1 /* $NetBSD: rtsock.c,v 1.191 2016/07/07 09:32:02 ozaki-r Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1988, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: rtsock.c,v 1.191 2016/07/07 09:32:02 ozaki-r Exp $"); 65 66 #ifdef _KERNEL_OPT 67 #include "opt_inet.h" 68 #include "opt_mpls.h" 69 #include "opt_compat_netbsd.h" 70 #include "opt_sctp.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/systm.h> 75 #include <sys/proc.h> 76 #include <sys/socket.h> 77 #include <sys/socketvar.h> 78 #include <sys/domain.h> 79 #include <sys/protosw.h> 80 #include <sys/sysctl.h> 81 #include <sys/kauth.h> 82 #include <sys/kmem.h> 83 #include <sys/intr.h> 84 85 #include <net/if.h> 86 #include <net/if_llatbl.h> 87 #include <net/if_types.h> 88 #include <net/route.h> 89 #include <net/raw_cb.h> 90 91 #include <netinet/in_var.h> 92 #include <netinet/if_inarp.h> 93 94 #include <netmpls/mpls.h> 95 96 #ifdef SCTP 97 extern void sctp_add_ip_address(struct ifaddr *); 98 extern void sctp_delete_ip_address(struct ifaddr *); 99 #endif 100 101 #if defined(COMPAT_14) || defined(COMPAT_50) 102 #include <compat/net/if.h> 103 #include <compat/net/route.h> 104 #endif 105 #ifdef COMPAT_RTSOCK 106 #define RTM_XVERSION RTM_OVERSION 107 #define RT_XADVANCE(a,b) RT_OADVANCE(a,b) 108 #define RT_XROUNDUP(n) RT_OROUNDUP(n) 109 #define PF_XROUTE PF_OROUTE 110 #define rt_xmsghdr rt_msghdr50 111 #define if_xmsghdr if_msghdr /* if_msghdr50 is for RTM_OIFINFO */ 112 #define ifa_xmsghdr ifa_msghdr50 113 #define if_xannouncemsghdr if_announcemsghdr50 114 #define COMPATNAME(x) compat_50_ ## x 115 #define DOMAINNAME "oroute" 116 CTASSERT(sizeof(struct ifa_xmsghdr) == 20); 117 DOMAIN_DEFINE(compat_50_routedomain); /* forward declare and add to link set */ 118 #else /* COMPAT_RTSOCK */ 119 #define RTM_XVERSION RTM_VERSION 120 #define RT_XADVANCE(a,b) RT_ADVANCE(a,b) 121 #define RT_XROUNDUP(n) RT_ROUNDUP(n) 122 #define PF_XROUTE PF_ROUTE 123 #define rt_xmsghdr rt_msghdr 124 #define if_xmsghdr if_msghdr 125 #define ifa_xmsghdr ifa_msghdr 126 #define if_xannouncemsghdr if_announcemsghdr 127 #define COMPATNAME(x) x 128 #define DOMAINNAME "route" 129 CTASSERT(sizeof(struct ifa_xmsghdr) == 24); 130 #ifdef COMPAT_50 131 #define COMPATCALL(name, args) compat_50_ ## name args 132 #endif 133 DOMAIN_DEFINE(routedomain); /* forward declare and add to link set */ 134 #undef COMPAT_50 135 #undef COMPAT_14 136 #endif /* COMPAT_RTSOCK */ 137 138 #ifndef COMPATCALL 139 #define COMPATCALL(name, args) do { } while (/*CONSTCOND*/ 0) 140 #endif 141 142 #ifdef RTSOCK_DEBUG 143 #define RT_IN_PRINT(info, b, a) (in_print((b), sizeof(b), \ 144 &((const struct sockaddr_in *)(info)->rti_info[(a)])->sin_addr), (b)) 145 #endif /* RTSOCK_DEBUG */ 146 147 struct route_info COMPATNAME(route_info) = { 148 .ri_dst = { .sa_len = 2, .sa_family = PF_XROUTE, }, 149 .ri_src = { .sa_len = 2, .sa_family = PF_XROUTE, }, 150 .ri_maxqlen = IFQ_MAXLEN, 151 }; 152 153 #define PRESERVED_RTF (RTF_UP | RTF_GATEWAY | RTF_HOST | RTF_DONE | RTF_MASK) 154 155 static void COMPATNAME(route_init)(void); 156 static int COMPATNAME(route_output)(struct mbuf *, struct socket *); 157 158 static int rt_xaddrs(u_char, const char *, const char *, struct rt_addrinfo *); 159 static struct mbuf *rt_makeifannouncemsg(struct ifnet *, int, int, 160 struct rt_addrinfo *); 161 static int rt_msg2(int, struct rt_addrinfo *, void *, struct rt_walkarg *, int *); 162 static void rt_setmetrics(int, const struct rt_xmsghdr *, struct rtentry *); 163 static void rtm_setmetrics(const struct rtentry *, struct rt_xmsghdr *); 164 static void sysctl_net_route_setup(struct sysctllog **); 165 static int sysctl_dumpentry(struct rtentry *, void *); 166 static int sysctl_iflist(int, struct rt_walkarg *, int); 167 static int sysctl_rtable(SYSCTLFN_PROTO); 168 static void rt_adjustcount(int, int); 169 170 static const struct protosw COMPATNAME(route_protosw)[]; 171 172 static void 173 rt_adjustcount(int af, int cnt) 174 { 175 struct route_cb * const cb = &COMPATNAME(route_info).ri_cb; 176 177 cb->any_count += cnt; 178 179 switch (af) { 180 case AF_INET: 181 cb->ip_count += cnt; 182 return; 183 #ifdef INET6 184 case AF_INET6: 185 cb->ip6_count += cnt; 186 return; 187 #endif 188 case AF_MPLS: 189 cb->mpls_count += cnt; 190 return; 191 } 192 } 193 194 static int 195 COMPATNAME(route_attach)(struct socket *so, int proto) 196 { 197 struct rawcb *rp; 198 int s, error; 199 200 KASSERT(sotorawcb(so) == NULL); 201 rp = kmem_zalloc(sizeof(*rp), KM_SLEEP); 202 rp->rcb_len = sizeof(*rp); 203 so->so_pcb = rp; 204 205 s = splsoftnet(); 206 if ((error = raw_attach(so, proto)) == 0) { 207 rt_adjustcount(rp->rcb_proto.sp_protocol, 1); 208 rp->rcb_laddr = &COMPATNAME(route_info).ri_src; 209 rp->rcb_faddr = &COMPATNAME(route_info).ri_dst; 210 } 211 splx(s); 212 213 if (error) { 214 kmem_free(rp, sizeof(*rp)); 215 so->so_pcb = NULL; 216 return error; 217 } 218 219 soisconnected(so); 220 so->so_options |= SO_USELOOPBACK; 221 KASSERT(solocked(so)); 222 223 return error; 224 } 225 226 static void 227 COMPATNAME(route_detach)(struct socket *so) 228 { 229 struct rawcb *rp = sotorawcb(so); 230 int s; 231 232 KASSERT(rp != NULL); 233 KASSERT(solocked(so)); 234 235 s = splsoftnet(); 236 rt_adjustcount(rp->rcb_proto.sp_protocol, -1); 237 raw_detach(so); 238 splx(s); 239 } 240 241 static int 242 COMPATNAME(route_accept)(struct socket *so, struct sockaddr *nam) 243 { 244 KASSERT(solocked(so)); 245 246 panic("route_accept"); 247 248 return EOPNOTSUPP; 249 } 250 251 static int 252 COMPATNAME(route_bind)(struct socket *so, struct sockaddr *nam, struct lwp *l) 253 { 254 KASSERT(solocked(so)); 255 256 return EOPNOTSUPP; 257 } 258 259 static int 260 COMPATNAME(route_listen)(struct socket *so, struct lwp *l) 261 { 262 KASSERT(solocked(so)); 263 264 return EOPNOTSUPP; 265 } 266 267 static int 268 COMPATNAME(route_connect)(struct socket *so, struct sockaddr *nam, struct lwp *l) 269 { 270 KASSERT(solocked(so)); 271 272 return EOPNOTSUPP; 273 } 274 275 static int 276 COMPATNAME(route_connect2)(struct socket *so, struct socket *so2) 277 { 278 KASSERT(solocked(so)); 279 280 return EOPNOTSUPP; 281 } 282 283 static int 284 COMPATNAME(route_disconnect)(struct socket *so) 285 { 286 struct rawcb *rp = sotorawcb(so); 287 int s; 288 289 KASSERT(solocked(so)); 290 KASSERT(rp != NULL); 291 292 s = splsoftnet(); 293 soisdisconnected(so); 294 raw_disconnect(rp); 295 splx(s); 296 297 return 0; 298 } 299 300 static int 301 COMPATNAME(route_shutdown)(struct socket *so) 302 { 303 int s; 304 305 KASSERT(solocked(so)); 306 307 /* 308 * Mark the connection as being incapable of further input. 309 */ 310 s = splsoftnet(); 311 socantsendmore(so); 312 splx(s); 313 return 0; 314 } 315 316 static int 317 COMPATNAME(route_abort)(struct socket *so) 318 { 319 KASSERT(solocked(so)); 320 321 panic("route_abort"); 322 323 return EOPNOTSUPP; 324 } 325 326 static int 327 COMPATNAME(route_ioctl)(struct socket *so, u_long cmd, void *nam, 328 struct ifnet * ifp) 329 { 330 return EOPNOTSUPP; 331 } 332 333 static int 334 COMPATNAME(route_stat)(struct socket *so, struct stat *ub) 335 { 336 KASSERT(solocked(so)); 337 338 return 0; 339 } 340 341 static int 342 COMPATNAME(route_peeraddr)(struct socket *so, struct sockaddr *nam) 343 { 344 struct rawcb *rp = sotorawcb(so); 345 346 KASSERT(solocked(so)); 347 KASSERT(rp != NULL); 348 KASSERT(nam != NULL); 349 350 if (rp->rcb_faddr == NULL) 351 return ENOTCONN; 352 353 raw_setpeeraddr(rp, nam); 354 return 0; 355 } 356 357 static int 358 COMPATNAME(route_sockaddr)(struct socket *so, struct sockaddr *nam) 359 { 360 struct rawcb *rp = sotorawcb(so); 361 362 KASSERT(solocked(so)); 363 KASSERT(rp != NULL); 364 KASSERT(nam != NULL); 365 366 if (rp->rcb_faddr == NULL) 367 return ENOTCONN; 368 369 raw_setsockaddr(rp, nam); 370 return 0; 371 } 372 373 static int 374 COMPATNAME(route_rcvd)(struct socket *so, int flags, struct lwp *l) 375 { 376 KASSERT(solocked(so)); 377 378 return EOPNOTSUPP; 379 } 380 381 static int 382 COMPATNAME(route_recvoob)(struct socket *so, struct mbuf *m, int flags) 383 { 384 KASSERT(solocked(so)); 385 386 return EOPNOTSUPP; 387 } 388 389 static int 390 COMPATNAME(route_send)(struct socket *so, struct mbuf *m, 391 struct sockaddr *nam, struct mbuf *control, struct lwp *l) 392 { 393 int error = 0; 394 int s; 395 396 KASSERT(solocked(so)); 397 KASSERT(so->so_proto == &COMPATNAME(route_protosw)[0]); 398 399 s = splsoftnet(); 400 error = raw_send(so, m, nam, control, l, &COMPATNAME(route_output)); 401 splx(s); 402 403 return error; 404 } 405 406 static int 407 COMPATNAME(route_sendoob)(struct socket *so, struct mbuf *m, 408 struct mbuf *control) 409 { 410 KASSERT(solocked(so)); 411 412 m_freem(m); 413 m_freem(control); 414 415 return EOPNOTSUPP; 416 } 417 static int 418 COMPATNAME(route_purgeif)(struct socket *so, struct ifnet *ifp) 419 { 420 421 panic("route_purgeif"); 422 423 return EOPNOTSUPP; 424 } 425 426 #ifdef INET 427 static int 428 route_get_sdl_index(struct rt_addrinfo *info, int *sdl_index) 429 { 430 struct rtentry *nrt; 431 int error; 432 433 error = rtrequest1(RTM_GET, info, &nrt); 434 if (error != 0) 435 return error; 436 /* 437 * nrt->rt_ifp->if_index may not be correct 438 * due to changing to ifplo0. 439 */ 440 *sdl_index = satosdl(nrt->rt_gateway)->sdl_index; 441 rtfree(nrt); 442 443 return 0; 444 } 445 #endif /* INET */ 446 447 static void 448 route_get_sdl(const struct ifnet *ifp, const struct sockaddr *dst, 449 struct sockaddr_dl *sdl, int *flags) 450 { 451 struct llentry *la; 452 453 KASSERT(ifp != NULL); 454 455 IF_AFDATA_RLOCK(ifp); 456 switch (dst->sa_family) { 457 case AF_INET: 458 la = lla_lookup(LLTABLE(ifp), 0, dst); 459 break; 460 case AF_INET6: 461 la = lla_lookup(LLTABLE6(ifp), 0, dst); 462 break; 463 default: 464 la = NULL; 465 KASSERTMSG(0, "Invalid AF=%d\n", dst->sa_family); 466 break; 467 } 468 IF_AFDATA_RUNLOCK(ifp); 469 470 void *a = (LLE_IS_VALID(la) && (la->la_flags & LLE_VALID) == LLE_VALID) 471 ? &la->ll_addr : NULL; 472 473 a = sockaddr_dl_init(sdl, sizeof(*sdl), ifp->if_index, ifp->if_type, 474 NULL, 0, a, ifp->if_addrlen); 475 KASSERT(a != NULL); 476 477 if (la != NULL) { 478 *flags = la->la_flags; 479 LLE_RUNLOCK(la); 480 } 481 } 482 483 static int 484 route_output_report(struct rtentry *rt, struct rt_addrinfo *info, 485 struct rt_xmsghdr *rtm, struct rt_xmsghdr **new_rtm) 486 { 487 int len; 488 struct ifnet *ifp; 489 490 if ((rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) == 0) 491 ; 492 else if ((ifp = rt->rt_ifp) != NULL) { 493 const struct ifaddr *rtifa; 494 info->rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr; 495 /* rtifa used to be simply rt->rt_ifa. 496 * If rt->rt_ifa != NULL, then 497 * rt_get_ifa() != NULL. So this 498 * ought to still be safe. --dyoung 499 */ 500 rtifa = rt_get_ifa(rt); 501 info->rti_info[RTAX_IFA] = rtifa->ifa_addr; 502 #ifdef RTSOCK_DEBUG 503 if (info->rti_info[RTAX_IFA]->sa_family == AF_INET) { 504 char ibuf[INET_ADDRSTRLEN]; 505 char abuf[INET_ADDRSTRLEN]; 506 printf("%s: copying out RTAX_IFA %s " 507 "for info->rti_info[RTAX_DST] %s " 508 "ifa_getifa %p ifa_seqno %p\n", 509 __func__, 510 RT_IN_PRINT(info, ibuf, RTAX_IFA), 511 RT_IN_PRINT(info, abuf, RTAX_DST), 512 (void *)rtifa->ifa_getifa, 513 rtifa->ifa_seqno); 514 } 515 #endif /* RTSOCK_DEBUG */ 516 if (ifp->if_flags & IFF_POINTOPOINT) 517 info->rti_info[RTAX_BRD] = rtifa->ifa_dstaddr; 518 else 519 info->rti_info[RTAX_BRD] = NULL; 520 rtm->rtm_index = ifp->if_index; 521 } else { 522 info->rti_info[RTAX_IFP] = NULL; 523 info->rti_info[RTAX_IFA] = NULL; 524 } 525 (void)rt_msg2(rtm->rtm_type, info, NULL, NULL, &len); 526 if (len > rtm->rtm_msglen) { 527 struct rt_xmsghdr *old_rtm = rtm; 528 R_Malloc(*new_rtm, struct rt_xmsghdr *, len); 529 if (*new_rtm == NULL) 530 return ENOBUFS; 531 (void)memcpy(*new_rtm, old_rtm, old_rtm->rtm_msglen); 532 rtm = *new_rtm; 533 } 534 (void)rt_msg2(rtm->rtm_type, info, rtm, NULL, 0); 535 rtm->rtm_flags = rt->rt_flags; 536 rtm_setmetrics(rt, rtm); 537 rtm->rtm_addrs = info->rti_addrs; 538 539 return 0; 540 } 541 542 /*ARGSUSED*/ 543 int 544 COMPATNAME(route_output)(struct mbuf *m, struct socket *so) 545 { 546 struct sockproto proto = { .sp_family = PF_XROUTE, }; 547 struct rt_xmsghdr *rtm = NULL; 548 struct rt_xmsghdr *old_rtm = NULL, *new_rtm = NULL; 549 struct rtentry *rt = NULL; 550 struct rtentry *saved_nrt = NULL; 551 struct rt_addrinfo info; 552 int len, error = 0; 553 struct ifnet *ifp = NULL; 554 struct ifaddr *ifa = NULL; 555 sa_family_t family; 556 struct sockaddr_dl sdl; 557 558 #define senderr(e) do { error = e; goto flush;} while (/*CONSTCOND*/ 0) 559 if (m == NULL || ((m->m_len < sizeof(int32_t)) && 560 (m = m_pullup(m, sizeof(int32_t))) == NULL)) 561 return ENOBUFS; 562 if ((m->m_flags & M_PKTHDR) == 0) 563 panic("%s", __func__); 564 len = m->m_pkthdr.len; 565 if (len < sizeof(*rtm) || 566 len != mtod(m, struct rt_xmsghdr *)->rtm_msglen) { 567 info.rti_info[RTAX_DST] = NULL; 568 senderr(EINVAL); 569 } 570 R_Malloc(rtm, struct rt_xmsghdr *, len); 571 if (rtm == NULL) { 572 info.rti_info[RTAX_DST] = NULL; 573 senderr(ENOBUFS); 574 } 575 m_copydata(m, 0, len, rtm); 576 if (rtm->rtm_version != RTM_XVERSION) { 577 info.rti_info[RTAX_DST] = NULL; 578 senderr(EPROTONOSUPPORT); 579 } 580 rtm->rtm_pid = curproc->p_pid; 581 memset(&info, 0, sizeof(info)); 582 info.rti_addrs = rtm->rtm_addrs; 583 if (rt_xaddrs(rtm->rtm_type, (const char *)(rtm + 1), len + (char *)rtm, 584 &info)) { 585 senderr(EINVAL); 586 } 587 info.rti_flags = rtm->rtm_flags; 588 #ifdef RTSOCK_DEBUG 589 if (info.rti_info[RTAX_DST]->sa_family == AF_INET) { 590 char abuf[INET_ADDRSTRLEN]; 591 printf("%s: extracted info.rti_info[RTAX_DST] %s\n", __func__, 592 RT_IN_PRINT(&info, abuf, RTAX_DST)); 593 } 594 #endif /* RTSOCK_DEBUG */ 595 if (info.rti_info[RTAX_DST] == NULL || 596 (info.rti_info[RTAX_DST]->sa_family >= AF_MAX)) { 597 senderr(EINVAL); 598 } 599 if (info.rti_info[RTAX_GATEWAY] != NULL && 600 (info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) { 601 senderr(EINVAL); 602 } 603 604 /* 605 * Verify that the caller has the appropriate privilege; RTM_GET 606 * is the only operation the non-superuser is allowed. 607 */ 608 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_ROUTE, 609 0, rtm, NULL, NULL) != 0) 610 senderr(EACCES); 611 612 switch (rtm->rtm_type) { 613 614 case RTM_ADD: 615 if (info.rti_info[RTAX_GATEWAY] == NULL) { 616 senderr(EINVAL); 617 } 618 #ifdef INET 619 /* support for new ARP code with keeping backcompat */ 620 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) { 621 const struct sockaddr_dl *sdlp = 622 satocsdl(info.rti_info[RTAX_GATEWAY]); 623 624 /* Allow routing requests by interface index */ 625 if (sdlp->sdl_nlen == 0 && sdlp->sdl_alen == 0 626 && sdlp->sdl_slen == 0) 627 goto fallback; 628 /* 629 * Old arp binaries don't set the sdl_index 630 * so we have to complement it. 631 */ 632 int sdl_index = sdlp->sdl_index; 633 if (sdl_index == 0) { 634 error = route_get_sdl_index(&info, &sdl_index); 635 if (error != 0) 636 goto fallback; 637 } else if ( 638 info.rti_info[RTAX_DST]->sa_family == AF_INET) { 639 /* 640 * XXX workaround for SIN_PROXY case; proxy arp 641 * entry should be in an interface that has 642 * a network route including the destination, 643 * not a local (link) route that may not be a 644 * desired place, for example a tap. 645 */ 646 const struct sockaddr_inarp *sina = 647 (const struct sockaddr_inarp *) 648 info.rti_info[RTAX_DST]; 649 if (sina->sin_other & SIN_PROXY) { 650 error = route_get_sdl_index(&info, 651 &sdl_index); 652 if (error != 0) 653 goto fallback; 654 } 655 } 656 error = lla_rt_output(rtm->rtm_type, rtm->rtm_flags, 657 rtm->rtm_rmx.rmx_expire, &info, sdl_index); 658 break; 659 } 660 fallback: 661 #endif /* INET */ 662 error = rtrequest1(rtm->rtm_type, &info, &saved_nrt); 663 if (error == 0) { 664 rt_setmetrics(rtm->rtm_inits, rtm, saved_nrt); 665 rtfree(saved_nrt); 666 } 667 break; 668 669 case RTM_DELETE: 670 #ifdef INET 671 /* support for new ARP code */ 672 if (info.rti_info[RTAX_GATEWAY] && 673 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 674 (rtm->rtm_flags & RTF_LLDATA) != 0) { 675 error = lla_rt_output(rtm->rtm_type, rtm->rtm_flags, 676 rtm->rtm_rmx.rmx_expire, &info, 0); 677 break; 678 } 679 #endif /* INET */ 680 error = rtrequest1(rtm->rtm_type, &info, &saved_nrt); 681 if (error != 0) 682 break; 683 684 rt = saved_nrt; 685 info.rti_info[RTAX_DST] = rt_getkey(rt); 686 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 687 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 688 info.rti_info[RTAX_TAG] = rt_gettag(rt); 689 error = route_output_report(rt, &info, rtm, &new_rtm); 690 if (error) 691 senderr(error); 692 if (new_rtm != NULL) { 693 old_rtm = rtm; 694 rtm = new_rtm; 695 } 696 break; 697 698 case RTM_GET: 699 case RTM_CHANGE: 700 case RTM_LOCK: 701 /* XXX This will mask info.rti_info[RTAX_DST] with 702 * info.rti_info[RTAX_NETMASK] before 703 * searching. It did not used to do that. --dyoung 704 */ 705 rt = NULL; 706 error = rtrequest1(RTM_GET, &info, &rt); 707 if (error != 0) 708 senderr(error); 709 if (rtm->rtm_type != RTM_GET) {/* XXX: too grotty */ 710 if (memcmp(info.rti_info[RTAX_DST], rt_getkey(rt), 711 info.rti_info[RTAX_DST]->sa_len) != 0) 712 senderr(ESRCH); 713 if (info.rti_info[RTAX_NETMASK] == NULL && 714 rt_mask(rt) != NULL) 715 senderr(ETOOMANYREFS); 716 } 717 718 /* 719 * XXX if arp/ndp requests an L2 entry, we have to obtain 720 * it from lltable while for the route command we have to 721 * return a route as it is. How to distinguish them? 722 * For newer arp/ndp, RTF_LLDATA flag set by arp/ndp 723 * indicates an L2 entry is requested. For old arp/ndp 724 * binaries, we check RTF_UP flag is NOT set; it works 725 * by the fact that arp/ndp don't set it while the route 726 * command sets it. 727 */ 728 if (((rtm->rtm_flags & RTF_LLDATA) != 0 || 729 (rtm->rtm_flags & RTF_UP) == 0) && 730 rtm->rtm_type == RTM_GET && 731 sockaddr_cmp(rt_getkey(rt), info.rti_info[RTAX_DST]) != 0) { 732 int ll_flags = 0; 733 route_get_sdl(rt->rt_ifp, info.rti_info[RTAX_DST], &sdl, 734 &ll_flags); 735 info.rti_info[RTAX_GATEWAY] = sstocsa(&sdl); 736 error = route_output_report(rt, &info, rtm, &new_rtm); 737 if (error) 738 senderr(error); 739 if (new_rtm != NULL) { 740 old_rtm = rtm; 741 rtm = new_rtm; 742 } 743 rtm->rtm_flags |= RTF_LLDATA; 744 rtm->rtm_flags |= (ll_flags & LLE_STATIC) ? RTF_STATIC : 0; 745 break; 746 } 747 748 switch (rtm->rtm_type) { 749 case RTM_GET: 750 info.rti_info[RTAX_DST] = rt_getkey(rt); 751 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 752 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 753 info.rti_info[RTAX_TAG] = rt_gettag(rt); 754 error = route_output_report(rt, &info, rtm, &new_rtm); 755 if (error) 756 senderr(error); 757 if (new_rtm != NULL) { 758 old_rtm = rtm; 759 rtm = new_rtm; 760 } 761 break; 762 763 case RTM_CHANGE: 764 /* 765 * new gateway could require new ifaddr, ifp; 766 * flags may also be different; ifp may be specified 767 * by ll sockaddr when protocol address is ambiguous 768 */ 769 if ((error = rt_getifa(&info)) != 0) 770 senderr(error); 771 if (info.rti_info[RTAX_GATEWAY]) { 772 error = rt_setgate(rt, 773 info.rti_info[RTAX_GATEWAY]); 774 if (error != 0) 775 senderr(error); 776 } 777 if (info.rti_info[RTAX_TAG]) { 778 const struct sockaddr *tag; 779 tag = rt_settag(rt, info.rti_info[RTAX_TAG]); 780 if (tag == NULL) 781 senderr(ENOBUFS); 782 } 783 /* new gateway could require new ifaddr, ifp; 784 flags may also be different; ifp may be specified 785 by ll sockaddr when protocol address is ambiguous */ 786 if (info.rti_info[RTAX_IFP] && 787 (ifa = ifa_ifwithnet(info.rti_info[RTAX_IFP])) && 788 (ifp = ifa->ifa_ifp) && (info.rti_info[RTAX_IFA] || 789 info.rti_info[RTAX_GATEWAY])) { 790 if (info.rti_info[RTAX_IFA] == NULL || 791 (ifa = ifa_ifwithaddr( 792 info.rti_info[RTAX_IFA])) == NULL) 793 ifa = ifaof_ifpforaddr( 794 info.rti_info[RTAX_IFA] ? 795 info.rti_info[RTAX_IFA] : 796 info.rti_info[RTAX_GATEWAY], ifp); 797 } else if ((info.rti_info[RTAX_IFA] && 798 (ifa = ifa_ifwithaddr(info.rti_info[RTAX_IFA]))) || 799 (info.rti_info[RTAX_GATEWAY] && 800 (ifa = ifa_ifwithroute(rt->rt_flags, 801 rt_getkey(rt), info.rti_info[RTAX_GATEWAY])))) { 802 ifp = ifa->ifa_ifp; 803 } 804 if (ifa) { 805 struct ifaddr *oifa = rt->rt_ifa; 806 if (oifa != ifa) { 807 if (oifa && oifa->ifa_rtrequest) { 808 oifa->ifa_rtrequest(RTM_DELETE, 809 rt, &info); 810 } 811 rt_replace_ifa(rt, ifa); 812 rt->rt_ifp = ifp; 813 } 814 } 815 if (ifp && rt->rt_ifp != ifp) 816 rt->rt_ifp = ifp; 817 rt_setmetrics(rtm->rtm_inits, rtm, rt); 818 if (rt->rt_flags != info.rti_flags) 819 rt->rt_flags = (info.rti_flags & ~PRESERVED_RTF) 820 | (rt->rt_flags & PRESERVED_RTF); 821 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 822 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 823 /*FALLTHROUGH*/ 824 case RTM_LOCK: 825 rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits); 826 rt->rt_rmx.rmx_locks |= 827 (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); 828 break; 829 } 830 break; 831 832 default: 833 senderr(EOPNOTSUPP); 834 } 835 836 flush: 837 if (rtm) { 838 if (error) 839 rtm->rtm_errno = error; 840 else 841 rtm->rtm_flags |= RTF_DONE; 842 } 843 family = info.rti_info[RTAX_DST] ? info.rti_info[RTAX_DST]->sa_family : 844 0; 845 /* We cannot free old_rtm until we have stopped using the 846 * pointers in info, some of which may point to sockaddrs 847 * in old_rtm. 848 */ 849 if (old_rtm != NULL) 850 Free(old_rtm); 851 if (rt) 852 rtfree(rt); 853 { 854 struct rawcb *rp = NULL; 855 /* 856 * Check to see if we don't want our own messages. 857 */ 858 if ((so->so_options & SO_USELOOPBACK) == 0) { 859 if (COMPATNAME(route_info).ri_cb.any_count <= 1) { 860 if (rtm) 861 Free(rtm); 862 m_freem(m); 863 return error; 864 } 865 /* There is another listener, so construct message */ 866 rp = sotorawcb(so); 867 } 868 if (rtm) { 869 m_copyback(m, 0, rtm->rtm_msglen, rtm); 870 if (m->m_pkthdr.len < rtm->rtm_msglen) { 871 m_freem(m); 872 m = NULL; 873 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 874 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 875 Free(rtm); 876 } 877 if (rp) 878 rp->rcb_proto.sp_family = 0; /* Avoid us */ 879 if (family) 880 proto.sp_protocol = family; 881 if (m) 882 raw_input(m, &proto, &COMPATNAME(route_info).ri_src, 883 &COMPATNAME(route_info).ri_dst); 884 if (rp) 885 rp->rcb_proto.sp_family = PF_XROUTE; 886 } 887 return error; 888 } 889 890 static void 891 rt_setmetrics(int which, const struct rt_xmsghdr *in, struct rtentry *out) 892 { 893 #define metric(f, e) if (which & (f)) out->rt_rmx.e = in->rtm_rmx.e; 894 metric(RTV_RPIPE, rmx_recvpipe); 895 metric(RTV_SPIPE, rmx_sendpipe); 896 metric(RTV_SSTHRESH, rmx_ssthresh); 897 metric(RTV_RTT, rmx_rtt); 898 metric(RTV_RTTVAR, rmx_rttvar); 899 metric(RTV_HOPCOUNT, rmx_hopcount); 900 metric(RTV_MTU, rmx_mtu); 901 #undef metric 902 if (which & RTV_EXPIRE) { 903 out->rt_rmx.rmx_expire = in->rtm_rmx.rmx_expire ? 904 time_wall_to_mono(in->rtm_rmx.rmx_expire) : 0; 905 } 906 } 907 908 static void 909 rtm_setmetrics(const struct rtentry *in, struct rt_xmsghdr *out) 910 { 911 #define metric(e) out->rtm_rmx.e = in->rt_rmx.e; 912 metric(rmx_recvpipe); 913 metric(rmx_sendpipe); 914 metric(rmx_ssthresh); 915 metric(rmx_rtt); 916 metric(rmx_rttvar); 917 metric(rmx_hopcount); 918 metric(rmx_mtu); 919 #undef metric 920 out->rtm_rmx.rmx_expire = in->rt_rmx.rmx_expire ? 921 time_mono_to_wall(in->rt_rmx.rmx_expire) : 0; 922 } 923 924 static int 925 rt_xaddrs(u_char rtmtype, const char *cp, const char *cplim, 926 struct rt_addrinfo *rtinfo) 927 { 928 const struct sockaddr *sa = NULL; /* Quell compiler warning */ 929 int i; 930 931 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 932 if ((rtinfo->rti_addrs & (1 << i)) == 0) 933 continue; 934 rtinfo->rti_info[i] = sa = (const struct sockaddr *)cp; 935 RT_XADVANCE(cp, sa); 936 } 937 938 /* 939 * Check for extra addresses specified, except RTM_GET asking 940 * for interface info. 941 */ 942 if (rtmtype == RTM_GET) { 943 if (((rtinfo->rti_addrs & 944 (~((1 << RTAX_IFP) | (1 << RTAX_IFA)))) & (~0 << i)) != 0) 945 return 1; 946 } else if ((rtinfo->rti_addrs & (~0 << i)) != 0) 947 return 1; 948 /* Check for bad data length. */ 949 if (cp != cplim) { 950 if (i == RTAX_NETMASK + 1 && sa != NULL && 951 cp - RT_XROUNDUP(sa->sa_len) + sa->sa_len == cplim) 952 /* 953 * The last sockaddr was info.rti_info[RTAX_NETMASK]. 954 * We accept this for now for the sake of old 955 * binaries or third party softwares. 956 */ 957 ; 958 else 959 return 1; 960 } 961 return 0; 962 } 963 964 static int 965 rt_getlen(int type) 966 { 967 #ifndef COMPAT_RTSOCK 968 CTASSERT(__alignof(struct ifa_msghdr) >= sizeof(uint64_t)); 969 CTASSERT(__alignof(struct if_msghdr) >= sizeof(uint64_t)); 970 CTASSERT(__alignof(struct if_announcemsghdr) >= sizeof(uint64_t)); 971 CTASSERT(__alignof(struct rt_msghdr) >= sizeof(uint64_t)); 972 #endif 973 974 switch (type) { 975 case RTM_DELADDR: 976 case RTM_NEWADDR: 977 case RTM_CHGADDR: 978 return sizeof(struct ifa_xmsghdr); 979 980 case RTM_OOIFINFO: 981 #ifdef COMPAT_14 982 return sizeof(struct if_msghdr14); 983 #else 984 #ifdef DIAGNOSTIC 985 printf("RTM_OOIFINFO\n"); 986 #endif 987 return -1; 988 #endif 989 case RTM_OIFINFO: 990 #ifdef COMPAT_50 991 return sizeof(struct if_msghdr50); 992 #else 993 #ifdef DIAGNOSTIC 994 printf("RTM_OIFINFO\n"); 995 #endif 996 return -1; 997 #endif 998 999 case RTM_IFINFO: 1000 return sizeof(struct if_xmsghdr); 1001 1002 case RTM_IFANNOUNCE: 1003 case RTM_IEEE80211: 1004 return sizeof(struct if_xannouncemsghdr); 1005 1006 default: 1007 return sizeof(struct rt_xmsghdr); 1008 } 1009 } 1010 1011 1012 struct mbuf * 1013 COMPATNAME(rt_msg1)(int type, struct rt_addrinfo *rtinfo, void *data, int datalen) 1014 { 1015 struct rt_xmsghdr *rtm; 1016 struct mbuf *m; 1017 int i; 1018 const struct sockaddr *sa; 1019 int len, dlen; 1020 1021 m = m_gethdr(M_DONTWAIT, MT_DATA); 1022 if (m == NULL) 1023 return m; 1024 MCLAIM(m, &COMPATNAME(routedomain).dom_mowner); 1025 1026 if ((len = rt_getlen(type)) == -1) 1027 goto out; 1028 if (len > MHLEN + MLEN) 1029 panic("%s: message too long", __func__); 1030 else if (len > MHLEN) { 1031 m->m_next = m_get(M_DONTWAIT, MT_DATA); 1032 if (m->m_next == NULL) 1033 goto out; 1034 MCLAIM(m->m_next, m->m_owner); 1035 m->m_pkthdr.len = len; 1036 m->m_len = MHLEN; 1037 m->m_next->m_len = len - MHLEN; 1038 } else { 1039 m->m_pkthdr.len = m->m_len = len; 1040 } 1041 m_reset_rcvif(m); 1042 m_copyback(m, 0, datalen, data); 1043 if (len > datalen) 1044 (void)memset(mtod(m, char *) + datalen, 0, len - datalen); 1045 rtm = mtod(m, struct rt_xmsghdr *); 1046 for (i = 0; i < RTAX_MAX; i++) { 1047 if ((sa = rtinfo->rti_info[i]) == NULL) 1048 continue; 1049 rtinfo->rti_addrs |= (1 << i); 1050 dlen = RT_XROUNDUP(sa->sa_len); 1051 m_copyback(m, len, sa->sa_len, sa); 1052 if (dlen != sa->sa_len) { 1053 /* 1054 * Up to 6 + 1 nul's since roundup is to 1055 * sizeof(uint64_t) (8 bytes) 1056 */ 1057 m_copyback(m, len + sa->sa_len, 1058 dlen - sa->sa_len, "\0\0\0\0\0\0"); 1059 } 1060 len += dlen; 1061 } 1062 if (m->m_pkthdr.len != len) 1063 goto out; 1064 rtm->rtm_msglen = len; 1065 rtm->rtm_version = RTM_XVERSION; 1066 rtm->rtm_type = type; 1067 return m; 1068 out: 1069 m_freem(m); 1070 return NULL; 1071 } 1072 1073 /* 1074 * rt_msg2 1075 * 1076 * fills 'cp' or 'w'.w_tmem with the routing socket message and 1077 * returns the length of the message in 'lenp'. 1078 * 1079 * if walkarg is 0, cp is expected to be 0 or a buffer large enough to hold 1080 * the message 1081 * otherwise walkarg's w_needed is updated and if the user buffer is 1082 * specified and w_needed indicates space exists the information is copied 1083 * into the temp space (w_tmem). w_tmem is [re]allocated if necessary, 1084 * if the allocation fails ENOBUFS is returned. 1085 */ 1086 static int 1087 rt_msg2(int type, struct rt_addrinfo *rtinfo, void *cpv, struct rt_walkarg *w, 1088 int *lenp) 1089 { 1090 int i; 1091 int len, dlen, second_time = 0; 1092 char *cp0, *cp = cpv; 1093 1094 rtinfo->rti_addrs = 0; 1095 again: 1096 if ((len = rt_getlen(type)) == -1) 1097 return EINVAL; 1098 1099 if ((cp0 = cp) != NULL) 1100 cp += len; 1101 for (i = 0; i < RTAX_MAX; i++) { 1102 const struct sockaddr *sa; 1103 1104 if ((sa = rtinfo->rti_info[i]) == NULL) 1105 continue; 1106 rtinfo->rti_addrs |= (1 << i); 1107 dlen = RT_XROUNDUP(sa->sa_len); 1108 if (cp) { 1109 int diff = dlen - sa->sa_len; 1110 (void)memcpy(cp, sa, (size_t)sa->sa_len); 1111 cp += sa->sa_len; 1112 if (diff > 0) { 1113 (void)memset(cp, 0, (size_t)diff); 1114 cp += diff; 1115 } 1116 } 1117 len += dlen; 1118 } 1119 if (cp == NULL && w != NULL && !second_time) { 1120 struct rt_walkarg *rw = w; 1121 1122 rw->w_needed += len; 1123 if (rw->w_needed <= 0 && rw->w_where) { 1124 if (rw->w_tmemsize < len) { 1125 if (rw->w_tmem) 1126 free(rw->w_tmem, M_RTABLE); 1127 rw->w_tmem = malloc(len, M_RTABLE, M_NOWAIT); 1128 if (rw->w_tmem) 1129 rw->w_tmemsize = len; 1130 else 1131 rw->w_tmemsize = 0; 1132 } 1133 if (rw->w_tmem) { 1134 cp = rw->w_tmem; 1135 second_time = 1; 1136 goto again; 1137 } else { 1138 rw->w_tmemneeded = len; 1139 return ENOBUFS; 1140 } 1141 } 1142 } 1143 if (cp) { 1144 struct rt_xmsghdr *rtm = (struct rt_xmsghdr *)cp0; 1145 1146 rtm->rtm_version = RTM_XVERSION; 1147 rtm->rtm_type = type; 1148 rtm->rtm_msglen = len; 1149 } 1150 if (lenp) 1151 *lenp = len; 1152 return 0; 1153 } 1154 1155 #ifndef COMPAT_RTSOCK 1156 int 1157 rt_msg3(int type, struct rt_addrinfo *rtinfo, void *cpv, struct rt_walkarg *w, 1158 int *lenp) 1159 { 1160 return rt_msg2(type, rtinfo, cpv, w, lenp); 1161 } 1162 #endif 1163 1164 /* 1165 * This routine is called to generate a message from the routing 1166 * socket indicating that a redirect has occurred, a routing lookup 1167 * has failed, or that a protocol has detected timeouts to a particular 1168 * destination. 1169 */ 1170 void 1171 COMPATNAME(rt_missmsg)(int type, const struct rt_addrinfo *rtinfo, int flags, 1172 int error) 1173 { 1174 struct rt_xmsghdr rtm; 1175 struct mbuf *m; 1176 const struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1177 struct rt_addrinfo info = *rtinfo; 1178 1179 COMPATCALL(rt_missmsg, (type, rtinfo, flags, error)); 1180 if (COMPATNAME(route_info).ri_cb.any_count == 0) 1181 return; 1182 memset(&rtm, 0, sizeof(rtm)); 1183 rtm.rtm_pid = curproc->p_pid; 1184 rtm.rtm_flags = RTF_DONE | flags; 1185 rtm.rtm_errno = error; 1186 m = COMPATNAME(rt_msg1)(type, &info, &rtm, sizeof(rtm)); 1187 if (m == NULL) 1188 return; 1189 mtod(m, struct rt_xmsghdr *)->rtm_addrs = info.rti_addrs; 1190 COMPATNAME(route_enqueue)(m, sa ? sa->sa_family : 0); 1191 } 1192 1193 /* 1194 * This routine is called to generate a message from the routing 1195 * socket indicating that the status of a network interface has changed. 1196 */ 1197 void 1198 COMPATNAME(rt_ifmsg)(struct ifnet *ifp) 1199 { 1200 struct if_xmsghdr ifm; 1201 struct mbuf *m; 1202 struct rt_addrinfo info; 1203 1204 COMPATCALL(rt_ifmsg, (ifp)); 1205 if (COMPATNAME(route_info).ri_cb.any_count == 0) 1206 return; 1207 (void)memset(&info, 0, sizeof(info)); 1208 (void)memset(&ifm, 0, sizeof(ifm)); 1209 ifm.ifm_index = ifp->if_index; 1210 ifm.ifm_flags = ifp->if_flags; 1211 ifm.ifm_data = ifp->if_data; 1212 ifm.ifm_addrs = 0; 1213 m = COMPATNAME(rt_msg1)(RTM_IFINFO, &info, &ifm, sizeof(ifm)); 1214 if (m == NULL) 1215 return; 1216 COMPATNAME(route_enqueue)(m, 0); 1217 #ifdef COMPAT_14 1218 compat_14_rt_oifmsg(ifp); 1219 #endif 1220 #ifdef COMPAT_50 1221 compat_50_rt_oifmsg(ifp); 1222 #endif 1223 } 1224 1225 1226 /* 1227 * This is called to generate messages from the routing socket 1228 * indicating a network interface has had addresses associated with it. 1229 * if we ever reverse the logic and replace messages TO the routing 1230 * socket indicate a request to configure interfaces, then it will 1231 * be unnecessary as the routing socket will automatically generate 1232 * copies of it. 1233 */ 1234 void 1235 COMPATNAME(rt_newaddrmsg)(int cmd, struct ifaddr *ifa, int error, 1236 struct rtentry *rt) 1237 { 1238 #define cmdpass(__cmd, __pass) (((__cmd) << 2) | (__pass)) 1239 struct rt_addrinfo info; 1240 const struct sockaddr *sa; 1241 int pass; 1242 struct mbuf *m; 1243 struct ifnet *ifp; 1244 struct rt_xmsghdr rtm; 1245 struct ifa_xmsghdr ifam; 1246 int ncmd; 1247 1248 KASSERT(ifa != NULL); 1249 ifp = ifa->ifa_ifp; 1250 #ifdef SCTP 1251 if (cmd == RTM_ADD) { 1252 sctp_add_ip_address(ifa); 1253 } else if (cmd == RTM_DELETE) { 1254 sctp_delete_ip_address(ifa); 1255 } 1256 #endif 1257 1258 COMPATCALL(rt_newaddrmsg, (cmd, ifa, error, rt)); 1259 if (COMPATNAME(route_info).ri_cb.any_count == 0) 1260 return; 1261 for (pass = 1; pass < 3; pass++) { 1262 memset(&info, 0, sizeof(info)); 1263 switch (cmdpass(cmd, pass)) { 1264 case cmdpass(RTM_ADD, 1): 1265 case cmdpass(RTM_CHANGE, 1): 1266 case cmdpass(RTM_DELETE, 2): 1267 case cmdpass(RTM_NEWADDR, 1): 1268 case cmdpass(RTM_DELADDR, 1): 1269 case cmdpass(RTM_CHGADDR, 1): 1270 switch (cmd) { 1271 case RTM_ADD: 1272 ncmd = RTM_NEWADDR; 1273 break; 1274 case RTM_DELETE: 1275 ncmd = RTM_DELADDR; 1276 break; 1277 case RTM_CHANGE: 1278 ncmd = RTM_CHGADDR; 1279 break; 1280 default: 1281 ncmd = cmd; 1282 } 1283 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1284 KASSERT(ifp->if_dl != NULL); 1285 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr; 1286 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1287 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1288 memset(&ifam, 0, sizeof(ifam)); 1289 ifam.ifam_index = ifp->if_index; 1290 ifam.ifam_metric = ifa->ifa_metric; 1291 ifam.ifam_flags = ifa->ifa_flags; 1292 m = COMPATNAME(rt_msg1)(ncmd, &info, &ifam, sizeof(ifam)); 1293 if (m == NULL) 1294 continue; 1295 mtod(m, struct ifa_xmsghdr *)->ifam_addrs = 1296 info.rti_addrs; 1297 break; 1298 case cmdpass(RTM_ADD, 2): 1299 case cmdpass(RTM_CHANGE, 2): 1300 case cmdpass(RTM_DELETE, 1): 1301 if (rt == NULL) 1302 continue; 1303 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1304 info.rti_info[RTAX_DST] = sa = rt_getkey(rt); 1305 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1306 memset(&rtm, 0, sizeof(rtm)); 1307 rtm.rtm_pid = curproc->p_pid; 1308 rtm.rtm_index = ifp->if_index; 1309 rtm.rtm_flags |= rt->rt_flags; 1310 rtm.rtm_errno = error; 1311 m = COMPATNAME(rt_msg1)(cmd, &info, &rtm, sizeof(rtm)); 1312 if (m == NULL) 1313 continue; 1314 mtod(m, struct rt_xmsghdr *)->rtm_addrs = info.rti_addrs; 1315 break; 1316 default: 1317 continue; 1318 } 1319 #ifdef DIAGNOSTIC 1320 if (m == NULL) 1321 panic("%s: called with wrong command", __func__); 1322 #endif 1323 COMPATNAME(route_enqueue)(m, sa ? sa->sa_family : 0); 1324 } 1325 #undef cmdpass 1326 } 1327 1328 static struct mbuf * 1329 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1330 struct rt_addrinfo *info) 1331 { 1332 struct if_xannouncemsghdr ifan; 1333 1334 memset(info, 0, sizeof(*info)); 1335 memset(&ifan, 0, sizeof(ifan)); 1336 ifan.ifan_index = ifp->if_index; 1337 strlcpy(ifan.ifan_name, ifp->if_xname, sizeof(ifan.ifan_name)); 1338 ifan.ifan_what = what; 1339 return COMPATNAME(rt_msg1)(type, info, &ifan, sizeof(ifan)); 1340 } 1341 1342 /* 1343 * This is called to generate routing socket messages indicating 1344 * network interface arrival and departure. 1345 */ 1346 void 1347 COMPATNAME(rt_ifannouncemsg)(struct ifnet *ifp, int what) 1348 { 1349 struct mbuf *m; 1350 struct rt_addrinfo info; 1351 1352 COMPATCALL(rt_ifannouncemsg, (ifp, what)); 1353 if (COMPATNAME(route_info).ri_cb.any_count == 0) 1354 return; 1355 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1356 if (m == NULL) 1357 return; 1358 COMPATNAME(route_enqueue)(m, 0); 1359 } 1360 1361 /* 1362 * This is called to generate routing socket messages indicating 1363 * IEEE80211 wireless events. 1364 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1365 */ 1366 void 1367 COMPATNAME(rt_ieee80211msg)(struct ifnet *ifp, int what, void *data, 1368 size_t data_len) 1369 { 1370 struct mbuf *m; 1371 struct rt_addrinfo info; 1372 1373 COMPATCALL(rt_ieee80211msg, (ifp, what, data, data_len)); 1374 if (COMPATNAME(route_info).ri_cb.any_count == 0) 1375 return; 1376 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1377 if (m == NULL) 1378 return; 1379 /* 1380 * Append the ieee80211 data. Try to stick it in the 1381 * mbuf containing the ifannounce msg; otherwise allocate 1382 * a new mbuf and append. 1383 * 1384 * NB: we assume m is a single mbuf. 1385 */ 1386 if (data_len > M_TRAILINGSPACE(m)) { 1387 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1388 if (n == NULL) { 1389 m_freem(m); 1390 return; 1391 } 1392 (void)memcpy(mtod(n, void *), data, data_len); 1393 n->m_len = data_len; 1394 m->m_next = n; 1395 } else if (data_len > 0) { 1396 (void)memcpy(mtod(m, uint8_t *) + m->m_len, data, data_len); 1397 m->m_len += data_len; 1398 } 1399 if (m->m_flags & M_PKTHDR) 1400 m->m_pkthdr.len += data_len; 1401 mtod(m, struct if_xannouncemsghdr *)->ifan_msglen += data_len; 1402 COMPATNAME(route_enqueue)(m, 0); 1403 } 1404 1405 /* 1406 * This is used in dumping the kernel table via sysctl(). 1407 */ 1408 static int 1409 sysctl_dumpentry(struct rtentry *rt, void *v) 1410 { 1411 struct rt_walkarg *w = v; 1412 int error = 0, size; 1413 struct rt_addrinfo info; 1414 1415 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1416 return 0; 1417 memset(&info, 0, sizeof(info)); 1418 info.rti_info[RTAX_DST] = rt_getkey(rt); 1419 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1420 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1421 info.rti_info[RTAX_TAG] = rt_gettag(rt); 1422 if (rt->rt_ifp) { 1423 const struct ifaddr *rtifa; 1424 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_dl->ifa_addr; 1425 /* rtifa used to be simply rt->rt_ifa. If rt->rt_ifa != NULL, 1426 * then rt_get_ifa() != NULL. So this ought to still be safe. 1427 * --dyoung 1428 */ 1429 rtifa = rt_get_ifa(rt); 1430 info.rti_info[RTAX_IFA] = rtifa->ifa_addr; 1431 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1432 info.rti_info[RTAX_BRD] = rtifa->ifa_dstaddr; 1433 } 1434 if ((error = rt_msg2(RTM_GET, &info, 0, w, &size))) 1435 return error; 1436 if (w->w_where && w->w_tmem && w->w_needed <= 0) { 1437 struct rt_xmsghdr *rtm = (struct rt_xmsghdr *)w->w_tmem; 1438 1439 rtm->rtm_flags = rt->rt_flags; 1440 rtm->rtm_use = rt->rt_use; 1441 rtm_setmetrics(rt, rtm); 1442 KASSERT(rt->rt_ifp != NULL); 1443 rtm->rtm_index = rt->rt_ifp->if_index; 1444 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1445 rtm->rtm_addrs = info.rti_addrs; 1446 if ((error = copyout(rtm, w->w_where, size)) != 0) 1447 w->w_where = NULL; 1448 else 1449 w->w_where = (char *)w->w_where + size; 1450 } 1451 return error; 1452 } 1453 1454 static int 1455 sysctl_iflist(int af, struct rt_walkarg *w, int type) 1456 { 1457 struct ifnet *ifp; 1458 struct ifaddr *ifa; 1459 struct rt_addrinfo info; 1460 int len, error = 0; 1461 int s; 1462 struct psref psref; 1463 int bound = curlwp_bind(); 1464 1465 memset(&info, 0, sizeof(info)); 1466 1467 s = pserialize_read_enter(); 1468 IFNET_READER_FOREACH(ifp) { 1469 if (w->w_arg && w->w_arg != ifp->if_index) 1470 continue; 1471 if (IFADDR_READER_EMPTY(ifp)) 1472 continue; 1473 1474 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 1475 pserialize_read_exit(s); 1476 1477 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr; 1478 switch (type) { 1479 case NET_RT_IFLIST: 1480 error = rt_msg2(RTM_IFINFO, &info, NULL, w, &len); 1481 break; 1482 #ifdef COMPAT_14 1483 case NET_RT_OOIFLIST: 1484 error = rt_msg2(RTM_OOIFINFO, &info, NULL, w, &len); 1485 break; 1486 #endif 1487 #ifdef COMPAT_50 1488 case NET_RT_OIFLIST: 1489 error = rt_msg2(RTM_OIFINFO, &info, NULL, w, &len); 1490 break; 1491 #endif 1492 default: 1493 panic("sysctl_iflist(1)"); 1494 } 1495 if (error) 1496 goto release_exit; 1497 info.rti_info[RTAX_IFP] = NULL; 1498 if (w->w_where && w->w_tmem && w->w_needed <= 0) { 1499 switch (type) { 1500 case NET_RT_IFLIST: { 1501 struct if_xmsghdr *ifm; 1502 1503 ifm = (struct if_xmsghdr *)w->w_tmem; 1504 ifm->ifm_index = ifp->if_index; 1505 ifm->ifm_flags = ifp->if_flags; 1506 ifm->ifm_data = ifp->if_data; 1507 ifm->ifm_addrs = info.rti_addrs; 1508 error = copyout(ifm, w->w_where, len); 1509 if (error) 1510 goto release_exit; 1511 w->w_where = (char *)w->w_where + len; 1512 break; 1513 } 1514 1515 #ifdef COMPAT_14 1516 case NET_RT_OOIFLIST: 1517 error = compat_14_iflist(ifp, w, &info, len); 1518 if (error) 1519 goto release_exit; 1520 break; 1521 #endif 1522 #ifdef COMPAT_50 1523 case NET_RT_OIFLIST: 1524 error = compat_50_iflist(ifp, w, &info, len); 1525 if (error) 1526 goto release_exit; 1527 break; 1528 #endif 1529 default: 1530 panic("sysctl_iflist(2)"); 1531 } 1532 } 1533 IFADDR_READER_FOREACH(ifa, ifp) { 1534 if (af && af != ifa->ifa_addr->sa_family) 1535 continue; 1536 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1537 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1538 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1539 if ((error = rt_msg2(RTM_NEWADDR, &info, 0, w, &len))) 1540 goto release_exit; 1541 if (w->w_where && w->w_tmem && w->w_needed <= 0) { 1542 struct ifa_xmsghdr *ifam; 1543 1544 ifam = (struct ifa_xmsghdr *)w->w_tmem; 1545 ifam->ifam_index = ifa->ifa_ifp->if_index; 1546 ifam->ifam_flags = ifa->ifa_flags; 1547 ifam->ifam_metric = ifa->ifa_metric; 1548 ifam->ifam_addrs = info.rti_addrs; 1549 error = copyout(w->w_tmem, w->w_where, len); 1550 if (error) 1551 goto release_exit; 1552 w->w_where = (char *)w->w_where + len; 1553 } 1554 } 1555 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1556 info.rti_info[RTAX_BRD] = NULL; 1557 1558 s = pserialize_read_enter(); 1559 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 1560 } 1561 pserialize_read_exit(s); 1562 curlwp_bindx(bound); 1563 1564 return 0; 1565 1566 release_exit: 1567 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 1568 curlwp_bindx(bound); 1569 return error; 1570 } 1571 1572 static int 1573 sysctl_rtable(SYSCTLFN_ARGS) 1574 { 1575 void *where = oldp; 1576 size_t *given = oldlenp; 1577 int i, s, error = EINVAL; 1578 u_char af; 1579 struct rt_walkarg w; 1580 1581 if (namelen == 1 && name[0] == CTL_QUERY) 1582 return sysctl_query(SYSCTLFN_CALL(rnode)); 1583 1584 if (newp) 1585 return EPERM; 1586 if (namelen != 3) 1587 return EINVAL; 1588 af = name[0]; 1589 w.w_tmemneeded = 0; 1590 w.w_tmemsize = 0; 1591 w.w_tmem = NULL; 1592 again: 1593 /* we may return here if a later [re]alloc of the t_mem buffer fails */ 1594 if (w.w_tmemneeded) { 1595 w.w_tmem = malloc(w.w_tmemneeded, M_RTABLE, M_WAITOK); 1596 w.w_tmemsize = w.w_tmemneeded; 1597 w.w_tmemneeded = 0; 1598 } 1599 w.w_op = name[1]; 1600 w.w_arg = name[2]; 1601 w.w_given = *given; 1602 w.w_needed = 0 - w.w_given; 1603 w.w_where = where; 1604 1605 s = splsoftnet(); 1606 switch (w.w_op) { 1607 1608 case NET_RT_DUMP: 1609 case NET_RT_FLAGS: 1610 #ifdef INET 1611 /* 1612 * take care of llinfo entries, the caller must 1613 * specify an AF 1614 */ 1615 if (w.w_op == NET_RT_FLAGS && 1616 (w.w_arg == 0 || w.w_arg & RTF_LLDATA)) { 1617 if (af != 0) 1618 error = lltable_sysctl_dumparp(af, &w); 1619 else 1620 error = EINVAL; 1621 break; 1622 } 1623 #endif /* INET */ 1624 1625 for (i = 1; i <= AF_MAX; i++) 1626 if ((af == 0 || af == i) && 1627 (error = rt_walktree(i, sysctl_dumpentry, &w))) 1628 break; 1629 break; 1630 1631 #ifdef COMPAT_14 1632 case NET_RT_OOIFLIST: 1633 error = sysctl_iflist(af, &w, w.w_op); 1634 break; 1635 #endif 1636 #ifdef COMPAT_50 1637 case NET_RT_OIFLIST: 1638 error = sysctl_iflist(af, &w, w.w_op); 1639 break; 1640 #endif 1641 case NET_RT_IFLIST: 1642 error = sysctl_iflist(af, &w, w.w_op); 1643 break; 1644 } 1645 splx(s); 1646 1647 /* check to see if we couldn't allocate memory with NOWAIT */ 1648 if (error == ENOBUFS && w.w_tmem == 0 && w.w_tmemneeded) 1649 goto again; 1650 1651 if (w.w_tmem) 1652 free(w.w_tmem, M_RTABLE); 1653 w.w_needed += w.w_given; 1654 if (where) { 1655 *given = (char *)w.w_where - (char *)where; 1656 if (*given < w.w_needed) 1657 return ENOMEM; 1658 } else { 1659 *given = (11 * w.w_needed) / 10; 1660 } 1661 return error; 1662 } 1663 1664 /* 1665 * Routing message software interrupt routine 1666 */ 1667 static void 1668 COMPATNAME(route_intr)(void *cookie) 1669 { 1670 struct sockproto proto = { .sp_family = PF_XROUTE, }; 1671 struct route_info * const ri = &COMPATNAME(route_info); 1672 struct mbuf *m; 1673 int s; 1674 1675 mutex_enter(softnet_lock); 1676 KERNEL_LOCK(1, NULL); 1677 while (!IF_IS_EMPTY(&ri->ri_intrq)) { 1678 s = splnet(); 1679 IF_DEQUEUE(&ri->ri_intrq, m); 1680 splx(s); 1681 if (m == NULL) 1682 break; 1683 proto.sp_protocol = M_GETCTX(m, uintptr_t); 1684 raw_input(m, &proto, &ri->ri_src, &ri->ri_dst); 1685 } 1686 KERNEL_UNLOCK_ONE(NULL); 1687 mutex_exit(softnet_lock); 1688 } 1689 1690 /* 1691 * Enqueue a message to the software interrupt routine. 1692 */ 1693 void 1694 COMPATNAME(route_enqueue)(struct mbuf *m, int family) 1695 { 1696 struct route_info * const ri = &COMPATNAME(route_info); 1697 int s, wasempty; 1698 1699 s = splnet(); 1700 if (IF_QFULL(&ri->ri_intrq)) { 1701 IF_DROP(&ri->ri_intrq); 1702 m_freem(m); 1703 } else { 1704 wasempty = IF_IS_EMPTY(&ri->ri_intrq); 1705 M_SETCTX(m, (uintptr_t)family); 1706 IF_ENQUEUE(&ri->ri_intrq, m); 1707 if (wasempty) 1708 softint_schedule(ri->ri_sih); 1709 } 1710 splx(s); 1711 } 1712 1713 static void 1714 COMPATNAME(route_init)(void) 1715 { 1716 struct route_info * const ri = &COMPATNAME(route_info); 1717 1718 #ifndef COMPAT_RTSOCK 1719 rt_init(); 1720 #endif 1721 1722 sysctl_net_route_setup(NULL); 1723 ri->ri_intrq.ifq_maxlen = ri->ri_maxqlen; 1724 ri->ri_sih = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE, 1725 COMPATNAME(route_intr), NULL); 1726 } 1727 1728 /* 1729 * Definitions of protocols supported in the ROUTE domain. 1730 */ 1731 #ifndef COMPAT_RTSOCK 1732 PR_WRAP_USRREQS(route); 1733 #else 1734 PR_WRAP_USRREQS(compat_50_route); 1735 #endif 1736 1737 static const struct pr_usrreqs route_usrreqs = { 1738 .pr_attach = COMPATNAME(route_attach_wrapper), 1739 .pr_detach = COMPATNAME(route_detach_wrapper), 1740 .pr_accept = COMPATNAME(route_accept_wrapper), 1741 .pr_bind = COMPATNAME(route_bind_wrapper), 1742 .pr_listen = COMPATNAME(route_listen_wrapper), 1743 .pr_connect = COMPATNAME(route_connect_wrapper), 1744 .pr_connect2 = COMPATNAME(route_connect2_wrapper), 1745 .pr_disconnect = COMPATNAME(route_disconnect_wrapper), 1746 .pr_shutdown = COMPATNAME(route_shutdown_wrapper), 1747 .pr_abort = COMPATNAME(route_abort_wrapper), 1748 .pr_ioctl = COMPATNAME(route_ioctl_wrapper), 1749 .pr_stat = COMPATNAME(route_stat_wrapper), 1750 .pr_peeraddr = COMPATNAME(route_peeraddr_wrapper), 1751 .pr_sockaddr = COMPATNAME(route_sockaddr_wrapper), 1752 .pr_rcvd = COMPATNAME(route_rcvd_wrapper), 1753 .pr_recvoob = COMPATNAME(route_recvoob_wrapper), 1754 .pr_send = COMPATNAME(route_send_wrapper), 1755 .pr_sendoob = COMPATNAME(route_sendoob_wrapper), 1756 .pr_purgeif = COMPATNAME(route_purgeif_wrapper), 1757 }; 1758 1759 static const struct protosw COMPATNAME(route_protosw)[] = { 1760 { 1761 .pr_type = SOCK_RAW, 1762 .pr_domain = &COMPATNAME(routedomain), 1763 .pr_flags = PR_ATOMIC|PR_ADDR, 1764 .pr_input = raw_input, 1765 .pr_ctlinput = raw_ctlinput, 1766 .pr_usrreqs = &route_usrreqs, 1767 .pr_init = raw_init, 1768 }, 1769 }; 1770 1771 struct domain COMPATNAME(routedomain) = { 1772 .dom_family = PF_XROUTE, 1773 .dom_name = DOMAINNAME, 1774 .dom_init = COMPATNAME(route_init), 1775 .dom_protosw = COMPATNAME(route_protosw), 1776 .dom_protoswNPROTOSW = 1777 &COMPATNAME(route_protosw)[__arraycount(COMPATNAME(route_protosw))], 1778 }; 1779 1780 static void 1781 sysctl_net_route_setup(struct sysctllog **clog) 1782 { 1783 const struct sysctlnode *rnode = NULL; 1784 1785 sysctl_createv(clog, 0, NULL, &rnode, 1786 CTLFLAG_PERMANENT, 1787 CTLTYPE_NODE, DOMAINNAME, 1788 SYSCTL_DESCR("PF_ROUTE information"), 1789 NULL, 0, NULL, 0, 1790 CTL_NET, PF_XROUTE, CTL_EOL); 1791 1792 sysctl_createv(clog, 0, NULL, NULL, 1793 CTLFLAG_PERMANENT, 1794 CTLTYPE_NODE, "rtable", 1795 SYSCTL_DESCR("Routing table information"), 1796 sysctl_rtable, 0, NULL, 0, 1797 CTL_NET, PF_XROUTE, 0 /* any protocol */, CTL_EOL); 1798 1799 sysctl_createv(clog, 0, &rnode, NULL, 1800 CTLFLAG_PERMANENT, 1801 CTLTYPE_STRUCT, "stats", 1802 SYSCTL_DESCR("Routing statistics"), 1803 NULL, 0, &rtstat, sizeof(rtstat), 1804 CTL_CREATE, CTL_EOL); 1805 } 1806