsigned dist; /* distance of matched string */ 2848 int lc; /* match length or unmatched char (if dist == 0) */ 2849 unsigned lx = 0; /* running index in l_buf */ 2850 unsigned code; /* the code to send */ 2851 int extra; /* number of extra bits to send */ 2852 2853 if (s->last_lit != 0) do { 2854 dist = s->d_buf[lx]; 2855 lc = s->l_buf[lx++]; 2856 if (dist == 0) { 2857 send_code(s, lc, ltree); /* send a literal byte */ 2858 Tracecv(isgraph(lc), (stderr," '%c' ", lc)); 2859 } else { 2860 /* Here, lc is the match length - MIN_MATCH */ 2861 code = length_code[lc]; 2862 send_code(s, code+LITERALS+1, ltree); /* send the length code */ 2863 extra = extra_lbits[code]; 2864 if (extra != 0) { 2865 lc -= base_length[code]; 2866 send_bits(s, lc, extra); /* send the extra length bits */ 2867 } 2868 dist--; /* dist is now the match distance - 1 */ 2869 code = d_code(dist); 2870 Assert (code < D_CODES, "bad d_code"); 2871 2872 send_code(s, code, dtree); /* send the distance code */ 2873 extra = extra_dbits[code]; 2874 if (extra != 0) { 2875 dist -= base_dist[code]; 2876 send_bits(s, dist, extra); /* send the extra distance bits */ 2877 } 2878 } /* literal or match pair ? */ 2879 2880 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ 2881 Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow"); 2882 2883 } while (lx < s->last_lit); 2884 2885 send_code(s, END_BLOCK, ltree); 2886 s->last_eob_len = ltree[END_BLOCK].Len; 2887 } 2888 2889 /* =========================================================================== 2890 * Set the data type to ASCII or BINARY, using a crude approximation: 2891 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. 2892 * IN assertion: the fields freq of dyn_ltree are set and the total of all 2893 * frequencies does not exceed 64K (to fit in an int on 16 bit machines). 2894 */ 2895 local void set_data_type(s) 2896 deflate_state *s; 2897 { 2898 int n = 0; 2899 unsigned ascii_freq = 0; 2900 unsigned bin_freq = 0; 2901 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq; 2902 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq; 2903 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq; 2904 s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII); 2905 } 2906 2907 /* =========================================================================== 2908 * Reverse the first len bits of a code, using straightforward code (a faster 2909 * method would use a table) 2910 * IN assertion: 1 <= len <= 15 2911 */ 2912 local unsigned bi_reverse(code, len) 2913 unsigned code; /* the value to invert */ 2914 int len; /* its bit length */ 2915 { 2916 unsigned res = 0; 2917 do { 2918 res |= code & 1; 2919 code >>= 1, res <<= 1; 2920 } while (--len > 0); 2921 return res >> 1; 2922 } 2923 2924 /* =========================================================================== 2925 * Flush the bit buffer, keeping at most 7 bits in it. 2926 */ 2927 local void bi_flush(s) 2928 deflate_state *s; 2929 { 2930 if (s->bi_valid == 16) { 2931 put_short(s, s->bi_buf); 2932 s->bi_buf = 0; 2933 s->bi_valid = 0; 2934 } else if (s->bi_valid >= 8) { 2935 put_byte(s, (Byte)s->bi_buf); 2936 s->bi_buf >>= 8; 2937 s->bi_valid -= 8; 2938 } 2939 } 2940 2941 /* =========================================================================== 2942 * Flush the bit buffer and align the output on a byte boundary 2943 */ 2944 local void bi_windup(s) 2945 deflate_state *s; 2946 { 2947 if (s->bi_valid > 8) { 2948 put_short(s, s->bi_buf); 2949 } else if (s->bi_valid > 0) { 2950 put_byte(s, (Byte)s->bi_buf); 2951 } 2952 s->bi_buf = 0; 2953 s->bi_valid = 0; 2954 #ifdef DEBUG_ZLIB 2955 s->bits_sent = (s->bits_sent+7) & ~7; 2956 #endif 2957 } 2958 2959 /* =========================================================================== 2960 * Copy a stored block, storing first the length and its 2961 * one's complement if requested. 2962 */ 2963 local void copy_block(s, buf, len, header) 2964 deflate_state *s; 2965 charf *buf; /* the input data */ 2966 unsigned len; /* its length */ 2967 int header; /* true if block header must be written */ 2968 { 2969 bi_windup(s); /* align on byte boundary */ 2970 s->last_eob_len = 8; /* enough lookahead for inflate */ 2971 2972 if (header) { 2973 put_short(s, (ush)len); 2974 put_short(s, (ush)~len); 2975 #ifdef DEBUG_ZLIB 2976 s->bits_sent += 2*16; 2977 #endif 2978 } 2979 #ifdef DEBUG_ZLIB 2980 s->bits_sent += (ulg)len<<3; 2981 #endif 2982 /* bundle up the put_byte(s, *buf++) calls */ 2983 zmemcpy(&s->pending_buf[s->pending], buf, len); 2984 s->pending += len; 2985 } 2986 /* --- trees.c */ 2987 2988 /* +++ inflate.c */ 2989 /* inflate.c -- zlib interface to inflate modules 2990 * Copyright (C) 1995-1996 Mark Adler 2991 * For conditions of distribution and use, see copyright notice in zlib.h 2992 */ 2993 2994 /* #include "zutil.h" */ 2995 2996 /* +++ infblock.h */ 2997 /* infblock.h -- header to use infblock.c 2998 * Copyright (C) 1995-1996 Mark Adler 2999 * For conditions of distribution and use, see copyright notice in zlib.h 3000 */ 3001 3002 /* WARNING: this file should *not* be used by applications. It is 3003 part of the implementation of the compression library and is 3004 subject to change. Applications should only use zlib.h. 3005 */ 3006 3007 struct inflate_blocks_state; 3008 typedef struct inflate_blocks_state FAR inflate_blocks_statef; 3009 3010 extern inflate_blocks_statef * inflate_blocks_new OF(( 3011 z_streamp z, 3012 check_func c, /* check function */ 3013 uInt w)); /* window size */ 3014 3015 extern int inflate_blocks OF(( 3016 inflate_blocks_statef *, 3017 z_streamp , 3018 int)); /* initial return code */ 3019 3020 extern void inflate_blocks_reset OF(( 3021 inflate_blocks_statef *, 3022 z_streamp , 3023 uLongf *)); /* check value on output */ 3024 3025 extern int inflate_blocks_free OF(( 3026 inflate_blocks_statef *, 3027 z_streamp , 3028 uLongf *)); /* check value on output */ 3029 3030 extern void inflate_set_dictionary OF(( 3031 inflate_blocks_statef *s, 3032 const Bytef *d, /* dictionary */ 3033 uInt n)); /* dictionary length */ 3034 3035 extern int inflate_addhistory OF(( 3036 inflate_blocks_statef *, 3037 z_streamp)); 3038 3039 extern int inflate_packet_flush OF(( 3040 inflate_blocks_statef *)); 3041 /* --- infblock.h */ 3042 3043 #ifndef NO_DUMMY_DECL 3044 struct inflate_blocks_state {int dummy;}; /* for buggy compilers */ 3045 #endif 3046 3047 /* inflate private state */ 3048 struct internal_state { 3049 3050 /* mode */ 3051 enum { 3052 METHOD, /* waiting for method byte */ 3053 FLAG, /* waiting for flag byte */ 3054 DICT4, /* four dictionary check bytes to go */ 3055 DICT3, /* three dictionary check bytes to go */ 3056 DICT2, /* two dictionary check bytes to go */ 3057 DICT1, /* one dictionary check byte to go */ 3058 DICT0, /* waiting for inflateSetDictionary */ 3059 BLOCKS, /* decompressing blocks */ 3060 CHECK4, /* four check bytes to go */ 3061 CHECK3, /* three check bytes to go */ 3062 CHECK2, /* two check bytes to go */ 3063 CHECK1, /* one check byte to go */ 3064 DONE, /* finished check, done */ 3065 BAD} /* got an error--stay here */ 3066 mode; /* current inflate mode */ 3067 3068 /* mode dependent information */ 3069 union { 3070 uInt method; /* if FLAGS, method byte */ 3071 struct { 3072 uLong was; /* computed check value */ 3073 uLong need; /* stream check value */ 3074 } check; /* if CHECK, check values to compare */ 3075 uInt marker; /* if BAD, inflateSync's marker bytes count */ 3076 } sub; /* submode */ 3077 3078 /* mode independent information */ 3079 int nowrap; /* flag for no wrapper */ 3080 uInt wbits; /* log2(window size) (8..15, defaults to 15) */ 3081 inflate_blocks_statef 3082 *blocks; /* current inflate_blocks state */ 3083 3084 }; 3085 3086 3087 int inflateReset(z) 3088 z_streamp z; 3089 { 3090 uLong c; 3091 3092 if (z == Z_NULL || z->state == Z_NULL) 3093 return Z_STREAM_ERROR; 3094 z->total_in = z->total_out = 0; 3095 z->msg = Z_NULL; 3096 z->state->mode = z->state->nowrap ? BLOCKS : METHOD; 3097 inflate_blocks_reset(z->state->blocks, z, &c); 3098 Trace((stderr, "inflate: reset\n")); 3099 return Z_OK; 3100 } 3101 3102 3103 int inflateEnd(z) 3104 z_streamp z; 3105 { 3106 uLong c; 3107 3108 if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL) 3109 return Z_STREAM_ERROR; 3110 if (z->state->blocks != Z_NULL) 3111 inflate_blocks_free(z->state->blocks, z, &c); 3112 ZFREE(z, z->state); 3113 z->state = Z_NULL; 3114 Trace((stderr, "inflate: end\n")); 3115 return Z_OK; 3116 } 3117 3118 3119 int inflateInit2_(z, w, version, stream_size) 3120 z_streamp z; 3121 int w; 3122 const char *version; 3123 int stream_size; 3124 { 3125 if (version == Z_NULL || version[0] != ZLIB_VERSION[0] || 3126 stream_size != sizeof(z_stream)) 3127 return Z_VERSION_ERROR; 3128 3129 /* initialize state */ 3130 if (z == Z_NULL) 3131 return Z_STREAM_ERROR; 3132 z->msg = Z_NULL; 3133 #ifndef NO_ZCFUNCS 3134 if (z->zalloc == Z_NULL) 3135 { 3136 z->zalloc = zcalloc; 3137 z->opaque = (voidpf)0; 3138 } 3139 if (z->zfree == Z_NULL) z->zfree = zcfree; 3140 #endif 3141 if ((z->state = (struct internal_state FAR *) 3142 ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL) 3143 return Z_MEM_ERROR; 3144 z->state->blocks = Z_NULL; 3145 3146 /* handle undocumented nowrap option (no zlib header or check) */ 3147 z->state->nowrap = 0; 3148 if (w < 0) 3149 { 3150 w = - w; 3151 z->state->nowrap = 1; 3152 } 3153 3154 /* set window size */ 3155 if (w < 8 || w > 15) 3156 { 3157 inflateEnd(z); 3158 return Z_STREAM_ERROR; 3159 } 3160 z->state->wbits = (uInt)w; 3161 3162 /* create inflate_blocks state */ 3163 if ((z->state->blocks = 3164 inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w)) 3165 == Z_NULL) 3166 { 3167 inflateEnd(z); 3168 return Z_MEM_ERROR; 3169 } 3170 Trace((stderr, "inflate: allocated\n")); 3171 3172 /* reset state */ 3173 inflateReset(z); 3174 return Z_OK; 3175 } 3176 3177 3178 int inflateInit_(z, version, stream_size) 3179 z_streamp z; 3180 const char *version; 3181 int stream_size; 3182 { 3183 return inflateInit2_(z, DEF_WBITS, version, stream_size); 3184 } 3185 3186 3187 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;} 3188 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++) 3189 3190 int inflate(z, f) 3191 z_streamp z; 3192 int f; 3193 { 3194 int r; 3195 uInt b; 3196 3197 if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0) 3198 return Z_STREAM_ERROR; 3199 r = Z_BUF_ERROR; 3200 while (1) switch (z->state->mode) 3201 { 3202 case METHOD: 3203 NEEDBYTE 3204 if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED) 3205 { 3206 z->state->mode = BAD; 3207 z->msg = (char*)"unknown compression method"; 3208 z->state->sub.marker = 5; /* can't try inflateSync */ 3209 break; 3210 } 3211 if ((z->state->sub.method >> 4) + 8 > z->state->wbits) 3212 { 3213 z->state->mode = BAD; 3214 z->msg = (char*)"invalid window size"; 3215 z->state->sub.marker = 5; /* can't try inflateSync */ 3216 break; 3217 } 3218 z->state->mode = FLAG; 3219 case FLAG: 3220 NEEDBYTE 3221 b = NEXTBYTE; 3222 if (((z->state->sub.method << 8) + b) % 31) 3223 { 3224 z->state->mode = BAD; 3225 z->msg = (char*)"incorrect header check"; 3226 z->state->sub.marker = 5; /* can't try inflateSync */ 3227 break; 3228 } 3229 Trace((stderr, "inflate: zlib header ok\n")); 3230 if (!(b & PRESET_DICT)) 3231 { 3232 z->state->mode = BLOCKS; 3233 break; 3234 } 3235 z->state->mode = DICT4; 3236 case DICT4: 3237 NEEDBYTE 3238 z->state->sub.check.need = (uLong)NEXTBYTE << 24; 3239 z->state->mode = DICT3; 3240 case DICT3: 3241 NEEDBYTE 3242 z->state->sub.check.need += (uLong)NEXTBYTE << 16; 3243 z->state->mode = DICT2; 3244 case DICT2: 3245 NEEDBYTE 3246 z->state->sub.check.need += (uLong)NEXTBYTE << 8; 3247 z->state->mode = DICT1; 3248 case DICT1: 3249 NEEDBYTE 3250 z->state->sub.check.need += (uLong)NEXTBYTE; 3251 z->adler = z->state->sub.check.need; 3252 z->state->mode = DICT0; 3253 return Z_NEED_DICT; 3254 case DICT0: 3255 z->state->mode = BAD; 3256 z->msg = (char*)"need dictionary"; 3257 z->state->sub.marker = 0; /* can try inflateSync */ 3258 return Z_STREAM_ERROR; 3259 case BLOCKS: 3260 r = inflate_blocks(z->state->blocks, z, r); 3261 if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0) 3262 r = inflate_packet_flush(z->state->blocks); 3263 if (r == Z_DATA_ERROR) 3264 { 3265 z->state->mode = BAD; 3266 z->state->sub.marker = 0; /* can try inflateSync */ 3267 break; 3268 } 3269 if (r != Z_STREAM_END) 3270 return r; 3271 r = Z_OK; 3272 inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was); 3273 if (z->state->nowrap) 3274 { 3275 z->state->mode = DONE; 3276 break; 3277 } 3278 z->state->mode = CHECK4; 3279 case CHECK4: 3280 NEEDBYTE 3281 z->state->sub.check.need = (uLong)NEXTBYTE << 24; 3282 z->state->mode = CHECK3; 3283 case CHECK3: 3284 NEEDBYTE 3285 z->state->sub.check.need += (uLong)NEXTBYTE << 16; 3286 z->state->mode = CHECK2; 3287 case CHECK2: 3288 NEEDBYTE 3289 z->state->sub.check.need += (uLong)NEXTBYTE << 8; 3290 z->state->mode = CHECK1; 3291 case CHECK1: 3292 NEEDBYTE 3293 z->state->sub.check.need += (uLong)NEXTBYTE; 3294 3295 if (z->state->sub.check.was != z->state->sub.check.need) 3296 { 3297 z->state->mode = BAD; 3298 z->msg = (char*)"incorrect data check"; 3299 z->state->sub.marker = 5; /* can't try inflateSync */ 3300 break; 3301 } 3302 Trace((stderr, "inflate: zlib check ok\n")); 3303 z->state->mode = DONE; 3304 case DONE: 3305 return Z_STREAM_END; 3306 case BAD: 3307 return Z_DATA_ERROR; 3308 default: 3309 return Z_STREAM_ERROR; 3310 } 3311 3312 empty: 3313 if (f != Z_PACKET_FLUSH) 3314 return r; 3315 z->state->mode = BAD; 3316 z->msg = (char *)"need more for packet flush"; 3317 z->state->sub.marker = 0; /* can try inflateSync */ 3318 return Z_DATA_ERROR; 3319 } 3320 3321 3322 int inflateSetDictionary(z, dictionary, dictLength) 3323 z_streamp z; 3324 const Bytef *dictionary; 3325 uInt dictLength; 3326 { 3327 uInt length = dictLength; 3328 3329 if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0) 3330 return Z_STREAM_ERROR; 3331 3332 if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR; 3333 z->adler = 1L; 3334 3335 if (length >= ((uInt)1<<z->state->wbits)) 3336 { 3337 length = (1<<z->state->wbits)-1; 3338 dictionary += dictLength - length; 3339 } 3340 inflate_set_dictionary(z->state->blocks, dictionary, length); 3341 z->state->mode = BLOCKS; 3342 return Z_OK; 3343 } 3344 3345 /* 3346 * This subroutine adds the data at next_in/avail_in to the output history 3347 * without performing any output. The output buffer must be "caught up"; 3348 * i.e. no pending output (hence s->read equals s->write), and the state must 3349 * be BLOCKS (i.e. we should be willing to see the start of a series of 3350 * BLOCKS). On exit, the output will also be caught up, and the checksum 3351 * will have been updated if need be. 3352 */ 3353 3354 int inflateIncomp(z) 3355 z_stream *z; 3356 { 3357 if (z->state->mode != BLOCKS) 3358 return Z_DATA_ERROR; 3359 return inflate_addhistory(z->state->blocks, z); 3360 } 3361 3362 3363 int inflateSync(z) 3364 z_streamp z; 3365 { 3366 uInt n; /* number of bytes to look at */ 3367 Bytef *p; /* pointer to bytes */ 3368 uInt m; /* number of marker bytes found in a row */ 3369 uLong r, w; /* temporaries to save total_in and total_out */ 3370 3371 /* set up */ 3372 if (z == Z_NULL || z->state == Z_NULL) 3373 return Z_STREAM_ERROR; 3374 if (z->state->mode != BAD) 3375 { 3376 z->state->mode = BAD; 3377 z->state->sub.marker = 0; 3378 } 3379 if ((n = z->avail_in) == 0) 3380 return Z_BUF_ERROR; 3381 p = z->next_in; 3382 m = z->state->sub.marker; 3383 3384 /* search */ 3385 while (n && m < 4) 3386 { 3387 if (*p == (Byte)(m < 2 ? 0 : 0xff)) 3388 m++; 3389 else if (*p) 3390 m = 0; 3391 else 3392 m = 4 - m; 3393 p++, n--; 3394 } 3395 3396 /* restore */ 3397 z->total_in += p - z->next_in; 3398 z->next_in = p; 3399 z->avail_in = n; 3400 z->state->sub.marker = m; 3401 3402 /* return no joy or set up to restart on a new block */ 3403 if (m != 4) 3404 return Z_DATA_ERROR; 3405 r = z->total_in; w = z->total_out; 3406 inflateReset(z); 3407 z->total_in = r; z->total_out = w; 3408 z->state->mode = BLOCKS; 3409 return Z_OK; 3410 } 3411 3412 #undef NEEDBYTE 3413 #undef NEXTBYTE 3414 /* --- inflate.c */ 3415 3416 /* +++ infblock.c */ 3417 /* infblock.c -- interpret and process block types to last block 3418 * Copyright (C) 1995-1996 Mark Adler 3419 * For conditions of distribution and use, see copyright notice in zlib.h 3420 */ 3421 3422 /* #include "zutil.h" */ 3423 /* #include "infblock.h" */ 3424 3425 /* +++ inftrees.h */ 3426 /* inftrees.h -- header to use inftrees.c 3427 * Copyright (C) 1995-1996 Mark Adler 3428 * For conditions of distribution and use, see copyright notice in zlib.h 3429 */ 3430 3431 /* WARNING: this file should *not* be used by applications. It is 3432 part of the implementation of the compression library and is 3433 subject to change. Applications should only use zlib.h. 3434 */ 3435 3436 /* Huffman code lookup table entry--this entry is four bytes for machines 3437 that have 16-bit pointers (e.g. PC's in the small or medium model). */ 3438 3439 typedef struct inflate_huft_s FAR inflate_huft; 3440 3441 struct inflate_huft_s { 3442 union { 3443 struct { 3444 Byte Exop; /* number of extra bits or operation */ 3445 Byte Bits; /* number of bits in this code or subcode */ 3446 } what; 3447 Bytef *pad; /* pad structure to a power of 2 (4 bytes for */ 3448 } word; /* 16-bit, 8 bytes for 32-bit machines) */ 3449 union { 3450 uInt Base; /* literal, length base, or distance base */ 3451 inflate_huft *Next; /* pointer to next level of table */ 3452 } more; 3453 }; 3454 3455 #ifdef DEBUG_ZLIB 3456 extern uInt inflate_hufts; 3457 #endif 3458 3459 extern int inflate_trees_bits OF(( 3460 uIntf *, /* 19 code lengths */ 3461 uIntf *, /* bits tree desired/actual depth */ 3462 inflate_huft * FAR *, /* bits tree result */ 3463 z_streamp )); /* for zalloc, zfree functions */ 3464 3465 extern int inflate_trees_dynamic OF(( 3466 uInt, /* number of literal/length codes */ 3467 uInt, /* number of distance codes */ 3468 uIntf *, /* that many (total) code lengths */ 3469 uIntf *, /* literal desired/actual bit depth */ 3470 uIntf *, /* distance desired/actual bit depth */ 3471 inflate_huft * FAR *, /* literal/length tree result */ 3472 inflate_huft * FAR *, /* distance tree result */ 3473 z_streamp )); /* for zalloc, zfree functions */ 3474 3475 extern int inflate_trees_fixed OF(( 3476 uIntf *, /* literal desired/actual bit depth */ 3477 uIntf *, /* distance desired/actual bit depth */ 3478 inflate_huft * FAR *, /* literal/length tree result */ 3479 inflate_huft * FAR *)); /* distance tree result */ 3480 3481 extern int inflate_trees_free OF(( 3482 inflate_huft *, /* tables to free */ 3483 z_streamp )); /* for zfree function */ 3484 3485 /* --- inftrees.h */ 3486 3487 /* +++ infcodes.h */ 3488 /* infcodes.h -- header to use infcodes.c 3489 * Copyright (C) 1995-1996 Mark Adler 3490 * For conditions of distribution and use, see copyright notice in zlib.h 3491 */ 3492 3493 /* WARNING: this file should *not* be used by applications. It is 3494 part of the implementation of the compression library and is 3495 subject to change. Applications should only use zlib.h. 3496 */ 3497 3498 struct inflate_codes_state; 3499 typedef struct inflate_codes_state FAR inflate_codes_statef; 3500 3501 extern inflate_codes_statef *inflate_codes_new OF(( 3502 uInt, uInt, 3503 inflate_huft *, inflate_huft *, 3504 z_streamp )); 3505 3506 extern int inflate_codes OF(( 3507 inflate_blocks_statef *, 3508 z_streamp , 3509 int)); 3510 3511 extern void inflate_codes_free OF(( 3512 inflate_codes_statef *, 3513 z_streamp )); 3514 3515 /* --- infcodes.h */ 3516 3517 /* +++ infutil.h */ 3518 /* infutil.h -- types and macros common to blocks and codes 3519 * Copyright (C) 1995-1996 Mark Adler 3520 * For conditions of distribution and use, see copyright notice in zlib.h 3521 */ 3522 3523 /* WARNING: this file should *not* be used by applications. It is 3524 part of the implementation of the compression library and is 3525 subject to change. Applications should only use zlib.h. 3526 */ 3527 3528 #ifndef _INFUTIL_H 3529 #define _INFUTIL_H 3530 3531 typedef enum { 3532 TYPE, /* get type bits (3, including end bit) */ 3533 LENS, /* get lengths for stored */ 3534 STORED, /* processing stored block */ 3535 TABLE, /* get table lengths */ 3536 BTREE, /* get bit lengths tree for a dynamic block */ 3537 DTREE, /* get length, distance trees for a dynamic block */ 3538 CODES, /* processing fixed or dynamic block */ 3539 DRY, /* output remaining window bytes */ 3540 DONEB, /* finished last block, done */ 3541 BADB} /* got a data error--stuck here */ 3542 inflate_block_mode; 3543 3544 /* inflate blocks semi-private state */ 3545 struct inflate_blocks_state { 3546 3547 /* mode */ 3548 inflate_block_mode mode; /* current inflate_block mode */ 3549 3550 /* mode dependent information */ 3551 union { 3552 uInt left; /* if STORED, bytes left to copy */ 3553 struct { 3554 uInt table; /* table lengths (14 bits) */ 3555 uInt index; /* index into blens (or border) */ 3556 uIntf *blens; /* bit lengths of codes */ 3557 uInt bb; /* bit length tree depth */ 3558 inflate_huft *tb; /* bit length decoding tree */ 3559 } trees; /* if DTREE, decoding info for trees */ 3560 struct { 3561 inflate_huft *tl; 3562 inflate_huft *td; /* trees to free */ 3563 inflate_codes_statef 3564 *codes; 3565 } decode; /* if CODES, current state */ 3566 } sub; /* submode */ 3567 uInt last; /* true if this block is the last block */ 3568 3569 /* mode independent information */ 3570 uInt bitk; /* bits in bit buffer */ 3571 uLong bitb; /* bit buffer */ 3572 Bytef *window; /* sliding window */ 3573 Bytef *end; /* one byte after sliding window */ 3574 Bytef *read; /* window read pointer */ 3575 Bytef *write; /* window write pointer */ 3576 check_func checkfn; /* check function */ 3577 uLong check; /* check on output */ 3578 3579 }; 3580 3581 3582 /* defines for inflate input/output */ 3583 /* update pointers and return */ 3584 #define UPDBITS {s->bitb=b;s->bitk=k;} 3585 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;} 3586 #define UPDOUT {s->write=q;} 3587 #define UPDATE {UPDBITS UPDIN UPDOUT} 3588 #define LEAVE {UPDATE return inflate_flush(s,z,r);} 3589 /* get bytes and bits */ 3590 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;} 3591 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE} 3592 #define NEXTBYTE (n--,*p++) 3593 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}} 3594 #define DUMPBITS(j) {b>>=(j);k-=(j);} 3595 /* output bytes */ 3596 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q) 3597 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;} 3598 #define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}} 3599 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT} 3600 #define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;} 3601 #define OUTBYTE(a) {*q++=(Byte)(a);m--;} 3602 /* load local pointers */ 3603 #define LOAD {LOADIN LOADOUT} 3604 3605 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */ 3606 extern const uInt inflate_mask[17]; 3607 3608 /* copy as much as possible from the sliding window to the output area */ 3609 extern int inflate_flush OF(( 3610 inflate_blocks_statef *, 3611 z_streamp , 3612 int)); 3613 3614 #ifndef NO_DUMMY_DECL 3615 struct internal_state {int dummy;}; /* for buggy compilers */ 3616 #endif 3617 3618 #endif 3619 /* --- infutil.h */ 3620 3621 #ifndef NO_DUMMY_DECL 3622 struct inflate_codes_state {int dummy;}; /* for buggy compilers */ 3623 #endif 3624 3625 /* Table for deflate from PKZIP's appnote.txt. */ 3626 local const uInt border[] = { /* Order of the bit length code lengths */ 3627 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; 3628 3629 /* 3630 Notes beyond the 1.93a appnote.txt: 3631 3632 1. Distance pointers never point before the beginning of the output 3633 stream. 3634 2. Distance pointers can point back across blocks, up to 32k away. 3635 3. There is an implied maximum of 7 bits for the bit length table and 3636 15 bits for the actual data. 3637 4. If only one code exists, then it is encoded using one bit. (Zero 3638 would be more efficient, but perhaps a little confusing.) If two 3639 codes exist, they are coded using one bit each (0 and 1). 3640 5. There is no way of sending zero distance codes--a dummy must be 3641 sent if there are none. (History: a pre 2.0 version of PKZIP would 3642 store blocks with no distance codes, but this was discovered to be 3643 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow 3644 zero distance codes, which is sent as one code of zero bits in 3645 length. 3646 6. There are up to 286 literal/length codes. Code 256 represents the 3647 end-of-block. Note however that the static length tree defines 3648 288 codes just to fill out the Huffman codes. Codes 286 and 287 3649 cannot be used though, since there is no length base or extra bits 3650 defined for them. Similarily, there are up to 30 distance codes. 3651 However, static trees define 32 codes (all 5 bits) to fill out the 3652 Huffman codes, but the last two had better not show up in the data. 3653 7. Unzip can check dynamic Huffman blocks for complete code sets. 3654 The exception is that a single code would not be complete (see #4). 3655 8. The five bits following the block type is really the number of 3656 literal codes sent minus 257. 3657 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits 3658 (1+6+6). Therefore, to output three times the length, you output 3659 three codes (1+1+1), whereas to output four times the same length, 3660 you only need two codes (1+3). Hmm. 3661 10. In the tree reconstruction algorithm, Code = Code + Increment 3662 only if BitLength(i) is not zero. (Pretty obvious.) 3663 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) 3664 12. Note: length code 284 can represent 227-258, but length code 285 3665 really is 258. The last length deserves its own, short code 3666 since it gets used a lot in very redundant files. The length 3667 258 is special since 258 - 3 (the min match length) is 255. 3668 13. The literal/length and distance code bit lengths are read as a 3669 single stream of lengths. It is possible (and advantageous) for 3670 a repeat code (16, 17, or 18) to go across the boundary between 3671 the two sets of lengths. 3672 */ 3673 3674 3675 void inflate_blocks_reset(s, z, c) 3676 inflate_blocks_statef *s; 3677 z_streamp z; 3678 uLongf *c; 3679 { 3680 if (s->checkfn != Z_NULL) 3681 *c = s->check; 3682 if (s->mode == BTREE || s->mode == DTREE) 3683 ZFREE(z, s->sub.trees.blens); 3684 if (s->mode == CODES) 3685 { 3686 inflate_codes_free(s->sub.decode.codes, z); 3687 inflate_trees_free(s->sub.decode.td, z); 3688 inflate_trees_free(s->sub.decode.tl, z); 3689 } 3690 s->mode = TYPE; 3691 s->bitk = 0; 3692 s->bitb = 0; 3693 s->read = s->write = s->window; 3694 if (s->checkfn != Z_NULL) 3695 z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0); 3696 Trace((stderr, "inflate: blocks reset\n")); 3697 } 3698 3699 3700 inflate_blocks_statef *inflate_blocks_new(z, c, w) 3701 z_streamp z; 3702 check_func c; 3703 uInt w; 3704 { 3705 inflate_blocks_statef *s; 3706 3707 if ((s = (inflate_blocks_statef *)ZALLOC 3708 (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL) 3709 return s; 3710 if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL) 3711 { 3712 ZFREE(z, s); 3713 return Z_NULL; 3714 } 3715 s->end = s->window + w; 3716 s->checkfn = c; 3717 s->mode = TYPE; 3718 Trace((stderr, "inflate: blocks allocated\n")); 3719 inflate_blocks_reset(s, z, &s->check); 3720 return s; 3721 } 3722 3723 3724 #ifdef DEBUG_ZLIB 3725 extern uInt inflate_hufts; 3726 #endif 3727 int inflate_blocks(s, z, r) 3728 inflate_blocks_statef *s; 3729 z_streamp z; 3730 int r; 3731 { 3732 uInt t; /* temporary storage */ 3733 uLong b; /* bit buffer */ 3734 uInt k; /* bits in bit buffer */ 3735 Bytef *p; /* input data pointer */ 3736 uInt n; /* bytes available there */ 3737 Bytef *q; /* output window write pointer */ 3738 uInt m; /* bytes to end of window or read pointer */ 3739 3740 /* copy input/output information to locals (UPDATE macro restores) */ 3741 LOAD 3742 3743 /* process input based on current state */ 3744 while (1) switch (s->mode) 3745 { 3746 case TYPE: 3747 NEEDBITS(3) 3748 t = (uInt)b & 7; 3749 s->last = t & 1; 3750 switch (t >> 1) 3751 { 3752 case 0: /* stored */ 3753 Trace((stderr, "inflate: stored block%s\n", 3754 s->last ? " (last)" : "")); 3755 DUMPBITS(3) 3756 t = k & 7; /* go to byte boundary */ 3757 DUMPBITS(t) 3758 s->mode = LENS; /* get length of stored block */ 3759 break; 3760 case 1: /* fixed */ 3761 Trace((stderr, "inflate: fixed codes block%s\n", 3762 s->last ? " (last)" : "")); 3763 { 3764 uInt bl, bd; 3765 inflate_huft *tl, *td; 3766 3767 inflate_trees_fixed(&bl, &bd, &tl, &td); 3768 s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z); 3769 if (s->sub.decode.codes == Z_NULL) 3770 { 3771 r = Z_MEM_ERROR; 3772 LEAVE 3773 } 3774 s->sub.decode.tl = Z_NULL; /* don't try to free these */ 3775 s->sub.decode.td = Z_NULL; 3776 } 3777 DUMPBITS(3) 3778 s->mode = CODES; 3779 break; 3780 case 2: /* dynamic */ 3781 Trace((stderr, "inflate: dynamic codes block%s\n", 3782 s->last ? " (last)" : "")); 3783 DUMPBITS(3) 3784 s->mode = TABLE; 3785 break; 3786 case 3: /* illegal */ 3787 DUMPBITS(3) 3788 s->mode = BADB; 3789 z->msg = (char*)"invalid block type"; 3790 r = Z_DATA_ERROR; 3791 LEAVE 3792 } 3793 break; 3794 case LENS: 3795 NEEDBITS(32) 3796 if ((((~b) >> 16) & 0xffff) != (b & 0xffff)) 3797 { 3798 s->mode = BADB; 3799 z->msg = (char*)"invalid stored block lengths"; 3800 r = Z_DATA_ERROR; 3801 LEAVE 3802 } 3803 s->sub.left = (uInt)b & 0xffff; 3804 b = k = 0; /* dump bits */ 3805 Tracev((stderr, "inflate: stored length %u\n", s->sub.left)); 3806 s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE); 3807 break; 3808 case STORED: 3809 if (n == 0) 3810 LEAVE 3811 NEEDOUT 3812 t = s->sub.left; 3813 if (t > n) t = n; 3814 if (t > m) t = m; 3815 zmemcpy(q, p, t); 3816 p += t; n -= t; 3817 q += t; m -= t; 3818 if ((s->sub.left -= t) != 0) 3819 break; 3820 Tracev((stderr, "inflate: stored end, %lu total out\n", 3821 z->total_out + (q >= s->read ? q - s->read : 3822 (s->end - s->read) + (q - s->window)))); 3823 s->mode = s->last ? DRY : TYPE; 3824 break; 3825 case TABLE: 3826 NEEDBITS(14) 3827 s->sub.trees.table = t = (uInt)b & 0x3fff; 3828 #ifndef PKZIP_BUG_WORKAROUND 3829 if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29) 3830 { 3831 s->mode = BADB; 3832 z->msg = (char*)"too many length or distance symbols"; 3833 r = Z_DATA_ERROR; 3834 LEAVE 3835 } 3836 #endif 3837 t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f); 3838 if (t < 19) 3839 t = 19; 3840 if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL) 3841 { 3842 r = Z_MEM_ERROR; 3843 LEAVE 3844 } 3845 DUMPBITS(14) 3846 s->sub.trees.index = 0; 3847 Tracev((stderr, "inflate: table sizes ok\n")); 3848 s->mode = BTREE; 3849 case BTREE: 3850 while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10)) 3851 { 3852 NEEDBITS(3) 3853 s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7; 3854 DUMPBITS(3) 3855 } 3856 while (s->sub.trees.index < 19) 3857 s->sub.trees.blens[border[s->sub.trees.index++]] = 0; 3858 s->sub.trees.bb = 7; 3859 t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb, 3860 &s->sub.trees.tb, z); 3861 if (t != Z_OK) 3862 { 3863 ZFREE(z, s->sub.trees.blens); 3864 r = t; 3865 if (r == Z_DATA_ERROR) 3866 s->mode = BADB; 3867 LEAVE 3868 } 3869 s->sub.trees.index = 0; 3870 Tracev((stderr, "inflate: bits tree ok\n")); 3871 s->mode = DTREE; 3872 case DTREE: 3873 while (t = s->sub.trees.table, 3874 s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f)) 3875 { 3876 inflate_huft *h; 3877 uInt i, j, c; 3878 3879 t = s->sub.trees.bb; 3880 NEEDBITS(t) 3881 h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]); 3882 t = h->word.what.Bits; 3883 c = h->more.Base; 3884 if (c < 16) 3885 { 3886 DUMPBITS(t) 3887 s->sub.trees.blens[s->sub.trees.index++] = c; 3888 } 3889 else /* c == 16..18 */ 3890 { 3891 i = c == 18 ? 7 : c - 14; 3892 j = c == 18 ? 11 : 3; 3893 NEEDBITS(t + i) 3894 DUMPBITS(t) 3895 j += (uInt)b & inflate_mask[i]; 3896 DUMPBITS(i) 3897 i = s->sub.trees.index; 3898 t = s->sub.trees.table; 3899 if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) || 3900 (c == 16 && i < 1)) 3901 { 3902 inflate_trees_free(s->sub.trees.tb, z); 3903 ZFREE(z, s->sub.trees.blens); 3904 s->mode = BADB; 3905 z->msg = (char*)"invalid bit length repeat"; 3906 r = Z_DATA_ERROR; 3907 LEAVE 3908 } 3909 c = c == 16 ? s->sub.trees.blens[i - 1] : 0; 3910 do { 3911 s->sub.trees.blens[i++] = c; 3912 } while (--j); 3913 s->sub.trees.index = i; 3914 } 3915 } 3916 inflate_trees_free(s->sub.trees.tb, z); 3917 s->sub.trees.tb = Z_NULL; 3918 { 3919 uInt bl, bd; 3920 inflate_huft *tl, *td; 3921 inflate_codes_statef *c; 3922 3923 bl = 9; /* must be <= 9 for lookahead assumptions */ 3924 bd = 6; /* must be <= 9 for lookahead assumptions */ 3925 t = s->sub.trees.table; 3926 #ifdef DEBUG_ZLIB 3927 inflate_hufts = 0; 3928 #endif 3929 t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f), 3930 s->sub.trees.blens, &bl, &bd, &tl, &td, z); 3931 ZFREE(z, s->sub.trees.blens); 3932 if (t != Z_OK) 3933 { 3934 if (t == (uInt)Z_DATA_ERROR) 3935 s->mode = BADB; 3936 r = t; 3937 LEAVE 3938 } 3939 Tracev((stderr, "inflate: trees ok, %d * %d bytes used\n", 3940 inflate_hufts, sizeof(inflate_huft))); 3941 if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL) 3942 { 3943 inflate_trees_free(td, z); 3944 inflate_trees_free(tl, z); 3945 r = Z_MEM_ERROR; 3946 LEAVE 3947 } 3948 s->sub.decode.codes = c; 3949 s->sub.decode.tl = tl; 3950 s->sub.decode.td = td; 3951 } 3952 s->mode = CODES; 3953 case CODES: 3954 UPDATE 3955 if ((r = inflate_codes(s, z, r)) != Z_STREAM_END) 3956 return inflate_flush(s, z, r); 3957 r = Z_OK; 3958 inflate_codes_free(s->sub.decode.codes, z); 3959 inflate_trees_free(s->sub.decode.td, z); 3960 inflate_trees_free(s->sub.decode.tl, z); 3961 LOAD 3962 Tracev((stderr, "inflate: codes end, %lu total out\n", 3963 z->total_out + (q >= s->read ? q - s->read : 3964 (s->end - s->read) + (q - s->window)))); 3965 if (!s->last) 3966 { 3967 s->mode = TYPE; 3968 break; 3969 } 3970 if (k > 7) /* return unused byte, if any */ 3971 { 3972 Assert(k < 16, "inflate_codes grabbed too many bytes") 3973 k -= 8; 3974 n++; 3975 p--; /* can always return one */ 3976 } 3977 s->mode = DRY; 3978 case DRY: 3979 FLUSH 3980 if (s->read != s->write) 3981 LEAVE 3982 s->mode = DONEB; 3983 case DONEB: 3984 r = Z_STREAM_END; 3985 LEAVE 3986 case BADB: 3987 r = Z_DATA_ERROR; 3988 LEAVE 3989 default: 3990 r = Z_STREAM_ERROR; 3991 LEAVE 3992 } 3993 } 3994 3995 3996 int inflate_blocks_free(s, z, c) 3997 inflate_blocks_statef *s; 3998 z_streamp z; 3999 uLongf *c; 4000 { 4001 inflate_blocks_reset(s, z, c); 4002 ZFREE(z, s->window); 4003 ZFREE(z, s); 4004 Trace((stderr, "inflate: blocks freed\n")); 4005 return Z_OK; 4006 } 4007 4008 4009 void inflate_set_dictionary(s, d, n) 4010 inflate_blocks_statef *s; 4011 const Bytef *d; 4012 uInt n; 4013 { 4014 zmemcpy((charf *)s->window, d, n); 4015 s->read = s->write = s->window + n; 4016 } 4017 4018 /* 4019 * This subroutine adds the data at next_in/avail_in to the output history 4020 * without performing any output. The output buffer must be "caught up"; 4021 * i.e. no pending output (hence s->read equals s->write), and the state must 4022 * be BLOCKS (i.e. we should be willing to see the start of a series of 4023 * BLOCKS). On exit, the output will also be caught up, and the checksum 4024 * will have been updated if need be. 4025 */ 4026 int inflate_addhistory(s, z) 4027 inflate_blocks_statef *s; 4028 z_stream *z; 4029 { 4030 uLong b; /* bit buffer */ /* NOT USED HERE */ 4031 uInt k; /* bits in bit buffer */ /* NOT USED HERE */ 4032 uInt t; /* temporary storage */ 4033 Bytef *p; /* input data pointer */ 4034 uInt n; /* bytes available there */ 4035 Bytef *q; /* output window write pointer */ 4036 uInt m; /* bytes to end of window or read pointer */ 4037 4038 if (s->read != s->write) 4039 return Z_STREAM_ERROR; 4040 if (s->mode != TYPE) 4041 return Z_DATA_ERROR; 4042 4043 /* we're ready to rock */ 4044 LOAD 4045 /* while there is input ready, copy to output buffer, moving 4046 * pointers as needed. 4047 */ 4048 while (n) { 4049 t = n; /* how many to do */ 4050 /* is there room until end of buffer? */ 4051 if (t > m) t = m; 4052 /* update check information */ 4053 if (s->checkfn != Z_NULL) 4054 s->check = (*s->checkfn)(s->check, q, t); 4055 zmemcpy(q, p, t); 4056 q += t; 4057 p += t; 4058 n -= t; 4059 z->total_out += t; 4060 s->read = q; /* drag read pointer forward */ 4061 /* WWRAP */ /* expand WWRAP macro by hand to handle s->read */ 4062 if (q == s->end) { 4063 s->read = q = s->window; 4064 m = WAVAIL; 4065 } 4066 } 4067 UPDATE 4068 return Z_OK; 4069 } 4070 4071 4072 /* 4073 * At the end of a Deflate-compressed PPP packet, we expect to have seen 4074 * a `stored' block type value but not the (zero) length bytes. 4075 */ 4076 int inflate_packet_flush(s) 4077 inflate_blocks_statef *s; 4078 { 4079 if (s->mode != LENS) 4080 return Z_DATA_ERROR; 4081 s->mode = TYPE; 4082 return Z_OK; 4083 } 4084 /* --- infblock.c */ 4085 4086 /* +++ inftrees.c */ 4087 /* inftrees.c -- generate Huffman trees for efficient decoding 4088 * Copyright (C) 1995-1996 Mark Adler 4089 * For conditions of distribution and use, see copyright notice in zlib.h 4090 */ 4091 4092 /* #include "zutil.h" */ 4093 /* #include "inftrees.h" */ 4094 4095 char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler "; 4096 /* 4097 If you use the zlib library in a product, an acknowledgment is welcome 4098 in the documentation of your product. If for some reason you cannot 4099 include such an acknowledgment, I would appreciate that you keep this 4100 copyright string in the executable of your product. 4101 */ 4102 4103 #ifndef NO_DUMMY_DECL 4104 struct internal_state {int dummy;}; /* for buggy compilers */ 4105 #endif 4106 4107 /* simplify the use of the inflate_huft type with some defines */ 4108 #define base more.Base 4109 #define next more.Next 4110 #define exop word.what.Exop 4111 #define bits word.what.Bits 4112 4113 4114 local int huft_build OF(( 4115 uIntf *, /* code lengths in bits */ 4116 uInt, /* number of codes */ 4117 uInt, /* number of "simple" codes */ 4118 const uIntf *, /* list of base values for non-simple codes */ 4119 const uIntf *, /* list of extra bits for non-simple codes */ 4120 inflate_huft * FAR*,/* result: starting table */ 4121 uIntf *, /* maximum lookup bits (returns actual) */ 4122 z_streamp )); /* for zalloc function */ 4123 4124 local voidpf falloc OF(( 4125 voidpf, /* opaque pointer (not used) */ 4126 uInt, /* number of items */ 4127 uInt)); /* size of item */ 4128 4129 /* Tables for deflate from PKZIP's appnote.txt. */ 4130 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */ 4131 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 4132 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; 4133 /* see note #13 above about 258 */ 4134 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */ 4135 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 4136 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */ 4137 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */ 4138 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 4139 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 4140 8193, 12289, 16385, 24577}; 4141 local const uInt cpdext[30] = { /* Extra bits for distance codes */ 4142 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 4143 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 4144 12, 12, 13, 13}; 4145 4146 /* 4147 Huffman code decoding is performed using a multi-level table lookup. 4148 The fastest way to decode is to simply build a lookup table whose 4149 size is determined by the longest code. However, the time it takes 4150 to build this table can also be a factor if the data being decoded 4151 is not very long. The most common codes are necessarily the 4152 shortest codes, so those codes dominate the decoding time, and hence 4153 the speed. The idea is you can have a shorter table that decodes the 4154 shorter, more probable codes, and then point to subsidiary tables for 4155 the longer codes. The time it costs to decode the longer codes is 4156 then traded against the time it takes to make longer tables. 4157 4158 This results of this trade are in the variables lbits and dbits 4159 below. lbits is the number of bits the first level table for literal/ 4160 length codes can decode in one step, and dbits is the same thing for 4161 the distance codes. Subsequent tables are also less than or equal to 4162 those sizes. These values may be adjusted either when all of the 4163 codes are shorter than that, in which case the longest code length in 4164 bits is used, or when the shortest code is *longer* than the requested 4165 table size, in which case the length of the shortest code in bits is 4166 used. 4167 4168 There are two different values for the two tables, since they code a 4169 different number of possibilities each. The literal/length table 4170 codes 286 possible values, or in a flat code, a little over eight 4171 bits. The distance table codes 30 possible values, or a little less 4172 than five bits, flat. The optimum values for speed end up being 4173 about one bit more than those, so lbits is 8+1 and dbits is 5+1. 4174 The optimum values may differ though from machine to machine, and 4175 possibly even between compilers. Your mileage may vary. 4176 */ 4177 4178 4179 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */ 4180 #define BMAX 15 /* maximum bit length of any code */ 4181 #define N_MAX 288 /* maximum number of codes in any set */ 4182 4183 #ifdef DEBUG_ZLIB 4184 uInt inflate_hufts; 4185 #endif 4186 4187 local int huft_build(b, n, s, d, e, t, m, zs) 4188 uIntf *b; /* code lengths in bits (all assumed <= BMAX) */ 4189 uInt n; /* number of codes (assumed <= N_MAX) */ 4190 uInt s; /* number of simple-valued codes (0..s-1) */ 4191 const uIntf *d; /* list of base values for non-simple codes */ 4192 const uIntf *e; /* list of extra bits for non-simple codes */ 4193 inflate_huft * FAR *t; /* result: starting table */ 4194 uIntf *m; /* maximum lookup bits, returns actual */ 4195 z_streamp zs; /* for zalloc function */ 4196 /* Given a list of code lengths and a maximum table size, make a set of 4197 tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR 4198 if the given code set is incomplete (the tables are still built in this 4199 case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of 4200 lengths), or Z_MEM_ERROR if not enough memory. */ 4201 { 4202 4203 uInt a; /* counter for codes of length k */ 4204 uInt c[BMAX+1]; /* bit length count table */ 4205 uInt f; /* i repeats in table every f entries */ 4206 int g; /* maximum code length */ 4207 int h; /* table level */ 4208 uInt i; /* counter, current code */ 4209 uInt j; /* counter */ 4210 int k; /* number of bits in current code */ 4211 int l; /* bits per table (returned in m) */ 4212 uIntf *p; /* pointer into c[], b[], or v[] */ 4213 inflate_huft *q; /* points to current table */ 4214 struct inflate_huft_s r; /* table entry for structure assignment */ 4215 inflate_huft *u[BMAX]; /* table stack */ 4216 uInt v[N_MAX]; /* values in order of bit length */ 4217 int w; /* bits before this table == (l * h) */ 4218 uInt x[BMAX+1]; /* bit offsets, then code stack */ 4219 uIntf *xp; /* pointer into x */ 4220 int y; /* number of dummy codes added */ 4221 uInt z; /* number of entries in current table */ 4222 4223 4224 /* Generate counts for each bit length */ 4225 p = c; 4226 #define C0 *p++ = 0; 4227 #define C2 C0 C0 C0 C0 4228 #define C4 C2 C2 C2 C2 4229 C4 /* clear c[]--assume BMAX+1 is 16 */ 4230 p = b; i = n; 4231 do { 4232 c[*p++]++; /* assume all entries <= BMAX */ 4233 } while (--i); 4234 if (c[0] == n) /* null input--all zero length codes */ 4235 { 4236 *t = (inflate_huft *)Z_NULL; 4237 *m = 0; 4238 return Z_OK; 4239 } 4240 4241 4242 /* Find minimum and maximum length, bound *m by those */ 4243 l = *m; 4244 for (j = 1; j <= BMAX; j++) 4245 if (c[j]) 4246 break; 4247 k = j; /* minimum code length */ 4248 if ((uInt)l < j) 4249 l = j; 4250 for (i = BMAX; i; i--) 4251 if (c[i]) 4252 break; 4253 g = i; /* maximum code length */ 4254 if ((uInt)l > i) 4255 l = i; 4256 *m = l; 4257 4258 4259 /* Adjust last length count to fill out codes, if needed */ 4260 for (y = 1 << j; j < i; j++, y <<= 1) 4261 if ((y -= c[j]) < 0) 4262 return Z_DATA_ERROR; 4263 if ((y -= c[i]) < 0) 4264 return Z_DATA_ERROR; 4265 c[i] += y; 4266 4267 4268 /* Generate starting offsets into the value table for each length */ 4269 x[1] = j = 0; 4270 p = c + 1; xp = x + 2; 4271 while (--i) { /* note that i == g from above */ 4272 *xp++ = (j += *p++); 4273 } 4274 4275 4276 /* Make a table of values in order of bit lengths */ 4277 p = b; i = 0; 4278 do { 4279 if ((j = *p++) != 0) 4280 v[x[j]++] = i; 4281 } while (++i < n); 4282 n = x[g]; /* set n to length of v */ 4283 4284 4285 /* Generate the Huffman codes and for each, make the table entries */ 4286 x[0] = i = 0; /* first Huffman code is zero */ 4287 p = v; /* grab values in bit order */ 4288 h = -1; /* no tables yet--level -1 */ 4289 w = -l; /* bits decoded == (l * h) */ 4290 u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */ 4291 q = (inflate_huft *)Z_NULL; /* ditto */ 4292 z = 0; /* ditto */ 4293 4294 /* go through the bit lengths (k already is bits in shortest code) */ 4295 for (; k <= g; k++) 4296 { 4297 a = c[k]; 4298 while (a--) 4299 { 4300 /* here i is the Huffman code of length k bits for value *p */ 4301 /* make tables up to required level */ 4302 while (k > w + l) 4303 { 4304 h++; 4305 w += l; /* previous table always l bits */ 4306 4307 /* compute minimum size table less than or equal to l bits */ 4308 z = g - w; 4309 z = z > (uInt)l ? l : z; /* table size upper limit */ 4310 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ 4311 { /* too few codes for k-w bit table */ 4312 f -= a + 1; /* deduct codes from patterns left */ 4313 xp = c + k; 4314 if (j < z) 4315 while (++j < z) /* try smaller tables up to z bits */ 4316 { 4317 if ((f <<= 1) <= *++xp) 4318 break; /* enough codes to use up j bits */ 4319 f -= *xp; /* else deduct codes from patterns */ 4320 } 4321 } 4322 z = 1 << j; /* table entries for j-bit table */ 4323 4324 /* allocate and link in new table */ 4325 if ((q = (inflate_huft *)ZALLOC 4326 (zs,z + 1,sizeof(inflate_huft))) == Z_NULL) 4327 { 4328 if (h) 4329 inflate_trees_free(u[0], zs); 4330 return Z_MEM_ERROR; /* not enough memory */ 4331 } 4332 #ifdef DEBUG_ZLIB 4333 inflate_hufts += z + 1; 4334 #endif 4335 *t = q + 1; /* link to list for huft_free() */ 4336 *(t = &(q->next)) = Z_NULL; 4337 u[h] = ++q; /* table starts after link */ 4338 4339 /* connect to last table, if there is one */ 4340 if (h) 4341 { 4342 x[h] = i; /* save pattern for backing up */ 4343 r.bits = (Byte)l; /* bits to dump before this table */ 4344 r.exop = (Byte)j; /* bits in this table */ 4345 r.next = q; /* pointer to this table */ 4346 j = i >> (w - l); /* (get around Turbo C bug) */ 4347 u[h-1][j] = r; /* connect to last table */ 4348 } 4349 } 4350 4351 /* set up table entry in r */ 4352 r.bits = (Byte)(k - w); 4353 if (p >= v + n) 4354 r.exop = 128 + 64; /* out of values--invalid code */ 4355 else if (*p < s) 4356 { 4357 r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */ 4358 r.base = *p++; /* simple code is just the value */ 4359 } 4360 else 4361 { 4362 r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */ 4363 r.base = d[*p++ - s]; 4364 } 4365 4366 /* fill code-like entries with r */ 4367 f = 1 << (k - w); 4368 for (j = i >> w; j < z; j += f) 4369 q[j] = r; 4370 4371 /* backwards increment the k-bit code i */ 4372 for (j = 1 << (k - 1); i & j; j >>= 1) 4373 i ^= j; 4374 i ^= j; 4375 4376 /* backup over finished tables */ 4377 while ((i & ((1 << w) - 1)) != x[h]) 4378 { 4379 h--; /* don't need to update q */ 4380 w -= l; 4381 } 4382 } 4383 } 4384 4385 4386 /* Return Z_BUF_ERROR if we were given an incomplete table */ 4387 return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK; 4388 } 4389 4390 4391 int inflate_trees_bits(c, bb, tb, z) 4392 uIntf *c; /* 19 code lengths */ 4393 uIntf *bb; /* bits tree desired/actual depth */ 4394 inflate_huft * FAR *tb; /* bits tree result */ 4395 z_streamp z; /* for zfree function */ 4396 { 4397 int r; 4398 4399 r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z); 4400 if (r == Z_DATA_ERROR) 4401 z->msg = (char*)"oversubscribed dynamic bit lengths tree"; 4402 else if (r == Z_BUF_ERROR || *bb == 0) 4403 { 4404 inflate_trees_free(*tb, z); 4405 z->msg = (char*)"incomplete dynamic bit lengths tree"; 4406 r = Z_DATA_ERROR; 4407 } 4408 return r; 4409 } 4410 4411 4412 int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z) 4413 uInt nl; /* number of literal/length codes */ 4414 uInt nd; /* number of distance codes */ 4415 uIntf *c; /* that many (total) code lengths */ 4416 uIntf *bl; /* literal desired/actual bit depth */ 4417 uIntf *bd; /* distance desired/actual bit depth */ 4418 inflate_huft * FAR *tl; /* literal/length tree result */ 4419 inflate_huft * FAR *td; /* distance tree result */ 4420 z_streamp z; /* for zfree function */ 4421 { 4422 int r; 4423 4424 /* build literal/length tree */ 4425 r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z); 4426 if (r != Z_OK || *bl == 0) 4427 { 4428 if (r == Z_DATA_ERROR) 4429 z->msg = (char*)"oversubscribed literal/length tree"; 4430 else if (r != Z_MEM_ERROR) 4431 { 4432 inflate_trees_free(*tl, z); 4433 z->msg = (char*)"incomplete literal/length tree"; 4434 r = Z_DATA_ERROR; 4435 } 4436 return r; 4437 } 4438 4439 /* build distance tree */ 4440 r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z); 4441 if (r != Z_OK || (*bd == 0 && nl > 257)) 4442 { 4443 if (r == Z_DATA_ERROR) 4444 z->msg = (char*)"oversubscribed distance tree"; 4445 else if (r == Z_BUF_ERROR) { 4446 #ifdef PKZIP_BUG_WORKAROUND 4447 r = Z_OK; 4448 } 4449 #else 4450 inflate_trees_free(*td, z); 4451 z->msg = (char*)"incomplete distance tree"; 4452 r = Z_DATA_ERROR; 4453 } 4454 else if (r != Z_MEM_ERROR) 4455 { 4456 z->msg = (char*)"empty distance tree with lengths"; 4457 r = Z_DATA_ERROR; 4458 } 4459 inflate_trees_free(*tl, z); 4460 return r; 4461 #endif 4462 } 4463 4464 /* done */ 4465 return Z_OK; 4466 } 4467 4468 4469 /* build fixed tables only once--keep them here */ 4470 local int fixed_built = 0; 4471 #define FIXEDH 530 /* number of hufts used by fixed tables */ 4472 local inflate_huft fixed_mem[FIXEDH]; 4473 local uInt fixed_bl; 4474 local uInt fixed_bd; 4475 local inflate_huft *fixed_tl; 4476 local inflate_huft *fixed_td; 4477 4478 4479 local voidpf falloc(q, n, s) 4480 voidpf q; /* opaque pointer */ 4481 uInt n; /* number of items */ 4482 uInt s; /* size of item */ 4483 { 4484 Assert(s == sizeof(inflate_huft) && n <= *(intf *)q, 4485 "inflate_trees falloc overflow"); 4486 *(intf *)q -= n+s-s; /* s-s to avoid warning */ 4487 return (voidpf)(fixed_mem + *(intf *)q); 4488 } 4489 4490 4491 int inflate_trees_fixed(bl, bd, tl, td) 4492 uIntf *bl; /* literal desired/actual bit depth */ 4493 uIntf *bd; /* distance desired/actual bit depth */ 4494 inflate_huft * FAR *tl; /* literal/length tree result */ 4495 inflate_huft * FAR *td; /* distance tree result */ 4496 { 4497 /* build fixed tables if not already (multiple overlapped executions ok) */ 4498 if (!fixed_built) 4499 { 4500 int k; /* temporary variable */ 4501 unsigned c[288]; /* length list for huft_build */ 4502 z_stream z; /* for falloc function */ 4503 int f = FIXEDH; /* number of hufts left in fixed_mem */ 4504 4505 /* set up fake z_stream for memory routines */ 4506 z.zalloc = falloc; 4507 z.zfree = Z_NULL; 4508 z.opaque = (voidpf)&f; 4509 4510 /* literal table */ 4511 for (k = 0; k < 144; k++) 4512 c[k] = 8; 4513 for (; k < 256; k++) 4514 c[k] = 9; 4515 for (; k < 280; k++) 4516 c[k] = 7; 4517 for (; k < 288; k++) 4518 c[k] = 8; 4519 fixed_bl = 7; 4520 huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z); 4521 4522 /* distance table */ 4523 for (k = 0; k < 30; k++) 4524 c[k] = 5; 4525 fixed_bd = 5; 4526 huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z); 4527 4528 /* done */ 4529 Assert(f == 0, "invalid build of fixed tables"); 4530 fixed_built = 1; 4531 } 4532 *bl = fixed_bl; 4533 *bd = fixed_bd; 4534 *tl = fixed_tl; 4535 *td = fixed_td; 4536 return Z_OK; 4537 } 4538 4539 4540 int inflate_trees_free(t, z) 4541 inflate_huft *t; /* table to free */ 4542 z_streamp z; /* for zfree function */ 4543 /* Free the malloc'ed tables built by huft_build(), which makes a linked 4544 list of the tables it made, with the links in a dummy first entry of 4545 each table. */ 4546 { 4547 inflate_huft *p, *q, *r; 4548 4549 /* Reverse linked list */ 4550 p = Z_NULL; 4551 q = t; 4552 while (q != Z_NULL) 4553 { 4554 r = (q - 1)->next; 4555 (q - 1)->next = p; 4556 p = q; 4557 q = r; 4558 } 4559 /* Go through linked list, freeing from the malloced (t[-1]) address. */ 4560 while (p != Z_NULL) 4561 { 4562 q = (--p)->next; 4563 ZFREE(z,p); 4564 p = q; 4565 } 4566 return Z_OK; 4567 } 4568 /* --- inftrees.c */ 4569 4570 /* +++ infcodes.c */ 4571 /* infcodes.c -- process literals and length/distance pairs 4572 * Copyright (C) 1995-1996 Mark Adler 4573 * For conditions of distribution and use, see copyright notice in zlib.h 4574 */ 4575 4576 /* #include "zutil.h" */ 4577 /* #include "inftrees.h" */ 4578 /* #include "infblock.h" */ 4579 /* #include "infcodes.h" */ 4580 /* #include "infutil.h" */ 4581 4582 /* +++ inffast.h */ 4583 /* inffast.h -- header to use inffast.c 4584 * Copyright (C) 1995-1996 Mark Adler 4585 * For conditions of distribution and use, see copyright notice in zlib.h 4586 */ 4587 4588 /* WARNING: this file should *not* be used by applications. It is 4589 part of the implementation of the compression library and is 4590 subject to change. Applications should only use zlib.h. 4591 */ 4592 4593 extern int inflate_fast OF(( 4594 uInt, 4595 uInt, 4596 inflate_huft *, 4597 inflate_huft *, 4598 inflate_blocks_statef *, 4599 z_streamp )); 4600 /* --- inffast.h */ 4601 4602 /* simplify the use of the inflate_huft type with some defines */ 4603 #define base more.Base 4604 #define next more.Next 4605 #define exop word.what.Exop 4606 #define bits word.what.Bits 4607 4608 /* inflate codes private state */ 4609 struct inflate_codes_state { 4610 4611 /* mode */ 4612 enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */ 4613 START, /* x: set up for LEN */ 4614 LEN, /* i: get length/literal/eob next */ 4615 LENEXT, /* i: getting length extra (have base) */ 4616 DIST, /* i: get distance next */ 4617 DISTEXT, /* i: getting distance extra */ 4618 COPY, /* o: copying bytes in window, waiting for space */ 4619 LIT, /* o: got literal, waiting for output space */ 4620 WASH, /* o: got eob, possibly still output waiting */ 4621 END, /* x: got eob and all data flushed */ 4622 BADCODE} /* x: got error */ 4623 mode; /* current inflate_codes mode */ 4624 4625 /* mode dependent information */ 4626 uInt len; 4627 union { 4628 struct { 4629 inflate_huft *tree; /* pointer into tree */ 4630 uInt need; /* bits needed */ 4631 } code; /* if LEN or DIST, where in tree */ 4632 uInt lit; /* if LIT, literal */ 4633 struct { 4634 uInt get; /* bits to get for extra */ 4635 uInt dist; /* distance back to copy from */ 4636 } copy; /* if EXT or COPY, where and how much */ 4637 } sub; /* submode */ 4638 4639 /* mode independent information */ 4640 Byte lbits; /* ltree bits decoded per branch */ 4641 Byte dbits; /* dtree bits decoder per branch */ 4642 inflate_huft *ltree; /* literal/length/eob tree */ 4643 inflate_huft *dtree; /* distance tree */ 4644 4645 }; 4646 4647 4648 inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z) 4649 uInt bl, bd; 4650 inflate_huft *tl; 4651 inflate_huft *td; /* need separate declaration for Borland C++ */ 4652 z_streamp z; 4653 { 4654 inflate_codes_statef *c; 4655 4656 if ((c = (inflate_codes_statef *) 4657 ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL) 4658 { 4659 c->mode = START; 4660 c->lbits = (Byte)bl; 4661 c->dbits = (Byte)bd; 4662 c->ltree = tl; 4663 c->dtree = td; 4664 Tracev((stderr, "inflate: codes new\n")); 4665 } 4666 return c; 4667 } 4668 4669 4670 int inflate_codes(s, z, r) 4671 inflate_blocks_statef *s; 4672 z_streamp z; 4673 int r; 4674 { 4675 uInt j; /* temporary storage */ 4676 inflate_huft *t; /* temporary pointer */ 4677 uInt e; /* extra bits or operation */ 4678 uLong b; /* bit buffer */ 4679 uInt k; /* bits in bit buffer */ 4680 Bytef *p; /* input data pointer */ 4681 uInt n; /* bytes available there */ 4682 Bytef *q; /* output window write pointer */ 4683 uInt m; /* bytes to end of window or read pointer */ 4684 Bytef *f; /* pointer to copy strings from */ 4685 inflate_codes_statef *c = s->sub.decode.codes; /* codes state */ 4686 4687 /* copy input/output information to locals (UPDATE macro restores) */ 4688 LOAD 4689 4690 /* process input and output based on current state */ 4691 while (1) switch (c->mode) 4692 { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */ 4693 case START: /* x: set up for LEN */ 4694 #ifndef SLOW 4695 if (m >= 258 && n >= 10) 4696 { 4697 UPDATE 4698 r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z); 4699 LOAD 4700 if (r != Z_OK) 4701 { 4702 c->mode = r == Z_STREAM_END ? WASH : BADCODE; 4703 break; 4704 } 4705 } 4706 #endif /* !SLOW */ 4707 c->sub.code.need = c->lbits; 4708 c->sub.code.tree = c->ltree; 4709 c->mode = LEN; 4710 case LEN: /* i: get length/literal/eob next */ 4711 j = c->sub.code.need; 4712 NEEDBITS(j) 4713 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]); 4714 DUMPBITS(t->bits) 4715 e = (uInt)(t->exop); 4716 if (e == 0) /* literal */ 4717 { 4718 c->sub.lit = t->base; 4719 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? 4720 "inflate: literal '%c'\n" : 4721 "inflate: literal 0x%02x\n", t->base)); 4722 c->mode = LIT; 4723 break; 4724 } 4725 if (e & 16) /* length */ 4726 { 4727 c->sub.copy.get = e & 15; 4728 c->len = t->base; 4729 c->mode = LENEXT; 4730 break; 4731 } 4732 if ((e & 64) == 0) /* next table */ 4733 { 4734 c->sub.code.need = e; 4735 c->sub.code.tree = t->next; 4736 break; 4737 } 4738 if (e & 32) /* end of block */ 4739 { 4740 Tracevv((stderr, "inflate: end of block\n")); 4741 c->mode = WASH; 4742 break; 4743 } 4744 c->mode = BADCODE; /* invalid code */ 4745 z->msg = (char*)"invalid literal/length code"; 4746 r = Z_DATA_ERROR; 4747 LEAVE 4748 case LENEXT: /* i: getting length extra (have base) */ 4749 j = c->sub.copy.get; 4750 NEEDBITS(j) 4751 c->len += (uInt)b & inflate_mask[j]; 4752 DUMPBITS(j) 4753 c->sub.code.need = c->dbits; 4754 c->sub.code.tree = c->dtree; 4755 Tracevv((stderr, "inflate: length %u\n", c->len)); 4756 c->mode = DIST; 4757 case DIST: /* i: get distance next */ 4758 j = c->sub.code.need; 4759 NEEDBITS(j) 4760 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]); 4761 DUMPBITS(t->bits) 4762 e = (uInt)(t->exop); 4763 if (e & 16) /* distance */ 4764 { 4765 c->sub.copy.get = e & 15; 4766 c->sub.copy.dist = t->base; 4767 c->mode = DISTEXT; 4768 break; 4769 } 4770 if ((e & 64) == 0) /* next table */ 4771 { 4772 c->sub.code.need = e; 4773 c->sub.code.tree = t->next; 4774 break; 4775 } 4776 c->mode = BADCODE; /* invalid code */ 4777 z->msg = (char*)"invalid distance code"; 4778 r = Z_DATA_ERROR; 4779 LEAVE 4780 case DISTEXT: /* i: getting distance extra */ 4781 j = c->sub.copy.get; 4782 NEEDBITS(j) 4783 c->sub.copy.dist += (uInt)b & inflate_mask[j]; 4784 DUMPBITS(j) 4785 Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist)); 4786 c->mode = COPY; 4787 case COPY: /* o: copying bytes in window, waiting for space */ 4788 #ifndef __TURBOC__ /* Turbo C bug for following expression */ 4789 f = (uInt)(q - s->window) < c->sub.copy.dist ? 4790 s->end - (c->sub.copy.dist - (q - s->window)) : 4791 q - c->sub.copy.dist; 4792 #else 4793 f = q - c->sub.copy.dist; 4794 if ((uInt)(q - s->window) < c->sub.copy.dist) 4795 f = s->end - (c->sub.copy.dist - (uInt)(q - s->window)); 4796 #endif 4797 while (c->len) 4798 { 4799 NEEDOUT 4800 OUTBYTE(*f++) 4801 if (f == s->end) 4802 f = s->window; 4803 c->len--; 4804 } 4805 c->mode = START; 4806 break; 4807 case LIT: /* o: got literal, waiting for output space */ 4808 NEEDOUT 4809 OUTBYTE(c->sub.lit) 4810 c->mode = START; 4811 break; 4812 case WASH: /* o: got eob, possibly more output */ 4813 FLUSH 4814 if (s->read != s->write) 4815 LEAVE 4816 c->mode = END; 4817 case END: 4818 r = Z_STREAM_END; 4819 LEAVE 4820 case BADCODE: /* x: got error */ 4821 r = Z_DATA_ERROR; 4822 LEAVE 4823 default: 4824 r = Z_STREAM_ERROR; 4825 LEAVE 4826 } 4827 } 4828 4829 4830 void inflate_codes_free(c, z) 4831 inflate_codes_statef *c; 4832 z_streamp z; 4833 { 4834 ZFREE(z, c); 4835 Tracev((stderr, "inflate: codes free\n")); 4836 } 4837 /* --- infcodes.c */ 4838 4839 /* +++ infutil.c */ 4840 /* inflate_util.c -- data and routines common to blocks and codes 4841 * Copyright (C) 1995-1996 Mark Adler 4842 * For conditions of distribution and use, see copyright notice in zlib.h 4843 */ 4844 4845 /* #include "zutil.h" */ 4846 /* #include "infblock.h" */ 4847 /* #include "inftrees.h" */ 4848 /* #include "infcodes.h" */ 4849 /* #include "infutil.h" */ 4850 4851 #ifndef NO_DUMMY_DECL 4852 struct inflate_codes_state {int dummy;}; /* for buggy compilers */ 4853 #endif 4854 4855 /* And'ing with mask[n] masks the lower n bits */ 4856 uInt const inflate_mask[17] = { 4857 0x0000, 4858 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, 4859 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff 4860 }; 4861 4862 4863 /* copy as much as possible from the sliding window to the output area */ 4864 int inflate_flush(s, z, r) 4865 inflate_blocks_statef *s; 4866 z_streamp z; 4867 int r; 4868 { 4869 uInt n; 4870 Bytef *p; 4871 Bytef *q; 4872 4873 /* local copies of source and destination pointers */ 4874 p = z->next_out; 4875 q = s->read; 4876 4877 /* compute number of bytes to copy as far as end of window */ 4878 n = (uInt)((q <= s->write ? s->write : s->end) - q); 4879 if (n > z->avail_out) n = z->avail_out; 4880 if (n && r == Z_BUF_ERROR) r = Z_OK; 4881 4882 /* update counters */ 4883 z->avail_out -= n; 4884 z->total_out += n; 4885 4886 /* update check information */ 4887 if (s->checkfn != Z_NULL) 4888 z->adler = s->check = (*s->checkfn)(s->check, q, n); 4889 4890 /* copy as far as end of window */ 4891 if (p != Z_NULL) { 4892 zmemcpy(p, q, n); 4893 p += n; 4894 } 4895 q += n; 4896 4897 /* see if more to copy at beginning of window */ 4898 if (q == s->end) 4899 { 4900 /* wrap pointers */ 4901 q = s->window; 4902 if (s->write == s->end) 4903 s->write = s->window; 4904 4905 /* compute bytes to copy */ 4906 n = (uInt)(s->write - q); 4907 if (n > z->avail_out) n = z->avail_out; 4908 if (n && r == Z_BUF_ERROR) r = Z_OK; 4909 4910 /* update counters */ 4911 z->avail_out -= n; 4912 z->total_out += n; 4913 4914 /* update check information */ 4915 if (s->checkfn != Z_NULL) 4916 z->adler = s->check = (*s->checkfn)(s->check, q, n); 4917 4918 /* copy */ 4919 if (p != Z_NULL) { 4920 zmemcpy(p, q, n); 4921 p += n; 4922 } 4923 q += n; 4924 } 4925 4926 /* update pointers */ 4927 z->next_out = p; 4928 s->read = q; 4929 4930 /* done */ 4931 return r; 4932 } 4933 /* --- infutil.c */ 4934 4935 /* +++ inffast.c */ 4936 /* inffast.c -- process literals and length/distance pairs fast 4937 * Copyright (C) 1995-1996 Mark Adler 4938 * For conditions of distribution and use, see copyright notice in zlib.h 4939 */ 4940 4941 /* #include "zutil.h" */ 4942 /* #include "inftrees.h" */ 4943 /* #include "infblock.h" */ 4944 /* #include "infcodes.h" */ 4945 /* #include "infutil.h" */ 4946 /* #include "inffast.h" */ 4947 4948 #ifndef NO_DUMMY_DECL 4949 struct inflate_codes_state {int dummy;}; /* for buggy compilers */ 4950 #endif 4951 4952 /* simplify the use of the inflate_huft type with some defines */ 4953 #define base more.Base 4954 #define next more.Next 4955 #define exop word.what.Exop 4956 #define bits word.what.Bits 4957 4958 /* macros for bit input with no checking and for returning unused bytes */ 4959 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}} 4960 #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;} 4961 4962 /* Called with number of bytes left to write in window at least 258 4963 (the maximum string length) and number of input bytes available 4964 at least ten. The ten bytes are six bytes for the longest length/ 4965 distance pair plus four bytes for overloading the bit buffer. */ 4966 4967 int inflate_fast(bl, bd, tl, td, s, z) 4968 uInt bl, bd; 4969 inflate_huft *tl; 4970 inflate_huft *td; /* need separate declaration for Borland C++ */ 4971 inflate_blocks_statef *s; 4972 z_streamp z; 4973 { 4974 inflate_huft *t; /* temporary pointer */ 4975 uInt e; /* extra bits or operation */ 4976 uLong b; /* bit buffer */ 4977 uInt k; /* bits in bit buffer */ 4978 Bytef *p; /* input data pointer */ 4979 uInt n; /* bytes available there */ 4980 Bytef *q; /* output window write pointer */ 4981 uInt m; /* bytes to end of window or read pointer */ 4982 uInt ml; /* mask for literal/length tree */ 4983 uInt md; /* mask for distance tree */ 4984 uInt c; /* bytes to copy */ 4985 uInt d; /* distance back to copy from */ 4986 Bytef *r; /* copy source pointer */ 4987 4988 /* load input, output, bit values */ 4989 LOAD 4990 4991 /* initialize masks */ 4992 ml = inflate_mask[bl]; 4993 md = inflate_mask[bd]; 4994 4995 /* do until not enough input or output space for fast loop */ 4996 do { /* assume called with m >= 258 && n >= 10 */ 4997 /* get literal/length code */ 4998 GRABBITS(20) /* max bits for literal/length code */ 4999 if ((e = (t = tl + ((uInt)b & ml))->exop) == 0) 5000 { 5001 DUMPBITS(t->bits) 5002 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? 5003 "inflate: * literal '%c'\n" : 5004 "inflate: * literal 0x%02x\n", t->base)); 5005 *q++ = (Byte)t->base; 5006 m--; 5007 continue; 5008 } 5009 do { 5010 DUMPBITS(t->bits) 5011 if (e & 16) 5012 { 5013 /* get extra bits for length */ 5014 e &= 15; 5015 c = t->base + ((uInt)b & inflate_mask[e]); 5016 DUMPBITS(e) 5017 Tracevv((stderr, "inflate: * length %u\n", c)); 5018 5019 /* decode distance base of block to copy */ 5020 GRABBITS(15); /* max bits for distance code */ 5021 e = (t = td + ((uInt)b & md))->exop; 5022 do { 5023 DUMPBITS(t->bits) 5024 if (e & 16) 5025 { 5026 /* get extra bits to add to distance base */ 5027 e &= 15; 5028 GRABBITS(e) /* get extra bits (up to 13) */ 5029 d = t->base + ((uInt)b & inflate_mask[e]); 5030 DUMPBITS(e) 5031 Tracevv((stderr, "inflate: * distance %u\n", d)); 5032 5033 /* do the copy */ 5034 m -= c; 5035 if ((uInt)(q - s->window) >= d) /* offset before dest */ 5036 { /* just copy */ 5037 r = q - d; 5038 *q++ = *r++; c--; /* minimum count is three, */ 5039 *q++ = *r++; c--; /* so unroll loop a little */ 5040 } 5041 else /* else offset after destination */ 5042 { 5043 e = d - (uInt)(q - s->window); /* bytes from offset to end */ 5044 r = s->end - e; /* pointer to offset */ 5045 if (c > e) /* if source crosses, */ 5046 { 5047 c -= e; /* copy to end of window */ 5048 do { 5049 *q++ = *r++; 5050 } while (--e); 5051 r = s->window; /* copy rest from start of window */ 5052 } 5053 } 5054 do { /* copy all or what's left */ 5055 *q++ = *r++; 5056 } while (--c); 5057 break; 5058 } 5059 else if ((e & 64) == 0) 5060 e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop; 5061 else 5062 { 5063 z->msg = (char*)"invalid distance code"; 5064 UNGRAB 5065 UPDATE 5066 return Z_DATA_ERROR; 5067 } 5068 } while (1); 5069 break; 5070 } 5071 if ((e & 64) == 0) 5072 { 5073 if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0) 5074 { 5075 DUMPBITS(t->bits) 5076 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? 5077 "inflate: * literal '%c'\n" : 5078 "inflate: * literal 0x%02x\n", t->base)); 5079 *q++ = (Byte)t->base; 5080 m--; 5081 break; 5082 } 5083 } 5084 else if (e & 32) 5085 { 5086 Tracevv((stderr, "inflate: * end of block\n")); 5087 UNGRAB 5088 UPDATE 5089 return Z_STREAM_END; 5090 } 5091 else 5092 { 5093 z->msg = (char*)"invalid literal/length code"; 5094 UNGRAB 5095 UPDATE 5096 return Z_DATA_ERROR; 5097 } 5098 } while (1); 5099 } while (m >= 258 && n >= 10); 5100 5101 /* not enough input or output--restore pointers and return */ 5102 UNGRAB 5103 UPDATE 5104 return Z_OK; 5105 } 5106 /* --- inffast.c */ 5107 5108 /* +++ zutil.c */ 5109 /* zutil.c -- target dependent utility functions for the compression library 5110 * Copyright (C) 1995-1996 Jean-loup Gailly. 5111 * For conditions of distribution and use, see copyright notice in zlib.h 5112 */ 5113 5114 /* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */ 5115 5116 #ifdef DEBUG_ZLIB 5117 #include <stdio.h> 5118 #endif 5119 5120 /* #include "zutil.h" */ 5121 5122 #ifndef NO_DUMMY_DECL 5123 struct internal_state {int dummy;}; /* for buggy compilers */ 5124 #endif 5125 5126 #ifndef STDC 5127 extern void exit OF((int)); 5128 #endif 5129 5130 const char * const z_errmsg[10] = { 5131 "need dictionary", /* Z_NEED_DICT 2 */ 5132 "stream end", /* Z_STREAM_END 1 */ 5133 "", /* Z_OK 0 */ 5134 "file error", /* Z_ERRNO (-1) */ 5135 "stream error", /* Z_STREAM_ERROR (-2) */ 5136 "data error", /* Z_DATA_ERROR (-3) */ 5137 "insufficient memory", /* Z_MEM_ERROR (-4) */ 5138 "buffer error", /* Z_BUF_ERROR (-5) */ 5139 "incompatible version",/* Z_VERSION_ERROR (-6) */ 5140 ""}; 5141 5142 5143 const char *zlibVersion() 5144 { 5145 return ZLIB_VERSION; 5146 } 5147 5148 #ifdef DEBUG_ZLIB 5149 void z_error (m) 5150 char *m; 5151 { 5152 fprintf(stderr, "%s\n", m); 5153 exit(1); 5154 } 5155 #endif 5156 5157 #ifndef HAVE_MEMCPY 5158 5159 void zmemcpy(dest, source, len) 5160 Bytef* dest; 5161 Bytef* source; 5162 uInt len; 5163 { 5164 if (len == 0) return; 5165 do { 5166 *dest++ = *source++; /* ??? to be unrolled */ 5167 } while (--len != 0); 5168 } 5169 5170 int zmemcmp(s1, s2, len) 5171 Bytef* s1; 5172 Bytef* s2; 5173 uInt len; 5174 { 5175 uInt j; 5176 5177 for (j = 0; j < len; j++) { 5178 if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1; 5179 } 5180 return 0; 5181 } 5182 5183 void zmemzero(dest, len) 5184 Bytef* dest; 5185 uInt len; 5186 { 5187 if (len == 0) return; 5188 do { 5189 *dest++ = 0; /* ??? to be unrolled */ 5190 } while (--len != 0); 5191 } 5192 #endif 5193 5194 #ifdef __TURBOC__ 5195 #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__) 5196 /* Small and medium model in Turbo C are for now limited to near allocation 5197 * with reduced MAX_WBITS and MAX_MEM_LEVEL 5198 */ 5199 # define MY_ZCALLOC 5200 5201 /* Turbo C malloc() does not allow dynamic allocation of 64K bytes 5202 * and farmalloc(64K) returns a pointer with an offset of 8, so we 5203 * must fix the pointer. Warning: the pointer must be put back to its 5204 * original form in order to free it, use zcfree(). 5205 */ 5206 5207 #define MAX_PTR 10 5208 /* 10*64K = 640K */ 5209 5210 local int next_ptr = 0; 5211 5212 typedef struct ptr_table_s { 5213 voidpf org_ptr; 5214 voidpf new_ptr; 5215 } ptr_table; 5216 5217 local ptr_table table[MAX_PTR]; 5218 /* This table is used to remember the original form of pointers 5219 * to large buffers (64K). Such pointers are normalized with a zero offset. 5220 * Since MSDOS is not a preemptive multitasking OS, this table is not 5221 * protected from concurrent access. This hack doesn't work anyway on 5222 * a protected system like OS/2. Use Microsoft C instead. 5223 */ 5224 5225 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size) 5226 { 5227 voidpf buf = opaque; /* just to make some compilers happy */ 5228 ulg bsize = (ulg)items*size; 5229 5230 /* If we allocate less than 65520 bytes, we assume that farmalloc 5231 * will return a usable pointer which doesn't have to be normalized. 5232 */ 5233 if (bsize < 65520L) { 5234 buf = farmalloc(bsize); 5235 if (*(ush*)&buf != 0) return buf; 5236 } else { 5237 buf = farmalloc(bsize + 16L); 5238 } 5239 if (buf == NULL || next_ptr >= MAX_PTR) return NULL; 5240 table[next_ptr].org_ptr = buf; 5241 5242 /* Normalize the pointer to seg:0 */ 5243 *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4; 5244 *(ush*)&buf = 0; 5245 table[next_ptr++].new_ptr = buf; 5246 return buf; 5247 } 5248 5249 void zcfree (voidpf opaque, voidpf ptr) 5250 { 5251 int n; 5252 if (*(ush*)&ptr != 0) { /* object < 64K */ 5253 farfree(ptr); 5254 return; 5255 } 5256 /* Find the original pointer */ 5257 for (n = 0; n < next_ptr; n++) { 5258 if (ptr != table[n].new_ptr) continue; 5259 5260 farfree(table[n].org_ptr); 5261 while (++n < next_ptr) { 5262 table[n-1] = table[n]; 5263 } 5264 next_ptr--; 5265 return; 5266 } 5267 ptr = opaque; /* just to make some compilers happy */ 5268 Assert(0, "zcfree: ptr not found"); 5269 } 5270 #endif 5271 #endif /* __TURBOC__ */ 5272 5273 5274 #if defined(M_I86) && !defined(__32BIT__) 5275 /* Microsoft C in 16-bit mode */ 5276 5277 # define MY_ZCALLOC 5278 5279 #if (!defined(_MSC_VER) || (_MSC_VER < 600)) 5280 # define _halloc halloc 5281 # define _hfree hfree 5282 #endif 5283 5284 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size) 5285 { 5286 if (opaque) opaque = 0; /* to make compiler happy */ 5287 return _halloc((long)items, size); 5288 } 5289 5290 void zcfree (voidpf opaque, voidpf ptr) 5291 { 5292 if (opaque) opaque = 0; /* to make compiler happy */ 5293 _hfree(ptr); 5294 } 5295 5296 #endif /* MSC */ 5297 5298 5299 #ifndef MY_ZCALLOC /* Any system without a special alloc function */ 5300 5301 #ifndef STDC 5302 extern voidp calloc OF((uInt items, uInt size)); 5303 extern void free OF((voidpf ptr)); 5304 #endif 5305 5306 voidpf zcalloc (opaque, items, size) 5307 voidpf opaque; 5308 unsigned items; 5309 unsigned size; 5310 { 5311 if (opaque) items += size - size; /* make compiler happy */ 5312 return (voidpf)calloc(items, size); 5313 } 5314 5315 void zcfree (opaque, ptr) 5316 voidpf opaque; 5317 voidpf ptr; 5318 { 5319 free(ptr); 5320 if (opaque) return; /* make compiler happy */ 5321 } 5322 5323 #endif /* MY_ZCALLOC */ 5324 /* --- zutil.c */ 5325 5326 /* +++ adler32.c */ 5327 /* adler32.c -- compute the Adler-32 checksum of a data stream 5328 * Copyright (C) 1995-1996 Mark Adler 5329 * For conditions of distribution and use, see copyright notice in zlib.h 5330 */ 5331 5332 /* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */ 5333 5334 /* #include "zlib.h" */ 5335 5336 #define BASE 65521L /* largest prime smaller than 65536 */ 5337 #define NMAX 5552 5338 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ 5339 5340 #define DO1(buf,i) {s1 += buf[i]; s2 += s1;} 5341 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); 5342 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); 5343 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); 5344 #define DO16(buf) DO8(buf,0); DO8(buf,8); 5345 5346 /* ========================================================================= */ 5347 uLong adler32(adler, buf, len) 5348 uLong adler; 5349 const Bytef *buf; 5350 uInt len; 5351 { 5352 unsigned long s1 = adler & 0xffff; 5353 unsigned long s2 = (adler >> 16) & 0xffff; 5354 int k; 5355 5356 if (buf == Z_NULL) return 1L; 5357 5358 while (len > 0) { 5359 k = len < NMAX ? len : NMAX; 5360 len -= k; 5361 while (k >= 16) { 5362 DO16(buf); 5363 buf += 16; 5364 k -= 16; 5365 } 5366 if (k != 0) do { 5367 s1 += *buf++; 5368 s2 += s1; 5369 } while (--k); 5370 s1 %= BASE; 5371 s2 %= BASE; 5372 } 5373 return (s2 << 16) | s1; 5374 } 5375 /* --- adler32.c */ 5376