xref: /netbsd-src/sys/net/zlib.c (revision 1ca5c1b28139779176bd5c13ad7c5f25c0bcd5f8)
1 /*	$NetBSD: zlib.c,v 1.16 2001/12/23 22:36:16 thorpej Exp $	*/
2 /*
3  * This file is derived from various .h and .c files from the zlib-1.0.4
4  * distribution by Jean-loup Gailly and Mark Adler, with some additions
5  * by Paul Mackerras to aid in implementing Deflate compression and
6  * decompression for PPP packets.  See zlib.h for conditions of
7  * distribution and use.
8  *
9  * Changes that have been made include:
10  * - added Z_PACKET_FLUSH (see zlib.h for details)
11  * - added inflateIncomp and deflateOutputPending
12  * - allow strm->next_out to be NULL, meaning discard the output
13  *
14  * $Id: zlib.c,v 1.16 2001/12/23 22:36:16 thorpej Exp $
15  */
16 
17 /*
18  *  ==FILEVERSION 971210==
19  *
20  * This marker is used by the Linux installation script to determine
21  * whether an up-to-date version of this file is already installed.
22  */
23 
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: zlib.c,v 1.16 2001/12/23 22:36:16 thorpej Exp $");
26 
27 #define NO_DUMMY_DECL
28 #define NO_ZCFUNCS
29 #define MY_ZCALLOC
30 
31 #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
32 #define inflate	inflate_ppp	/* FreeBSD already has an inflate :-( */
33 #endif
34 
35 
36 /* +++ zutil.h */
37 /* zutil.h -- internal interface and configuration of the compression library
38  * Copyright (C) 1995-1996 Jean-loup Gailly.
39  * For conditions of distribution and use, see copyright notice in zlib.h
40  */
41 
42 /* WARNING: this file should *not* be used by applications. It is
43    part of the implementation of the compression library and is
44    subject to change. Applications should only use zlib.h.
45  */
46 
47 /* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
48 
49 #ifndef _Z_UTIL_H
50 #define _Z_UTIL_H
51 
52 #include "zlib.h"
53 
54 #if defined(KERNEL) || defined(_KERNEL)
55 /* Assume this is a *BSD or SVR4 kernel */
56 #include <sys/param.h>
57 #include <sys/time.h>
58 #include <sys/systm.h>
59 #  define HAVE_MEMCPY
60 #else
61 #if defined(__KERNEL__)
62 /* Assume this is a Linux kernel */
63 #include <linux/string.h>
64 #define HAVE_MEMCPY
65 
66 #else /* not kernel */
67 
68 #if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS)
69 #   include <stddef.h>
70 #   include <errno.h>
71 #else
72     extern int errno;
73 #endif
74 #ifdef STDC
75 #  include <string.h>
76 #  include <stdlib.h>
77 #endif
78 #endif /* __KERNEL__ */
79 #endif /* _KERNEL || KERNEL */
80 
81 #ifndef local
82 #  define local static
83 #endif
84 /* compile with -Dlocal if your debugger can't find static symbols */
85 
86 typedef unsigned char  uch;
87 typedef uch FAR uchf;
88 typedef unsigned short ush;
89 typedef ush FAR ushf;
90 typedef unsigned long  ulg;
91 
92 extern const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
93 /* (size given to avoid silly warnings with Visual C++) */
94 
95 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
96 
97 #define ERR_RETURN(strm,err) \
98   return (strm->msg = (char*)ERR_MSG(err), (err))
99 /* To be used only when the state is known to be valid */
100 
101         /* common constants */
102 
103 #ifndef DEF_WBITS
104 #  define DEF_WBITS MAX_WBITS
105 #endif
106 /* default windowBits for decompression. MAX_WBITS is for compression only */
107 
108 #if MAX_MEM_LEVEL >= 8
109 #  define DEF_MEM_LEVEL 8
110 #else
111 #  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
112 #endif
113 /* default memLevel */
114 
115 #define STORED_BLOCK 0
116 #define STATIC_TREES 1
117 #define DYN_TREES    2
118 /* The three kinds of block type */
119 
120 #define MIN_MATCH  3
121 #define MAX_MATCH  258
122 /* The minimum and maximum match lengths */
123 
124 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
125 
126         /* target dependencies */
127 
128 #ifdef MSDOS
129 #  define OS_CODE  0x00
130 #  ifdef __TURBOC__
131 #    include <alloc.h>
132 #  else /* MSC or DJGPP */
133 #    include <malloc.h>
134 #  endif
135 #endif
136 
137 #ifdef OS2
138 #  define OS_CODE  0x06
139 #endif
140 
141 #ifdef WIN32 /* Window 95 & Windows NT */
142 #  define OS_CODE  0x0b
143 #endif
144 
145 #if defined(VAXC) || defined(VMS)
146 #  define OS_CODE  0x02
147 #  define FOPEN(name, mode) \
148      fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
149 #endif
150 
151 #ifdef AMIGA
152 #  define OS_CODE  0x01
153 #endif
154 
155 #if defined(ATARI) || defined(atarist)
156 #  define OS_CODE  0x05
157 #endif
158 
159 #ifdef MACOS
160 #  define OS_CODE  0x07
161 #endif
162 
163 #ifdef __50SERIES /* Prime/PRIMOS */
164 #  define OS_CODE  0x0F
165 #endif
166 
167 #ifdef TOPS20
168 #  define OS_CODE  0x0a
169 #endif
170 
171 #if defined(_BEOS_) || defined(RISCOS)
172 #  define fdopen(fd,mode) NULL /* No fdopen() */
173 #endif
174 
175         /* Common defaults */
176 
177 #ifndef OS_CODE
178 #  define OS_CODE  0x03  /* assume Unix */
179 #endif
180 
181 #ifndef FOPEN
182 #  define FOPEN(name, mode) fopen((name), (mode))
183 #endif
184 
185          /* functions */
186 
187 #ifdef HAVE_STRERROR
188    extern char *strerror OF((int));
189 #  define zstrerror(errnum) strerror(errnum)
190 #else
191 #  define zstrerror(errnum) ""
192 #endif
193 
194 #if defined(pyr)
195 #  define NO_MEMCPY
196 #endif
197 #if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
198  /* Use our own functions for small and medium model with MSC <= 5.0.
199   * You may have to use the same strategy for Borland C (untested).
200   */
201 #  define NO_MEMCPY
202 #endif
203 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
204 #  define HAVE_MEMCPY
205 #endif
206 #ifdef HAVE_MEMCPY
207 #  ifdef SMALL_MEDIUM /* MSDOS small or medium model */
208 #    define zmemcpy _fmemcpy
209 #    define zmemcmp _fmemcmp
210 #    define zmemzero(dest, len) _fmemset(dest, 0, len)
211 #  else
212 #    define zmemcpy memcpy
213 #    define zmemcmp memcmp
214 #    define zmemzero(dest, len) memset(dest, 0, len)
215 #  endif
216 #else
217    extern void zmemcpy  OF((Bytef* dest, Bytef* source, uInt len));
218    extern int  zmemcmp  OF((Bytef* s1,   Bytef* s2, uInt len));
219    extern void zmemzero OF((Bytef* dest, uInt len));
220 #endif
221 
222 /* Diagnostic functions */
223 #ifdef DEBUG_ZLIB
224 #  include <stdio.h>
225 #  ifndef verbose
226 #    define verbose 0
227 #  endif
228    extern void z_error    OF((char *m));
229 #  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
230 #  define Trace(x) fprintf x
231 #  define Tracev(x) {if (verbose) fprintf x ;}
232 #  define Tracevv(x) {if (verbose>1) fprintf x ;}
233 #  define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
234 #  define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
235 #else
236 #  define Assert(cond,msg)
237 #  define Trace(x)
238 #  define Tracev(x)
239 #  define Tracevv(x)
240 #  define Tracec(c,x)
241 #  define Tracecv(c,x)
242 #endif
243 
244 
245 typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
246 
247 voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
248 void   zcfree  OF((voidpf opaque, voidpf ptr));
249 
250 #define ZALLOC(strm, items, size) \
251            (*((strm)->zalloc))((strm)->opaque, (items), (size))
252 #define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
253 #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
254 
255 #endif /* _Z_UTIL_H */
256 /* --- zutil.h */
257 
258 /* +++ deflate.h */
259 /* deflate.h -- internal compression state
260  * Copyright (C) 1995-1996 Jean-loup Gailly
261  * For conditions of distribution and use, see copyright notice in zlib.h
262  */
263 
264 /* WARNING: this file should *not* be used by applications. It is
265    part of the implementation of the compression library and is
266    subject to change. Applications should only use zlib.h.
267  */
268 
269 /* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
270 
271 #ifndef _DEFLATE_H
272 #define _DEFLATE_H
273 
274 /* #include "zutil.h" */
275 
276 /* ===========================================================================
277  * Internal compression state.
278  */
279 
280 #define LENGTH_CODES 29
281 /* number of length codes, not counting the special END_BLOCK code */
282 
283 #define LITERALS  256
284 /* number of literal bytes 0..255 */
285 
286 #define L_CODES (LITERALS+1+LENGTH_CODES)
287 /* number of Literal or Length codes, including the END_BLOCK code */
288 
289 #define D_CODES   30
290 /* number of distance codes */
291 
292 #define BL_CODES  19
293 /* number of codes used to transfer the bit lengths */
294 
295 #define HEAP_SIZE (2*L_CODES+1)
296 /* maximum heap size */
297 
298 #define MAX_BITS 15
299 /* All codes must not exceed MAX_BITS bits */
300 
301 #define INIT_STATE    42
302 #define BUSY_STATE   113
303 #define FINISH_STATE 666
304 /* Stream status */
305 
306 
307 /* Data structure describing a single value and its code string. */
308 typedef struct ct_data_s {
309     union {
310         ush  freq;       /* frequency count */
311         ush  code;       /* bit string */
312     } fc;
313     union {
314         ush  dad;        /* father node in Huffman tree */
315         ush  len;        /* length of bit string */
316     } dl;
317 } FAR ct_data;
318 
319 #define Freq fc.freq
320 #define Code fc.code
321 #define Dad  dl.dad
322 #define Len  dl.len
323 
324 typedef struct static_tree_desc_s  static_tree_desc;
325 
326 typedef struct tree_desc_s {
327     ct_data *dyn_tree;           /* the dynamic tree */
328     int     max_code;            /* largest code with non zero frequency */
329     static_tree_desc *stat_desc; /* the corresponding static tree */
330 } FAR tree_desc;
331 
332 typedef ush Pos;
333 typedef Pos FAR Posf;
334 typedef unsigned IPos;
335 
336 /* A Pos is an index in the character window. We use short instead of int to
337  * save space in the various tables. IPos is used only for parameter passing.
338  */
339 
340 typedef struct deflate_state {
341     z_streamp strm;      /* pointer back to this zlib stream */
342     int   status;        /* as the name implies */
343     Bytef *pending_buf;  /* output still pending */
344     ulg   pending_buf_size; /* size of pending_buf */
345     Bytef *pending_out;  /* next pending byte to output to the stream */
346     int   pending;       /* nb of bytes in the pending buffer */
347     int   noheader;      /* suppress zlib header and adler32 */
348     Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
349     Byte  method;        /* STORED (for zip only) or DEFLATED */
350     int   last_flush;    /* value of flush param for previous deflate call */
351 
352                 /* used by deflate.c: */
353 
354     uInt  w_size;        /* LZ77 window size (32K by default) */
355     uInt  w_bits;        /* log2(w_size)  (8..16) */
356     uInt  w_mask;        /* w_size - 1 */
357 
358     Bytef *window;
359     /* Sliding window. Input bytes are read into the second half of the window,
360      * and move to the first half later to keep a dictionary of at least wSize
361      * bytes. With this organization, matches are limited to a distance of
362      * wSize-MAX_MATCH bytes, but this ensures that IO is always
363      * performed with a length multiple of the block size. Also, it limits
364      * the window size to 64K, which is quite useful on MSDOS.
365      * To do: use the user input buffer as sliding window.
366      */
367 
368     ulg window_size;
369     /* Actual size of window: 2*wSize, except when the user input buffer
370      * is directly used as sliding window.
371      */
372 
373     Posf *prev;
374     /* Link to older string with same hash index. To limit the size of this
375      * array to 64K, this link is maintained only for the last 32K strings.
376      * An index in this array is thus a window index modulo 32K.
377      */
378 
379     Posf *head; /* Heads of the hash chains or NIL. */
380 
381     uInt  ins_h;          /* hash index of string to be inserted */
382     uInt  hash_size;      /* number of elements in hash table */
383     uInt  hash_bits;      /* log2(hash_size) */
384     uInt  hash_mask;      /* hash_size-1 */
385 
386     uInt  hash_shift;
387     /* Number of bits by which ins_h must be shifted at each input
388      * step. It must be such that after MIN_MATCH steps, the oldest
389      * byte no longer takes part in the hash key, that is:
390      *   hash_shift * MIN_MATCH >= hash_bits
391      */
392 
393     long block_start;
394     /* Window position at the beginning of the current output block. Gets
395      * negative when the window is moved backwards.
396      */
397 
398     uInt match_length;           /* length of best match */
399     IPos prev_match;             /* previous match */
400     int match_available;         /* set if previous match exists */
401     uInt strstart;               /* start of string to insert */
402     uInt match_start;            /* start of matching string */
403     uInt lookahead;              /* number of valid bytes ahead in window */
404 
405     uInt prev_length;
406     /* Length of the best match at previous step. Matches not greater than this
407      * are discarded. This is used in the lazy match evaluation.
408      */
409 
410     uInt max_chain_length;
411     /* To speed up deflation, hash chains are never searched beyond this
412      * length.  A higher limit improves compression ratio but degrades the
413      * speed.
414      */
415 
416     uInt max_lazy_match;
417     /* Attempt to find a better match only when the current match is strictly
418      * smaller than this value. This mechanism is used only for compression
419      * levels >= 4.
420      */
421 #   define max_insert_length  max_lazy_match
422     /* Insert new strings in the hash table only if the match length is not
423      * greater than this length. This saves time but degrades compression.
424      * max_insert_length is used only for compression levels <= 3.
425      */
426 
427     int level;    /* compression level (1..9) */
428     int strategy; /* favor or force Huffman coding*/
429 
430     uInt good_match;
431     /* Use a faster search when the previous match is longer than this */
432 
433     int nice_match; /* Stop searching when current match exceeds this */
434 
435                 /* used by trees.c: */
436     /* Didn't use ct_data typedef below to supress compiler warning */
437     struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
438     struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
439     struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
440 
441     struct tree_desc_s l_desc;               /* desc. for literal tree */
442     struct tree_desc_s d_desc;               /* desc. for distance tree */
443     struct tree_desc_s bl_desc;              /* desc. for bit length tree */
444 
445     ush bl_count[MAX_BITS+1];
446     /* number of codes at each bit length for an optimal tree */
447 
448     int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
449     int heap_len;               /* number of elements in the heap */
450     int heap_max;               /* element of largest frequency */
451     /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
452      * The same heap array is used to build all trees.
453      */
454 
455     uch depth[2*L_CODES+1];
456     /* Depth of each subtree used as tie breaker for trees of equal frequency
457      */
458 
459     uchf *l_buf;          /* buffer for literals or lengths */
460 
461     uInt  lit_bufsize;
462     /* Size of match buffer for literals/lengths.  There are 4 reasons for
463      * limiting lit_bufsize to 64K:
464      *   - frequencies can be kept in 16 bit counters
465      *   - if compression is not successful for the first block, all input
466      *     data is still in the window so we can still emit a stored block even
467      *     when input comes from standard input.  (This can also be done for
468      *     all blocks if lit_bufsize is not greater than 32K.)
469      *   - if compression is not successful for a file smaller than 64K, we can
470      *     even emit a stored file instead of a stored block (saving 5 bytes).
471      *     This is applicable only for zip (not gzip or zlib).
472      *   - creating new Huffman trees less frequently may not provide fast
473      *     adaptation to changes in the input data statistics. (Take for
474      *     example a binary file with poorly compressible code followed by
475      *     a highly compressible string table.) Smaller buffer sizes give
476      *     fast adaptation but have of course the overhead of transmitting
477      *     trees more frequently.
478      *   - I can't count above 4
479      */
480 
481     uInt last_lit;      /* running index in l_buf */
482 
483     ushf *d_buf;
484     /* Buffer for distances. To simplify the code, d_buf and l_buf have
485      * the same number of elements. To use different lengths, an extra flag
486      * array would be necessary.
487      */
488 
489     ulg opt_len;        /* bit length of current block with optimal trees */
490     ulg static_len;     /* bit length of current block with static trees */
491     ulg compressed_len; /* total bit length of compressed file */
492     uInt matches;       /* number of string matches in current block */
493     int last_eob_len;   /* bit length of EOB code for last block */
494 
495 #ifdef DEBUG_ZLIB
496     ulg bits_sent;      /* bit length of the compressed data */
497 #endif
498 
499     ush bi_buf;
500     /* Output buffer. bits are inserted starting at the bottom (least
501      * significant bits).
502      */
503     int bi_valid;
504     /* Number of valid bits in bi_buf.  All bits above the last valid bit
505      * are always zero.
506      */
507 
508 } FAR deflate_state;
509 
510 /* Output a byte on the stream.
511  * IN assertion: there is enough room in pending_buf.
512  */
513 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
514 
515 
516 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
517 /* Minimum amount of lookahead, except at the end of the input file.
518  * See deflate.c for comments about the MIN_MATCH+1.
519  */
520 
521 #define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
522 /* In order to simplify the code, particularly on 16 bit machines, match
523  * distances are limited to MAX_DIST instead of WSIZE.
524  */
525 
526         /* in trees.c */
527 void _tr_init         OF((deflate_state *s));
528 int  _tr_tally        OF((deflate_state *s, unsigned dist, unsigned lc));
529 ulg  _tr_flush_block  OF((deflate_state *s, charf *buf, ulg stored_len,
530 			  int eof));
531 void _tr_align        OF((deflate_state *s));
532 void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
533                           int eof));
534 void _tr_stored_type_only OF((deflate_state *));
535 
536 #endif
537 /* --- deflate.h */
538 
539 /* +++ deflate.c */
540 /* deflate.c -- compress data using the deflation algorithm
541  * Copyright (C) 1995-1996 Jean-loup Gailly.
542  * For conditions of distribution and use, see copyright notice in zlib.h
543  */
544 
545 /*
546  *  ALGORITHM
547  *
548  *      The "deflation" process depends on being able to identify portions
549  *      of the input text which are identical to earlier input (within a
550  *      sliding window trailing behind the input currently being processed).
551  *
552  *      The most straightforward technique turns out to be the fastest for
553  *      most input files: try all possible matches and select the longest.
554  *      The key feature of this algorithm is that insertions into the string
555  *      dictionary are very simple and thus fast, and deletions are avoided
556  *      completely. Insertions are performed at each input character, whereas
557  *      string matches are performed only when the previous match ends. So it
558  *      is preferable to spend more time in matches to allow very fast string
559  *      insertions and avoid deletions. The matching algorithm for small
560  *      strings is inspired from that of Rabin & Karp. A brute force approach
561  *      is used to find longer strings when a small match has been found.
562  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
563  *      (by Leonid Broukhis).
564  *         A previous version of this file used a more sophisticated algorithm
565  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
566  *      time, but has a larger average cost, uses more memory and is patented.
567  *      However the F&G algorithm may be faster for some highly redundant
568  *      files if the parameter max_chain_length (described below) is too large.
569  *
570  *  ACKNOWLEDGEMENTS
571  *
572  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
573  *      I found it in 'freeze' written by Leonid Broukhis.
574  *      Thanks to many people for bug reports and testing.
575  *
576  *  REFERENCES
577  *
578  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
579  *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
580  *
581  *      A description of the Rabin and Karp algorithm is given in the book
582  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
583  *
584  *      Fiala,E.R., and Greene,D.H.
585  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
586  *
587  */
588 
589 /* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
590 
591 /* #include "deflate.h" */
592 
593 const char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
594 /*
595   If you use the zlib library in a product, an acknowledgment is welcome
596   in the documentation of your product. If for some reason you cannot
597   include such an acknowledgment, I would appreciate that you keep this
598   copyright string in the executable of your product.
599  */
600 
601 /* ===========================================================================
602  *  Function prototypes.
603  */
604 typedef enum {
605     need_more,      /* block not completed, need more input or more output */
606     block_done,     /* block flush performed */
607     finish_started, /* finish started, need only more output at next deflate */
608     finish_done     /* finish done, accept no more input or output */
609 } block_state;
610 
611 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
612 /* Compression function. Returns the block state after the call. */
613 
614 local void fill_window    OF((deflate_state *s));
615 local block_state deflate_stored OF((deflate_state *s, int flush));
616 local block_state deflate_fast   OF((deflate_state *s, int flush));
617 local block_state deflate_slow   OF((deflate_state *s, int flush));
618 local void lm_init        OF((deflate_state *s));
619 local void putShortMSB    OF((deflate_state *s, uInt b));
620 local void flush_pending  OF((z_streamp strm));
621 local int read_buf        OF((z_streamp strm, charf *buf, unsigned size));
622 #ifdef ASMV
623       void match_init OF((void)); /* asm code initialization */
624       uInt longest_match  OF((deflate_state *s, IPos cur_match));
625 #else
626 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
627 #endif
628 
629 #ifdef DEBUG_ZLIB
630 local  void check_match OF((deflate_state *s, IPos start, IPos match,
631                             int length));
632 #endif
633 
634 /* ===========================================================================
635  * Local data
636  */
637 
638 #define NIL 0
639 /* Tail of hash chains */
640 
641 #ifndef TOO_FAR
642 #  define TOO_FAR 4096
643 #endif
644 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
645 
646 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
647 /* Minimum amount of lookahead, except at the end of the input file.
648  * See deflate.c for comments about the MIN_MATCH+1.
649  */
650 
651 /* Values for max_lazy_match, good_match and max_chain_length, depending on
652  * the desired pack level (0..9). The values given below have been tuned to
653  * exclude worst case performance for pathological files. Better values may be
654  * found for specific files.
655  */
656 typedef struct config_s {
657    ush good_length; /* reduce lazy search above this match length */
658    ush max_lazy;    /* do not perform lazy search above this match length */
659    ush nice_length; /* quit search above this match length */
660    ush max_chain;
661    compress_func func;
662 } config;
663 
664 local const config configuration_table[10] = {
665 /*      good lazy nice chain */
666 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
667 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
668 /* 2 */ {4,    5, 16,    8, deflate_fast},
669 /* 3 */ {4,    6, 32,   32, deflate_fast},
670 
671 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
672 /* 5 */ {8,   16, 32,   32, deflate_slow},
673 /* 6 */ {8,   16, 128, 128, deflate_slow},
674 /* 7 */ {8,   32, 128, 256, deflate_slow},
675 /* 8 */ {32, 128, 258, 1024, deflate_slow},
676 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
677 
678 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
679  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
680  * meaning.
681  */
682 
683 #define EQUAL 0
684 /* result of memcmp for equal strings */
685 
686 #ifndef NO_DUMMY_DECL
687 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
688 #endif
689 
690 /* ===========================================================================
691  * Update a hash value with the given input byte
692  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
693  *    input characters, so that a running hash key can be computed from the
694  *    previous key instead of complete recalculation each time.
695  */
696 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
697 
698 
699 /* ===========================================================================
700  * Insert string str in the dictionary and set match_head to the previous head
701  * of the hash chain (the most recent string with same hash key). Return
702  * the previous length of the hash chain.
703  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
704  *    input characters and the first MIN_MATCH bytes of str are valid
705  *    (except for the last MIN_MATCH-1 bytes of the input file).
706  */
707 #define INSERT_STRING(s, str, match_head) \
708    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
709     s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
710     s->head[s->ins_h] = (Pos)(str))
711 
712 /* ===========================================================================
713  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
714  * prev[] will be initialized on the fly.
715  */
716 #define CLEAR_HASH(s) \
717     s->head[s->hash_size-1] = NIL; \
718     zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
719 
720 /* ========================================================================= */
721 int deflateInit_(strm, level, version, stream_size)
722     z_streamp strm;
723     int level;
724     const char *version;
725     int stream_size;
726 {
727     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
728 			 Z_DEFAULT_STRATEGY, version, stream_size);
729     /* To do: ignore strm->next_in if we use it as window */
730 }
731 
732 /* ========================================================================= */
733 int deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
734 		  version, stream_size)
735     z_streamp strm;
736     int  level;
737     int  method;
738     int  windowBits;
739     int  memLevel;
740     int  strategy;
741     const char *version;
742     int stream_size;
743 {
744     deflate_state *s;
745     int noheader = 0;
746     static char* my_version = ZLIB_VERSION;
747 
748     ushf *overlay;
749     /* We overlay pending_buf and d_buf+l_buf. This works since the average
750      * output size for (length,distance) codes is <= 24 bits.
751      */
752 
753     if (version == Z_NULL || version[0] != my_version[0] ||
754         stream_size != sizeof(z_stream)) {
755 	return Z_VERSION_ERROR;
756     }
757     if (strm == Z_NULL) return Z_STREAM_ERROR;
758 
759     strm->msg = Z_NULL;
760 #ifndef NO_ZCFUNCS
761     if (strm->zalloc == Z_NULL) {
762 	strm->zalloc = zcalloc;
763 	strm->opaque = (voidpf)0;
764     }
765     if (strm->zfree == Z_NULL) strm->zfree = zcfree;
766 #endif
767 
768     if (level == Z_DEFAULT_COMPRESSION) level = 6;
769 
770     if (windowBits < 0) { /* undocumented feature: suppress zlib header */
771         noheader = 1;
772         windowBits = -windowBits;
773     }
774     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
775         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
776 	strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
777         return Z_STREAM_ERROR;
778     }
779     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
780     if (s == Z_NULL) return Z_MEM_ERROR;
781     strm->state = (struct internal_state FAR *)s;
782     s->strm = strm;
783 
784     s->noheader = noheader;
785     s->w_bits = windowBits;
786     s->w_size = 1 << s->w_bits;
787     s->w_mask = s->w_size - 1;
788 
789     s->hash_bits = memLevel + 7;
790     s->hash_size = 1 << s->hash_bits;
791     s->hash_mask = s->hash_size - 1;
792     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
793 
794     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
795     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
796     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
797 
798     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
799 
800     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
801     s->pending_buf = (uchf *) overlay;
802     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
803 
804     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
805         s->pending_buf == Z_NULL) {
806         strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
807         deflateEnd (strm);
808         return Z_MEM_ERROR;
809     }
810     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
811     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
812 
813     s->level = level;
814     s->strategy = strategy;
815     s->method = (Byte)method;
816 
817     return deflateReset(strm);
818 }
819 
820 /* ========================================================================= */
821 int deflateSetDictionary (strm, dictionary, dictLength)
822     z_streamp strm;
823     const Bytef *dictionary;
824     uInt  dictLength;
825 {
826     deflate_state *s;
827     uInt length = dictLength;
828     uInt n;
829     IPos hash_head = 0;
830 
831     if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
832 	return Z_STREAM_ERROR;
833 
834     s = (deflate_state *) strm->state;
835     if (s->status != INIT_STATE) return Z_STREAM_ERROR;
836 
837     strm->adler = adler32(strm->adler, dictionary, dictLength);
838 
839     if (length < MIN_MATCH) return Z_OK;
840     if (length > MAX_DIST(s)) {
841 	length = MAX_DIST(s);
842 #ifndef USE_DICT_HEAD
843 	dictionary += dictLength - length; /* use the tail of the dictionary */
844 #endif
845     }
846     zmemcpy((charf *)s->window, dictionary, length);
847     s->strstart = length;
848     s->block_start = (long)length;
849 
850     /* Insert all strings in the hash table (except for the last two bytes).
851      * s->lookahead stays null, so s->ins_h will be recomputed at the next
852      * call of fill_window.
853      */
854     s->ins_h = s->window[0];
855     UPDATE_HASH(s, s->ins_h, s->window[1]);
856     for (n = 0; n <= length - MIN_MATCH; n++) {
857 	INSERT_STRING(s, n, hash_head);
858     }
859     if (hash_head) hash_head = 0;  /* to make compiler happy */
860     return Z_OK;
861 }
862 
863 /* ========================================================================= */
864 int deflateReset (strm)
865     z_streamp strm;
866 {
867     deflate_state *s;
868 
869     if (strm == Z_NULL || strm->state == Z_NULL ||
870         strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
871 
872     strm->total_in = strm->total_out = 0;
873     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
874     strm->data_type = Z_UNKNOWN;
875 
876     s = (deflate_state *)strm->state;
877     s->pending = 0;
878     s->pending_out = s->pending_buf;
879 
880     if (s->noheader < 0) {
881         s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
882     }
883     s->status = s->noheader ? BUSY_STATE : INIT_STATE;
884     strm->adler = 1;
885     s->last_flush = Z_NO_FLUSH;
886 
887     _tr_init(s);
888     lm_init(s);
889 
890     return Z_OK;
891 }
892 
893 /* ========================================================================= */
894 int deflateParams(strm, level, strategy)
895     z_streamp strm;
896     int level;
897     int strategy;
898 {
899     deflate_state *s;
900     compress_func func;
901     int err = Z_OK;
902 
903     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
904     s = (deflate_state *) strm->state;
905 
906     if (level == Z_DEFAULT_COMPRESSION) {
907 	level = 6;
908     }
909     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
910 	return Z_STREAM_ERROR;
911     }
912     func = configuration_table[s->level].func;
913 
914     if (func != configuration_table[level].func && strm->total_in != 0) {
915 	/* Flush the last buffer: */
916 	err = deflate(strm, Z_PARTIAL_FLUSH);
917     }
918     if (s->level != level) {
919 	s->level = level;
920 	s->max_lazy_match   = configuration_table[level].max_lazy;
921 	s->good_match       = configuration_table[level].good_length;
922 	s->nice_match       = configuration_table[level].nice_length;
923 	s->max_chain_length = configuration_table[level].max_chain;
924     }
925     s->strategy = strategy;
926     return err;
927 }
928 
929 /* =========================================================================
930  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
931  * IN assertion: the stream state is correct and there is enough room in
932  * pending_buf.
933  */
934 local void putShortMSB (s, b)
935     deflate_state *s;
936     uInt b;
937 {
938     put_byte(s, (Byte)(b >> 8));
939     put_byte(s, (Byte)(b & 0xff));
940 }
941 
942 /* =========================================================================
943  * Flush as much pending output as possible. All deflate() output goes
944  * through this function so some applications may wish to modify it
945  * to avoid allocating a large strm->next_out buffer and copying into it.
946  * (See also read_buf()).
947  */
948 local void flush_pending(strm)
949     z_streamp strm;
950 {
951     deflate_state *s = (deflate_state *) strm->state;
952     unsigned len = s->pending;
953 
954     if (len > strm->avail_out) len = strm->avail_out;
955     if (len == 0) return;
956 
957     if (strm->next_out != Z_NULL) {
958 	zmemcpy(strm->next_out, s->pending_out, len);
959 	strm->next_out += len;
960     }
961     s->pending_out += len;
962     strm->total_out += len;
963     strm->avail_out  -= len;
964     s->pending -= len;
965     if (s->pending == 0) {
966         s->pending_out = s->pending_buf;
967     }
968 }
969 
970 /* ========================================================================= */
971 int deflate (strm, flush)
972     z_streamp strm;
973     int flush;
974 {
975     int old_flush; /* value of flush param for previous deflate call */
976     deflate_state *s;
977 
978     if (strm == Z_NULL || strm->state == Z_NULL ||
979 	flush > Z_FINISH || flush < 0) {
980         return Z_STREAM_ERROR;
981     }
982     s = (deflate_state *) strm->state;
983 
984     if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
985 	(s->status == FINISH_STATE && flush != Z_FINISH)) {
986         ERR_RETURN(strm, Z_STREAM_ERROR);
987     }
988     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
989 
990     s->strm = strm; /* just in case */
991     old_flush = s->last_flush;
992     s->last_flush = flush;
993 
994     /* Write the zlib header */
995     if (s->status == INIT_STATE) {
996 
997         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
998         uInt level_flags = (s->level-1) >> 1;
999 
1000         if (level_flags > 3) level_flags = 3;
1001         header |= (level_flags << 6);
1002 	if (s->strstart != 0) header |= PRESET_DICT;
1003         header += 31 - (header % 31);
1004 
1005         s->status = BUSY_STATE;
1006         putShortMSB(s, header);
1007 
1008 	/* Save the adler32 of the preset dictionary: */
1009 	if (s->strstart != 0) {
1010 	    putShortMSB(s, (uInt)(strm->adler >> 16));
1011 	    putShortMSB(s, (uInt)(strm->adler & 0xffff));
1012 	}
1013 	strm->adler = 1L;
1014     }
1015 
1016     /* Flush as much pending output as possible */
1017     if (s->pending != 0) {
1018         flush_pending(strm);
1019         if (strm->avail_out == 0) {
1020 	    /* Since avail_out is 0, deflate will be called again with
1021 	     * more output space, but possibly with both pending and
1022 	     * avail_in equal to zero. There won't be anything to do,
1023 	     * but this is not an error situation so make sure we
1024 	     * return OK instead of BUF_ERROR at next call of deflate:
1025              */
1026 	    s->last_flush = -1;
1027 	    return Z_OK;
1028 	}
1029 
1030     /* Make sure there is something to do and avoid duplicate consecutive
1031      * flushes. For repeated and useless calls with Z_FINISH, we keep
1032      * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1033      */
1034     } else if (strm->avail_in == 0 && flush <= old_flush &&
1035 	       flush != Z_FINISH) {
1036         ERR_RETURN(strm, Z_BUF_ERROR);
1037     }
1038 
1039     /* User must not provide more input after the first FINISH: */
1040     if (s->status == FINISH_STATE && strm->avail_in != 0) {
1041         ERR_RETURN(strm, Z_BUF_ERROR);
1042     }
1043 
1044     /* Start a new block or continue the current one.
1045      */
1046     if (strm->avail_in != 0 || s->lookahead != 0 ||
1047         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1048         block_state bstate;
1049 
1050 	bstate = (*(configuration_table[s->level].func))(s, flush);
1051 
1052         if (bstate == finish_started || bstate == finish_done) {
1053             s->status = FINISH_STATE;
1054         }
1055         if (bstate == need_more || bstate == finish_started) {
1056 	    if (strm->avail_out == 0) {
1057 	        s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1058 	    }
1059 	    return Z_OK;
1060 	    /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1061 	     * of deflate should use the same flush parameter to make sure
1062 	     * that the flush is complete. So we don't have to output an
1063 	     * empty block here, this will be done at next call. This also
1064 	     * ensures that for a very small output buffer, we emit at most
1065 	     * one empty block.
1066 	     */
1067 	}
1068         if (bstate == block_done) {
1069             if (flush == Z_PARTIAL_FLUSH) {
1070                 _tr_align(s);
1071 	    } else if (flush == Z_PACKET_FLUSH) {
1072 		/* Output just the 3-bit `stored' block type value,
1073 		   but not a zero length. */
1074 		_tr_stored_type_only(s);
1075             } else { /* FULL_FLUSH or SYNC_FLUSH */
1076                 _tr_stored_block(s, (char*)0, 0L, 0);
1077                 /* For a full flush, this empty block will be recognized
1078                  * as a special marker by inflate_sync().
1079                  */
1080                 if (flush == Z_FULL_FLUSH) {
1081                     CLEAR_HASH(s);             /* forget history */
1082                 }
1083             }
1084             flush_pending(strm);
1085 	    if (strm->avail_out == 0) {
1086 	      s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1087 	      return Z_OK;
1088 	    }
1089         }
1090     }
1091     Assert(strm->avail_out > 0, "bug2");
1092 
1093     if (flush != Z_FINISH) return Z_OK;
1094     if (s->noheader) return Z_STREAM_END;
1095 
1096     /* Write the zlib trailer (adler32) */
1097     putShortMSB(s, (uInt)(strm->adler >> 16));
1098     putShortMSB(s, (uInt)(strm->adler & 0xffff));
1099     flush_pending(strm);
1100     /* If avail_out is zero, the application will call deflate again
1101      * to flush the rest.
1102      */
1103     s->noheader = -1; /* write the trailer only once! */
1104     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1105 }
1106 
1107 /* ========================================================================= */
1108 int deflateEnd (strm)
1109     z_streamp strm;
1110 {
1111     int status;
1112     deflate_state *s;
1113 
1114     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1115     s = (deflate_state *) strm->state;
1116 
1117     status = s->status;
1118     if (status != INIT_STATE && status != BUSY_STATE &&
1119 	status != FINISH_STATE) {
1120       return Z_STREAM_ERROR;
1121     }
1122 
1123     /* Deallocate in reverse order of allocations: */
1124     TRY_FREE(strm, s->pending_buf);
1125     TRY_FREE(strm, s->head);
1126     TRY_FREE(strm, s->prev);
1127     TRY_FREE(strm, s->window);
1128 
1129     ZFREE(strm, s);
1130     strm->state = Z_NULL;
1131 
1132     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1133 }
1134 
1135 /* =========================================================================
1136  * Copy the source state to the destination state.
1137  */
1138 int deflateCopy (dest, source)
1139     z_streamp dest;
1140     z_streamp source;
1141 {
1142     deflate_state *ds;
1143     deflate_state *ss;
1144     ushf *overlay;
1145 
1146     if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1147         return Z_STREAM_ERROR;
1148     ss = (deflate_state *) source->state;
1149 
1150     zmemcpy(dest, source, sizeof(*dest));
1151 
1152     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1153     if (ds == Z_NULL) return Z_MEM_ERROR;
1154     dest->state = (struct internal_state FAR *) ds;
1155     zmemcpy(ds, ss, sizeof(*ds));
1156     ds->strm = dest;
1157 
1158     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1159     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1160     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1161     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1162     ds->pending_buf = (uchf *) overlay;
1163 
1164     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1165         ds->pending_buf == Z_NULL) {
1166         deflateEnd (dest);
1167         return Z_MEM_ERROR;
1168     }
1169     /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
1170     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1171     zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1172     zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1173     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1174 
1175     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1176     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1177     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1178 
1179     ds->l_desc.dyn_tree = ds->dyn_ltree;
1180     ds->d_desc.dyn_tree = ds->dyn_dtree;
1181     ds->bl_desc.dyn_tree = ds->bl_tree;
1182 
1183     return Z_OK;
1184 }
1185 
1186 /* ===========================================================================
1187  * Return the number of bytes of output which are immediately available
1188  * for output from the decompressor.
1189  */
1190 int deflateOutputPending (strm)
1191     z_streamp strm;
1192 {
1193     if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1194 
1195     return ((deflate_state *)(strm->state))->pending;
1196 }
1197 
1198 /* ===========================================================================
1199  * Read a new buffer from the current input stream, update the adler32
1200  * and total number of bytes read.  All deflate() input goes through
1201  * this function so some applications may wish to modify it to avoid
1202  * allocating a large strm->next_in buffer and copying from it.
1203  * (See also flush_pending()).
1204  */
1205 local int read_buf(strm, buf, size)
1206     z_streamp strm;
1207     charf *buf;
1208     unsigned size;
1209 {
1210     unsigned len = strm->avail_in;
1211 
1212     if (len > size) len = size;
1213     if (len == 0) return 0;
1214 
1215     strm->avail_in  -= len;
1216 
1217     if (!((deflate_state *)(strm->state))->noheader) {
1218         strm->adler = adler32(strm->adler, strm->next_in, len);
1219     }
1220     zmemcpy(buf, strm->next_in, len);
1221     strm->next_in  += len;
1222     strm->total_in += len;
1223 
1224     return (int)len;
1225 }
1226 
1227 /* ===========================================================================
1228  * Initialize the "longest match" routines for a new zlib stream
1229  */
1230 local void lm_init (s)
1231     deflate_state *s;
1232 {
1233     s->window_size = (ulg)2L*s->w_size;
1234 
1235     CLEAR_HASH(s);
1236 
1237     /* Set the default configuration parameters:
1238      */
1239     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1240     s->good_match       = configuration_table[s->level].good_length;
1241     s->nice_match       = configuration_table[s->level].nice_length;
1242     s->max_chain_length = configuration_table[s->level].max_chain;
1243 
1244     s->strstart = 0;
1245     s->block_start = 0L;
1246     s->lookahead = 0;
1247     s->match_length = s->prev_length = MIN_MATCH-1;
1248     s->match_available = 0;
1249     s->ins_h = 0;
1250 #ifdef ASMV
1251     match_init(); /* initialize the asm code */
1252 #endif
1253 }
1254 
1255 /* ===========================================================================
1256  * Set match_start to the longest match starting at the given string and
1257  * return its length. Matches shorter or equal to prev_length are discarded,
1258  * in which case the result is equal to prev_length and match_start is
1259  * garbage.
1260  * IN assertions: cur_match is the head of the hash chain for the current
1261  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1262  * OUT assertion: the match length is not greater than s->lookahead.
1263  */
1264 #ifndef ASMV
1265 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1266  * match.S. The code will be functionally equivalent.
1267  */
1268 local uInt longest_match(s, cur_match)
1269     deflate_state *s;
1270     IPos cur_match;                             /* current match */
1271 {
1272     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1273     Bytef *scan = s->window + s->strstart; 	/* current string */
1274     Bytef *match;                       	/* matched string */
1275     int len;                           		/* length of current match */
1276     int best_len = s->prev_length;              /* best match length so far */
1277     int nice_match = s->nice_match;             /* stop if match long enough */
1278     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1279         s->strstart - (IPos)MAX_DIST(s) : NIL;
1280     /* Stop when cur_match becomes <= limit. To simplify the code,
1281      * we prevent matches with the string of window index 0.
1282      */
1283     Posf *prev = s->prev;
1284     uInt wmask = s->w_mask;
1285 
1286 #ifdef UNALIGNED_OK
1287     /* Compare two bytes at a time. Note: this is not always beneficial.
1288      * Try with and without -DUNALIGNED_OK to check.
1289      */
1290     Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1291     ush scan_start = *(ushf*)scan;
1292     ush scan_end   = *(ushf*)(scan+best_len-1);
1293 #else
1294     Bytef *strend = s->window + s->strstart + MAX_MATCH;
1295     Byte scan_end1  = scan[best_len-1];
1296     Byte scan_end   = scan[best_len];
1297 #endif
1298 
1299     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1300      * It is easy to get rid of this optimization if necessary.
1301      */
1302     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1303 
1304     /* Do not waste too much time if we already have a good match: */
1305     if (s->prev_length >= s->good_match) {
1306         chain_length >>= 2;
1307     }
1308     /* Do not look for matches beyond the end of the input. This is necessary
1309      * to make deflate deterministic.
1310      */
1311     if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1312 
1313     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1314 
1315     do {
1316         Assert(cur_match < s->strstart, "no future");
1317         match = s->window + cur_match;
1318 
1319         /* Skip to next match if the match length cannot increase
1320          * or if the match length is less than 2:
1321          */
1322 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1323         /* This code assumes sizeof(unsigned short) == 2. Do not use
1324          * UNALIGNED_OK if your compiler uses a different size.
1325          */
1326         if (*(ushf*)(match+best_len-1) != scan_end ||
1327             *(ushf*)match != scan_start) continue;
1328 
1329         /* It is not necessary to compare scan[2] and match[2] since they are
1330          * always equal when the other bytes match, given that the hash keys
1331          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1332          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1333          * lookahead only every 4th comparison; the 128th check will be made
1334          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1335          * necessary to put more guard bytes at the end of the window, or
1336          * to check more often for insufficient lookahead.
1337          */
1338         Assert(scan[2] == match[2], "scan[2]?");
1339         scan++, match++;
1340         do {
1341         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1342                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1343                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1344                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1345                  scan < strend);
1346         /* The funny "do {}" generates better code on most compilers */
1347 
1348         /* Here, scan <= window+strstart+257 */
1349         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1350         if (*scan == *match) scan++;
1351 
1352         len = (MAX_MATCH - 1) - (int)(strend-scan);
1353         scan = strend - (MAX_MATCH-1);
1354 
1355 #else /* UNALIGNED_OK */
1356 
1357         if (match[best_len]   != scan_end  ||
1358             match[best_len-1] != scan_end1 ||
1359             *match            != *scan     ||
1360             *++match          != scan[1])      continue;
1361 
1362         /* The check at best_len-1 can be removed because it will be made
1363          * again later. (This heuristic is not always a win.)
1364          * It is not necessary to compare scan[2] and match[2] since they
1365          * are always equal when the other bytes match, given that
1366          * the hash keys are equal and that HASH_BITS >= 8.
1367          */
1368         scan += 2, match++;
1369         Assert(*scan == *match, "match[2]?");
1370 
1371         /* We check for insufficient lookahead only every 8th comparison;
1372          * the 256th check will be made at strstart+258.
1373          */
1374         do {
1375         } while (*++scan == *++match && *++scan == *++match &&
1376                  *++scan == *++match && *++scan == *++match &&
1377                  *++scan == *++match && *++scan == *++match &&
1378                  *++scan == *++match && *++scan == *++match &&
1379                  scan < strend);
1380 
1381         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1382 
1383         len = MAX_MATCH - (int)(strend - scan);
1384         scan = strend - MAX_MATCH;
1385 
1386 #endif /* UNALIGNED_OK */
1387 
1388         if (len > best_len) {
1389             s->match_start = cur_match;
1390             best_len = len;
1391             if (len >= nice_match) break;
1392 #ifdef UNALIGNED_OK
1393             scan_end = *(ushf*)(scan+best_len-1);
1394 #else
1395             scan_end1  = scan[best_len-1];
1396             scan_end   = scan[best_len];
1397 #endif
1398         }
1399     } while ((cur_match = prev[cur_match & wmask]) > limit
1400              && --chain_length != 0);
1401 
1402     if ((uInt)best_len <= s->lookahead) return best_len;
1403     return s->lookahead;
1404 }
1405 #endif /* ASMV */
1406 
1407 #ifdef DEBUG_ZLIB
1408 /* ===========================================================================
1409  * Check that the match at match_start is indeed a match.
1410  */
1411 local void check_match(s, start, match, length)
1412     deflate_state *s;
1413     IPos start, match;
1414     int length;
1415 {
1416     /* check that the match is indeed a match */
1417     if (zmemcmp((charf *)s->window + match,
1418                 (charf *)s->window + start, length) != EQUAL) {
1419         fprintf(stderr, " start %u, match %u, length %d\n",
1420 		start, match, length);
1421         do {
1422 	    fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1423 	} while (--length != 0);
1424         z_error("invalid match");
1425     }
1426     if (z_verbose > 1) {
1427         fprintf(stderr,"\\[%d,%d]", start-match, length);
1428         do { putc(s->window[start++], stderr); } while (--length != 0);
1429     }
1430 }
1431 #else
1432 #  define check_match(s, start, match, length)
1433 #endif
1434 
1435 /* ===========================================================================
1436  * Fill the window when the lookahead becomes insufficient.
1437  * Updates strstart and lookahead.
1438  *
1439  * IN assertion: lookahead < MIN_LOOKAHEAD
1440  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1441  *    At least one byte has been read, or avail_in == 0; reads are
1442  *    performed for at least two bytes (required for the zip translate_eol
1443  *    option -- not supported here).
1444  */
1445 local void fill_window(s)
1446     deflate_state *s;
1447 {
1448     unsigned n, m;
1449     Posf *p;
1450     unsigned more;    /* Amount of free space at the end of the window. */
1451     uInt wsize = s->w_size;
1452 
1453     do {
1454         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1455 
1456         /* Deal with !@#$% 64K limit: */
1457         if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1458             more = wsize;
1459 
1460         } else if (more == (unsigned)(-1)) {
1461             /* Very unlikely, but possible on 16 bit machine if strstart == 0
1462              * and lookahead == 1 (input done one byte at time)
1463              */
1464             more--;
1465 
1466         /* If the window is almost full and there is insufficient lookahead,
1467          * move the upper half to the lower one to make room in the upper half.
1468          */
1469         } else if (s->strstart >= wsize+MAX_DIST(s)) {
1470 
1471             zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1472                    (unsigned)wsize);
1473             s->match_start -= wsize;
1474             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1475             s->block_start -= (long) wsize;
1476 
1477             /* Slide the hash table (could be avoided with 32 bit values
1478                at the expense of memory usage). We slide even when level == 0
1479                to keep the hash table consistent if we switch back to level > 0
1480                later. (Using level 0 permanently is not an optimal usage of
1481                zlib, so we don't care about this pathological case.)
1482              */
1483             n = s->hash_size;
1484             p = &s->head[n];
1485             do {
1486                 m = *--p;
1487                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1488             } while (--n);
1489 
1490             n = wsize;
1491             p = &s->prev[n];
1492             do {
1493                 m = *--p;
1494                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1495                 /* If n is not on any hash chain, prev[n] is garbage but
1496                  * its value will never be used.
1497                  */
1498             } while (--n);
1499             more += wsize;
1500         }
1501         if (s->strm->avail_in == 0) return;
1502 
1503         /* If there was no sliding:
1504          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1505          *    more == window_size - lookahead - strstart
1506          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1507          * => more >= window_size - 2*WSIZE + 2
1508          * In the BIG_MEM or MMAP case (not yet supported),
1509          *   window_size == input_size + MIN_LOOKAHEAD  &&
1510          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1511          * Otherwise, window_size == 2*WSIZE so more >= 2.
1512          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1513          */
1514         Assert(more >= 2, "more < 2");
1515 
1516         n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1517                      more);
1518         s->lookahead += n;
1519 
1520         /* Initialize the hash value now that we have some input: */
1521         if (s->lookahead >= MIN_MATCH) {
1522             s->ins_h = s->window[s->strstart];
1523             UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1524 #if MIN_MATCH != 3
1525             Call UPDATE_HASH() MIN_MATCH-3 more times
1526 #endif
1527         }
1528         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1529          * but this is not important since only literal bytes will be emitted.
1530          */
1531 
1532     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1533 }
1534 
1535 /* ===========================================================================
1536  * Flush the current block, with given end-of-file flag.
1537  * IN assertion: strstart is set to the end of the current match.
1538  */
1539 #define FLUSH_BLOCK_ONLY(s, eof) { \
1540    _tr_flush_block(s, (s->block_start >= 0L ? \
1541                    (charf *)&s->window[(unsigned)s->block_start] : \
1542                    (charf *)Z_NULL), \
1543 		(ulg)((long)s->strstart - s->block_start), \
1544 		(eof)); \
1545    s->block_start = s->strstart; \
1546    flush_pending(s->strm); \
1547    Tracev((stderr,"[FLUSH]")); \
1548 }
1549 
1550 /* Same but force premature exit if necessary. */
1551 #define FLUSH_BLOCK(s, eof) { \
1552    FLUSH_BLOCK_ONLY(s, eof); \
1553    if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1554 }
1555 
1556 /* ===========================================================================
1557  * Copy without compression as much as possible from the input stream, return
1558  * the current block state.
1559  * This function does not insert new strings in the dictionary since
1560  * uncompressible data is probably not useful. This function is used
1561  * only for the level=0 compression option.
1562  * NOTE: this function should be optimized to avoid extra copying from
1563  * window to pending_buf.
1564  */
1565 local block_state deflate_stored(s, flush)
1566     deflate_state *s;
1567     int flush;
1568 {
1569     /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1570      * to pending_buf_size, and each stored block has a 5 byte header:
1571      */
1572     ulg max_block_size = 0xffff;
1573     ulg max_start;
1574 
1575     if (max_block_size > s->pending_buf_size - 5) {
1576         max_block_size = s->pending_buf_size - 5;
1577     }
1578 
1579     /* Copy as much as possible from input to output: */
1580     for (;;) {
1581         /* Fill the window as much as possible: */
1582         if (s->lookahead <= 1) {
1583 
1584             Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1585 		   s->block_start >= (long)s->w_size, "slide too late");
1586 
1587             fill_window(s);
1588             if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1589 
1590             if (s->lookahead == 0) break; /* flush the current block */
1591         }
1592 	Assert(s->block_start >= 0L, "block gone");
1593 
1594 	s->strstart += s->lookahead;
1595 	s->lookahead = 0;
1596 
1597 	/* Emit a stored block if pending_buf will be full: */
1598  	max_start = s->block_start + max_block_size;
1599         if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1600 	    /* strstart == 0 is possible when wraparound on 16-bit machine */
1601 	    s->lookahead = (uInt)(s->strstart - max_start);
1602 	    s->strstart = (uInt)max_start;
1603             FLUSH_BLOCK(s, 0);
1604 	}
1605 	/* Flush if we may have to slide, otherwise block_start may become
1606          * negative and the data will be gone:
1607          */
1608         if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1609             FLUSH_BLOCK(s, 0);
1610 	}
1611     }
1612     FLUSH_BLOCK(s, flush == Z_FINISH);
1613     return flush == Z_FINISH ? finish_done : block_done;
1614 }
1615 
1616 /* ===========================================================================
1617  * Compress as much as possible from the input stream, return the current
1618  * block state.
1619  * This function does not perform lazy evaluation of matches and inserts
1620  * new strings in the dictionary only for unmatched strings or for short
1621  * matches. It is used only for the fast compression options.
1622  */
1623 local block_state deflate_fast(s, flush)
1624     deflate_state *s;
1625     int flush;
1626 {
1627     IPos hash_head = NIL; /* head of the hash chain */
1628     int bflush;           /* set if current block must be flushed */
1629 
1630     for (;;) {
1631         /* Make sure that we always have enough lookahead, except
1632          * at the end of the input file. We need MAX_MATCH bytes
1633          * for the next match, plus MIN_MATCH bytes to insert the
1634          * string following the next match.
1635          */
1636         if (s->lookahead < MIN_LOOKAHEAD) {
1637             fill_window(s);
1638             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1639 	        return need_more;
1640 	    }
1641             if (s->lookahead == 0) break; /* flush the current block */
1642         }
1643 
1644         /* Insert the string window[strstart .. strstart+2] in the
1645          * dictionary, and set hash_head to the head of the hash chain:
1646          */
1647         if (s->lookahead >= MIN_MATCH) {
1648             INSERT_STRING(s, s->strstart, hash_head);
1649         }
1650 
1651         /* Find the longest match, discarding those <= prev_length.
1652          * At this point we have always match_length < MIN_MATCH
1653          */
1654         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1655             /* To simplify the code, we prevent matches with the string
1656              * of window index 0 (in particular we have to avoid a match
1657              * of the string with itself at the start of the input file).
1658              */
1659             if (s->strategy != Z_HUFFMAN_ONLY) {
1660                 s->match_length = longest_match (s, hash_head);
1661             }
1662             /* longest_match() sets match_start */
1663         }
1664         if (s->match_length >= MIN_MATCH) {
1665             check_match(s, s->strstart, s->match_start, s->match_length);
1666 
1667             bflush = _tr_tally(s, s->strstart - s->match_start,
1668                                s->match_length - MIN_MATCH);
1669 
1670             s->lookahead -= s->match_length;
1671 
1672             /* Insert new strings in the hash table only if the match length
1673              * is not too large. This saves time but degrades compression.
1674              */
1675             if (s->match_length <= s->max_insert_length &&
1676                 s->lookahead >= MIN_MATCH) {
1677                 s->match_length--; /* string at strstart already in hash table */
1678                 do {
1679                     s->strstart++;
1680                     INSERT_STRING(s, s->strstart, hash_head);
1681                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1682                      * always MIN_MATCH bytes ahead.
1683                      */
1684                 } while (--s->match_length != 0);
1685                 s->strstart++;
1686             } else {
1687                 s->strstart += s->match_length;
1688                 s->match_length = 0;
1689                 s->ins_h = s->window[s->strstart];
1690                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1691 #if MIN_MATCH != 3
1692                 Call UPDATE_HASH() MIN_MATCH-3 more times
1693 #endif
1694                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1695                  * matter since it will be recomputed at next deflate call.
1696                  */
1697             }
1698         } else {
1699             /* No match, output a literal byte */
1700             Tracevv((stderr,"%c", s->window[s->strstart]));
1701             bflush = _tr_tally (s, 0, s->window[s->strstart]);
1702             s->lookahead--;
1703             s->strstart++;
1704         }
1705         if (bflush) FLUSH_BLOCK(s, 0);
1706     }
1707     FLUSH_BLOCK(s, flush == Z_FINISH);
1708     return flush == Z_FINISH ? finish_done : block_done;
1709 }
1710 
1711 /* ===========================================================================
1712  * Same as above, but achieves better compression. We use a lazy
1713  * evaluation for matches: a match is finally adopted only if there is
1714  * no better match at the next window position.
1715  */
1716 local block_state deflate_slow(s, flush)
1717     deflate_state *s;
1718     int flush;
1719 {
1720     IPos hash_head = NIL;    /* head of hash chain */
1721     int bflush;              /* set if current block must be flushed */
1722 
1723     /* Process the input block. */
1724     for (;;) {
1725         /* Make sure that we always have enough lookahead, except
1726          * at the end of the input file. We need MAX_MATCH bytes
1727          * for the next match, plus MIN_MATCH bytes to insert the
1728          * string following the next match.
1729          */
1730         if (s->lookahead < MIN_LOOKAHEAD) {
1731             fill_window(s);
1732             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1733 	        return need_more;
1734 	    }
1735             if (s->lookahead == 0) break; /* flush the current block */
1736         }
1737 
1738         /* Insert the string window[strstart .. strstart+2] in the
1739          * dictionary, and set hash_head to the head of the hash chain:
1740          */
1741         if (s->lookahead >= MIN_MATCH) {
1742             INSERT_STRING(s, s->strstart, hash_head);
1743         }
1744 
1745         /* Find the longest match, discarding those <= prev_length.
1746          */
1747         s->prev_length = s->match_length, s->prev_match = s->match_start;
1748         s->match_length = MIN_MATCH-1;
1749 
1750         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1751             s->strstart - hash_head <= MAX_DIST(s)) {
1752             /* To simplify the code, we prevent matches with the string
1753              * of window index 0 (in particular we have to avoid a match
1754              * of the string with itself at the start of the input file).
1755              */
1756             if (s->strategy != Z_HUFFMAN_ONLY) {
1757                 s->match_length = longest_match (s, hash_head);
1758             }
1759             /* longest_match() sets match_start */
1760 
1761             if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1762                  (s->match_length == MIN_MATCH &&
1763                   s->strstart - s->match_start > TOO_FAR))) {
1764 
1765                 /* If prev_match is also MIN_MATCH, match_start is garbage
1766                  * but we will ignore the current match anyway.
1767                  */
1768                 s->match_length = MIN_MATCH-1;
1769             }
1770         }
1771         /* If there was a match at the previous step and the current
1772          * match is not better, output the previous match:
1773          */
1774         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1775             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1776             /* Do not insert strings in hash table beyond this. */
1777 
1778             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1779 
1780             bflush = _tr_tally(s, s->strstart -1 - s->prev_match,
1781                                s->prev_length - MIN_MATCH);
1782 
1783             /* Insert in hash table all strings up to the end of the match.
1784              * strstart-1 and strstart are already inserted. If there is not
1785              * enough lookahead, the last two strings are not inserted in
1786              * the hash table.
1787              */
1788             s->lookahead -= s->prev_length-1;
1789             s->prev_length -= 2;
1790             do {
1791                 if (++s->strstart <= max_insert) {
1792                     INSERT_STRING(s, s->strstart, hash_head);
1793                 }
1794             } while (--s->prev_length != 0);
1795             s->match_available = 0;
1796             s->match_length = MIN_MATCH-1;
1797             s->strstart++;
1798 
1799             if (bflush) FLUSH_BLOCK(s, 0);
1800 
1801         } else if (s->match_available) {
1802             /* If there was no match at the previous position, output a
1803              * single literal. If there was a match but the current match
1804              * is longer, truncate the previous match to a single literal.
1805              */
1806             Tracevv((stderr,"%c", s->window[s->strstart-1]));
1807             if (_tr_tally (s, 0, s->window[s->strstart-1])) {
1808                 FLUSH_BLOCK_ONLY(s, 0);
1809             }
1810             s->strstart++;
1811             s->lookahead--;
1812             if (s->strm->avail_out == 0) return need_more;
1813         } else {
1814             /* There is no previous match to compare with, wait for
1815              * the next step to decide.
1816              */
1817             s->match_available = 1;
1818             s->strstart++;
1819             s->lookahead--;
1820         }
1821     }
1822     Assert (flush != Z_NO_FLUSH, "no flush?");
1823     if (s->match_available) {
1824         Tracevv((stderr,"%c", s->window[s->strstart-1]));
1825         _tr_tally (s, 0, s->window[s->strstart-1]);
1826         s->match_available = 0;
1827     }
1828     FLUSH_BLOCK(s, flush == Z_FINISH);
1829     return flush == Z_FINISH ? finish_done : block_done;
1830 }
1831 /* --- deflate.c */
1832 
1833 /* +++ trees.c */
1834 /* trees.c -- output deflated data using Huffman coding
1835  * Copyright (C) 1995-1996 Jean-loup Gailly
1836  * For conditions of distribution and use, see copyright notice in zlib.h
1837  */
1838 
1839 /*
1840  *  ALGORITHM
1841  *
1842  *      The "deflation" process uses several Huffman trees. The more
1843  *      common source values are represented by shorter bit sequences.
1844  *
1845  *      Each code tree is stored in a compressed form which is itself
1846  * a Huffman encoding of the lengths of all the code strings (in
1847  * ascending order by source values).  The actual code strings are
1848  * reconstructed from the lengths in the inflate process, as described
1849  * in the deflate specification.
1850  *
1851  *  REFERENCES
1852  *
1853  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1854  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1855  *
1856  *      Storer, James A.
1857  *          Data Compression:  Methods and Theory, pp. 49-50.
1858  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
1859  *
1860  *      Sedgewick, R.
1861  *          Algorithms, p290.
1862  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
1863  */
1864 
1865 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
1866 
1867 /* #include "deflate.h" */
1868 
1869 #ifdef DEBUG_ZLIB
1870 #  include <ctype.h>
1871 #endif
1872 
1873 /* ===========================================================================
1874  * Constants
1875  */
1876 
1877 #define MAX_BL_BITS 7
1878 /* Bit length codes must not exceed MAX_BL_BITS bits */
1879 
1880 #define END_BLOCK 256
1881 /* end of block literal code */
1882 
1883 #define REP_3_6      16
1884 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
1885 
1886 #define REPZ_3_10    17
1887 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
1888 
1889 #define REPZ_11_138  18
1890 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
1891 
1892 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1893    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1894 
1895 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
1896    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1897 
1898 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1899    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1900 
1901 local const uch bl_order[BL_CODES]
1902    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1903 /* The lengths of the bit length codes are sent in order of decreasing
1904  * probability, to avoid transmitting the lengths for unused bit length codes.
1905  */
1906 
1907 #define Buf_size (8 * 2*sizeof(char))
1908 /* Number of bits used within bi_buf. (bi_buf might be implemented on
1909  * more than 16 bits on some systems.)
1910  */
1911 
1912 /* ===========================================================================
1913  * Local data. These are initialized only once.
1914  */
1915 
1916 local ct_data static_ltree[L_CODES+2];
1917 /* The static literal tree. Since the bit lengths are imposed, there is no
1918  * need for the L_CODES extra codes used during heap construction. However
1919  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
1920  * below).
1921  */
1922 
1923 local ct_data static_dtree[D_CODES];
1924 /* The static distance tree. (Actually a trivial tree since all codes use
1925  * 5 bits.)
1926  */
1927 
1928 local uch dist_code[512];
1929 /* distance codes. The first 256 values correspond to the distances
1930  * 3 .. 258, the last 256 values correspond to the top 8 bits of
1931  * the 15 bit distances.
1932  */
1933 
1934 local uch length_code[MAX_MATCH-MIN_MATCH+1];
1935 /* length code for each normalized match length (0 == MIN_MATCH) */
1936 
1937 local int base_length[LENGTH_CODES];
1938 /* First normalized length for each code (0 = MIN_MATCH) */
1939 
1940 local int base_dist[D_CODES];
1941 /* First normalized distance for each code (0 = distance of 1) */
1942 
1943 struct static_tree_desc_s {
1944     ct_data *static_tree;        /* static tree or NULL */
1945     const intf    *extra_bits;         /* extra bits for each code or NULL */
1946     int     extra_base;          /* base index for extra_bits */
1947     int     elems;               /* max number of elements in the tree */
1948     int     max_length;          /* max bit length for the codes */
1949 };
1950 
1951 local static_tree_desc  static_l_desc =
1952 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1953 
1954 local static_tree_desc  static_d_desc =
1955 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
1956 
1957 local static_tree_desc  static_bl_desc =
1958 {(ct_data *)0, extra_blbits, 0,      BL_CODES, MAX_BL_BITS};
1959 
1960 /* ===========================================================================
1961  * Local (static) routines in this file.
1962  */
1963 
1964 local void tr_static_init OF((void));
1965 local void init_block     OF((deflate_state *s));
1966 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
1967 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
1968 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
1969 local void build_tree     OF((deflate_state *s, tree_desc *desc));
1970 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1971 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1972 local int  build_bl_tree  OF((deflate_state *s));
1973 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1974                               int blcodes));
1975 local void compress_block OF((deflate_state *s, ct_data *ltree,
1976                               ct_data *dtree));
1977 local void set_data_type  OF((deflate_state *s));
1978 local unsigned bi_reverse OF((unsigned value, int length));
1979 local void bi_windup      OF((deflate_state *s));
1980 local void bi_flush       OF((deflate_state *s));
1981 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
1982                               int header));
1983 
1984 #ifndef DEBUG_ZLIB
1985 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1986    /* Send a code of the given tree. c and tree must not have side effects */
1987 
1988 #else /* DEBUG_ZLIB */
1989 #  define send_code(s, c, tree) \
1990      { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
1991        send_bits(s, tree[c].Code, tree[c].Len); }
1992 #endif
1993 
1994 #define d_code(dist) \
1995    ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1996 /* Mapping from a distance to a distance code. dist is the distance - 1 and
1997  * must not have side effects. dist_code[256] and dist_code[257] are never
1998  * used.
1999  */
2000 
2001 /* ===========================================================================
2002  * Output a short LSB first on the stream.
2003  * IN assertion: there is enough room in pendingBuf.
2004  */
2005 #define put_short(s, w) { \
2006     put_byte(s, (uch)((w) & 0xff)); \
2007     put_byte(s, (uch)((ush)(w) >> 8)); \
2008 }
2009 
2010 /* ===========================================================================
2011  * Send a value on a given number of bits.
2012  * IN assertion: length <= 16 and value fits in length bits.
2013  */
2014 #ifdef DEBUG_ZLIB
2015 local void send_bits      OF((deflate_state *s, int value, int length));
2016 
2017 local void send_bits(s, value, length)
2018     deflate_state *s;
2019     int value;  /* value to send */
2020     int length; /* number of bits */
2021 {
2022     Tracevv((stderr," l %2d v %4x ", length, value));
2023     Assert(length > 0 && length <= 15, "invalid length");
2024     s->bits_sent += (ulg)length;
2025 
2026     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2027      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2028      * unused bits in value.
2029      */
2030     if (s->bi_valid > (int)Buf_size - length) {
2031         s->bi_buf |= (value << s->bi_valid);
2032         put_short(s, s->bi_buf);
2033         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2034         s->bi_valid += length - Buf_size;
2035     } else {
2036         s->bi_buf |= value << s->bi_valid;
2037         s->bi_valid += length;
2038     }
2039 }
2040 #else /* !DEBUG_ZLIB */
2041 
2042 #define send_bits(s, value, length) \
2043 { int len = length;\
2044   if (s->bi_valid > (int)Buf_size - len) {\
2045     int val = value;\
2046     s->bi_buf |= (val << s->bi_valid);\
2047     put_short(s, s->bi_buf);\
2048     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2049     s->bi_valid += len - Buf_size;\
2050   } else {\
2051     s->bi_buf |= (value) << s->bi_valid;\
2052     s->bi_valid += len;\
2053   }\
2054 }
2055 #endif /* DEBUG_ZLIB */
2056 
2057 /* ===========================================================================
2058  * Initialize the various 'constant' tables. In a multi-threaded environment,
2059  * this function may be called by two threads concurrently, but this is
2060  * harmless since both invocations do exactly the same thing.
2061  */
2062 local void tr_static_init()
2063 {
2064     static int static_init_done = 0;
2065     int n;        /* iterates over tree elements */
2066     int bits;     /* bit counter */
2067     int length;   /* length value */
2068     int code;     /* code value */
2069     int dist;     /* distance index */
2070     ush bl_count[MAX_BITS+1];
2071     /* number of codes at each bit length for an optimal tree */
2072 
2073     if (static_init_done) return;
2074 
2075     /* Initialize the mapping length (0..255) -> length code (0..28) */
2076     length = 0;
2077     for (code = 0; code < LENGTH_CODES-1; code++) {
2078         base_length[code] = length;
2079         for (n = 0; n < (1<<extra_lbits[code]); n++) {
2080             length_code[length++] = (uch)code;
2081         }
2082     }
2083     Assert (length == 256, "tr_static_init: length != 256");
2084     /* Note that the length 255 (match length 258) can be represented
2085      * in two different ways: code 284 + 5 bits or code 285, so we
2086      * overwrite length_code[255] to use the best encoding:
2087      */
2088     length_code[length-1] = (uch)code;
2089 
2090     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2091     dist = 0;
2092     for (code = 0 ; code < 16; code++) {
2093         base_dist[code] = dist;
2094         for (n = 0; n < (1<<extra_dbits[code]); n++) {
2095             dist_code[dist++] = (uch)code;
2096         }
2097     }
2098     Assert (dist == 256, "tr_static_init: dist != 256");
2099     dist >>= 7; /* from now on, all distances are divided by 128 */
2100     for ( ; code < D_CODES; code++) {
2101         base_dist[code] = dist << 7;
2102         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2103             dist_code[256 + dist++] = (uch)code;
2104         }
2105     }
2106     Assert (dist == 256, "tr_static_init: 256+dist != 512");
2107 
2108     /* Construct the codes of the static literal tree */
2109     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2110     n = 0;
2111     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2112     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2113     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2114     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2115     /* Codes 286 and 287 do not exist, but we must include them in the
2116      * tree construction to get a canonical Huffman tree (longest code
2117      * all ones)
2118      */
2119     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2120 
2121     /* The static distance tree is trivial: */
2122     for (n = 0; n < D_CODES; n++) {
2123         static_dtree[n].Len = 5;
2124         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2125     }
2126     static_init_done = 1;
2127 }
2128 
2129 /* ===========================================================================
2130  * Initialize the tree data structures for a new zlib stream.
2131  */
2132 void _tr_init(s)
2133     deflate_state *s;
2134 {
2135     tr_static_init();
2136 
2137     s->compressed_len = 0L;
2138 
2139     s->l_desc.dyn_tree = s->dyn_ltree;
2140     s->l_desc.stat_desc = &static_l_desc;
2141 
2142     s->d_desc.dyn_tree = s->dyn_dtree;
2143     s->d_desc.stat_desc = &static_d_desc;
2144 
2145     s->bl_desc.dyn_tree = s->bl_tree;
2146     s->bl_desc.stat_desc = &static_bl_desc;
2147 
2148     s->bi_buf = 0;
2149     s->bi_valid = 0;
2150     s->last_eob_len = 8; /* enough lookahead for inflate */
2151 #ifdef DEBUG_ZLIB
2152     s->bits_sent = 0L;
2153 #endif
2154 
2155     /* Initialize the first block of the first file: */
2156     init_block(s);
2157 }
2158 
2159 /* ===========================================================================
2160  * Initialize a new block.
2161  */
2162 local void init_block(s)
2163     deflate_state *s;
2164 {
2165     int n; /* iterates over tree elements */
2166 
2167     /* Initialize the trees. */
2168     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
2169     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
2170     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2171 
2172     s->dyn_ltree[END_BLOCK].Freq = 1;
2173     s->opt_len = s->static_len = 0L;
2174     s->last_lit = s->matches = 0;
2175 }
2176 
2177 #define SMALLEST 1
2178 /* Index within the heap array of least frequent node in the Huffman tree */
2179 
2180 
2181 /* ===========================================================================
2182  * Remove the smallest element from the heap and recreate the heap with
2183  * one less element. Updates heap and heap_len.
2184  */
2185 #define pqremove(s, tree, top) \
2186 {\
2187     top = s->heap[SMALLEST]; \
2188     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2189     pqdownheap(s, tree, SMALLEST); \
2190 }
2191 
2192 /* ===========================================================================
2193  * Compares to subtrees, using the tree depth as tie breaker when
2194  * the subtrees have equal frequency. This minimizes the worst case length.
2195  */
2196 #define smaller(tree, n, m, depth) \
2197    (tree[n].Freq < tree[m].Freq || \
2198    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2199 
2200 /* ===========================================================================
2201  * Restore the heap property by moving down the tree starting at node k,
2202  * exchanging a node with the smallest of its two sons if necessary, stopping
2203  * when the heap property is re-established (each father smaller than its
2204  * two sons).
2205  */
2206 local void pqdownheap(s, tree, k)
2207     deflate_state *s;
2208     ct_data *tree;  /* the tree to restore */
2209     int k;               /* node to move down */
2210 {
2211     int v = s->heap[k];
2212     int j = k << 1;  /* left son of k */
2213     while (j <= s->heap_len) {
2214         /* Set j to the smallest of the two sons: */
2215         if (j < s->heap_len &&
2216             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2217             j++;
2218         }
2219         /* Exit if v is smaller than both sons */
2220         if (smaller(tree, v, s->heap[j], s->depth)) break;
2221 
2222         /* Exchange v with the smallest son */
2223         s->heap[k] = s->heap[j];  k = j;
2224 
2225         /* And continue down the tree, setting j to the left son of k */
2226         j <<= 1;
2227     }
2228     s->heap[k] = v;
2229 }
2230 
2231 /* ===========================================================================
2232  * Compute the optimal bit lengths for a tree and update the total bit length
2233  * for the current block.
2234  * IN assertion: the fields freq and dad are set, heap[heap_max] and
2235  *    above are the tree nodes sorted by increasing frequency.
2236  * OUT assertions: the field len is set to the optimal bit length, the
2237  *     array bl_count contains the frequencies for each bit length.
2238  *     The length opt_len is updated; static_len is also updated if stree is
2239  *     not null.
2240  */
2241 local void gen_bitlen(s, desc)
2242     deflate_state *s;
2243     tree_desc *desc;    /* the tree descriptor */
2244 {
2245     ct_data *tree  = desc->dyn_tree;
2246     int max_code   = desc->max_code;
2247     ct_data *stree = desc->stat_desc->static_tree;
2248     const intf *extra    = desc->stat_desc->extra_bits;
2249     int base       = desc->stat_desc->extra_base;
2250     int max_length = desc->stat_desc->max_length;
2251     int h;              /* heap index */
2252     int n, m;           /* iterate over the tree elements */
2253     int bits;           /* bit length */
2254     int xbits;          /* extra bits */
2255     ush f;              /* frequency */
2256     int overflow = 0;   /* number of elements with bit length too large */
2257 
2258     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2259 
2260     /* In a first pass, compute the optimal bit lengths (which may
2261      * overflow in the case of the bit length tree).
2262      */
2263     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2264 
2265     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2266         n = s->heap[h];
2267         bits = tree[tree[n].Dad].Len + 1;
2268         if (bits > max_length) bits = max_length, overflow++;
2269         tree[n].Len = (ush)bits;
2270         /* We overwrite tree[n].Dad which is no longer needed */
2271 
2272         if (n > max_code) continue; /* not a leaf node */
2273 
2274         s->bl_count[bits]++;
2275         xbits = 0;
2276         if (n >= base) xbits = extra[n-base];
2277         f = tree[n].Freq;
2278         s->opt_len += (ulg)f * (bits + xbits);
2279         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2280     }
2281     if (overflow == 0) return;
2282 
2283     Trace((stderr,"\nbit length overflow\n"));
2284     /* This happens for example on obj2 and pic of the Calgary corpus */
2285 
2286     /* Find the first bit length which could increase: */
2287     do {
2288         bits = max_length-1;
2289         while (s->bl_count[bits] == 0) bits--;
2290         s->bl_count[bits]--;      /* move one leaf down the tree */
2291         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2292         s->bl_count[max_length]--;
2293         /* The brother of the overflow item also moves one step up,
2294          * but this does not affect bl_count[max_length]
2295          */
2296         overflow -= 2;
2297     } while (overflow > 0);
2298 
2299     /* Now recompute all bit lengths, scanning in increasing frequency.
2300      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2301      * lengths instead of fixing only the wrong ones. This idea is taken
2302      * from 'ar' written by Haruhiko Okumura.)
2303      */
2304     for (bits = max_length; bits != 0; bits--) {
2305         n = s->bl_count[bits];
2306         while (n != 0) {
2307             m = s->heap[--h];
2308             if (m > max_code) continue;
2309             if (tree[m].Len != (unsigned) bits) {
2310                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2311                 s->opt_len += ((long)bits - (long)tree[m].Len)
2312                               *(long)tree[m].Freq;
2313                 tree[m].Len = (ush)bits;
2314             }
2315             n--;
2316         }
2317     }
2318 }
2319 
2320 /* ===========================================================================
2321  * Generate the codes for a given tree and bit counts (which need not be
2322  * optimal).
2323  * IN assertion: the array bl_count contains the bit length statistics for
2324  * the given tree and the field len is set for all tree elements.
2325  * OUT assertion: the field code is set for all tree elements of non
2326  *     zero code length.
2327  */
2328 local void gen_codes (tree, max_code, bl_count)
2329     ct_data *tree;             /* the tree to decorate */
2330     int max_code;              /* largest code with non zero frequency */
2331     ushf *bl_count;            /* number of codes at each bit length */
2332 {
2333     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2334     ush code = 0;              /* running code value */
2335     int bits;                  /* bit index */
2336     int n;                     /* code index */
2337 
2338     /* The distribution counts are first used to generate the code values
2339      * without bit reversal.
2340      */
2341     for (bits = 1; bits <= MAX_BITS; bits++) {
2342         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2343     }
2344     /* Check that the bit counts in bl_count are consistent. The last code
2345      * must be all ones.
2346      */
2347     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2348             "inconsistent bit counts");
2349     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2350 
2351     for (n = 0;  n <= max_code; n++) {
2352         int len = tree[n].Len;
2353         if (len == 0) continue;
2354         /* Now reverse the bits */
2355         tree[n].Code = bi_reverse(next_code[len]++, len);
2356 
2357         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2358              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2359     }
2360 }
2361 
2362 /* ===========================================================================
2363  * Construct one Huffman tree and assigns the code bit strings and lengths.
2364  * Update the total bit length for the current block.
2365  * IN assertion: the field freq is set for all tree elements.
2366  * OUT assertions: the fields len and code are set to the optimal bit length
2367  *     and corresponding code. The length opt_len is updated; static_len is
2368  *     also updated if stree is not null. The field max_code is set.
2369  */
2370 local void build_tree(s, desc)
2371     deflate_state *s;
2372     tree_desc *desc; /* the tree descriptor */
2373 {
2374     ct_data *tree   = desc->dyn_tree;
2375     ct_data *stree  = desc->stat_desc->static_tree;
2376     int elems       = desc->stat_desc->elems;
2377     int n, m;          /* iterate over heap elements */
2378     int max_code = -1; /* largest code with non zero frequency */
2379     int node;          /* new node being created */
2380 
2381     /* Construct the initial heap, with least frequent element in
2382      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2383      * heap[0] is not used.
2384      */
2385     s->heap_len = 0, s->heap_max = HEAP_SIZE;
2386 
2387     for (n = 0; n < elems; n++) {
2388         if (tree[n].Freq != 0) {
2389             s->heap[++(s->heap_len)] = max_code = n;
2390             s->depth[n] = 0;
2391         } else {
2392             tree[n].Len = 0;
2393         }
2394     }
2395 
2396     /* The pkzip format requires that at least one distance code exists,
2397      * and that at least one bit should be sent even if there is only one
2398      * possible code. So to avoid special checks later on we force at least
2399      * two codes of non zero frequency.
2400      */
2401     while (s->heap_len < 2) {
2402         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2403         tree[node].Freq = 1;
2404         s->depth[node] = 0;
2405         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2406         /* node is 0 or 1 so it does not have extra bits */
2407     }
2408     desc->max_code = max_code;
2409 
2410     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2411      * establish sub-heaps of increasing lengths:
2412      */
2413     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2414 
2415     /* Construct the Huffman tree by repeatedly combining the least two
2416      * frequent nodes.
2417      */
2418     node = elems;              /* next internal node of the tree */
2419     do {
2420         pqremove(s, tree, n);  /* n = node of least frequency */
2421         m = s->heap[SMALLEST]; /* m = node of next least frequency */
2422 
2423         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2424         s->heap[--(s->heap_max)] = m;
2425 
2426         /* Create a new node father of n and m */
2427         tree[node].Freq = tree[n].Freq + tree[m].Freq;
2428         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2429         tree[n].Dad = tree[m].Dad = (ush)node;
2430 #ifdef DUMP_BL_TREE
2431         if (tree == s->bl_tree) {
2432             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2433                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2434         }
2435 #endif
2436         /* and insert the new node in the heap */
2437         s->heap[SMALLEST] = node++;
2438         pqdownheap(s, tree, SMALLEST);
2439 
2440     } while (s->heap_len >= 2);
2441 
2442     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2443 
2444     /* At this point, the fields freq and dad are set. We can now
2445      * generate the bit lengths.
2446      */
2447     gen_bitlen(s, (tree_desc *)desc);
2448 
2449     /* The field len is now set, we can generate the bit codes */
2450     gen_codes ((ct_data *)tree, max_code, s->bl_count);
2451 }
2452 
2453 /* ===========================================================================
2454  * Scan a literal or distance tree to determine the frequencies of the codes
2455  * in the bit length tree.
2456  */
2457 local void scan_tree (s, tree, max_code)
2458     deflate_state *s;
2459     ct_data *tree;   /* the tree to be scanned */
2460     int max_code;    /* and its largest code of non zero frequency */
2461 {
2462     int n;                     /* iterates over all tree elements */
2463     int prevlen = -1;          /* last emitted length */
2464     int curlen;                /* length of current code */
2465     int nextlen = tree[0].Len; /* length of next code */
2466     int count = 0;             /* repeat count of the current code */
2467     int max_count = 7;         /* max repeat count */
2468     int min_count = 4;         /* min repeat count */
2469 
2470     if (nextlen == 0) max_count = 138, min_count = 3;
2471     tree[max_code+1].Len = (ush)0xffff; /* guard */
2472 
2473     for (n = 0; n <= max_code; n++) {
2474         curlen = nextlen; nextlen = tree[n+1].Len;
2475         if (++count < max_count && curlen == nextlen) {
2476             continue;
2477         } else if (count < min_count) {
2478             s->bl_tree[curlen].Freq += count;
2479         } else if (curlen != 0) {
2480             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2481             s->bl_tree[REP_3_6].Freq++;
2482         } else if (count <= 10) {
2483             s->bl_tree[REPZ_3_10].Freq++;
2484         } else {
2485             s->bl_tree[REPZ_11_138].Freq++;
2486         }
2487         count = 0; prevlen = curlen;
2488         if (nextlen == 0) {
2489             max_count = 138, min_count = 3;
2490         } else if (curlen == nextlen) {
2491             max_count = 6, min_count = 3;
2492         } else {
2493             max_count = 7, min_count = 4;
2494         }
2495     }
2496 }
2497 
2498 /* ===========================================================================
2499  * Send a literal or distance tree in compressed form, using the codes in
2500  * bl_tree.
2501  */
2502 local void send_tree (s, tree, max_code)
2503     deflate_state *s;
2504     ct_data *tree; /* the tree to be scanned */
2505     int max_code;       /* and its largest code of non zero frequency */
2506 {
2507     int n;                     /* iterates over all tree elements */
2508     int prevlen = -1;          /* last emitted length */
2509     int curlen;                /* length of current code */
2510     int nextlen = tree[0].Len; /* length of next code */
2511     int count = 0;             /* repeat count of the current code */
2512     int max_count = 7;         /* max repeat count */
2513     int min_count = 4;         /* min repeat count */
2514 
2515     /* tree[max_code+1].Len = -1; */  /* guard already set */
2516     if (nextlen == 0) max_count = 138, min_count = 3;
2517 
2518     for (n = 0; n <= max_code; n++) {
2519         curlen = nextlen; nextlen = tree[n+1].Len;
2520         if (++count < max_count && curlen == nextlen) {
2521             continue;
2522         } else if (count < min_count) {
2523             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2524 
2525         } else if (curlen != 0) {
2526             if (curlen != prevlen) {
2527                 send_code(s, curlen, s->bl_tree); count--;
2528             }
2529             Assert(count >= 3 && count <= 6, " 3_6?");
2530             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2531 
2532         } else if (count <= 10) {
2533             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2534 
2535         } else {
2536             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2537         }
2538         count = 0; prevlen = curlen;
2539         if (nextlen == 0) {
2540             max_count = 138, min_count = 3;
2541         } else if (curlen == nextlen) {
2542             max_count = 6, min_count = 3;
2543         } else {
2544             max_count = 7, min_count = 4;
2545         }
2546     }
2547 }
2548 
2549 /* ===========================================================================
2550  * Construct the Huffman tree for the bit lengths and return the index in
2551  * bl_order of the last bit length code to send.
2552  */
2553 local int build_bl_tree(s)
2554     deflate_state *s;
2555 {
2556     int max_blindex;  /* index of last bit length code of non zero freq */
2557 
2558     /* Determine the bit length frequencies for literal and distance trees */
2559     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2560     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2561 
2562     /* Build the bit length tree: */
2563     build_tree(s, (tree_desc *)(&(s->bl_desc)));
2564     /* opt_len now includes the length of the tree representations, except
2565      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2566      */
2567 
2568     /* Determine the number of bit length codes to send. The pkzip format
2569      * requires that at least 4 bit length codes be sent. (appnote.txt says
2570      * 3 but the actual value used is 4.)
2571      */
2572     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2573         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2574     }
2575     /* Update opt_len to include the bit length tree and counts */
2576     s->opt_len += 3*(max_blindex+1) + 5+5+4;
2577     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2578             s->opt_len, s->static_len));
2579 
2580     return max_blindex;
2581 }
2582 
2583 /* ===========================================================================
2584  * Send the header for a block using dynamic Huffman trees: the counts, the
2585  * lengths of the bit length codes, the literal tree and the distance tree.
2586  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2587  */
2588 local void send_all_trees(s, lcodes, dcodes, blcodes)
2589     deflate_state *s;
2590     int lcodes, dcodes, blcodes; /* number of codes for each tree */
2591 {
2592     int rank;                    /* index in bl_order */
2593 
2594     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2595     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2596             "too many codes");
2597     Tracev((stderr, "\nbl counts: "));
2598     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2599     send_bits(s, dcodes-1,   5);
2600     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
2601     for (rank = 0; rank < blcodes; rank++) {
2602         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2603         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2604     }
2605     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2606 
2607     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2608     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2609 
2610     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2611     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2612 }
2613 
2614 /* ===========================================================================
2615  * Send a stored block
2616  */
2617 void _tr_stored_block(s, buf, stored_len, eof)
2618     deflate_state *s;
2619     charf *buf;       /* input block */
2620     ulg stored_len;   /* length of input block */
2621     int eof;          /* true if this is the last block for a file */
2622 {
2623     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
2624     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
2625     s->compressed_len += (stored_len + 4) << 3;
2626 
2627     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2628 }
2629 
2630 /* Send just the `stored block' type code without any length bytes or data.
2631  */
2632 void _tr_stored_type_only(s)
2633     deflate_state *s;
2634 {
2635     send_bits(s, (STORED_BLOCK << 1), 3);
2636     bi_windup(s);
2637     s->compressed_len = (s->compressed_len + 3) & ~7L;
2638 }
2639 
2640 
2641 /* ===========================================================================
2642  * Send one empty static block to give enough lookahead for inflate.
2643  * This takes 10 bits, of which 7 may remain in the bit buffer.
2644  * The current inflate code requires 9 bits of lookahead. If the
2645  * last two codes for the previous block (real code plus EOB) were coded
2646  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
2647  * the last real code. In this case we send two empty static blocks instead
2648  * of one. (There are no problems if the previous block is stored or fixed.)
2649  * To simplify the code, we assume the worst case of last real code encoded
2650  * on one bit only.
2651  */
2652 void _tr_align(s)
2653     deflate_state *s;
2654 {
2655     send_bits(s, STATIC_TREES<<1, 3);
2656     send_code(s, END_BLOCK, static_ltree);
2657     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2658     bi_flush(s);
2659     /* Of the 10 bits for the empty block, we have already sent
2660      * (10 - bi_valid) bits. The lookahead for the last real code (before
2661      * the EOB of the previous block) was thus at least one plus the length
2662      * of the EOB plus what we have just sent of the empty static block.
2663      */
2664     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
2665         send_bits(s, STATIC_TREES<<1, 3);
2666         send_code(s, END_BLOCK, static_ltree);
2667         s->compressed_len += 10L;
2668         bi_flush(s);
2669     }
2670     s->last_eob_len = 7;
2671 }
2672 
2673 /* ===========================================================================
2674  * Determine the best encoding for the current block: dynamic trees, static
2675  * trees or store, and output the encoded block to the zip file. This function
2676  * returns the total compressed length for the file so far.
2677  */
2678 ulg _tr_flush_block(s, buf, stored_len, eof)
2679     deflate_state *s;
2680     charf *buf;       /* input block, or NULL if too old */
2681     ulg stored_len;   /* length of input block */
2682     int eof;          /* true if this is the last block for a file */
2683 {
2684     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2685     int max_blindex = 0;  /* index of last bit length code of non zero freq */
2686 
2687     /* Build the Huffman trees unless a stored block is forced */
2688     if (s->level > 0) {
2689 
2690 	 /* Check if the file is ascii or binary */
2691 	if (s->data_type == Z_UNKNOWN) set_data_type(s);
2692 
2693 	/* Construct the literal and distance trees */
2694 	build_tree(s, (tree_desc *)(&(s->l_desc)));
2695 	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2696 		s->static_len));
2697 
2698 	build_tree(s, (tree_desc *)(&(s->d_desc)));
2699 	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2700 		s->static_len));
2701 	/* At this point, opt_len and static_len are the total bit lengths of
2702 	 * the compressed block data, excluding the tree representations.
2703 	 */
2704 
2705 	/* Build the bit length tree for the above two trees, and get the index
2706 	 * in bl_order of the last bit length code to send.
2707 	 */
2708 	max_blindex = build_bl_tree(s);
2709 
2710 	/* Determine the best encoding. Compute first the block length in bytes*/
2711 	opt_lenb = (s->opt_len+3+7)>>3;
2712 	static_lenb = (s->static_len+3+7)>>3;
2713 
2714 	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2715 		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2716 		s->last_lit));
2717 
2718 	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2719 
2720     } else {
2721         Assert(buf != (char*)0, "lost buf");
2722 	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
2723     }
2724 
2725     /* If compression failed and this is the first and last block,
2726      * and if the .zip file can be seeked (to rewrite the local header),
2727      * the whole file is transformed into a stored file:
2728      */
2729 #ifdef STORED_FILE_OK
2730 #  ifdef FORCE_STORED_FILE
2731     if (eof && s->compressed_len == 0L) { /* force stored file */
2732 #  else
2733     if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
2734 #  endif
2735         /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2736         if (buf == (charf*)0) error ("block vanished");
2737 
2738         copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
2739         s->compressed_len = stored_len << 3;
2740         s->method = STORED;
2741     } else
2742 #endif /* STORED_FILE_OK */
2743 
2744 #ifdef FORCE_STORED
2745     if (buf != (char*)0) { /* force stored block */
2746 #else
2747     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
2748                        /* 4: two words for the lengths */
2749 #endif
2750         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2751          * Otherwise we can't have processed more than WSIZE input bytes since
2752          * the last block flush, because compression would have been
2753          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2754          * transform a block into a stored block.
2755          */
2756         _tr_stored_block(s, buf, stored_len, eof);
2757 
2758 #ifdef FORCE_STATIC
2759     } else if (static_lenb >= 0) { /* force static trees */
2760 #else
2761     } else if (static_lenb == opt_lenb) {
2762 #endif
2763         send_bits(s, (STATIC_TREES<<1)+eof, 3);
2764         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2765         s->compressed_len += 3 + s->static_len;
2766     } else {
2767         send_bits(s, (DYN_TREES<<1)+eof, 3);
2768         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2769                        max_blindex+1);
2770         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2771         s->compressed_len += 3 + s->opt_len;
2772     }
2773     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2774     init_block(s);
2775 
2776     if (eof) {
2777         bi_windup(s);
2778         s->compressed_len += 7;  /* align on byte boundary */
2779     }
2780     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2781            s->compressed_len-7*eof));
2782 
2783     return s->compressed_len >> 3;
2784 }
2785 
2786 /* ===========================================================================
2787  * Save the match info and tally the frequency counts. Return true if
2788  * the current block must be flushed.
2789  */
2790 int _tr_tally (s, dist, lc)
2791     deflate_state *s;
2792     unsigned dist;  /* distance of matched string */
2793     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
2794 {
2795     s->d_buf[s->last_lit] = (ush)dist;
2796     s->l_buf[s->last_lit++] = (uch)lc;
2797     if (dist == 0) {
2798         /* lc is the unmatched char */
2799         s->dyn_ltree[lc].Freq++;
2800     } else {
2801         s->matches++;
2802         /* Here, lc is the match length - MIN_MATCH */
2803         dist--;             /* dist = match distance - 1 */
2804         Assert((ush)dist < (ush)MAX_DIST(s) &&
2805                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2806                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
2807 
2808         s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2809         s->dyn_dtree[d_code(dist)].Freq++;
2810     }
2811 
2812     /* Try to guess if it is profitable to stop the current block here */
2813     if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2814         /* Compute an upper bound for the compressed length */
2815         ulg out_length = (ulg)s->last_lit*8L;
2816         ulg in_length = (ulg)((long)s->strstart - s->block_start);
2817         int dcode;
2818         for (dcode = 0; dcode < D_CODES; dcode++) {
2819             out_length += (ulg)s->dyn_dtree[dcode].Freq *
2820                 (5L+extra_dbits[dcode]);
2821         }
2822         out_length >>= 3;
2823         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2824                s->last_lit, in_length, out_length,
2825                100L - out_length*100L/in_length));
2826         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2827     }
2828     return (s->last_lit == s->lit_bufsize-1);
2829     /* We avoid equality with lit_bufsize because of wraparound at 64K
2830      * on 16 bit machines and because stored blocks are restricted to
2831      * 64K-1 bytes.
2832      */
2833 }
2834 
2835 /* ===========================================================================
2836  * Send the block data compressed using the given Huffman trees
2837  */
2838 local void compress_block(s, ltree, dtree)
2839     deflate_state *s;
2840     ct_data *ltree; /* literal tree */
2841     ct_data *dtree; /* distance tree */
2842 {
2843     unsigned dist;      /* distance of matched string */
2844     int lc;             /* match length or unmatched char (if dist == 0) */
2845     unsigned lx = 0;    /* running index in l_buf */
2846     unsigned code;      /* the code to send */
2847     int extra;          /* number of extra bits to send */
2848 
2849     if (s->last_lit != 0) do {
2850         dist = s->d_buf[lx];
2851         lc = s->l_buf[lx++];
2852         if (dist == 0) {
2853             send_code(s, lc, ltree); /* send a literal byte */
2854             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2855         } else {
2856             /* Here, lc is the match length - MIN_MATCH */
2857             code = length_code[lc];
2858             send_code(s, code+LITERALS+1, ltree); /* send the length code */
2859             extra = extra_lbits[code];
2860             if (extra != 0) {
2861                 lc -= base_length[code];
2862                 send_bits(s, lc, extra);       /* send the extra length bits */
2863             }
2864             dist--; /* dist is now the match distance - 1 */
2865             code = d_code(dist);
2866             Assert (code < D_CODES, "bad d_code");
2867 
2868             send_code(s, code, dtree);       /* send the distance code */
2869             extra = extra_dbits[code];
2870             if (extra != 0) {
2871                 dist -= base_dist[code];
2872                 send_bits(s, dist, extra);   /* send the extra distance bits */
2873             }
2874         } /* literal or match pair ? */
2875 
2876         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2877         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2878 
2879     } while (lx < s->last_lit);
2880 
2881     send_code(s, END_BLOCK, ltree);
2882     s->last_eob_len = ltree[END_BLOCK].Len;
2883 }
2884 
2885 /* ===========================================================================
2886  * Set the data type to ASCII or BINARY, using a crude approximation:
2887  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2888  * IN assertion: the fields freq of dyn_ltree are set and the total of all
2889  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2890  */
2891 local void set_data_type(s)
2892     deflate_state *s;
2893 {
2894     int n = 0;
2895     unsigned ascii_freq = 0;
2896     unsigned bin_freq = 0;
2897     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
2898     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
2899     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2900     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
2901 }
2902 
2903 /* ===========================================================================
2904  * Reverse the first len bits of a code, using straightforward code (a faster
2905  * method would use a table)
2906  * IN assertion: 1 <= len <= 15
2907  */
2908 local unsigned bi_reverse(code, len)
2909     unsigned code; /* the value to invert */
2910     int len;       /* its bit length */
2911 {
2912     unsigned res = 0;
2913     do {
2914         res |= code & 1;
2915         code >>= 1, res <<= 1;
2916     } while (--len > 0);
2917     return res >> 1;
2918 }
2919 
2920 /* ===========================================================================
2921  * Flush the bit buffer, keeping at most 7 bits in it.
2922  */
2923 local void bi_flush(s)
2924     deflate_state *s;
2925 {
2926     if (s->bi_valid == 16) {
2927         put_short(s, s->bi_buf);
2928         s->bi_buf = 0;
2929         s->bi_valid = 0;
2930     } else if (s->bi_valid >= 8) {
2931         put_byte(s, (Byte)s->bi_buf);
2932         s->bi_buf >>= 8;
2933         s->bi_valid -= 8;
2934     }
2935 }
2936 
2937 /* ===========================================================================
2938  * Flush the bit buffer and align the output on a byte boundary
2939  */
2940 local void bi_windup(s)
2941     deflate_state *s;
2942 {
2943     if (s->bi_valid > 8) {
2944         put_short(s, s->bi_buf);
2945     } else if (s->bi_valid > 0) {
2946         put_byte(s, (Byte)s->bi_buf);
2947     }
2948     s->bi_buf = 0;
2949     s->bi_valid = 0;
2950 #ifdef DEBUG_ZLIB
2951     s->bits_sent = (s->bits_sent+7) & ~7;
2952 #endif
2953 }
2954 
2955 /* ===========================================================================
2956  * Copy a stored block, storing first the length and its
2957  * one's complement if requested.
2958  */
2959 local void copy_block(s, buf, len, header)
2960     deflate_state *s;
2961     charf    *buf;    /* the input data */
2962     unsigned len;     /* its length */
2963     int      header;  /* true if block header must be written */
2964 {
2965     bi_windup(s);        /* align on byte boundary */
2966     s->last_eob_len = 8; /* enough lookahead for inflate */
2967 
2968     if (header) {
2969         put_short(s, (ush)len);
2970         put_short(s, (ush)~len);
2971 #ifdef DEBUG_ZLIB
2972         s->bits_sent += 2*16;
2973 #endif
2974     }
2975 #ifdef DEBUG_ZLIB
2976     s->bits_sent += (ulg)len<<3;
2977 #endif
2978     /* bundle up the put_byte(s, *buf++) calls */
2979     zmemcpy(&s->pending_buf[s->pending], buf, len);
2980     s->pending += len;
2981 }
2982 /* --- trees.c */
2983 
2984 /* +++ inflate.c */
2985 /* inflate.c -- zlib interface to inflate modules
2986  * Copyright (C) 1995-1996 Mark Adler
2987  * For conditions of distribution and use, see copyright notice in zlib.h
2988  */
2989 
2990 /* #include "zutil.h" */
2991 
2992 /* +++ infblock.h */
2993 /* infblock.h -- header to use infblock.c
2994  * Copyright (C) 1995-1996 Mark Adler
2995  * For conditions of distribution and use, see copyright notice in zlib.h
2996  */
2997 
2998 /* WARNING: this file should *not* be used by applications. It is
2999    part of the implementation of the compression library and is
3000    subject to change. Applications should only use zlib.h.
3001  */
3002 
3003 struct inflate_blocks_state;
3004 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3005 
3006 extern inflate_blocks_statef * inflate_blocks_new OF((
3007     z_streamp z,
3008     check_func c,               /* check function */
3009     uInt w));                   /* window size */
3010 
3011 extern int inflate_blocks OF((
3012     inflate_blocks_statef *,
3013     z_streamp ,
3014     int));                      /* initial return code */
3015 
3016 extern void inflate_blocks_reset OF((
3017     inflate_blocks_statef *,
3018     z_streamp ,
3019     uLongf *));                  /* check value on output */
3020 
3021 extern int inflate_blocks_free OF((
3022     inflate_blocks_statef *,
3023     z_streamp ,
3024     uLongf *));                  /* check value on output */
3025 
3026 extern void inflate_set_dictionary OF((
3027     inflate_blocks_statef *s,
3028     const Bytef *d,  /* dictionary */
3029     uInt  n));       /* dictionary length */
3030 
3031 extern int inflate_addhistory OF((
3032     inflate_blocks_statef *,
3033     z_streamp));
3034 
3035 extern int inflate_packet_flush OF((
3036     inflate_blocks_statef *));
3037 /* --- infblock.h */
3038 
3039 #ifndef NO_DUMMY_DECL
3040 struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3041 #endif
3042 
3043 /* inflate private state */
3044 struct internal_state {
3045 
3046   /* mode */
3047   enum {
3048       METHOD,   /* waiting for method byte */
3049       FLAG,     /* waiting for flag byte */
3050       DICT4,    /* four dictionary check bytes to go */
3051       DICT3,    /* three dictionary check bytes to go */
3052       DICT2,    /* two dictionary check bytes to go */
3053       DICT1,    /* one dictionary check byte to go */
3054       DICT0,    /* waiting for inflateSetDictionary */
3055       BLOCKS,   /* decompressing blocks */
3056       CHECK4,   /* four check bytes to go */
3057       CHECK3,   /* three check bytes to go */
3058       CHECK2,   /* two check bytes to go */
3059       CHECK1,   /* one check byte to go */
3060       DONE,     /* finished check, done */
3061       BAD}      /* got an error--stay here */
3062     mode;               /* current inflate mode */
3063 
3064   /* mode dependent information */
3065   union {
3066     uInt method;        /* if FLAGS, method byte */
3067     struct {
3068       uLong was;                /* computed check value */
3069       uLong need;               /* stream check value */
3070     } check;            /* if CHECK, check values to compare */
3071     uInt marker;        /* if BAD, inflateSync's marker bytes count */
3072   } sub;        /* submode */
3073 
3074   /* mode independent information */
3075   int  nowrap;          /* flag for no wrapper */
3076   uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
3077   inflate_blocks_statef
3078     *blocks;            /* current inflate_blocks state */
3079 
3080 };
3081 
3082 
3083 int inflateReset(z)
3084 z_streamp z;
3085 {
3086   uLong c;
3087 
3088   if (z == Z_NULL || z->state == Z_NULL)
3089     return Z_STREAM_ERROR;
3090   z->total_in = z->total_out = 0;
3091   z->msg = Z_NULL;
3092   z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3093   inflate_blocks_reset(z->state->blocks, z, &c);
3094   Trace((stderr, "inflate: reset\n"));
3095   return Z_OK;
3096 }
3097 
3098 
3099 int inflateEnd(z)
3100 z_streamp z;
3101 {
3102   uLong c;
3103 
3104   if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3105     return Z_STREAM_ERROR;
3106   if (z->state->blocks != Z_NULL)
3107     inflate_blocks_free(z->state->blocks, z, &c);
3108   ZFREE(z, z->state);
3109   z->state = Z_NULL;
3110   Trace((stderr, "inflate: end\n"));
3111   return Z_OK;
3112 }
3113 
3114 
3115 int inflateInit2_(z, w, version, stream_size)
3116 z_streamp z;
3117 int w;
3118 const char *version;
3119 int stream_size;
3120 {
3121   if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3122       stream_size != sizeof(z_stream))
3123       return Z_VERSION_ERROR;
3124 
3125   /* initialize state */
3126   if (z == Z_NULL)
3127     return Z_STREAM_ERROR;
3128   z->msg = Z_NULL;
3129 #ifndef NO_ZCFUNCS
3130   if (z->zalloc == Z_NULL)
3131   {
3132     z->zalloc = zcalloc;
3133     z->opaque = (voidpf)0;
3134   }
3135   if (z->zfree == Z_NULL) z->zfree = zcfree;
3136 #endif
3137   if ((z->state = (struct internal_state FAR *)
3138        ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3139     return Z_MEM_ERROR;
3140   z->state->blocks = Z_NULL;
3141 
3142   /* handle undocumented nowrap option (no zlib header or check) */
3143   z->state->nowrap = 0;
3144   if (w < 0)
3145   {
3146     w = - w;
3147     z->state->nowrap = 1;
3148   }
3149 
3150   /* set window size */
3151   if (w < 8 || w > 15)
3152   {
3153     inflateEnd(z);
3154     return Z_STREAM_ERROR;
3155   }
3156   z->state->wbits = (uInt)w;
3157 
3158   /* create inflate_blocks state */
3159   if ((z->state->blocks =
3160       inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3161       == Z_NULL)
3162   {
3163     inflateEnd(z);
3164     return Z_MEM_ERROR;
3165   }
3166   Trace((stderr, "inflate: allocated\n"));
3167 
3168   /* reset state */
3169   inflateReset(z);
3170   return Z_OK;
3171 }
3172 
3173 
3174 int inflateInit_(z, version, stream_size)
3175 z_streamp z;
3176 const char *version;
3177 int stream_size;
3178 {
3179   return inflateInit2_(z, DEF_WBITS, version, stream_size);
3180 }
3181 
3182 
3183 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3184 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3185 
3186 int inflate(z, f)
3187 z_streamp z;
3188 int f;
3189 {
3190   int r;
3191   uInt b;
3192 
3193   if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
3194     return Z_STREAM_ERROR;
3195   r = Z_BUF_ERROR;
3196   while (1) switch (z->state->mode)
3197   {
3198     case METHOD:
3199       NEEDBYTE
3200       if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3201       {
3202         z->state->mode = BAD;
3203         z->msg = (char*)"unknown compression method";
3204         z->state->sub.marker = 5;       /* can't try inflateSync */
3205         break;
3206       }
3207       if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3208       {
3209         z->state->mode = BAD;
3210         z->msg = (char*)"invalid window size";
3211         z->state->sub.marker = 5;       /* can't try inflateSync */
3212         break;
3213       }
3214       z->state->mode = FLAG;
3215     case FLAG:
3216       NEEDBYTE
3217       b = NEXTBYTE;
3218       if (((z->state->sub.method << 8) + b) % 31)
3219       {
3220         z->state->mode = BAD;
3221         z->msg = (char*)"incorrect header check";
3222         z->state->sub.marker = 5;       /* can't try inflateSync */
3223         break;
3224       }
3225       Trace((stderr, "inflate: zlib header ok\n"));
3226       if (!(b & PRESET_DICT))
3227       {
3228         z->state->mode = BLOCKS;
3229 	break;
3230       }
3231       z->state->mode = DICT4;
3232     case DICT4:
3233       NEEDBYTE
3234       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3235       z->state->mode = DICT3;
3236     case DICT3:
3237       NEEDBYTE
3238       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3239       z->state->mode = DICT2;
3240     case DICT2:
3241       NEEDBYTE
3242       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3243       z->state->mode = DICT1;
3244     case DICT1:
3245       NEEDBYTE
3246       z->state->sub.check.need += (uLong)NEXTBYTE;
3247       z->adler = z->state->sub.check.need;
3248       z->state->mode = DICT0;
3249       return Z_NEED_DICT;
3250     case DICT0:
3251       z->state->mode = BAD;
3252       z->msg = (char*)"need dictionary";
3253       z->state->sub.marker = 0;       /* can try inflateSync */
3254       return Z_STREAM_ERROR;
3255     case BLOCKS:
3256       r = inflate_blocks(z->state->blocks, z, r);
3257       if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3258 	  r = inflate_packet_flush(z->state->blocks);
3259       if (r == Z_DATA_ERROR)
3260       {
3261         z->state->mode = BAD;
3262         z->state->sub.marker = 0;       /* can try inflateSync */
3263         break;
3264       }
3265       if (r != Z_STREAM_END)
3266         return r;
3267       r = Z_OK;
3268       inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3269       if (z->state->nowrap)
3270       {
3271         z->state->mode = DONE;
3272         break;
3273       }
3274       z->state->mode = CHECK4;
3275     case CHECK4:
3276       NEEDBYTE
3277       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3278       z->state->mode = CHECK3;
3279     case CHECK3:
3280       NEEDBYTE
3281       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3282       z->state->mode = CHECK2;
3283     case CHECK2:
3284       NEEDBYTE
3285       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3286       z->state->mode = CHECK1;
3287     case CHECK1:
3288       NEEDBYTE
3289       z->state->sub.check.need += (uLong)NEXTBYTE;
3290 
3291       if (z->state->sub.check.was != z->state->sub.check.need)
3292       {
3293         z->state->mode = BAD;
3294         z->msg = (char*)"incorrect data check";
3295         z->state->sub.marker = 5;       /* can't try inflateSync */
3296         break;
3297       }
3298       Trace((stderr, "inflate: zlib check ok\n"));
3299       z->state->mode = DONE;
3300     case DONE:
3301       return Z_STREAM_END;
3302     case BAD:
3303       return Z_DATA_ERROR;
3304     default:
3305       return Z_STREAM_ERROR;
3306   }
3307 
3308  empty:
3309   if (f != Z_PACKET_FLUSH)
3310     return r;
3311   z->state->mode = BAD;
3312   z->msg = (char *)"need more for packet flush";
3313   z->state->sub.marker = 0;       /* can try inflateSync */
3314   return Z_DATA_ERROR;
3315 }
3316 
3317 
3318 int inflateSetDictionary(z, dictionary, dictLength)
3319 z_streamp z;
3320 const Bytef *dictionary;
3321 uInt  dictLength;
3322 {
3323   uInt length = dictLength;
3324 
3325   if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3326     return Z_STREAM_ERROR;
3327 
3328   if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3329   z->adler = 1L;
3330 
3331   if (length >= ((uInt)1<<z->state->wbits))
3332   {
3333     length = (1<<z->state->wbits)-1;
3334     dictionary += dictLength - length;
3335   }
3336   inflate_set_dictionary(z->state->blocks, dictionary, length);
3337   z->state->mode = BLOCKS;
3338   return Z_OK;
3339 }
3340 
3341 /*
3342  * This subroutine adds the data at next_in/avail_in to the output history
3343  * without performing any output.  The output buffer must be "caught up";
3344  * i.e. no pending output (hence s->read equals s->write), and the state must
3345  * be BLOCKS (i.e. we should be willing to see the start of a series of
3346  * BLOCKS).  On exit, the output will also be caught up, and the checksum
3347  * will have been updated if need be.
3348  */
3349 
3350 int inflateIncomp(z)
3351 z_stream *z;
3352 {
3353     if (z->state->mode != BLOCKS)
3354 	return Z_DATA_ERROR;
3355     return inflate_addhistory(z->state->blocks, z);
3356 }
3357 
3358 
3359 int inflateSync(z)
3360 z_streamp z;
3361 {
3362   uInt n;       /* number of bytes to look at */
3363   Bytef *p;     /* pointer to bytes */
3364   uInt m;       /* number of marker bytes found in a row */
3365   uLong r, w;   /* temporaries to save total_in and total_out */
3366 
3367   /* set up */
3368   if (z == Z_NULL || z->state == Z_NULL)
3369     return Z_STREAM_ERROR;
3370   if (z->state->mode != BAD)
3371   {
3372     z->state->mode = BAD;
3373     z->state->sub.marker = 0;
3374   }
3375   if ((n = z->avail_in) == 0)
3376     return Z_BUF_ERROR;
3377   p = z->next_in;
3378   m = z->state->sub.marker;
3379 
3380   /* search */
3381   while (n && m < 4)
3382   {
3383     if (*p == (Byte)(m < 2 ? 0 : 0xff))
3384       m++;
3385     else if (*p)
3386       m = 0;
3387     else
3388       m = 4 - m;
3389     p++, n--;
3390   }
3391 
3392   /* restore */
3393   z->total_in += p - z->next_in;
3394   z->next_in = p;
3395   z->avail_in = n;
3396   z->state->sub.marker = m;
3397 
3398   /* return no joy or set up to restart on a new block */
3399   if (m != 4)
3400     return Z_DATA_ERROR;
3401   r = z->total_in;  w = z->total_out;
3402   inflateReset(z);
3403   z->total_in = r;  z->total_out = w;
3404   z->state->mode = BLOCKS;
3405   return Z_OK;
3406 }
3407 
3408 #undef NEEDBYTE
3409 #undef NEXTBYTE
3410 /* --- inflate.c */
3411 
3412 /* +++ infblock.c */
3413 /* infblock.c -- interpret and process block types to last block
3414  * Copyright (C) 1995-1996 Mark Adler
3415  * For conditions of distribution and use, see copyright notice in zlib.h
3416  */
3417 
3418 /* #include "zutil.h" */
3419 /* #include "infblock.h" */
3420 
3421 /* +++ inftrees.h */
3422 /* inftrees.h -- header to use inftrees.c
3423  * Copyright (C) 1995-1996 Mark Adler
3424  * For conditions of distribution and use, see copyright notice in zlib.h
3425  */
3426 
3427 /* WARNING: this file should *not* be used by applications. It is
3428    part of the implementation of the compression library and is
3429    subject to change. Applications should only use zlib.h.
3430  */
3431 
3432 /* Huffman code lookup table entry--this entry is four bytes for machines
3433    that have 16-bit pointers (e.g. PC's in the small or medium model). */
3434 
3435 typedef struct inflate_huft_s FAR inflate_huft;
3436 
3437 struct inflate_huft_s {
3438   union {
3439     struct {
3440       Byte Exop;        /* number of extra bits or operation */
3441       Byte Bits;        /* number of bits in this code or subcode */
3442     } what;
3443     Bytef *pad;         /* pad structure to a power of 2 (4 bytes for */
3444   } word;               /*  16-bit, 8 bytes for 32-bit machines) */
3445   union {
3446     uInt Base;          /* literal, length base, or distance base */
3447     inflate_huft *Next; /* pointer to next level of table */
3448   } more;
3449 };
3450 
3451 #ifdef DEBUG_ZLIB
3452   extern uInt inflate_hufts;
3453 #endif
3454 
3455 extern int inflate_trees_bits OF((
3456     uIntf *,                    /* 19 code lengths */
3457     uIntf *,                    /* bits tree desired/actual depth */
3458     inflate_huft * FAR *,       /* bits tree result */
3459     z_streamp ));               /* for zalloc, zfree functions */
3460 
3461 extern int inflate_trees_dynamic OF((
3462     uInt,                       /* number of literal/length codes */
3463     uInt,                       /* number of distance codes */
3464     uIntf *,                    /* that many (total) code lengths */
3465     uIntf *,                    /* literal desired/actual bit depth */
3466     uIntf *,                    /* distance desired/actual bit depth */
3467     inflate_huft * FAR *,       /* literal/length tree result */
3468     inflate_huft * FAR *,       /* distance tree result */
3469     z_streamp ));               /* for zalloc, zfree functions */
3470 
3471 extern int inflate_trees_fixed OF((
3472     uIntf *,                    /* literal desired/actual bit depth */
3473     uIntf *,                    /* distance desired/actual bit depth */
3474     inflate_huft * FAR *,       /* literal/length tree result */
3475     inflate_huft * FAR *));     /* distance tree result */
3476 
3477 extern int inflate_trees_free OF((
3478     inflate_huft *,             /* tables to free */
3479     z_streamp ));               /* for zfree function */
3480 
3481 /* --- inftrees.h */
3482 
3483 /* +++ infcodes.h */
3484 /* infcodes.h -- header to use infcodes.c
3485  * Copyright (C) 1995-1996 Mark Adler
3486  * For conditions of distribution and use, see copyright notice in zlib.h
3487  */
3488 
3489 /* WARNING: this file should *not* be used by applications. It is
3490    part of the implementation of the compression library and is
3491    subject to change. Applications should only use zlib.h.
3492  */
3493 
3494 struct inflate_codes_state;
3495 typedef struct inflate_codes_state FAR inflate_codes_statef;
3496 
3497 extern inflate_codes_statef *inflate_codes_new OF((
3498     uInt, uInt,
3499     inflate_huft *, inflate_huft *,
3500     z_streamp ));
3501 
3502 extern int inflate_codes OF((
3503     inflate_blocks_statef *,
3504     z_streamp ,
3505     int));
3506 
3507 extern void inflate_codes_free OF((
3508     inflate_codes_statef *,
3509     z_streamp ));
3510 
3511 /* --- infcodes.h */
3512 
3513 /* +++ infutil.h */
3514 /* infutil.h -- types and macros common to blocks and codes
3515  * Copyright (C) 1995-1996 Mark Adler
3516  * For conditions of distribution and use, see copyright notice in zlib.h
3517  */
3518 
3519 /* WARNING: this file should *not* be used by applications. It is
3520    part of the implementation of the compression library and is
3521    subject to change. Applications should only use zlib.h.
3522  */
3523 
3524 #ifndef _INFUTIL_H
3525 #define _INFUTIL_H
3526 
3527 typedef enum {
3528       TYPE,     /* get type bits (3, including end bit) */
3529       LENS,     /* get lengths for stored */
3530       STORED,   /* processing stored block */
3531       TABLE,    /* get table lengths */
3532       BTREE,    /* get bit lengths tree for a dynamic block */
3533       DTREE,    /* get length, distance trees for a dynamic block */
3534       CODES,    /* processing fixed or dynamic block */
3535       DRY,      /* output remaining window bytes */
3536       DONEB,    /* finished last block, done */
3537       BADB}     /* got a data error--stuck here */
3538 inflate_block_mode;
3539 
3540 /* inflate blocks semi-private state */
3541 struct inflate_blocks_state {
3542 
3543   /* mode */
3544   inflate_block_mode  mode;     /* current inflate_block mode */
3545 
3546   /* mode dependent information */
3547   union {
3548     uInt left;          /* if STORED, bytes left to copy */
3549     struct {
3550       uInt table;               /* table lengths (14 bits) */
3551       uInt index;               /* index into blens (or border) */
3552       uIntf *blens;             /* bit lengths of codes */
3553       uInt bb;                  /* bit length tree depth */
3554       inflate_huft *tb;         /* bit length decoding tree */
3555     } trees;            /* if DTREE, decoding info for trees */
3556     struct {
3557       inflate_huft *tl;
3558       inflate_huft *td;         /* trees to free */
3559       inflate_codes_statef
3560          *codes;
3561     } decode;           /* if CODES, current state */
3562   } sub;                /* submode */
3563   uInt last;            /* true if this block is the last block */
3564 
3565   /* mode independent information */
3566   uInt bitk;            /* bits in bit buffer */
3567   uLong bitb;           /* bit buffer */
3568   Bytef *window;        /* sliding window */
3569   Bytef *end;           /* one byte after sliding window */
3570   Bytef *read;          /* window read pointer */
3571   Bytef *write;         /* window write pointer */
3572   check_func checkfn;   /* check function */
3573   uLong check;          /* check on output */
3574 
3575 };
3576 
3577 
3578 /* defines for inflate input/output */
3579 /*   update pointers and return */
3580 #define UPDBITS {s->bitb=b;s->bitk=k;}
3581 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3582 #define UPDOUT {s->write=q;}
3583 #define UPDATE {UPDBITS UPDIN UPDOUT}
3584 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3585 /*   get bytes and bits */
3586 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3587 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3588 #define NEXTBYTE (n--,*p++)
3589 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3590 #define DUMPBITS(j) {b>>=(j);k-=(j);}
3591 /*   output bytes */
3592 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3593 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3594 #define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3595 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3596 #define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
3597 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3598 /*   load local pointers */
3599 #define LOAD {LOADIN LOADOUT}
3600 
3601 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3602 extern const uInt inflate_mask[17];
3603 
3604 /* copy as much as possible from the sliding window to the output area */
3605 extern int inflate_flush OF((
3606     inflate_blocks_statef *,
3607     z_streamp ,
3608     int));
3609 
3610 #ifndef NO_DUMMY_DECL
3611 struct internal_state      {int dummy;}; /* for buggy compilers */
3612 #endif
3613 
3614 #endif
3615 /* --- infutil.h */
3616 
3617 #ifndef NO_DUMMY_DECL
3618 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
3619 #endif
3620 
3621 /* Table for deflate from PKZIP's appnote.txt. */
3622 local const uInt border[] = { /* Order of the bit length code lengths */
3623         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3624 
3625 /*
3626    Notes beyond the 1.93a appnote.txt:
3627 
3628    1. Distance pointers never point before the beginning of the output
3629       stream.
3630    2. Distance pointers can point back across blocks, up to 32k away.
3631    3. There is an implied maximum of 7 bits for the bit length table and
3632       15 bits for the actual data.
3633    4. If only one code exists, then it is encoded using one bit.  (Zero
3634       would be more efficient, but perhaps a little confusing.)  If two
3635       codes exist, they are coded using one bit each (0 and 1).
3636    5. There is no way of sending zero distance codes--a dummy must be
3637       sent if there are none.  (History: a pre 2.0 version of PKZIP would
3638       store blocks with no distance codes, but this was discovered to be
3639       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
3640       zero distance codes, which is sent as one code of zero bits in
3641       length.
3642    6. There are up to 286 literal/length codes.  Code 256 represents the
3643       end-of-block.  Note however that the static length tree defines
3644       288 codes just to fill out the Huffman codes.  Codes 286 and 287
3645       cannot be used though, since there is no length base or extra bits
3646       defined for them.  Similarily, there are up to 30 distance codes.
3647       However, static trees define 32 codes (all 5 bits) to fill out the
3648       Huffman codes, but the last two had better not show up in the data.
3649    7. Unzip can check dynamic Huffman blocks for complete code sets.
3650       The exception is that a single code would not be complete (see #4).
3651    8. The five bits following the block type is really the number of
3652       literal codes sent minus 257.
3653    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3654       (1+6+6).  Therefore, to output three times the length, you output
3655       three codes (1+1+1), whereas to output four times the same length,
3656       you only need two codes (1+3).  Hmm.
3657   10. In the tree reconstruction algorithm, Code = Code + Increment
3658       only if BitLength(i) is not zero.  (Pretty obvious.)
3659   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
3660   12. Note: length code 284 can represent 227-258, but length code 285
3661       really is 258.  The last length deserves its own, short code
3662       since it gets used a lot in very redundant files.  The length
3663       258 is special since 258 - 3 (the min match length) is 255.
3664   13. The literal/length and distance code bit lengths are read as a
3665       single stream of lengths.  It is possible (and advantageous) for
3666       a repeat code (16, 17, or 18) to go across the boundary between
3667       the two sets of lengths.
3668  */
3669 
3670 
3671 void inflate_blocks_reset(s, z, c)
3672 inflate_blocks_statef *s;
3673 z_streamp z;
3674 uLongf *c;
3675 {
3676   if (s->checkfn != Z_NULL)
3677     *c = s->check;
3678   if (s->mode == BTREE || s->mode == DTREE)
3679     ZFREE(z, s->sub.trees.blens);
3680   if (s->mode == CODES)
3681   {
3682     inflate_codes_free(s->sub.decode.codes, z);
3683     inflate_trees_free(s->sub.decode.td, z);
3684     inflate_trees_free(s->sub.decode.tl, z);
3685   }
3686   s->mode = TYPE;
3687   s->bitk = 0;
3688   s->bitb = 0;
3689   s->read = s->write = s->window;
3690   if (s->checkfn != Z_NULL)
3691     z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
3692   Trace((stderr, "inflate:   blocks reset\n"));
3693 }
3694 
3695 
3696 inflate_blocks_statef *inflate_blocks_new(z, c, w)
3697 z_streamp z;
3698 check_func c;
3699 uInt w;
3700 {
3701   inflate_blocks_statef *s;
3702 
3703   if ((s = (inflate_blocks_statef *)ZALLOC
3704        (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3705     return s;
3706   if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3707   {
3708     ZFREE(z, s);
3709     return Z_NULL;
3710   }
3711   s->end = s->window + w;
3712   s->checkfn = c;
3713   s->mode = TYPE;
3714   Trace((stderr, "inflate:   blocks allocated\n"));
3715   inflate_blocks_reset(s, z, &s->check);
3716   return s;
3717 }
3718 
3719 
3720 #ifdef DEBUG_ZLIB
3721   extern uInt inflate_hufts;
3722 #endif
3723 int inflate_blocks(s, z, r)
3724 inflate_blocks_statef *s;
3725 z_streamp z;
3726 int r;
3727 {
3728   uInt t;               /* temporary storage */
3729   uLong b;              /* bit buffer */
3730   uInt k;               /* bits in bit buffer */
3731   Bytef *p;             /* input data pointer */
3732   uInt n;               /* bytes available there */
3733   Bytef *q;             /* output window write pointer */
3734   uInt m;               /* bytes to end of window or read pointer */
3735 
3736   /* copy input/output information to locals (UPDATE macro restores) */
3737   LOAD
3738 
3739   /* process input based on current state */
3740   while (1) switch (s->mode)
3741   {
3742     case TYPE:
3743       NEEDBITS(3)
3744       t = (uInt)b & 7;
3745       s->last = t & 1;
3746       switch (t >> 1)
3747       {
3748         case 0:                         /* stored */
3749           Trace((stderr, "inflate:     stored block%s\n",
3750                  s->last ? " (last)" : ""));
3751           DUMPBITS(3)
3752           t = k & 7;                    /* go to byte boundary */
3753           DUMPBITS(t)
3754           s->mode = LENS;               /* get length of stored block */
3755           break;
3756         case 1:                         /* fixed */
3757           Trace((stderr, "inflate:     fixed codes block%s\n",
3758                  s->last ? " (last)" : ""));
3759           {
3760             uInt bl, bd;
3761             inflate_huft *tl, *td;
3762 
3763             inflate_trees_fixed(&bl, &bd, &tl, &td);
3764             s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3765             if (s->sub.decode.codes == Z_NULL)
3766             {
3767               r = Z_MEM_ERROR;
3768               LEAVE
3769             }
3770             s->sub.decode.tl = Z_NULL;  /* don't try to free these */
3771             s->sub.decode.td = Z_NULL;
3772           }
3773           DUMPBITS(3)
3774           s->mode = CODES;
3775           break;
3776         case 2:                         /* dynamic */
3777           Trace((stderr, "inflate:     dynamic codes block%s\n",
3778                  s->last ? " (last)" : ""));
3779           DUMPBITS(3)
3780           s->mode = TABLE;
3781           break;
3782         case 3:                         /* illegal */
3783           DUMPBITS(3)
3784           s->mode = BADB;
3785           z->msg = (char*)"invalid block type";
3786           r = Z_DATA_ERROR;
3787           LEAVE
3788       }
3789       break;
3790     case LENS:
3791       NEEDBITS(32)
3792       if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
3793       {
3794         s->mode = BADB;
3795         z->msg = (char*)"invalid stored block lengths";
3796         r = Z_DATA_ERROR;
3797         LEAVE
3798       }
3799       s->sub.left = (uInt)b & 0xffff;
3800       b = k = 0;                      /* dump bits */
3801       Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
3802       s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
3803       break;
3804     case STORED:
3805       if (n == 0)
3806         LEAVE
3807       NEEDOUT
3808       t = s->sub.left;
3809       if (t > n) t = n;
3810       if (t > m) t = m;
3811       zmemcpy(q, p, t);
3812       p += t;  n -= t;
3813       q += t;  m -= t;
3814       if ((s->sub.left -= t) != 0)
3815         break;
3816       Tracev((stderr, "inflate:       stored end, %lu total out\n",
3817               z->total_out + (q >= s->read ? q - s->read :
3818               (s->end - s->read) + (q - s->window))));
3819       s->mode = s->last ? DRY : TYPE;
3820       break;
3821     case TABLE:
3822       NEEDBITS(14)
3823       s->sub.trees.table = t = (uInt)b & 0x3fff;
3824 #ifndef PKZIP_BUG_WORKAROUND
3825       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3826       {
3827         s->mode = BADB;
3828         z->msg = (char*)"too many length or distance symbols";
3829         r = Z_DATA_ERROR;
3830         LEAVE
3831       }
3832 #endif
3833       t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3834       if (t < 19)
3835         t = 19;
3836       if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3837       {
3838         r = Z_MEM_ERROR;
3839         LEAVE
3840       }
3841       DUMPBITS(14)
3842       s->sub.trees.index = 0;
3843       Tracev((stderr, "inflate:       table sizes ok\n"));
3844       s->mode = BTREE;
3845     case BTREE:
3846       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3847       {
3848         NEEDBITS(3)
3849         s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3850         DUMPBITS(3)
3851       }
3852       while (s->sub.trees.index < 19)
3853         s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3854       s->sub.trees.bb = 7;
3855       t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3856                              &s->sub.trees.tb, z);
3857       if (t != Z_OK)
3858       {
3859         ZFREE(z, s->sub.trees.blens);
3860         r = t;
3861         if (r == Z_DATA_ERROR)
3862           s->mode = BADB;
3863         LEAVE
3864       }
3865       s->sub.trees.index = 0;
3866       Tracev((stderr, "inflate:       bits tree ok\n"));
3867       s->mode = DTREE;
3868     case DTREE:
3869       while (t = s->sub.trees.table,
3870              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3871       {
3872         inflate_huft *h;
3873         uInt i, j, c;
3874 
3875         t = s->sub.trees.bb;
3876         NEEDBITS(t)
3877         h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3878         t = h->word.what.Bits;
3879         c = h->more.Base;
3880         if (c < 16)
3881         {
3882           DUMPBITS(t)
3883           s->sub.trees.blens[s->sub.trees.index++] = c;
3884         }
3885         else /* c == 16..18 */
3886         {
3887           i = c == 18 ? 7 : c - 14;
3888           j = c == 18 ? 11 : 3;
3889           NEEDBITS(t + i)
3890           DUMPBITS(t)
3891           j += (uInt)b & inflate_mask[i];
3892           DUMPBITS(i)
3893           i = s->sub.trees.index;
3894           t = s->sub.trees.table;
3895           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3896               (c == 16 && i < 1))
3897           {
3898             inflate_trees_free(s->sub.trees.tb, z);
3899             ZFREE(z, s->sub.trees.blens);
3900             s->mode = BADB;
3901             z->msg = (char*)"invalid bit length repeat";
3902             r = Z_DATA_ERROR;
3903             LEAVE
3904           }
3905           c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3906           do {
3907             s->sub.trees.blens[i++] = c;
3908           } while (--j);
3909           s->sub.trees.index = i;
3910         }
3911       }
3912       inflate_trees_free(s->sub.trees.tb, z);
3913       s->sub.trees.tb = Z_NULL;
3914       {
3915         uInt bl, bd;
3916         inflate_huft *tl, *td;
3917         inflate_codes_statef *c;
3918 
3919         bl = 9;         /* must be <= 9 for lookahead assumptions */
3920         bd = 6;         /* must be <= 9 for lookahead assumptions */
3921         t = s->sub.trees.table;
3922 #ifdef DEBUG_ZLIB
3923       inflate_hufts = 0;
3924 #endif
3925         t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3926                                   s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3927         ZFREE(z, s->sub.trees.blens);
3928         if (t != Z_OK)
3929         {
3930           if (t == (uInt)Z_DATA_ERROR)
3931             s->mode = BADB;
3932           r = t;
3933           LEAVE
3934         }
3935         Tracev((stderr, "inflate:       trees ok, %d * %d bytes used\n",
3936               inflate_hufts, sizeof(inflate_huft)));
3937         if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3938         {
3939           inflate_trees_free(td, z);
3940           inflate_trees_free(tl, z);
3941           r = Z_MEM_ERROR;
3942           LEAVE
3943         }
3944         s->sub.decode.codes = c;
3945         s->sub.decode.tl = tl;
3946         s->sub.decode.td = td;
3947       }
3948       s->mode = CODES;
3949     case CODES:
3950       UPDATE
3951       if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3952         return inflate_flush(s, z, r);
3953       r = Z_OK;
3954       inflate_codes_free(s->sub.decode.codes, z);
3955       inflate_trees_free(s->sub.decode.td, z);
3956       inflate_trees_free(s->sub.decode.tl, z);
3957       LOAD
3958       Tracev((stderr, "inflate:       codes end, %lu total out\n",
3959               z->total_out + (q >= s->read ? q - s->read :
3960               (s->end - s->read) + (q - s->window))));
3961       if (!s->last)
3962       {
3963         s->mode = TYPE;
3964         break;
3965       }
3966       if (k > 7)              /* return unused byte, if any */
3967       {
3968         Assert(k < 16, "inflate_codes grabbed too many bytes")
3969         k -= 8;
3970         n++;
3971         p--;                    /* can always return one */
3972       }
3973       s->mode = DRY;
3974     case DRY:
3975       FLUSH
3976       if (s->read != s->write)
3977         LEAVE
3978       s->mode = DONEB;
3979     case DONEB:
3980       r = Z_STREAM_END;
3981       LEAVE
3982     case BADB:
3983       r = Z_DATA_ERROR;
3984       LEAVE
3985     default:
3986       r = Z_STREAM_ERROR;
3987       LEAVE
3988   }
3989 }
3990 
3991 
3992 int inflate_blocks_free(s, z, c)
3993 inflate_blocks_statef *s;
3994 z_streamp z;
3995 uLongf *c;
3996 {
3997   inflate_blocks_reset(s, z, c);
3998   ZFREE(z, s->window);
3999   ZFREE(z, s);
4000   Trace((stderr, "inflate:   blocks freed\n"));
4001   return Z_OK;
4002 }
4003 
4004 
4005 void inflate_set_dictionary(s, d, n)
4006 inflate_blocks_statef *s;
4007 const Bytef *d;
4008 uInt  n;
4009 {
4010   zmemcpy((charf *)s->window, d, n);
4011   s->read = s->write = s->window + n;
4012 }
4013 
4014 /*
4015  * This subroutine adds the data at next_in/avail_in to the output history
4016  * without performing any output.  The output buffer must be "caught up";
4017  * i.e. no pending output (hence s->read equals s->write), and the state must
4018  * be BLOCKS (i.e. we should be willing to see the start of a series of
4019  * BLOCKS).  On exit, the output will also be caught up, and the checksum
4020  * will have been updated if need be.
4021  */
4022 int inflate_addhistory(s, z)
4023 inflate_blocks_statef *s;
4024 z_stream *z;
4025 {
4026     uLong b;              /* bit buffer */  /* NOT USED HERE */
4027     uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
4028     uInt t;               /* temporary storage */
4029     Bytef *p;             /* input data pointer */
4030     uInt n;               /* bytes available there */
4031     Bytef *q;             /* output window write pointer */
4032     uInt m;               /* bytes to end of window or read pointer */
4033 
4034     if (s->read != s->write)
4035 	return Z_STREAM_ERROR;
4036     if (s->mode != TYPE)
4037 	return Z_DATA_ERROR;
4038 
4039     /* we're ready to rock */
4040     LOAD
4041     /* while there is input ready, copy to output buffer, moving
4042      * pointers as needed.
4043      */
4044     while (n) {
4045 	t = n;  /* how many to do */
4046 	/* is there room until end of buffer? */
4047 	if (t > m) t = m;
4048 	/* update check information */
4049 	if (s->checkfn != Z_NULL)
4050 	    s->check = (*s->checkfn)(s->check, q, t);
4051 	zmemcpy(q, p, t);
4052 	q += t;
4053 	p += t;
4054 	n -= t;
4055 	z->total_out += t;
4056 	s->read = q;    /* drag read pointer forward */
4057 /*      WWRAP  */ 	/* expand WWRAP macro by hand to handle s->read */
4058 	if (q == s->end) {
4059 	    s->read = q = s->window;
4060 	    m = WAVAIL;
4061 	}
4062     }
4063     UPDATE
4064     return Z_OK;
4065 }
4066 
4067 
4068 /*
4069  * At the end of a Deflate-compressed PPP packet, we expect to have seen
4070  * a `stored' block type value but not the (zero) length bytes.
4071  */
4072 int inflate_packet_flush(s)
4073     inflate_blocks_statef *s;
4074 {
4075     if (s->mode != LENS)
4076 	return Z_DATA_ERROR;
4077     s->mode = TYPE;
4078     return Z_OK;
4079 }
4080 /* --- infblock.c */
4081 
4082 /* +++ inftrees.c */
4083 /* inftrees.c -- generate Huffman trees for efficient decoding
4084  * Copyright (C) 1995-1996 Mark Adler
4085  * For conditions of distribution and use, see copyright notice in zlib.h
4086  */
4087 
4088 /* #include "zutil.h" */
4089 /* #include "inftrees.h" */
4090 
4091 char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
4092 /*
4093   If you use the zlib library in a product, an acknowledgment is welcome
4094   in the documentation of your product. If for some reason you cannot
4095   include such an acknowledgment, I would appreciate that you keep this
4096   copyright string in the executable of your product.
4097  */
4098 
4099 #ifndef NO_DUMMY_DECL
4100 struct internal_state  {int dummy;}; /* for buggy compilers */
4101 #endif
4102 
4103 /* simplify the use of the inflate_huft type with some defines */
4104 #define base more.Base
4105 #define next more.Next
4106 #define exop word.what.Exop
4107 #define bits word.what.Bits
4108 
4109 
4110 local int huft_build OF((
4111     uIntf *,            /* code lengths in bits */
4112     uInt,               /* number of codes */
4113     uInt,               /* number of "simple" codes */
4114     const uIntf *,      /* list of base values for non-simple codes */
4115     const uIntf *,      /* list of extra bits for non-simple codes */
4116     inflate_huft * FAR*,/* result: starting table */
4117     uIntf *,            /* maximum lookup bits (returns actual) */
4118     z_streamp ));       /* for zalloc function */
4119 
4120 local voidpf falloc OF((
4121     voidpf,             /* opaque pointer (not used) */
4122     uInt,               /* number of items */
4123     uInt));             /* size of item */
4124 
4125 /* Tables for deflate from PKZIP's appnote.txt. */
4126 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4127         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4128         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4129         /* see note #13 above about 258 */
4130 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4131         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4132         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4133 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4134         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4135         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4136         8193, 12289, 16385, 24577};
4137 local const uInt cpdext[30] = { /* Extra bits for distance codes */
4138         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4139         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4140         12, 12, 13, 13};
4141 
4142 /*
4143    Huffman code decoding is performed using a multi-level table lookup.
4144    The fastest way to decode is to simply build a lookup table whose
4145    size is determined by the longest code.  However, the time it takes
4146    to build this table can also be a factor if the data being decoded
4147    is not very long.  The most common codes are necessarily the
4148    shortest codes, so those codes dominate the decoding time, and hence
4149    the speed.  The idea is you can have a shorter table that decodes the
4150    shorter, more probable codes, and then point to subsidiary tables for
4151    the longer codes.  The time it costs to decode the longer codes is
4152    then traded against the time it takes to make longer tables.
4153 
4154    This results of this trade are in the variables lbits and dbits
4155    below.  lbits is the number of bits the first level table for literal/
4156    length codes can decode in one step, and dbits is the same thing for
4157    the distance codes.  Subsequent tables are also less than or equal to
4158    those sizes.  These values may be adjusted either when all of the
4159    codes are shorter than that, in which case the longest code length in
4160    bits is used, or when the shortest code is *longer* than the requested
4161    table size, in which case the length of the shortest code in bits is
4162    used.
4163 
4164    There are two different values for the two tables, since they code a
4165    different number of possibilities each.  The literal/length table
4166    codes 286 possible values, or in a flat code, a little over eight
4167    bits.  The distance table codes 30 possible values, or a little less
4168    than five bits, flat.  The optimum values for speed end up being
4169    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4170    The optimum values may differ though from machine to machine, and
4171    possibly even between compilers.  Your mileage may vary.
4172  */
4173 
4174 
4175 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4176 #define BMAX 15         /* maximum bit length of any code */
4177 #define N_MAX 288       /* maximum number of codes in any set */
4178 
4179 #ifdef DEBUG_ZLIB
4180   uInt inflate_hufts;
4181 #endif
4182 
4183 local int huft_build(b, n, s, d, e, t, m, zs)
4184 uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
4185 uInt n;                 /* number of codes (assumed <= N_MAX) */
4186 uInt s;                 /* number of simple-valued codes (0..s-1) */
4187 const uIntf *d;         /* list of base values for non-simple codes */
4188 const uIntf *e;         /* list of extra bits for non-simple codes */
4189 inflate_huft * FAR *t;  /* result: starting table */
4190 uIntf *m;               /* maximum lookup bits, returns actual */
4191 z_streamp zs;           /* for zalloc function */
4192 /* Given a list of code lengths and a maximum table size, make a set of
4193    tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
4194    if the given code set is incomplete (the tables are still built in this
4195    case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
4196    lengths), or Z_MEM_ERROR if not enough memory. */
4197 {
4198 
4199   uInt a;                       /* counter for codes of length k */
4200   uInt c[BMAX+1];               /* bit length count table */
4201   uInt f;                       /* i repeats in table every f entries */
4202   int g;                        /* maximum code length */
4203   int h;                        /* table level */
4204   uInt i;              		/* counter, current code */
4205   uInt j;              		/* counter */
4206   int k;               		/* number of bits in current code */
4207   int l;                        /* bits per table (returned in m) */
4208   uIntf *p;            		/* pointer into c[], b[], or v[] */
4209   inflate_huft *q;              /* points to current table */
4210   struct inflate_huft_s r;      /* table entry for structure assignment */
4211   inflate_huft *u[BMAX];        /* table stack */
4212   uInt v[N_MAX];                /* values in order of bit length */
4213   int w;               		/* bits before this table == (l * h) */
4214   uInt x[BMAX+1];               /* bit offsets, then code stack */
4215   uIntf *xp;                    /* pointer into x */
4216   int y;                        /* number of dummy codes added */
4217   uInt z;                       /* number of entries in current table */
4218 
4219 
4220   /* Generate counts for each bit length */
4221   p = c;
4222 #define C0 *p++ = 0;
4223 #define C2 C0 C0 C0 C0
4224 #define C4 C2 C2 C2 C2
4225   C4                            /* clear c[]--assume BMAX+1 is 16 */
4226   p = b;  i = n;
4227   do {
4228     c[*p++]++;                  /* assume all entries <= BMAX */
4229   } while (--i);
4230   if (c[0] == n)                /* null input--all zero length codes */
4231   {
4232     *t = (inflate_huft *)Z_NULL;
4233     *m = 0;
4234     return Z_OK;
4235   }
4236 
4237 
4238   /* Find minimum and maximum length, bound *m by those */
4239   l = *m;
4240   for (j = 1; j <= BMAX; j++)
4241     if (c[j])
4242       break;
4243   k = j;                        /* minimum code length */
4244   if ((uInt)l < j)
4245     l = j;
4246   for (i = BMAX; i; i--)
4247     if (c[i])
4248       break;
4249   g = i;                        /* maximum code length */
4250   if ((uInt)l > i)
4251     l = i;
4252   *m = l;
4253 
4254 
4255   /* Adjust last length count to fill out codes, if needed */
4256   for (y = 1 << j; j < i; j++, y <<= 1)
4257     if ((y -= c[j]) < 0)
4258       return Z_DATA_ERROR;
4259   if ((y -= c[i]) < 0)
4260     return Z_DATA_ERROR;
4261   c[i] += y;
4262 
4263 
4264   /* Generate starting offsets into the value table for each length */
4265   x[1] = j = 0;
4266   p = c + 1;  xp = x + 2;
4267   while (--i) {                 /* note that i == g from above */
4268     *xp++ = (j += *p++);
4269   }
4270 
4271 
4272   /* Make a table of values in order of bit lengths */
4273   p = b;  i = 0;
4274   do {
4275     if ((j = *p++) != 0)
4276       v[x[j]++] = i;
4277   } while (++i < n);
4278   n = x[g];                   /* set n to length of v */
4279 
4280 
4281   /* Generate the Huffman codes and for each, make the table entries */
4282   x[0] = i = 0;                 /* first Huffman code is zero */
4283   p = v;                        /* grab values in bit order */
4284   h = -1;                       /* no tables yet--level -1 */
4285   w = -l;                       /* bits decoded == (l * h) */
4286   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
4287   q = (inflate_huft *)Z_NULL;   /* ditto */
4288   z = 0;                        /* ditto */
4289 
4290   /* go through the bit lengths (k already is bits in shortest code) */
4291   for (; k <= g; k++)
4292   {
4293     a = c[k];
4294     while (a--)
4295     {
4296       /* here i is the Huffman code of length k bits for value *p */
4297       /* make tables up to required level */
4298       while (k > w + l)
4299       {
4300         h++;
4301         w += l;                 /* previous table always l bits */
4302 
4303         /* compute minimum size table less than or equal to l bits */
4304         z = g - w;
4305         z = z > (uInt)l ? l : z;        /* table size upper limit */
4306         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
4307         {                       /* too few codes for k-w bit table */
4308           f -= a + 1;           /* deduct codes from patterns left */
4309           xp = c + k;
4310           if (j < z)
4311             while (++j < z)     /* try smaller tables up to z bits */
4312             {
4313               if ((f <<= 1) <= *++xp)
4314                 break;          /* enough codes to use up j bits */
4315               f -= *xp;         /* else deduct codes from patterns */
4316             }
4317         }
4318         z = 1 << j;             /* table entries for j-bit table */
4319 
4320         /* allocate and link in new table */
4321         if ((q = (inflate_huft *)ZALLOC
4322              (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
4323         {
4324           if (h)
4325             inflate_trees_free(u[0], zs);
4326           return Z_MEM_ERROR;   /* not enough memory */
4327         }
4328 #ifdef DEBUG_ZLIB
4329         inflate_hufts += z + 1;
4330 #endif
4331         *t = q + 1;             /* link to list for huft_free() */
4332         *(t = &(q->next)) = Z_NULL;
4333         u[h] = ++q;             /* table starts after link */
4334 
4335         /* connect to last table, if there is one */
4336         if (h)
4337         {
4338           x[h] = i;             /* save pattern for backing up */
4339           r.bits = (Byte)l;     /* bits to dump before this table */
4340           r.exop = (Byte)j;     /* bits in this table */
4341           r.next = q;           /* pointer to this table */
4342           j = i >> (w - l);     /* (get around Turbo C bug) */
4343           u[h-1][j] = r;        /* connect to last table */
4344         }
4345       }
4346 
4347       /* set up table entry in r */
4348       r.bits = (Byte)(k - w);
4349       if (p >= v + n)
4350         r.exop = 128 + 64;      /* out of values--invalid code */
4351       else if (*p < s)
4352       {
4353         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
4354         r.base = *p++;          /* simple code is just the value */
4355       }
4356       else
4357       {
4358         r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4359         r.base = d[*p++ - s];
4360       }
4361 
4362       /* fill code-like entries with r */
4363       f = 1 << (k - w);
4364       for (j = i >> w; j < z; j += f)
4365         q[j] = r;
4366 
4367       /* backwards increment the k-bit code i */
4368       for (j = 1 << (k - 1); i & j; j >>= 1)
4369         i ^= j;
4370       i ^= j;
4371 
4372       /* backup over finished tables */
4373       while ((i & ((1 << w) - 1)) != x[h])
4374       {
4375         h--;                    /* don't need to update q */
4376         w -= l;
4377       }
4378     }
4379   }
4380 
4381 
4382   /* Return Z_BUF_ERROR if we were given an incomplete table */
4383   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4384 }
4385 
4386 
4387 int inflate_trees_bits(c, bb, tb, z)
4388 uIntf *c;               /* 19 code lengths */
4389 uIntf *bb;              /* bits tree desired/actual depth */
4390 inflate_huft * FAR *tb; /* bits tree result */
4391 z_streamp z;            /* for zfree function */
4392 {
4393   int r;
4394 
4395   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
4396   if (r == Z_DATA_ERROR)
4397     z->msg = (char*)"oversubscribed dynamic bit lengths tree";
4398   else if (r == Z_BUF_ERROR || *bb == 0)
4399   {
4400     inflate_trees_free(*tb, z);
4401     z->msg = (char*)"incomplete dynamic bit lengths tree";
4402     r = Z_DATA_ERROR;
4403   }
4404   return r;
4405 }
4406 
4407 
4408 int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
4409 uInt nl;                /* number of literal/length codes */
4410 uInt nd;                /* number of distance codes */
4411 uIntf *c;               /* that many (total) code lengths */
4412 uIntf *bl;              /* literal desired/actual bit depth */
4413 uIntf *bd;              /* distance desired/actual bit depth */
4414 inflate_huft * FAR *tl; /* literal/length tree result */
4415 inflate_huft * FAR *td; /* distance tree result */
4416 z_streamp z;            /* for zfree function */
4417 {
4418   int r;
4419 
4420   /* build literal/length tree */
4421   r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z);
4422   if (r != Z_OK || *bl == 0)
4423   {
4424     if (r == Z_DATA_ERROR)
4425       z->msg = (char*)"oversubscribed literal/length tree";
4426     else if (r != Z_MEM_ERROR)
4427     {
4428       inflate_trees_free(*tl, z);
4429       z->msg = (char*)"incomplete literal/length tree";
4430       r = Z_DATA_ERROR;
4431     }
4432     return r;
4433   }
4434 
4435   /* build distance tree */
4436   r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z);
4437   if (r != Z_OK || (*bd == 0 && nl > 257))
4438   {
4439     if (r == Z_DATA_ERROR)
4440       z->msg = (char*)"oversubscribed distance tree";
4441     else if (r == Z_BUF_ERROR) {
4442 #ifdef PKZIP_BUG_WORKAROUND
4443       r = Z_OK;
4444     }
4445 #else
4446       inflate_trees_free(*td, z);
4447       z->msg = (char*)"incomplete distance tree";
4448       r = Z_DATA_ERROR;
4449     }
4450     else if (r != Z_MEM_ERROR)
4451     {
4452       z->msg = (char*)"empty distance tree with lengths";
4453       r = Z_DATA_ERROR;
4454     }
4455     inflate_trees_free(*tl, z);
4456     return r;
4457 #endif
4458   }
4459 
4460   /* done */
4461   return Z_OK;
4462 }
4463 
4464 
4465 /* build fixed tables only once--keep them here */
4466 local int fixed_built = 0;
4467 #define FIXEDH 530      /* number of hufts used by fixed tables */
4468 local inflate_huft fixed_mem[FIXEDH];
4469 local uInt fixed_bl;
4470 local uInt fixed_bd;
4471 local inflate_huft *fixed_tl;
4472 local inflate_huft *fixed_td;
4473 
4474 
4475 local voidpf falloc(q, n, s)
4476 voidpf q;       /* opaque pointer */
4477 uInt n;         /* number of items */
4478 uInt s;         /* size of item */
4479 {
4480   Assert(s == sizeof(inflate_huft) && n <= *(intf *)q,
4481          "inflate_trees falloc overflow");
4482   *(intf *)q -= n+s-s; /* s-s to avoid warning */
4483   return (voidpf)(fixed_mem + *(intf *)q);
4484 }
4485 
4486 
4487 int inflate_trees_fixed(bl, bd, tl, td)
4488 uIntf *bl;               /* literal desired/actual bit depth */
4489 uIntf *bd;               /* distance desired/actual bit depth */
4490 inflate_huft * FAR *tl;  /* literal/length tree result */
4491 inflate_huft * FAR *td;  /* distance tree result */
4492 {
4493   /* build fixed tables if not already (multiple overlapped executions ok) */
4494   if (!fixed_built)
4495   {
4496     int k;              /* temporary variable */
4497     unsigned c[288];    /* length list for huft_build */
4498     z_stream z;         /* for falloc function */
4499     int f = FIXEDH;     /* number of hufts left in fixed_mem */
4500 
4501     /* set up fake z_stream for memory routines */
4502     z.zalloc = falloc;
4503     z.zfree = Z_NULL;
4504     z.opaque = (voidpf)&f;
4505 
4506     /* literal table */
4507     for (k = 0; k < 144; k++)
4508       c[k] = 8;
4509     for (; k < 256; k++)
4510       c[k] = 9;
4511     for (; k < 280; k++)
4512       c[k] = 7;
4513     for (; k < 288; k++)
4514       c[k] = 8;
4515     fixed_bl = 7;
4516     huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4517 
4518     /* distance table */
4519     for (k = 0; k < 30; k++)
4520       c[k] = 5;
4521     fixed_bd = 5;
4522     huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4523 
4524     /* done */
4525     Assert(f == 0, "invalid build of fixed tables");
4526     fixed_built = 1;
4527   }
4528   *bl = fixed_bl;
4529   *bd = fixed_bd;
4530   *tl = fixed_tl;
4531   *td = fixed_td;
4532   return Z_OK;
4533 }
4534 
4535 
4536 int inflate_trees_free(t, z)
4537 inflate_huft *t;        /* table to free */
4538 z_streamp z;            /* for zfree function */
4539 /* Free the malloc'ed tables built by huft_build(), which makes a linked
4540    list of the tables it made, with the links in a dummy first entry of
4541    each table. */
4542 {
4543   inflate_huft *p, *q, *r;
4544 
4545   /* Reverse linked list */
4546   p = Z_NULL;
4547   q = t;
4548   while (q != Z_NULL)
4549   {
4550     r = (q - 1)->next;
4551     (q - 1)->next = p;
4552     p = q;
4553     q = r;
4554   }
4555   /* Go through linked list, freeing from the malloced (t[-1]) address. */
4556   while (p != Z_NULL)
4557   {
4558     q = (--p)->next;
4559     ZFREE(z,p);
4560     p = q;
4561   }
4562   return Z_OK;
4563 }
4564 /* --- inftrees.c */
4565 
4566 /* +++ infcodes.c */
4567 /* infcodes.c -- process literals and length/distance pairs
4568  * Copyright (C) 1995-1996 Mark Adler
4569  * For conditions of distribution and use, see copyright notice in zlib.h
4570  */
4571 
4572 /* #include "zutil.h" */
4573 /* #include "inftrees.h" */
4574 /* #include "infblock.h" */
4575 /* #include "infcodes.h" */
4576 /* #include "infutil.h" */
4577 
4578 /* +++ inffast.h */
4579 /* inffast.h -- header to use inffast.c
4580  * Copyright (C) 1995-1996 Mark Adler
4581  * For conditions of distribution and use, see copyright notice in zlib.h
4582  */
4583 
4584 /* WARNING: this file should *not* be used by applications. It is
4585    part of the implementation of the compression library and is
4586    subject to change. Applications should only use zlib.h.
4587  */
4588 
4589 extern int inflate_fast OF((
4590     uInt,
4591     uInt,
4592     inflate_huft *,
4593     inflate_huft *,
4594     inflate_blocks_statef *,
4595     z_streamp ));
4596 /* --- inffast.h */
4597 
4598 /* simplify the use of the inflate_huft type with some defines */
4599 #define base more.Base
4600 #define next more.Next
4601 #define exop word.what.Exop
4602 #define bits word.what.Bits
4603 
4604 /* inflate codes private state */
4605 struct inflate_codes_state {
4606 
4607   /* mode */
4608   enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4609       START,    /* x: set up for LEN */
4610       LEN,      /* i: get length/literal/eob next */
4611       LENEXT,   /* i: getting length extra (have base) */
4612       DIST,     /* i: get distance next */
4613       DISTEXT,  /* i: getting distance extra */
4614       COPY,     /* o: copying bytes in window, waiting for space */
4615       LIT,      /* o: got literal, waiting for output space */
4616       WASH,     /* o: got eob, possibly still output waiting */
4617       END,      /* x: got eob and all data flushed */
4618       BADCODE}  /* x: got error */
4619     mode;               /* current inflate_codes mode */
4620 
4621   /* mode dependent information */
4622   uInt len;
4623   union {
4624     struct {
4625       inflate_huft *tree;       /* pointer into tree */
4626       uInt need;                /* bits needed */
4627     } code;             /* if LEN or DIST, where in tree */
4628     uInt lit;           /* if LIT, literal */
4629     struct {
4630       uInt get;                 /* bits to get for extra */
4631       uInt dist;                /* distance back to copy from */
4632     } copy;             /* if EXT or COPY, where and how much */
4633   } sub;                /* submode */
4634 
4635   /* mode independent information */
4636   Byte lbits;           /* ltree bits decoded per branch */
4637   Byte dbits;           /* dtree bits decoder per branch */
4638   inflate_huft *ltree;          /* literal/length/eob tree */
4639   inflate_huft *dtree;          /* distance tree */
4640 
4641 };
4642 
4643 
4644 inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4645 uInt bl, bd;
4646 inflate_huft *tl;
4647 inflate_huft *td; /* need separate declaration for Borland C++ */
4648 z_streamp z;
4649 {
4650   inflate_codes_statef *c;
4651 
4652   if ((c = (inflate_codes_statef *)
4653        ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4654   {
4655     c->mode = START;
4656     c->lbits = (Byte)bl;
4657     c->dbits = (Byte)bd;
4658     c->ltree = tl;
4659     c->dtree = td;
4660     Tracev((stderr, "inflate:       codes new\n"));
4661   }
4662   return c;
4663 }
4664 
4665 
4666 int inflate_codes(s, z, r)
4667 inflate_blocks_statef *s;
4668 z_streamp z;
4669 int r;
4670 {
4671   uInt j;               /* temporary storage */
4672   inflate_huft *t;      /* temporary pointer */
4673   uInt e;               /* extra bits or operation */
4674   uLong b;              /* bit buffer */
4675   uInt k;               /* bits in bit buffer */
4676   Bytef *p;             /* input data pointer */
4677   uInt n;               /* bytes available there */
4678   Bytef *q;             /* output window write pointer */
4679   uInt m;               /* bytes to end of window or read pointer */
4680   Bytef *f;             /* pointer to copy strings from */
4681   inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
4682 
4683   /* copy input/output information to locals (UPDATE macro restores) */
4684   LOAD
4685 
4686   /* process input and output based on current state */
4687   while (1) switch (c->mode)
4688   {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4689     case START:         /* x: set up for LEN */
4690 #ifndef SLOW
4691       if (m >= 258 && n >= 10)
4692       {
4693         UPDATE
4694         r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4695         LOAD
4696         if (r != Z_OK)
4697         {
4698           c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4699           break;
4700         }
4701       }
4702 #endif /* !SLOW */
4703       c->sub.code.need = c->lbits;
4704       c->sub.code.tree = c->ltree;
4705       c->mode = LEN;
4706     case LEN:           /* i: get length/literal/eob next */
4707       j = c->sub.code.need;
4708       NEEDBITS(j)
4709       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4710       DUMPBITS(t->bits)
4711       e = (uInt)(t->exop);
4712       if (e == 0)               /* literal */
4713       {
4714         c->sub.lit = t->base;
4715         Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4716                  "inflate:         literal '%c'\n" :
4717                  "inflate:         literal 0x%02x\n", t->base));
4718         c->mode = LIT;
4719         break;
4720       }
4721       if (e & 16)               /* length */
4722       {
4723         c->sub.copy.get = e & 15;
4724         c->len = t->base;
4725         c->mode = LENEXT;
4726         break;
4727       }
4728       if ((e & 64) == 0)        /* next table */
4729       {
4730         c->sub.code.need = e;
4731         c->sub.code.tree = t->next;
4732         break;
4733       }
4734       if (e & 32)               /* end of block */
4735       {
4736         Tracevv((stderr, "inflate:         end of block\n"));
4737         c->mode = WASH;
4738         break;
4739       }
4740       c->mode = BADCODE;        /* invalid code */
4741       z->msg = (char*)"invalid literal/length code";
4742       r = Z_DATA_ERROR;
4743       LEAVE
4744     case LENEXT:        /* i: getting length extra (have base) */
4745       j = c->sub.copy.get;
4746       NEEDBITS(j)
4747       c->len += (uInt)b & inflate_mask[j];
4748       DUMPBITS(j)
4749       c->sub.code.need = c->dbits;
4750       c->sub.code.tree = c->dtree;
4751       Tracevv((stderr, "inflate:         length %u\n", c->len));
4752       c->mode = DIST;
4753     case DIST:          /* i: get distance next */
4754       j = c->sub.code.need;
4755       NEEDBITS(j)
4756       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4757       DUMPBITS(t->bits)
4758       e = (uInt)(t->exop);
4759       if (e & 16)               /* distance */
4760       {
4761         c->sub.copy.get = e & 15;
4762         c->sub.copy.dist = t->base;
4763         c->mode = DISTEXT;
4764         break;
4765       }
4766       if ((e & 64) == 0)        /* next table */
4767       {
4768         c->sub.code.need = e;
4769         c->sub.code.tree = t->next;
4770         break;
4771       }
4772       c->mode = BADCODE;        /* invalid code */
4773       z->msg = (char*)"invalid distance code";
4774       r = Z_DATA_ERROR;
4775       LEAVE
4776     case DISTEXT:       /* i: getting distance extra */
4777       j = c->sub.copy.get;
4778       NEEDBITS(j)
4779       c->sub.copy.dist += (uInt)b & inflate_mask[j];
4780       DUMPBITS(j)
4781       Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
4782       c->mode = COPY;
4783     case COPY:          /* o: copying bytes in window, waiting for space */
4784 #ifndef __TURBOC__ /* Turbo C bug for following expression */
4785       f = (uInt)(q - s->window) < c->sub.copy.dist ?
4786           s->end - (c->sub.copy.dist - (q - s->window)) :
4787           q - c->sub.copy.dist;
4788 #else
4789       f = q - c->sub.copy.dist;
4790       if ((uInt)(q - s->window) < c->sub.copy.dist)
4791         f = s->end - (c->sub.copy.dist - (uInt)(q - s->window));
4792 #endif
4793       while (c->len)
4794       {
4795         NEEDOUT
4796         OUTBYTE(*f++)
4797         if (f == s->end)
4798           f = s->window;
4799         c->len--;
4800       }
4801       c->mode = START;
4802       break;
4803     case LIT:           /* o: got literal, waiting for output space */
4804       NEEDOUT
4805       OUTBYTE(c->sub.lit)
4806       c->mode = START;
4807       break;
4808     case WASH:          /* o: got eob, possibly more output */
4809       FLUSH
4810       if (s->read != s->write)
4811         LEAVE
4812       c->mode = END;
4813     case END:
4814       r = Z_STREAM_END;
4815       LEAVE
4816     case BADCODE:       /* x: got error */
4817       r = Z_DATA_ERROR;
4818       LEAVE
4819     default:
4820       r = Z_STREAM_ERROR;
4821       LEAVE
4822   }
4823 }
4824 
4825 
4826 void inflate_codes_free(c, z)
4827 inflate_codes_statef *c;
4828 z_streamp z;
4829 {
4830   ZFREE(z, c);
4831   Tracev((stderr, "inflate:       codes free\n"));
4832 }
4833 /* --- infcodes.c */
4834 
4835 /* +++ infutil.c */
4836 /* inflate_util.c -- data and routines common to blocks and codes
4837  * Copyright (C) 1995-1996 Mark Adler
4838  * For conditions of distribution and use, see copyright notice in zlib.h
4839  */
4840 
4841 /* #include "zutil.h" */
4842 /* #include "infblock.h" */
4843 /* #include "inftrees.h" */
4844 /* #include "infcodes.h" */
4845 /* #include "infutil.h" */
4846 
4847 #ifndef NO_DUMMY_DECL
4848 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4849 #endif
4850 
4851 /* And'ing with mask[n] masks the lower n bits */
4852 uInt const inflate_mask[17] = {
4853     0x0000,
4854     0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
4855     0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
4856 };
4857 
4858 
4859 /* copy as much as possible from the sliding window to the output area */
4860 int inflate_flush(s, z, r)
4861 inflate_blocks_statef *s;
4862 z_streamp z;
4863 int r;
4864 {
4865   uInt n;
4866   Bytef *p;
4867   Bytef *q;
4868 
4869   /* local copies of source and destination pointers */
4870   p = z->next_out;
4871   q = s->read;
4872 
4873   /* compute number of bytes to copy as far as end of window */
4874   n = (uInt)((q <= s->write ? s->write : s->end) - q);
4875   if (n > z->avail_out) n = z->avail_out;
4876   if (n && r == Z_BUF_ERROR) r = Z_OK;
4877 
4878   /* update counters */
4879   z->avail_out -= n;
4880   z->total_out += n;
4881 
4882   /* update check information */
4883   if (s->checkfn != Z_NULL)
4884     z->adler = s->check = (*s->checkfn)(s->check, q, n);
4885 
4886   /* copy as far as end of window */
4887   if (p != Z_NULL) {
4888     zmemcpy(p, q, n);
4889     p += n;
4890   }
4891   q += n;
4892 
4893   /* see if more to copy at beginning of window */
4894   if (q == s->end)
4895   {
4896     /* wrap pointers */
4897     q = s->window;
4898     if (s->write == s->end)
4899       s->write = s->window;
4900 
4901     /* compute bytes to copy */
4902     n = (uInt)(s->write - q);
4903     if (n > z->avail_out) n = z->avail_out;
4904     if (n && r == Z_BUF_ERROR) r = Z_OK;
4905 
4906     /* update counters */
4907     z->avail_out -= n;
4908     z->total_out += n;
4909 
4910     /* update check information */
4911     if (s->checkfn != Z_NULL)
4912       z->adler = s->check = (*s->checkfn)(s->check, q, n);
4913 
4914     /* copy */
4915     if (p != Z_NULL) {
4916       zmemcpy(p, q, n);
4917       p += n;
4918     }
4919     q += n;
4920   }
4921 
4922   /* update pointers */
4923   z->next_out = p;
4924   s->read = q;
4925 
4926   /* done */
4927   return r;
4928 }
4929 /* --- infutil.c */
4930 
4931 /* +++ inffast.c */
4932 /* inffast.c -- process literals and length/distance pairs fast
4933  * Copyright (C) 1995-1996 Mark Adler
4934  * For conditions of distribution and use, see copyright notice in zlib.h
4935  */
4936 
4937 /* #include "zutil.h" */
4938 /* #include "inftrees.h" */
4939 /* #include "infblock.h" */
4940 /* #include "infcodes.h" */
4941 /* #include "infutil.h" */
4942 /* #include "inffast.h" */
4943 
4944 #ifndef NO_DUMMY_DECL
4945 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4946 #endif
4947 
4948 /* simplify the use of the inflate_huft type with some defines */
4949 #define base more.Base
4950 #define next more.Next
4951 #define exop word.what.Exop
4952 #define bits word.what.Bits
4953 
4954 /* macros for bit input with no checking and for returning unused bytes */
4955 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4956 #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4957 
4958 /* Called with number of bytes left to write in window at least 258
4959    (the maximum string length) and number of input bytes available
4960    at least ten.  The ten bytes are six bytes for the longest length/
4961    distance pair plus four bytes for overloading the bit buffer. */
4962 
4963 int inflate_fast(bl, bd, tl, td, s, z)
4964 uInt bl, bd;
4965 inflate_huft *tl;
4966 inflate_huft *td; /* need separate declaration for Borland C++ */
4967 inflate_blocks_statef *s;
4968 z_streamp z;
4969 {
4970   inflate_huft *t;      /* temporary pointer */
4971   uInt e;               /* extra bits or operation */
4972   uLong b;              /* bit buffer */
4973   uInt k;               /* bits in bit buffer */
4974   Bytef *p;             /* input data pointer */
4975   uInt n;               /* bytes available there */
4976   Bytef *q;             /* output window write pointer */
4977   uInt m;               /* bytes to end of window or read pointer */
4978   uInt ml;              /* mask for literal/length tree */
4979   uInt md;              /* mask for distance tree */
4980   uInt c;               /* bytes to copy */
4981   uInt d;               /* distance back to copy from */
4982   Bytef *r;             /* copy source pointer */
4983 
4984   /* load input, output, bit values */
4985   LOAD
4986 
4987   /* initialize masks */
4988   ml = inflate_mask[bl];
4989   md = inflate_mask[bd];
4990 
4991   /* do until not enough input or output space for fast loop */
4992   do {                          /* assume called with m >= 258 && n >= 10 */
4993     /* get literal/length code */
4994     GRABBITS(20)                /* max bits for literal/length code */
4995     if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
4996     {
4997       DUMPBITS(t->bits)
4998       Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4999                 "inflate:         * literal '%c'\n" :
5000                 "inflate:         * literal 0x%02x\n", t->base));
5001       *q++ = (Byte)t->base;
5002       m--;
5003       continue;
5004     }
5005     do {
5006       DUMPBITS(t->bits)
5007       if (e & 16)
5008       {
5009         /* get extra bits for length */
5010         e &= 15;
5011         c = t->base + ((uInt)b & inflate_mask[e]);
5012         DUMPBITS(e)
5013         Tracevv((stderr, "inflate:         * length %u\n", c));
5014 
5015         /* decode distance base of block to copy */
5016         GRABBITS(15);           /* max bits for distance code */
5017         e = (t = td + ((uInt)b & md))->exop;
5018         do {
5019           DUMPBITS(t->bits)
5020           if (e & 16)
5021           {
5022             /* get extra bits to add to distance base */
5023             e &= 15;
5024             GRABBITS(e)         /* get extra bits (up to 13) */
5025             d = t->base + ((uInt)b & inflate_mask[e]);
5026             DUMPBITS(e)
5027             Tracevv((stderr, "inflate:         * distance %u\n", d));
5028 
5029             /* do the copy */
5030             m -= c;
5031             if ((uInt)(q - s->window) >= d)     /* offset before dest */
5032             {                                   /*  just copy */
5033               r = q - d;
5034               *q++ = *r++;  c--;        /* minimum count is three, */
5035               *q++ = *r++;  c--;        /*  so unroll loop a little */
5036             }
5037             else                        /* else offset after destination */
5038             {
5039               e = d - (uInt)(q - s->window); /* bytes from offset to end */
5040               r = s->end - e;           /* pointer to offset */
5041               if (c > e)                /* if source crosses, */
5042               {
5043                 c -= e;                 /* copy to end of window */
5044                 do {
5045                   *q++ = *r++;
5046                 } while (--e);
5047                 r = s->window;          /* copy rest from start of window */
5048               }
5049             }
5050             do {                        /* copy all or what's left */
5051               *q++ = *r++;
5052             } while (--c);
5053             break;
5054           }
5055           else if ((e & 64) == 0)
5056             e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
5057           else
5058           {
5059             z->msg = (char*)"invalid distance code";
5060             UNGRAB
5061             UPDATE
5062             return Z_DATA_ERROR;
5063           }
5064         } while (1);
5065         break;
5066       }
5067       if ((e & 64) == 0)
5068       {
5069         if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
5070         {
5071           DUMPBITS(t->bits)
5072           Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5073                     "inflate:         * literal '%c'\n" :
5074                     "inflate:         * literal 0x%02x\n", t->base));
5075           *q++ = (Byte)t->base;
5076           m--;
5077           break;
5078         }
5079       }
5080       else if (e & 32)
5081       {
5082         Tracevv((stderr, "inflate:         * end of block\n"));
5083         UNGRAB
5084         UPDATE
5085         return Z_STREAM_END;
5086       }
5087       else
5088       {
5089         z->msg = (char*)"invalid literal/length code";
5090         UNGRAB
5091         UPDATE
5092         return Z_DATA_ERROR;
5093       }
5094     } while (1);
5095   } while (m >= 258 && n >= 10);
5096 
5097   /* not enough input or output--restore pointers and return */
5098   UNGRAB
5099   UPDATE
5100   return Z_OK;
5101 }
5102 /* --- inffast.c */
5103 
5104 /* +++ zutil.c */
5105 /* zutil.c -- target dependent utility functions for the compression library
5106  * Copyright (C) 1995-1996 Jean-loup Gailly.
5107  * For conditions of distribution and use, see copyright notice in zlib.h
5108  */
5109 
5110 /* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5111 
5112 #ifdef DEBUG_ZLIB
5113 #include <stdio.h>
5114 #endif
5115 
5116 /* #include "zutil.h" */
5117 
5118 #ifndef NO_DUMMY_DECL
5119 struct internal_state      {int dummy;}; /* for buggy compilers */
5120 #endif
5121 
5122 #ifndef STDC
5123 extern void exit OF((int));
5124 #endif
5125 
5126 const char * const z_errmsg[10] = {
5127 "need dictionary",     /* Z_NEED_DICT       2  */
5128 "stream end",          /* Z_STREAM_END      1  */
5129 "",                    /* Z_OK              0  */
5130 "file error",          /* Z_ERRNO         (-1) */
5131 "stream error",        /* Z_STREAM_ERROR  (-2) */
5132 "data error",          /* Z_DATA_ERROR    (-3) */
5133 "insufficient memory", /* Z_MEM_ERROR     (-4) */
5134 "buffer error",        /* Z_BUF_ERROR     (-5) */
5135 "incompatible version",/* Z_VERSION_ERROR (-6) */
5136 ""};
5137 
5138 
5139 const char *zlibVersion()
5140 {
5141     return ZLIB_VERSION;
5142 }
5143 
5144 #ifdef DEBUG_ZLIB
5145 void z_error (m)
5146     char *m;
5147 {
5148     fprintf(stderr, "%s\n", m);
5149     exit(1);
5150 }
5151 #endif
5152 
5153 #ifndef HAVE_MEMCPY
5154 
5155 void zmemcpy(dest, source, len)
5156     Bytef* dest;
5157     Bytef* source;
5158     uInt  len;
5159 {
5160     if (len == 0) return;
5161     do {
5162         *dest++ = *source++; /* ??? to be unrolled */
5163     } while (--len != 0);
5164 }
5165 
5166 int zmemcmp(s1, s2, len)
5167     Bytef* s1;
5168     Bytef* s2;
5169     uInt  len;
5170 {
5171     uInt j;
5172 
5173     for (j = 0; j < len; j++) {
5174         if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5175     }
5176     return 0;
5177 }
5178 
5179 void zmemzero(dest, len)
5180     Bytef* dest;
5181     uInt  len;
5182 {
5183     if (len == 0) return;
5184     do {
5185         *dest++ = 0;  /* ??? to be unrolled */
5186     } while (--len != 0);
5187 }
5188 #endif
5189 
5190 #ifdef __TURBOC__
5191 #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5192 /* Small and medium model in Turbo C are for now limited to near allocation
5193  * with reduced MAX_WBITS and MAX_MEM_LEVEL
5194  */
5195 #  define MY_ZCALLOC
5196 
5197 /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5198  * and farmalloc(64K) returns a pointer with an offset of 8, so we
5199  * must fix the pointer. Warning: the pointer must be put back to its
5200  * original form in order to free it, use zcfree().
5201  */
5202 
5203 #define MAX_PTR 10
5204 /* 10*64K = 640K */
5205 
5206 local int next_ptr = 0;
5207 
5208 typedef struct ptr_table_s {
5209     voidpf org_ptr;
5210     voidpf new_ptr;
5211 } ptr_table;
5212 
5213 local ptr_table table[MAX_PTR];
5214 /* This table is used to remember the original form of pointers
5215  * to large buffers (64K). Such pointers are normalized with a zero offset.
5216  * Since MSDOS is not a preemptive multitasking OS, this table is not
5217  * protected from concurrent access. This hack doesn't work anyway on
5218  * a protected system like OS/2. Use Microsoft C instead.
5219  */
5220 
5221 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5222 {
5223     voidpf buf = opaque; /* just to make some compilers happy */
5224     ulg bsize = (ulg)items*size;
5225 
5226     /* If we allocate less than 65520 bytes, we assume that farmalloc
5227      * will return a usable pointer which doesn't have to be normalized.
5228      */
5229     if (bsize < 65520L) {
5230         buf = farmalloc(bsize);
5231         if (*(ush*)&buf != 0) return buf;
5232     } else {
5233         buf = farmalloc(bsize + 16L);
5234     }
5235     if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5236     table[next_ptr].org_ptr = buf;
5237 
5238     /* Normalize the pointer to seg:0 */
5239     *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5240     *(ush*)&buf = 0;
5241     table[next_ptr++].new_ptr = buf;
5242     return buf;
5243 }
5244 
5245 void  zcfree (voidpf opaque, voidpf ptr)
5246 {
5247     int n;
5248     if (*(ush*)&ptr != 0) { /* object < 64K */
5249         farfree(ptr);
5250         return;
5251     }
5252     /* Find the original pointer */
5253     for (n = 0; n < next_ptr; n++) {
5254         if (ptr != table[n].new_ptr) continue;
5255 
5256         farfree(table[n].org_ptr);
5257         while (++n < next_ptr) {
5258             table[n-1] = table[n];
5259         }
5260         next_ptr--;
5261         return;
5262     }
5263     ptr = opaque; /* just to make some compilers happy */
5264     Assert(0, "zcfree: ptr not found");
5265 }
5266 #endif
5267 #endif /* __TURBOC__ */
5268 
5269 
5270 #if defined(M_I86) && !defined(__32BIT__)
5271 /* Microsoft C in 16-bit mode */
5272 
5273 #  define MY_ZCALLOC
5274 
5275 #if (!defined(_MSC_VER) || (_MSC_VER < 600))
5276 #  define _halloc  halloc
5277 #  define _hfree   hfree
5278 #endif
5279 
5280 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5281 {
5282     if (opaque) opaque = 0; /* to make compiler happy */
5283     return _halloc((long)items, size);
5284 }
5285 
5286 void  zcfree (voidpf opaque, voidpf ptr)
5287 {
5288     if (opaque) opaque = 0; /* to make compiler happy */
5289     _hfree(ptr);
5290 }
5291 
5292 #endif /* MSC */
5293 
5294 
5295 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
5296 
5297 #ifndef STDC
5298 extern voidp  calloc OF((uInt items, uInt size));
5299 extern void   free   OF((voidpf ptr));
5300 #endif
5301 
5302 voidpf zcalloc (opaque, items, size)
5303     voidpf opaque;
5304     unsigned items;
5305     unsigned size;
5306 {
5307     if (opaque) items += size - size; /* make compiler happy */
5308     return (voidpf)calloc(items, size);
5309 }
5310 
5311 void  zcfree (opaque, ptr)
5312     voidpf opaque;
5313     voidpf ptr;
5314 {
5315     free(ptr);
5316     if (opaque) return; /* make compiler happy */
5317 }
5318 
5319 #endif /* MY_ZCALLOC */
5320 /* --- zutil.c */
5321 
5322 /* +++ adler32.c */
5323 /* adler32.c -- compute the Adler-32 checksum of a data stream
5324  * Copyright (C) 1995-1996 Mark Adler
5325  * For conditions of distribution and use, see copyright notice in zlib.h
5326  */
5327 
5328 /* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
5329 
5330 /* #include "zlib.h" */
5331 
5332 #define BASE 65521L /* largest prime smaller than 65536 */
5333 #define NMAX 5552
5334 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5335 
5336 #define DO1(buf,i)  {s1 += buf[i]; s2 += s1;}
5337 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
5338 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
5339 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
5340 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
5341 
5342 /* ========================================================================= */
5343 uLong adler32(adler, buf, len)
5344     uLong adler;
5345     const Bytef *buf;
5346     uInt len;
5347 {
5348     unsigned long s1 = adler & 0xffff;
5349     unsigned long s2 = (adler >> 16) & 0xffff;
5350     int k;
5351 
5352     if (buf == Z_NULL) return 1L;
5353 
5354     while (len > 0) {
5355         k = len < NMAX ? len : NMAX;
5356         len -= k;
5357         while (k >= 16) {
5358             DO16(buf);
5359 	    buf += 16;
5360             k -= 16;
5361         }
5362         if (k != 0) do {
5363             s1 += *buf++;
5364 	    s2 += s1;
5365         } while (--k);
5366         s1 %= BASE;
5367         s2 %= BASE;
5368     }
5369     return (s2 << 16) | s1;
5370 }
5371 /* --- adler32.c */
5372