1 /* $NetBSD: rtsock.c,v 1.194 2016/08/01 03:15:30 ozaki-r Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1988, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: rtsock.c,v 1.194 2016/08/01 03:15:30 ozaki-r Exp $"); 65 66 #ifdef _KERNEL_OPT 67 #include "opt_inet.h" 68 #include "opt_mpls.h" 69 #include "opt_compat_netbsd.h" 70 #include "opt_sctp.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/systm.h> 75 #include <sys/proc.h> 76 #include <sys/socket.h> 77 #include <sys/socketvar.h> 78 #include <sys/domain.h> 79 #include <sys/protosw.h> 80 #include <sys/sysctl.h> 81 #include <sys/kauth.h> 82 #include <sys/kmem.h> 83 #include <sys/intr.h> 84 85 #include <net/if.h> 86 #include <net/if_llatbl.h> 87 #include <net/if_types.h> 88 #include <net/route.h> 89 #include <net/raw_cb.h> 90 91 #include <netinet/in_var.h> 92 #include <netinet/if_inarp.h> 93 94 #include <netmpls/mpls.h> 95 96 #ifdef SCTP 97 extern void sctp_add_ip_address(struct ifaddr *); 98 extern void sctp_delete_ip_address(struct ifaddr *); 99 #endif 100 101 #if defined(COMPAT_14) || defined(COMPAT_50) 102 #include <compat/net/if.h> 103 #include <compat/net/route.h> 104 #endif 105 #ifdef COMPAT_RTSOCK 106 #define RTM_XVERSION RTM_OVERSION 107 #define RT_XADVANCE(a,b) RT_OADVANCE(a,b) 108 #define RT_XROUNDUP(n) RT_OROUNDUP(n) 109 #define PF_XROUTE PF_OROUTE 110 #define rt_xmsghdr rt_msghdr50 111 #define if_xmsghdr if_msghdr /* if_msghdr50 is for RTM_OIFINFO */ 112 #define ifa_xmsghdr ifa_msghdr50 113 #define if_xannouncemsghdr if_announcemsghdr50 114 #define COMPATNAME(x) compat_50_ ## x 115 #define DOMAINNAME "oroute" 116 CTASSERT(sizeof(struct ifa_xmsghdr) == 20); 117 DOMAIN_DEFINE(compat_50_routedomain); /* forward declare and add to link set */ 118 #else /* COMPAT_RTSOCK */ 119 #define RTM_XVERSION RTM_VERSION 120 #define RT_XADVANCE(a,b) RT_ADVANCE(a,b) 121 #define RT_XROUNDUP(n) RT_ROUNDUP(n) 122 #define PF_XROUTE PF_ROUTE 123 #define rt_xmsghdr rt_msghdr 124 #define if_xmsghdr if_msghdr 125 #define ifa_xmsghdr ifa_msghdr 126 #define if_xannouncemsghdr if_announcemsghdr 127 #define COMPATNAME(x) x 128 #define DOMAINNAME "route" 129 CTASSERT(sizeof(struct ifa_xmsghdr) == 24); 130 #ifdef COMPAT_50 131 #define COMPATCALL(name, args) compat_50_ ## name args 132 #endif 133 DOMAIN_DEFINE(routedomain); /* forward declare and add to link set */ 134 #undef COMPAT_50 135 #undef COMPAT_14 136 #endif /* COMPAT_RTSOCK */ 137 138 #ifndef COMPATCALL 139 #define COMPATCALL(name, args) do { } while (/*CONSTCOND*/ 0) 140 #endif 141 142 #ifdef RTSOCK_DEBUG 143 #define RT_IN_PRINT(info, b, a) (in_print((b), sizeof(b), \ 144 &((const struct sockaddr_in *)(info)->rti_info[(a)])->sin_addr), (b)) 145 #endif /* RTSOCK_DEBUG */ 146 147 struct route_info COMPATNAME(route_info) = { 148 .ri_dst = { .sa_len = 2, .sa_family = PF_XROUTE, }, 149 .ri_src = { .sa_len = 2, .sa_family = PF_XROUTE, }, 150 .ri_maxqlen = IFQ_MAXLEN, 151 }; 152 153 #define PRESERVED_RTF (RTF_UP | RTF_GATEWAY | RTF_HOST | RTF_DONE | RTF_MASK) 154 155 static void COMPATNAME(route_init)(void); 156 static int COMPATNAME(route_output)(struct mbuf *, struct socket *); 157 158 static int rt_xaddrs(u_char, const char *, const char *, struct rt_addrinfo *); 159 static struct mbuf *rt_makeifannouncemsg(struct ifnet *, int, int, 160 struct rt_addrinfo *); 161 static int rt_msg2(int, struct rt_addrinfo *, void *, struct rt_walkarg *, int *); 162 static void rt_setmetrics(int, const struct rt_xmsghdr *, struct rtentry *); 163 static void rtm_setmetrics(const struct rtentry *, struct rt_xmsghdr *); 164 static void sysctl_net_route_setup(struct sysctllog **); 165 static int sysctl_dumpentry(struct rtentry *, void *); 166 static int sysctl_iflist(int, struct rt_walkarg *, int); 167 static int sysctl_rtable(SYSCTLFN_PROTO); 168 static void rt_adjustcount(int, int); 169 170 static const struct protosw COMPATNAME(route_protosw)[]; 171 172 static void 173 rt_adjustcount(int af, int cnt) 174 { 175 struct route_cb * const cb = &COMPATNAME(route_info).ri_cb; 176 177 cb->any_count += cnt; 178 179 switch (af) { 180 case AF_INET: 181 cb->ip_count += cnt; 182 return; 183 #ifdef INET6 184 case AF_INET6: 185 cb->ip6_count += cnt; 186 return; 187 #endif 188 case AF_MPLS: 189 cb->mpls_count += cnt; 190 return; 191 } 192 } 193 194 static int 195 COMPATNAME(route_attach)(struct socket *so, int proto) 196 { 197 struct rawcb *rp; 198 int s, error; 199 200 KASSERT(sotorawcb(so) == NULL); 201 rp = kmem_zalloc(sizeof(*rp), KM_SLEEP); 202 rp->rcb_len = sizeof(*rp); 203 so->so_pcb = rp; 204 205 s = splsoftnet(); 206 if ((error = raw_attach(so, proto)) == 0) { 207 rt_adjustcount(rp->rcb_proto.sp_protocol, 1); 208 rp->rcb_laddr = &COMPATNAME(route_info).ri_src; 209 rp->rcb_faddr = &COMPATNAME(route_info).ri_dst; 210 } 211 splx(s); 212 213 if (error) { 214 kmem_free(rp, sizeof(*rp)); 215 so->so_pcb = NULL; 216 return error; 217 } 218 219 soisconnected(so); 220 so->so_options |= SO_USELOOPBACK; 221 KASSERT(solocked(so)); 222 223 return error; 224 } 225 226 static void 227 COMPATNAME(route_detach)(struct socket *so) 228 { 229 struct rawcb *rp = sotorawcb(so); 230 int s; 231 232 KASSERT(rp != NULL); 233 KASSERT(solocked(so)); 234 235 s = splsoftnet(); 236 rt_adjustcount(rp->rcb_proto.sp_protocol, -1); 237 raw_detach(so); 238 splx(s); 239 } 240 241 static int 242 COMPATNAME(route_accept)(struct socket *so, struct sockaddr *nam) 243 { 244 KASSERT(solocked(so)); 245 246 panic("route_accept"); 247 248 return EOPNOTSUPP; 249 } 250 251 static int 252 COMPATNAME(route_bind)(struct socket *so, struct sockaddr *nam, struct lwp *l) 253 { 254 KASSERT(solocked(so)); 255 256 return EOPNOTSUPP; 257 } 258 259 static int 260 COMPATNAME(route_listen)(struct socket *so, struct lwp *l) 261 { 262 KASSERT(solocked(so)); 263 264 return EOPNOTSUPP; 265 } 266 267 static int 268 COMPATNAME(route_connect)(struct socket *so, struct sockaddr *nam, struct lwp *l) 269 { 270 KASSERT(solocked(so)); 271 272 return EOPNOTSUPP; 273 } 274 275 static int 276 COMPATNAME(route_connect2)(struct socket *so, struct socket *so2) 277 { 278 KASSERT(solocked(so)); 279 280 return EOPNOTSUPP; 281 } 282 283 static int 284 COMPATNAME(route_disconnect)(struct socket *so) 285 { 286 struct rawcb *rp = sotorawcb(so); 287 int s; 288 289 KASSERT(solocked(so)); 290 KASSERT(rp != NULL); 291 292 s = splsoftnet(); 293 soisdisconnected(so); 294 raw_disconnect(rp); 295 splx(s); 296 297 return 0; 298 } 299 300 static int 301 COMPATNAME(route_shutdown)(struct socket *so) 302 { 303 int s; 304 305 KASSERT(solocked(so)); 306 307 /* 308 * Mark the connection as being incapable of further input. 309 */ 310 s = splsoftnet(); 311 socantsendmore(so); 312 splx(s); 313 return 0; 314 } 315 316 static int 317 COMPATNAME(route_abort)(struct socket *so) 318 { 319 KASSERT(solocked(so)); 320 321 panic("route_abort"); 322 323 return EOPNOTSUPP; 324 } 325 326 static int 327 COMPATNAME(route_ioctl)(struct socket *so, u_long cmd, void *nam, 328 struct ifnet * ifp) 329 { 330 return EOPNOTSUPP; 331 } 332 333 static int 334 COMPATNAME(route_stat)(struct socket *so, struct stat *ub) 335 { 336 KASSERT(solocked(so)); 337 338 return 0; 339 } 340 341 static int 342 COMPATNAME(route_peeraddr)(struct socket *so, struct sockaddr *nam) 343 { 344 struct rawcb *rp = sotorawcb(so); 345 346 KASSERT(solocked(so)); 347 KASSERT(rp != NULL); 348 KASSERT(nam != NULL); 349 350 if (rp->rcb_faddr == NULL) 351 return ENOTCONN; 352 353 raw_setpeeraddr(rp, nam); 354 return 0; 355 } 356 357 static int 358 COMPATNAME(route_sockaddr)(struct socket *so, struct sockaddr *nam) 359 { 360 struct rawcb *rp = sotorawcb(so); 361 362 KASSERT(solocked(so)); 363 KASSERT(rp != NULL); 364 KASSERT(nam != NULL); 365 366 if (rp->rcb_faddr == NULL) 367 return ENOTCONN; 368 369 raw_setsockaddr(rp, nam); 370 return 0; 371 } 372 373 static int 374 COMPATNAME(route_rcvd)(struct socket *so, int flags, struct lwp *l) 375 { 376 KASSERT(solocked(so)); 377 378 return EOPNOTSUPP; 379 } 380 381 static int 382 COMPATNAME(route_recvoob)(struct socket *so, struct mbuf *m, int flags) 383 { 384 KASSERT(solocked(so)); 385 386 return EOPNOTSUPP; 387 } 388 389 static int 390 COMPATNAME(route_send)(struct socket *so, struct mbuf *m, 391 struct sockaddr *nam, struct mbuf *control, struct lwp *l) 392 { 393 int error = 0; 394 int s; 395 396 KASSERT(solocked(so)); 397 KASSERT(so->so_proto == &COMPATNAME(route_protosw)[0]); 398 399 s = splsoftnet(); 400 error = raw_send(so, m, nam, control, l, &COMPATNAME(route_output)); 401 splx(s); 402 403 return error; 404 } 405 406 static int 407 COMPATNAME(route_sendoob)(struct socket *so, struct mbuf *m, 408 struct mbuf *control) 409 { 410 KASSERT(solocked(so)); 411 412 m_freem(m); 413 m_freem(control); 414 415 return EOPNOTSUPP; 416 } 417 static int 418 COMPATNAME(route_purgeif)(struct socket *so, struct ifnet *ifp) 419 { 420 421 panic("route_purgeif"); 422 423 return EOPNOTSUPP; 424 } 425 426 #ifdef INET 427 static int 428 route_get_sdl_index(struct rt_addrinfo *info, int *sdl_index) 429 { 430 struct rtentry *nrt; 431 int error; 432 433 error = rtrequest1(RTM_GET, info, &nrt); 434 if (error != 0) 435 return error; 436 /* 437 * nrt->rt_ifp->if_index may not be correct 438 * due to changing to ifplo0. 439 */ 440 *sdl_index = satosdl(nrt->rt_gateway)->sdl_index; 441 rtfree(nrt); 442 443 return 0; 444 } 445 #endif /* INET */ 446 447 static void 448 route_get_sdl(const struct ifnet *ifp, const struct sockaddr *dst, 449 struct sockaddr_dl *sdl, int *flags) 450 { 451 struct llentry *la; 452 453 KASSERT(ifp != NULL); 454 455 IF_AFDATA_RLOCK(ifp); 456 switch (dst->sa_family) { 457 case AF_INET: 458 la = lla_lookup(LLTABLE(ifp), 0, dst); 459 break; 460 case AF_INET6: 461 la = lla_lookup(LLTABLE6(ifp), 0, dst); 462 break; 463 default: 464 la = NULL; 465 KASSERTMSG(0, "Invalid AF=%d\n", dst->sa_family); 466 break; 467 } 468 IF_AFDATA_RUNLOCK(ifp); 469 470 void *a = (LLE_IS_VALID(la) && (la->la_flags & LLE_VALID) == LLE_VALID) 471 ? &la->ll_addr : NULL; 472 473 a = sockaddr_dl_init(sdl, sizeof(*sdl), ifp->if_index, ifp->if_type, 474 NULL, 0, a, ifp->if_addrlen); 475 KASSERT(a != NULL); 476 477 if (la != NULL) { 478 *flags = la->la_flags; 479 LLE_RUNLOCK(la); 480 } 481 } 482 483 static int 484 route_output_report(struct rtentry *rt, struct rt_addrinfo *info, 485 struct rt_xmsghdr *rtm, struct rt_xmsghdr **new_rtm) 486 { 487 int len; 488 struct ifnet *ifp; 489 490 if ((rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) == 0) 491 ; 492 else if ((ifp = rt->rt_ifp) != NULL) { 493 const struct ifaddr *rtifa; 494 info->rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr; 495 /* rtifa used to be simply rt->rt_ifa. 496 * If rt->rt_ifa != NULL, then 497 * rt_get_ifa() != NULL. So this 498 * ought to still be safe. --dyoung 499 */ 500 rtifa = rt_get_ifa(rt); 501 info->rti_info[RTAX_IFA] = rtifa->ifa_addr; 502 #ifdef RTSOCK_DEBUG 503 if (info->rti_info[RTAX_IFA]->sa_family == AF_INET) { 504 char ibuf[INET_ADDRSTRLEN]; 505 char abuf[INET_ADDRSTRLEN]; 506 printf("%s: copying out RTAX_IFA %s " 507 "for info->rti_info[RTAX_DST] %s " 508 "ifa_getifa %p ifa_seqno %p\n", 509 __func__, 510 RT_IN_PRINT(info, ibuf, RTAX_IFA), 511 RT_IN_PRINT(info, abuf, RTAX_DST), 512 (void *)rtifa->ifa_getifa, 513 rtifa->ifa_seqno); 514 } 515 #endif /* RTSOCK_DEBUG */ 516 if (ifp->if_flags & IFF_POINTOPOINT) 517 info->rti_info[RTAX_BRD] = rtifa->ifa_dstaddr; 518 else 519 info->rti_info[RTAX_BRD] = NULL; 520 rtm->rtm_index = ifp->if_index; 521 } else { 522 info->rti_info[RTAX_IFP] = NULL; 523 info->rti_info[RTAX_IFA] = NULL; 524 } 525 (void)rt_msg2(rtm->rtm_type, info, NULL, NULL, &len); 526 if (len > rtm->rtm_msglen) { 527 struct rt_xmsghdr *old_rtm = rtm; 528 R_Malloc(*new_rtm, struct rt_xmsghdr *, len); 529 if (*new_rtm == NULL) 530 return ENOBUFS; 531 (void)memcpy(*new_rtm, old_rtm, old_rtm->rtm_msglen); 532 rtm = *new_rtm; 533 } 534 (void)rt_msg2(rtm->rtm_type, info, rtm, NULL, 0); 535 rtm->rtm_flags = rt->rt_flags; 536 rtm_setmetrics(rt, rtm); 537 rtm->rtm_addrs = info->rti_addrs; 538 539 return 0; 540 } 541 542 static struct ifaddr * 543 route_output_get_ifa(const struct rt_addrinfo info, const struct rtentry *rt, 544 struct ifnet **ifp, struct psref *psref) 545 { 546 struct ifaddr *ifa = NULL; 547 548 *ifp = NULL; 549 if (info.rti_info[RTAX_IFP] != NULL) { 550 ifa = ifa_ifwithnet_psref(info.rti_info[RTAX_IFP], psref); 551 if (ifa == NULL) 552 goto next; 553 *ifp = ifa->ifa_ifp; 554 if (info.rti_info[RTAX_IFA] == NULL && 555 info.rti_info[RTAX_GATEWAY] == NULL) 556 goto next; 557 if (info.rti_info[RTAX_IFA] == NULL) { 558 /* route change <dst> <gw> -ifp <if> */ 559 ifa = ifaof_ifpforaddr_psref(info.rti_info[RTAX_GATEWAY], 560 *ifp, psref); 561 } else { 562 /* route change <dst> -ifp <if> -ifa <addr> */ 563 ifa = ifa_ifwithaddr_psref(info.rti_info[RTAX_IFA], psref); 564 if (ifa != NULL) 565 goto out; 566 ifa = ifaof_ifpforaddr_psref(info.rti_info[RTAX_IFA], 567 *ifp, psref); 568 } 569 goto out; 570 } 571 next: 572 if (info.rti_info[RTAX_IFA] != NULL) { 573 /* route change <dst> <gw> -ifa <addr> */ 574 ifa = ifa_ifwithaddr_psref(info.rti_info[RTAX_IFA], psref); 575 if (ifa != NULL) 576 goto out; 577 } 578 if (info.rti_info[RTAX_GATEWAY] != NULL) { 579 /* route change <dst> <gw> */ 580 ifa = ifa_ifwithroute_psref(rt->rt_flags, rt_getkey(rt), 581 info.rti_info[RTAX_GATEWAY], psref); 582 } 583 out: 584 if (ifa != NULL && *ifp == NULL) 585 *ifp = ifa->ifa_ifp; 586 return ifa; 587 } 588 589 /*ARGSUSED*/ 590 int 591 COMPATNAME(route_output)(struct mbuf *m, struct socket *so) 592 { 593 struct sockproto proto = { .sp_family = PF_XROUTE, }; 594 struct rt_xmsghdr *rtm = NULL; 595 struct rt_xmsghdr *old_rtm = NULL, *new_rtm = NULL; 596 struct rtentry *rt = NULL; 597 struct rtentry *saved_nrt = NULL; 598 struct rt_addrinfo info; 599 int len, error = 0; 600 struct ifnet *ifp = NULL; 601 struct ifaddr *ifa = NULL; 602 sa_family_t family; 603 struct sockaddr_dl sdl; 604 struct psref psref; 605 int bound = curlwp_bind(); 606 607 #define senderr(e) do { error = e; goto flush;} while (/*CONSTCOND*/ 0) 608 if (m == NULL || ((m->m_len < sizeof(int32_t)) && 609 (m = m_pullup(m, sizeof(int32_t))) == NULL)) { 610 error = ENOBUFS; 611 goto out; 612 } 613 if ((m->m_flags & M_PKTHDR) == 0) 614 panic("%s", __func__); 615 len = m->m_pkthdr.len; 616 if (len < sizeof(*rtm) || 617 len != mtod(m, struct rt_xmsghdr *)->rtm_msglen) { 618 info.rti_info[RTAX_DST] = NULL; 619 senderr(EINVAL); 620 } 621 R_Malloc(rtm, struct rt_xmsghdr *, len); 622 if (rtm == NULL) { 623 info.rti_info[RTAX_DST] = NULL; 624 senderr(ENOBUFS); 625 } 626 m_copydata(m, 0, len, rtm); 627 if (rtm->rtm_version != RTM_XVERSION) { 628 info.rti_info[RTAX_DST] = NULL; 629 senderr(EPROTONOSUPPORT); 630 } 631 rtm->rtm_pid = curproc->p_pid; 632 memset(&info, 0, sizeof(info)); 633 info.rti_addrs = rtm->rtm_addrs; 634 if (rt_xaddrs(rtm->rtm_type, (const char *)(rtm + 1), len + (char *)rtm, 635 &info)) { 636 senderr(EINVAL); 637 } 638 info.rti_flags = rtm->rtm_flags; 639 #ifdef RTSOCK_DEBUG 640 if (info.rti_info[RTAX_DST]->sa_family == AF_INET) { 641 char abuf[INET_ADDRSTRLEN]; 642 printf("%s: extracted info.rti_info[RTAX_DST] %s\n", __func__, 643 RT_IN_PRINT(&info, abuf, RTAX_DST)); 644 } 645 #endif /* RTSOCK_DEBUG */ 646 if (info.rti_info[RTAX_DST] == NULL || 647 (info.rti_info[RTAX_DST]->sa_family >= AF_MAX)) { 648 senderr(EINVAL); 649 } 650 if (info.rti_info[RTAX_GATEWAY] != NULL && 651 (info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) { 652 senderr(EINVAL); 653 } 654 655 /* 656 * Verify that the caller has the appropriate privilege; RTM_GET 657 * is the only operation the non-superuser is allowed. 658 */ 659 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_ROUTE, 660 0, rtm, NULL, NULL) != 0) 661 senderr(EACCES); 662 663 switch (rtm->rtm_type) { 664 665 case RTM_ADD: 666 if (info.rti_info[RTAX_GATEWAY] == NULL) { 667 senderr(EINVAL); 668 } 669 #ifdef INET 670 /* support for new ARP code with keeping backcompat */ 671 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) { 672 const struct sockaddr_dl *sdlp = 673 satocsdl(info.rti_info[RTAX_GATEWAY]); 674 675 /* Allow routing requests by interface index */ 676 if (sdlp->sdl_nlen == 0 && sdlp->sdl_alen == 0 677 && sdlp->sdl_slen == 0) 678 goto fallback; 679 /* 680 * Old arp binaries don't set the sdl_index 681 * so we have to complement it. 682 */ 683 int sdl_index = sdlp->sdl_index; 684 if (sdl_index == 0) { 685 error = route_get_sdl_index(&info, &sdl_index); 686 if (error != 0) 687 goto fallback; 688 } else if ( 689 info.rti_info[RTAX_DST]->sa_family == AF_INET) { 690 /* 691 * XXX workaround for SIN_PROXY case; proxy arp 692 * entry should be in an interface that has 693 * a network route including the destination, 694 * not a local (link) route that may not be a 695 * desired place, for example a tap. 696 */ 697 const struct sockaddr_inarp *sina = 698 (const struct sockaddr_inarp *) 699 info.rti_info[RTAX_DST]; 700 if (sina->sin_other & SIN_PROXY) { 701 error = route_get_sdl_index(&info, 702 &sdl_index); 703 if (error != 0) 704 goto fallback; 705 } 706 } 707 error = lla_rt_output(rtm->rtm_type, rtm->rtm_flags, 708 rtm->rtm_rmx.rmx_expire, &info, sdl_index); 709 break; 710 } 711 fallback: 712 #endif /* INET */ 713 error = rtrequest1(rtm->rtm_type, &info, &saved_nrt); 714 if (error == 0) { 715 rt_setmetrics(rtm->rtm_inits, rtm, saved_nrt); 716 rtfree(saved_nrt); 717 } 718 break; 719 720 case RTM_DELETE: 721 #ifdef INET 722 /* support for new ARP code */ 723 if (info.rti_info[RTAX_GATEWAY] && 724 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 725 (rtm->rtm_flags & RTF_LLDATA) != 0) { 726 error = lla_rt_output(rtm->rtm_type, rtm->rtm_flags, 727 rtm->rtm_rmx.rmx_expire, &info, 0); 728 break; 729 } 730 #endif /* INET */ 731 error = rtrequest1(rtm->rtm_type, &info, &saved_nrt); 732 if (error != 0) 733 break; 734 735 rt = saved_nrt; 736 info.rti_info[RTAX_DST] = rt_getkey(rt); 737 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 738 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 739 info.rti_info[RTAX_TAG] = rt_gettag(rt); 740 error = route_output_report(rt, &info, rtm, &new_rtm); 741 if (error) 742 senderr(error); 743 if (new_rtm != NULL) { 744 old_rtm = rtm; 745 rtm = new_rtm; 746 } 747 break; 748 749 case RTM_GET: 750 case RTM_CHANGE: 751 case RTM_LOCK: 752 /* XXX This will mask info.rti_info[RTAX_DST] with 753 * info.rti_info[RTAX_NETMASK] before 754 * searching. It did not used to do that. --dyoung 755 */ 756 rt = NULL; 757 error = rtrequest1(RTM_GET, &info, &rt); 758 if (error != 0) 759 senderr(error); 760 if (rtm->rtm_type != RTM_GET) {/* XXX: too grotty */ 761 if (memcmp(info.rti_info[RTAX_DST], rt_getkey(rt), 762 info.rti_info[RTAX_DST]->sa_len) != 0) 763 senderr(ESRCH); 764 if (info.rti_info[RTAX_NETMASK] == NULL && 765 rt_mask(rt) != NULL) 766 senderr(ETOOMANYREFS); 767 } 768 769 /* 770 * XXX if arp/ndp requests an L2 entry, we have to obtain 771 * it from lltable while for the route command we have to 772 * return a route as it is. How to distinguish them? 773 * For newer arp/ndp, RTF_LLDATA flag set by arp/ndp 774 * indicates an L2 entry is requested. For old arp/ndp 775 * binaries, we check RTF_UP flag is NOT set; it works 776 * by the fact that arp/ndp don't set it while the route 777 * command sets it. 778 */ 779 if (((rtm->rtm_flags & RTF_LLDATA) != 0 || 780 (rtm->rtm_flags & RTF_UP) == 0) && 781 rtm->rtm_type == RTM_GET && 782 sockaddr_cmp(rt_getkey(rt), info.rti_info[RTAX_DST]) != 0) { 783 int ll_flags = 0; 784 route_get_sdl(rt->rt_ifp, info.rti_info[RTAX_DST], &sdl, 785 &ll_flags); 786 info.rti_info[RTAX_GATEWAY] = sstocsa(&sdl); 787 error = route_output_report(rt, &info, rtm, &new_rtm); 788 if (error) 789 senderr(error); 790 if (new_rtm != NULL) { 791 old_rtm = rtm; 792 rtm = new_rtm; 793 } 794 rtm->rtm_flags |= RTF_LLDATA; 795 rtm->rtm_flags |= (ll_flags & LLE_STATIC) ? RTF_STATIC : 0; 796 break; 797 } 798 799 switch (rtm->rtm_type) { 800 case RTM_GET: 801 info.rti_info[RTAX_DST] = rt_getkey(rt); 802 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 803 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 804 info.rti_info[RTAX_TAG] = rt_gettag(rt); 805 error = route_output_report(rt, &info, rtm, &new_rtm); 806 if (error) 807 senderr(error); 808 if (new_rtm != NULL) { 809 old_rtm = rtm; 810 rtm = new_rtm; 811 } 812 break; 813 814 case RTM_CHANGE: { 815 struct ifnet *_ifp; 816 struct ifaddr *_ifa; 817 struct psref _psref, psref_ifp; 818 /* 819 * new gateway could require new ifaddr, ifp; 820 * flags may also be different; ifp may be specified 821 * by ll sockaddr when protocol address is ambiguous 822 */ 823 _ifp = rt_getifp(&info, &psref_ifp); 824 ifa = rt_getifa(&info, &psref); 825 if (ifa == NULL) { 826 if_put(_ifp, &psref_ifp); 827 senderr(ENETUNREACH); 828 } 829 if (info.rti_info[RTAX_GATEWAY]) { 830 error = rt_setgate(rt, 831 info.rti_info[RTAX_GATEWAY]); 832 if (error != 0) { 833 if_put(_ifp, &psref_ifp); 834 senderr(error); 835 } 836 } 837 if (info.rti_info[RTAX_TAG]) { 838 const struct sockaddr *tag; 839 tag = rt_settag(rt, info.rti_info[RTAX_TAG]); 840 if (tag == NULL) { 841 if_put(_ifp, &psref_ifp); 842 senderr(ENOBUFS); 843 } 844 } 845 /* new gateway could require new ifaddr, ifp; 846 flags may also be different; ifp may be specified 847 by ll sockaddr when protocol address is ambiguous */ 848 _ifa = route_output_get_ifa(info, rt, &ifp, &_psref); 849 if (_ifa != NULL) { 850 ifa_release(ifa, &psref); 851 ifa = _ifa; 852 } 853 if (ifa) { 854 struct ifaddr *oifa = rt->rt_ifa; 855 if (oifa != ifa) { 856 if (oifa && oifa->ifa_rtrequest) { 857 oifa->ifa_rtrequest(RTM_DELETE, 858 rt, &info); 859 } 860 rt_replace_ifa(rt, ifa); 861 rt->rt_ifp = ifp; 862 } 863 if (_ifa == NULL) 864 ifa_release(ifa, &psref); 865 } 866 ifa_release(_ifa, &_psref); 867 if (ifp && rt->rt_ifp != ifp) 868 rt->rt_ifp = ifp; 869 rt_setmetrics(rtm->rtm_inits, rtm, rt); 870 if (rt->rt_flags != info.rti_flags) 871 rt->rt_flags = (info.rti_flags & ~PRESERVED_RTF) 872 | (rt->rt_flags & PRESERVED_RTF); 873 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 874 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 875 if_put(_ifp, &psref_ifp); 876 /*FALLTHROUGH*/ 877 } 878 case RTM_LOCK: 879 rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits); 880 rt->rt_rmx.rmx_locks |= 881 (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); 882 break; 883 } 884 break; 885 886 default: 887 senderr(EOPNOTSUPP); 888 } 889 890 flush: 891 if (rtm) { 892 if (error) 893 rtm->rtm_errno = error; 894 else 895 rtm->rtm_flags |= RTF_DONE; 896 } 897 family = info.rti_info[RTAX_DST] ? info.rti_info[RTAX_DST]->sa_family : 898 0; 899 /* We cannot free old_rtm until we have stopped using the 900 * pointers in info, some of which may point to sockaddrs 901 * in old_rtm. 902 */ 903 if (old_rtm != NULL) 904 Free(old_rtm); 905 if (rt) 906 rtfree(rt); 907 { 908 struct rawcb *rp = NULL; 909 /* 910 * Check to see if we don't want our own messages. 911 */ 912 if ((so->so_options & SO_USELOOPBACK) == 0) { 913 if (COMPATNAME(route_info).ri_cb.any_count <= 1) { 914 if (rtm) 915 Free(rtm); 916 m_freem(m); 917 goto out; 918 } 919 /* There is another listener, so construct message */ 920 rp = sotorawcb(so); 921 } 922 if (rtm) { 923 m_copyback(m, 0, rtm->rtm_msglen, rtm); 924 if (m->m_pkthdr.len < rtm->rtm_msglen) { 925 m_freem(m); 926 m = NULL; 927 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 928 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 929 Free(rtm); 930 } 931 if (rp) 932 rp->rcb_proto.sp_family = 0; /* Avoid us */ 933 if (family) 934 proto.sp_protocol = family; 935 if (m) 936 raw_input(m, &proto, &COMPATNAME(route_info).ri_src, 937 &COMPATNAME(route_info).ri_dst); 938 if (rp) 939 rp->rcb_proto.sp_family = PF_XROUTE; 940 } 941 out: 942 curlwp_bindx(bound); 943 return error; 944 } 945 946 static void 947 rt_setmetrics(int which, const struct rt_xmsghdr *in, struct rtentry *out) 948 { 949 #define metric(f, e) if (which & (f)) out->rt_rmx.e = in->rtm_rmx.e; 950 metric(RTV_RPIPE, rmx_recvpipe); 951 metric(RTV_SPIPE, rmx_sendpipe); 952 metric(RTV_SSTHRESH, rmx_ssthresh); 953 metric(RTV_RTT, rmx_rtt); 954 metric(RTV_RTTVAR, rmx_rttvar); 955 metric(RTV_HOPCOUNT, rmx_hopcount); 956 metric(RTV_MTU, rmx_mtu); 957 #undef metric 958 if (which & RTV_EXPIRE) { 959 out->rt_rmx.rmx_expire = in->rtm_rmx.rmx_expire ? 960 time_wall_to_mono(in->rtm_rmx.rmx_expire) : 0; 961 } 962 } 963 964 static void 965 rtm_setmetrics(const struct rtentry *in, struct rt_xmsghdr *out) 966 { 967 #define metric(e) out->rtm_rmx.e = in->rt_rmx.e; 968 metric(rmx_recvpipe); 969 metric(rmx_sendpipe); 970 metric(rmx_ssthresh); 971 metric(rmx_rtt); 972 metric(rmx_rttvar); 973 metric(rmx_hopcount); 974 metric(rmx_mtu); 975 #undef metric 976 out->rtm_rmx.rmx_expire = in->rt_rmx.rmx_expire ? 977 time_mono_to_wall(in->rt_rmx.rmx_expire) : 0; 978 } 979 980 static int 981 rt_xaddrs(u_char rtmtype, const char *cp, const char *cplim, 982 struct rt_addrinfo *rtinfo) 983 { 984 const struct sockaddr *sa = NULL; /* Quell compiler warning */ 985 int i; 986 987 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 988 if ((rtinfo->rti_addrs & (1 << i)) == 0) 989 continue; 990 rtinfo->rti_info[i] = sa = (const struct sockaddr *)cp; 991 RT_XADVANCE(cp, sa); 992 } 993 994 /* 995 * Check for extra addresses specified, except RTM_GET asking 996 * for interface info. 997 */ 998 if (rtmtype == RTM_GET) { 999 if (((rtinfo->rti_addrs & 1000 (~((1 << RTAX_IFP) | (1 << RTAX_IFA)))) & (~0U << i)) != 0) 1001 return 1; 1002 } else if ((rtinfo->rti_addrs & (~0U << i)) != 0) 1003 return 1; 1004 /* Check for bad data length. */ 1005 if (cp != cplim) { 1006 if (i == RTAX_NETMASK + 1 && sa != NULL && 1007 cp - RT_XROUNDUP(sa->sa_len) + sa->sa_len == cplim) 1008 /* 1009 * The last sockaddr was info.rti_info[RTAX_NETMASK]. 1010 * We accept this for now for the sake of old 1011 * binaries or third party softwares. 1012 */ 1013 ; 1014 else 1015 return 1; 1016 } 1017 return 0; 1018 } 1019 1020 static int 1021 rt_getlen(int type) 1022 { 1023 #ifndef COMPAT_RTSOCK 1024 CTASSERT(__alignof(struct ifa_msghdr) >= sizeof(uint64_t)); 1025 CTASSERT(__alignof(struct if_msghdr) >= sizeof(uint64_t)); 1026 CTASSERT(__alignof(struct if_announcemsghdr) >= sizeof(uint64_t)); 1027 CTASSERT(__alignof(struct rt_msghdr) >= sizeof(uint64_t)); 1028 #endif 1029 1030 switch (type) { 1031 case RTM_DELADDR: 1032 case RTM_NEWADDR: 1033 case RTM_CHGADDR: 1034 return sizeof(struct ifa_xmsghdr); 1035 1036 case RTM_OOIFINFO: 1037 #ifdef COMPAT_14 1038 return sizeof(struct if_msghdr14); 1039 #else 1040 #ifdef DIAGNOSTIC 1041 printf("RTM_OOIFINFO\n"); 1042 #endif 1043 return -1; 1044 #endif 1045 case RTM_OIFINFO: 1046 #ifdef COMPAT_50 1047 return sizeof(struct if_msghdr50); 1048 #else 1049 #ifdef DIAGNOSTIC 1050 printf("RTM_OIFINFO\n"); 1051 #endif 1052 return -1; 1053 #endif 1054 1055 case RTM_IFINFO: 1056 return sizeof(struct if_xmsghdr); 1057 1058 case RTM_IFANNOUNCE: 1059 case RTM_IEEE80211: 1060 return sizeof(struct if_xannouncemsghdr); 1061 1062 default: 1063 return sizeof(struct rt_xmsghdr); 1064 } 1065 } 1066 1067 1068 struct mbuf * 1069 COMPATNAME(rt_msg1)(int type, struct rt_addrinfo *rtinfo, void *data, int datalen) 1070 { 1071 struct rt_xmsghdr *rtm; 1072 struct mbuf *m; 1073 int i; 1074 const struct sockaddr *sa; 1075 int len, dlen; 1076 1077 m = m_gethdr(M_DONTWAIT, MT_DATA); 1078 if (m == NULL) 1079 return m; 1080 MCLAIM(m, &COMPATNAME(routedomain).dom_mowner); 1081 1082 if ((len = rt_getlen(type)) == -1) 1083 goto out; 1084 if (len > MHLEN + MLEN) 1085 panic("%s: message too long", __func__); 1086 else if (len > MHLEN) { 1087 m->m_next = m_get(M_DONTWAIT, MT_DATA); 1088 if (m->m_next == NULL) 1089 goto out; 1090 MCLAIM(m->m_next, m->m_owner); 1091 m->m_pkthdr.len = len; 1092 m->m_len = MHLEN; 1093 m->m_next->m_len = len - MHLEN; 1094 } else { 1095 m->m_pkthdr.len = m->m_len = len; 1096 } 1097 m_reset_rcvif(m); 1098 m_copyback(m, 0, datalen, data); 1099 if (len > datalen) 1100 (void)memset(mtod(m, char *) + datalen, 0, len - datalen); 1101 rtm = mtod(m, struct rt_xmsghdr *); 1102 for (i = 0; i < RTAX_MAX; i++) { 1103 if ((sa = rtinfo->rti_info[i]) == NULL) 1104 continue; 1105 rtinfo->rti_addrs |= (1 << i); 1106 dlen = RT_XROUNDUP(sa->sa_len); 1107 m_copyback(m, len, sa->sa_len, sa); 1108 if (dlen != sa->sa_len) { 1109 /* 1110 * Up to 6 + 1 nul's since roundup is to 1111 * sizeof(uint64_t) (8 bytes) 1112 */ 1113 m_copyback(m, len + sa->sa_len, 1114 dlen - sa->sa_len, "\0\0\0\0\0\0"); 1115 } 1116 len += dlen; 1117 } 1118 if (m->m_pkthdr.len != len) 1119 goto out; 1120 rtm->rtm_msglen = len; 1121 rtm->rtm_version = RTM_XVERSION; 1122 rtm->rtm_type = type; 1123 return m; 1124 out: 1125 m_freem(m); 1126 return NULL; 1127 } 1128 1129 /* 1130 * rt_msg2 1131 * 1132 * fills 'cp' or 'w'.w_tmem with the routing socket message and 1133 * returns the length of the message in 'lenp'. 1134 * 1135 * if walkarg is 0, cp is expected to be 0 or a buffer large enough to hold 1136 * the message 1137 * otherwise walkarg's w_needed is updated and if the user buffer is 1138 * specified and w_needed indicates space exists the information is copied 1139 * into the temp space (w_tmem). w_tmem is [re]allocated if necessary, 1140 * if the allocation fails ENOBUFS is returned. 1141 */ 1142 static int 1143 rt_msg2(int type, struct rt_addrinfo *rtinfo, void *cpv, struct rt_walkarg *w, 1144 int *lenp) 1145 { 1146 int i; 1147 int len, dlen, second_time = 0; 1148 char *cp0, *cp = cpv; 1149 1150 rtinfo->rti_addrs = 0; 1151 again: 1152 if ((len = rt_getlen(type)) == -1) 1153 return EINVAL; 1154 1155 if ((cp0 = cp) != NULL) 1156 cp += len; 1157 for (i = 0; i < RTAX_MAX; i++) { 1158 const struct sockaddr *sa; 1159 1160 if ((sa = rtinfo->rti_info[i]) == NULL) 1161 continue; 1162 rtinfo->rti_addrs |= (1 << i); 1163 dlen = RT_XROUNDUP(sa->sa_len); 1164 if (cp) { 1165 int diff = dlen - sa->sa_len; 1166 (void)memcpy(cp, sa, (size_t)sa->sa_len); 1167 cp += sa->sa_len; 1168 if (diff > 0) { 1169 (void)memset(cp, 0, (size_t)diff); 1170 cp += diff; 1171 } 1172 } 1173 len += dlen; 1174 } 1175 if (cp == NULL && w != NULL && !second_time) { 1176 struct rt_walkarg *rw = w; 1177 1178 rw->w_needed += len; 1179 if (rw->w_needed <= 0 && rw->w_where) { 1180 if (rw->w_tmemsize < len) { 1181 if (rw->w_tmem) 1182 free(rw->w_tmem, M_RTABLE); 1183 rw->w_tmem = malloc(len, M_RTABLE, M_NOWAIT); 1184 if (rw->w_tmem) 1185 rw->w_tmemsize = len; 1186 else 1187 rw->w_tmemsize = 0; 1188 } 1189 if (rw->w_tmem) { 1190 cp = rw->w_tmem; 1191 second_time = 1; 1192 goto again; 1193 } else { 1194 rw->w_tmemneeded = len; 1195 return ENOBUFS; 1196 } 1197 } 1198 } 1199 if (cp) { 1200 struct rt_xmsghdr *rtm = (struct rt_xmsghdr *)cp0; 1201 1202 rtm->rtm_version = RTM_XVERSION; 1203 rtm->rtm_type = type; 1204 rtm->rtm_msglen = len; 1205 } 1206 if (lenp) 1207 *lenp = len; 1208 return 0; 1209 } 1210 1211 #ifndef COMPAT_RTSOCK 1212 int 1213 rt_msg3(int type, struct rt_addrinfo *rtinfo, void *cpv, struct rt_walkarg *w, 1214 int *lenp) 1215 { 1216 return rt_msg2(type, rtinfo, cpv, w, lenp); 1217 } 1218 #endif 1219 1220 /* 1221 * This routine is called to generate a message from the routing 1222 * socket indicating that a redirect has occurred, a routing lookup 1223 * has failed, or that a protocol has detected timeouts to a particular 1224 * destination. 1225 */ 1226 void 1227 COMPATNAME(rt_missmsg)(int type, const struct rt_addrinfo *rtinfo, int flags, 1228 int error) 1229 { 1230 struct rt_xmsghdr rtm; 1231 struct mbuf *m; 1232 const struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1233 struct rt_addrinfo info = *rtinfo; 1234 1235 COMPATCALL(rt_missmsg, (type, rtinfo, flags, error)); 1236 if (COMPATNAME(route_info).ri_cb.any_count == 0) 1237 return; 1238 memset(&rtm, 0, sizeof(rtm)); 1239 rtm.rtm_pid = curproc->p_pid; 1240 rtm.rtm_flags = RTF_DONE | flags; 1241 rtm.rtm_errno = error; 1242 m = COMPATNAME(rt_msg1)(type, &info, &rtm, sizeof(rtm)); 1243 if (m == NULL) 1244 return; 1245 mtod(m, struct rt_xmsghdr *)->rtm_addrs = info.rti_addrs; 1246 COMPATNAME(route_enqueue)(m, sa ? sa->sa_family : 0); 1247 } 1248 1249 /* 1250 * This routine is called to generate a message from the routing 1251 * socket indicating that the status of a network interface has changed. 1252 */ 1253 void 1254 COMPATNAME(rt_ifmsg)(struct ifnet *ifp) 1255 { 1256 struct if_xmsghdr ifm; 1257 struct mbuf *m; 1258 struct rt_addrinfo info; 1259 1260 COMPATCALL(rt_ifmsg, (ifp)); 1261 if (COMPATNAME(route_info).ri_cb.any_count == 0) 1262 return; 1263 (void)memset(&info, 0, sizeof(info)); 1264 (void)memset(&ifm, 0, sizeof(ifm)); 1265 ifm.ifm_index = ifp->if_index; 1266 ifm.ifm_flags = ifp->if_flags; 1267 ifm.ifm_data = ifp->if_data; 1268 ifm.ifm_addrs = 0; 1269 m = COMPATNAME(rt_msg1)(RTM_IFINFO, &info, &ifm, sizeof(ifm)); 1270 if (m == NULL) 1271 return; 1272 COMPATNAME(route_enqueue)(m, 0); 1273 #ifdef COMPAT_14 1274 compat_14_rt_oifmsg(ifp); 1275 #endif 1276 #ifdef COMPAT_50 1277 compat_50_rt_oifmsg(ifp); 1278 #endif 1279 } 1280 1281 1282 /* 1283 * This is called to generate messages from the routing socket 1284 * indicating a network interface has had addresses associated with it. 1285 * if we ever reverse the logic and replace messages TO the routing 1286 * socket indicate a request to configure interfaces, then it will 1287 * be unnecessary as the routing socket will automatically generate 1288 * copies of it. 1289 */ 1290 void 1291 COMPATNAME(rt_newaddrmsg)(int cmd, struct ifaddr *ifa, int error, 1292 struct rtentry *rt) 1293 { 1294 #define cmdpass(__cmd, __pass) (((__cmd) << 2) | (__pass)) 1295 struct rt_addrinfo info; 1296 const struct sockaddr *sa; 1297 int pass; 1298 struct mbuf *m; 1299 struct ifnet *ifp; 1300 struct rt_xmsghdr rtm; 1301 struct ifa_xmsghdr ifam; 1302 int ncmd; 1303 1304 KASSERT(ifa != NULL); 1305 ifp = ifa->ifa_ifp; 1306 #ifdef SCTP 1307 if (cmd == RTM_ADD) { 1308 sctp_add_ip_address(ifa); 1309 } else if (cmd == RTM_DELETE) { 1310 sctp_delete_ip_address(ifa); 1311 } 1312 #endif 1313 1314 COMPATCALL(rt_newaddrmsg, (cmd, ifa, error, rt)); 1315 if (COMPATNAME(route_info).ri_cb.any_count == 0) 1316 return; 1317 for (pass = 1; pass < 3; pass++) { 1318 memset(&info, 0, sizeof(info)); 1319 switch (cmdpass(cmd, pass)) { 1320 case cmdpass(RTM_ADD, 1): 1321 case cmdpass(RTM_CHANGE, 1): 1322 case cmdpass(RTM_DELETE, 2): 1323 case cmdpass(RTM_NEWADDR, 1): 1324 case cmdpass(RTM_DELADDR, 1): 1325 case cmdpass(RTM_CHGADDR, 1): 1326 switch (cmd) { 1327 case RTM_ADD: 1328 ncmd = RTM_NEWADDR; 1329 break; 1330 case RTM_DELETE: 1331 ncmd = RTM_DELADDR; 1332 break; 1333 case RTM_CHANGE: 1334 ncmd = RTM_CHGADDR; 1335 break; 1336 default: 1337 ncmd = cmd; 1338 } 1339 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1340 KASSERT(ifp->if_dl != NULL); 1341 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr; 1342 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1343 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1344 memset(&ifam, 0, sizeof(ifam)); 1345 ifam.ifam_index = ifp->if_index; 1346 ifam.ifam_metric = ifa->ifa_metric; 1347 ifam.ifam_flags = ifa->ifa_flags; 1348 m = COMPATNAME(rt_msg1)(ncmd, &info, &ifam, sizeof(ifam)); 1349 if (m == NULL) 1350 continue; 1351 mtod(m, struct ifa_xmsghdr *)->ifam_addrs = 1352 info.rti_addrs; 1353 break; 1354 case cmdpass(RTM_ADD, 2): 1355 case cmdpass(RTM_CHANGE, 2): 1356 case cmdpass(RTM_DELETE, 1): 1357 if (rt == NULL) 1358 continue; 1359 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1360 info.rti_info[RTAX_DST] = sa = rt_getkey(rt); 1361 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1362 memset(&rtm, 0, sizeof(rtm)); 1363 rtm.rtm_pid = curproc->p_pid; 1364 rtm.rtm_index = ifp->if_index; 1365 rtm.rtm_flags |= rt->rt_flags; 1366 rtm.rtm_errno = error; 1367 m = COMPATNAME(rt_msg1)(cmd, &info, &rtm, sizeof(rtm)); 1368 if (m == NULL) 1369 continue; 1370 mtod(m, struct rt_xmsghdr *)->rtm_addrs = info.rti_addrs; 1371 break; 1372 default: 1373 continue; 1374 } 1375 #ifdef DIAGNOSTIC 1376 if (m == NULL) 1377 panic("%s: called with wrong command", __func__); 1378 #endif 1379 COMPATNAME(route_enqueue)(m, sa ? sa->sa_family : 0); 1380 } 1381 #undef cmdpass 1382 } 1383 1384 static struct mbuf * 1385 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1386 struct rt_addrinfo *info) 1387 { 1388 struct if_xannouncemsghdr ifan; 1389 1390 memset(info, 0, sizeof(*info)); 1391 memset(&ifan, 0, sizeof(ifan)); 1392 ifan.ifan_index = ifp->if_index; 1393 strlcpy(ifan.ifan_name, ifp->if_xname, sizeof(ifan.ifan_name)); 1394 ifan.ifan_what = what; 1395 return COMPATNAME(rt_msg1)(type, info, &ifan, sizeof(ifan)); 1396 } 1397 1398 /* 1399 * This is called to generate routing socket messages indicating 1400 * network interface arrival and departure. 1401 */ 1402 void 1403 COMPATNAME(rt_ifannouncemsg)(struct ifnet *ifp, int what) 1404 { 1405 struct mbuf *m; 1406 struct rt_addrinfo info; 1407 1408 COMPATCALL(rt_ifannouncemsg, (ifp, what)); 1409 if (COMPATNAME(route_info).ri_cb.any_count == 0) 1410 return; 1411 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1412 if (m == NULL) 1413 return; 1414 COMPATNAME(route_enqueue)(m, 0); 1415 } 1416 1417 /* 1418 * This is called to generate routing socket messages indicating 1419 * IEEE80211 wireless events. 1420 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1421 */ 1422 void 1423 COMPATNAME(rt_ieee80211msg)(struct ifnet *ifp, int what, void *data, 1424 size_t data_len) 1425 { 1426 struct mbuf *m; 1427 struct rt_addrinfo info; 1428 1429 COMPATCALL(rt_ieee80211msg, (ifp, what, data, data_len)); 1430 if (COMPATNAME(route_info).ri_cb.any_count == 0) 1431 return; 1432 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1433 if (m == NULL) 1434 return; 1435 /* 1436 * Append the ieee80211 data. Try to stick it in the 1437 * mbuf containing the ifannounce msg; otherwise allocate 1438 * a new mbuf and append. 1439 * 1440 * NB: we assume m is a single mbuf. 1441 */ 1442 if (data_len > M_TRAILINGSPACE(m)) { 1443 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1444 if (n == NULL) { 1445 m_freem(m); 1446 return; 1447 } 1448 (void)memcpy(mtod(n, void *), data, data_len); 1449 n->m_len = data_len; 1450 m->m_next = n; 1451 } else if (data_len > 0) { 1452 (void)memcpy(mtod(m, uint8_t *) + m->m_len, data, data_len); 1453 m->m_len += data_len; 1454 } 1455 if (m->m_flags & M_PKTHDR) 1456 m->m_pkthdr.len += data_len; 1457 mtod(m, struct if_xannouncemsghdr *)->ifan_msglen += data_len; 1458 COMPATNAME(route_enqueue)(m, 0); 1459 } 1460 1461 /* 1462 * This is used in dumping the kernel table via sysctl(). 1463 */ 1464 static int 1465 sysctl_dumpentry(struct rtentry *rt, void *v) 1466 { 1467 struct rt_walkarg *w = v; 1468 int error = 0, size; 1469 struct rt_addrinfo info; 1470 1471 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1472 return 0; 1473 memset(&info, 0, sizeof(info)); 1474 info.rti_info[RTAX_DST] = rt_getkey(rt); 1475 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1476 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1477 info.rti_info[RTAX_TAG] = rt_gettag(rt); 1478 if (rt->rt_ifp) { 1479 const struct ifaddr *rtifa; 1480 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_dl->ifa_addr; 1481 /* rtifa used to be simply rt->rt_ifa. If rt->rt_ifa != NULL, 1482 * then rt_get_ifa() != NULL. So this ought to still be safe. 1483 * --dyoung 1484 */ 1485 rtifa = rt_get_ifa(rt); 1486 info.rti_info[RTAX_IFA] = rtifa->ifa_addr; 1487 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1488 info.rti_info[RTAX_BRD] = rtifa->ifa_dstaddr; 1489 } 1490 if ((error = rt_msg2(RTM_GET, &info, 0, w, &size))) 1491 return error; 1492 if (w->w_where && w->w_tmem && w->w_needed <= 0) { 1493 struct rt_xmsghdr *rtm = (struct rt_xmsghdr *)w->w_tmem; 1494 1495 rtm->rtm_flags = rt->rt_flags; 1496 rtm->rtm_use = rt->rt_use; 1497 rtm_setmetrics(rt, rtm); 1498 KASSERT(rt->rt_ifp != NULL); 1499 rtm->rtm_index = rt->rt_ifp->if_index; 1500 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1501 rtm->rtm_addrs = info.rti_addrs; 1502 if ((error = copyout(rtm, w->w_where, size)) != 0) 1503 w->w_where = NULL; 1504 else 1505 w->w_where = (char *)w->w_where + size; 1506 } 1507 return error; 1508 } 1509 1510 static int 1511 sysctl_iflist(int af, struct rt_walkarg *w, int type) 1512 { 1513 struct ifnet *ifp; 1514 struct ifaddr *ifa; 1515 struct rt_addrinfo info; 1516 int len, error = 0; 1517 int s; 1518 struct psref psref; 1519 int bound = curlwp_bind(); 1520 1521 memset(&info, 0, sizeof(info)); 1522 1523 s = pserialize_read_enter(); 1524 IFNET_READER_FOREACH(ifp) { 1525 if (w->w_arg && w->w_arg != ifp->if_index) 1526 continue; 1527 if (IFADDR_READER_EMPTY(ifp)) 1528 continue; 1529 1530 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 1531 pserialize_read_exit(s); 1532 1533 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr; 1534 switch (type) { 1535 case NET_RT_IFLIST: 1536 error = rt_msg2(RTM_IFINFO, &info, NULL, w, &len); 1537 break; 1538 #ifdef COMPAT_14 1539 case NET_RT_OOIFLIST: 1540 error = rt_msg2(RTM_OOIFINFO, &info, NULL, w, &len); 1541 break; 1542 #endif 1543 #ifdef COMPAT_50 1544 case NET_RT_OIFLIST: 1545 error = rt_msg2(RTM_OIFINFO, &info, NULL, w, &len); 1546 break; 1547 #endif 1548 default: 1549 panic("sysctl_iflist(1)"); 1550 } 1551 if (error) 1552 goto release_exit; 1553 info.rti_info[RTAX_IFP] = NULL; 1554 if (w->w_where && w->w_tmem && w->w_needed <= 0) { 1555 switch (type) { 1556 case NET_RT_IFLIST: { 1557 struct if_xmsghdr *ifm; 1558 1559 ifm = (struct if_xmsghdr *)w->w_tmem; 1560 ifm->ifm_index = ifp->if_index; 1561 ifm->ifm_flags = ifp->if_flags; 1562 ifm->ifm_data = ifp->if_data; 1563 ifm->ifm_addrs = info.rti_addrs; 1564 error = copyout(ifm, w->w_where, len); 1565 if (error) 1566 goto release_exit; 1567 w->w_where = (char *)w->w_where + len; 1568 break; 1569 } 1570 1571 #ifdef COMPAT_14 1572 case NET_RT_OOIFLIST: 1573 error = compat_14_iflist(ifp, w, &info, len); 1574 if (error) 1575 goto release_exit; 1576 break; 1577 #endif 1578 #ifdef COMPAT_50 1579 case NET_RT_OIFLIST: 1580 error = compat_50_iflist(ifp, w, &info, len); 1581 if (error) 1582 goto release_exit; 1583 break; 1584 #endif 1585 default: 1586 panic("sysctl_iflist(2)"); 1587 } 1588 } 1589 IFADDR_READER_FOREACH(ifa, ifp) { 1590 if (af && af != ifa->ifa_addr->sa_family) 1591 continue; 1592 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1593 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1594 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1595 if ((error = rt_msg2(RTM_NEWADDR, &info, 0, w, &len))) 1596 goto release_exit; 1597 if (w->w_where && w->w_tmem && w->w_needed <= 0) { 1598 struct ifa_xmsghdr *ifam; 1599 1600 ifam = (struct ifa_xmsghdr *)w->w_tmem; 1601 ifam->ifam_index = ifa->ifa_ifp->if_index; 1602 ifam->ifam_flags = ifa->ifa_flags; 1603 ifam->ifam_metric = ifa->ifa_metric; 1604 ifam->ifam_addrs = info.rti_addrs; 1605 error = copyout(w->w_tmem, w->w_where, len); 1606 if (error) 1607 goto release_exit; 1608 w->w_where = (char *)w->w_where + len; 1609 } 1610 } 1611 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1612 info.rti_info[RTAX_BRD] = NULL; 1613 1614 s = pserialize_read_enter(); 1615 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 1616 } 1617 pserialize_read_exit(s); 1618 curlwp_bindx(bound); 1619 1620 return 0; 1621 1622 release_exit: 1623 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 1624 curlwp_bindx(bound); 1625 return error; 1626 } 1627 1628 static int 1629 sysctl_rtable(SYSCTLFN_ARGS) 1630 { 1631 void *where = oldp; 1632 size_t *given = oldlenp; 1633 int i, s, error = EINVAL; 1634 u_char af; 1635 struct rt_walkarg w; 1636 1637 if (namelen == 1 && name[0] == CTL_QUERY) 1638 return sysctl_query(SYSCTLFN_CALL(rnode)); 1639 1640 if (newp) 1641 return EPERM; 1642 if (namelen != 3) 1643 return EINVAL; 1644 af = name[0]; 1645 w.w_tmemneeded = 0; 1646 w.w_tmemsize = 0; 1647 w.w_tmem = NULL; 1648 again: 1649 /* we may return here if a later [re]alloc of the t_mem buffer fails */ 1650 if (w.w_tmemneeded) { 1651 w.w_tmem = malloc(w.w_tmemneeded, M_RTABLE, M_WAITOK); 1652 w.w_tmemsize = w.w_tmemneeded; 1653 w.w_tmemneeded = 0; 1654 } 1655 w.w_op = name[1]; 1656 w.w_arg = name[2]; 1657 w.w_given = *given; 1658 w.w_needed = 0 - w.w_given; 1659 w.w_where = where; 1660 1661 s = splsoftnet(); 1662 switch (w.w_op) { 1663 1664 case NET_RT_DUMP: 1665 case NET_RT_FLAGS: 1666 #ifdef INET 1667 /* 1668 * take care of llinfo entries, the caller must 1669 * specify an AF 1670 */ 1671 if (w.w_op == NET_RT_FLAGS && 1672 (w.w_arg == 0 || w.w_arg & RTF_LLDATA)) { 1673 if (af != 0) 1674 error = lltable_sysctl_dumparp(af, &w); 1675 else 1676 error = EINVAL; 1677 break; 1678 } 1679 #endif /* INET */ 1680 1681 for (i = 1; i <= AF_MAX; i++) 1682 if ((af == 0 || af == i) && 1683 (error = rt_walktree(i, sysctl_dumpentry, &w))) 1684 break; 1685 break; 1686 1687 #ifdef COMPAT_14 1688 case NET_RT_OOIFLIST: 1689 error = sysctl_iflist(af, &w, w.w_op); 1690 break; 1691 #endif 1692 #ifdef COMPAT_50 1693 case NET_RT_OIFLIST: 1694 error = sysctl_iflist(af, &w, w.w_op); 1695 break; 1696 #endif 1697 case NET_RT_IFLIST: 1698 error = sysctl_iflist(af, &w, w.w_op); 1699 break; 1700 } 1701 splx(s); 1702 1703 /* check to see if we couldn't allocate memory with NOWAIT */ 1704 if (error == ENOBUFS && w.w_tmem == 0 && w.w_tmemneeded) 1705 goto again; 1706 1707 if (w.w_tmem) 1708 free(w.w_tmem, M_RTABLE); 1709 w.w_needed += w.w_given; 1710 if (where) { 1711 *given = (char *)w.w_where - (char *)where; 1712 if (*given < w.w_needed) 1713 return ENOMEM; 1714 } else { 1715 *given = (11 * w.w_needed) / 10; 1716 } 1717 return error; 1718 } 1719 1720 /* 1721 * Routing message software interrupt routine 1722 */ 1723 static void 1724 COMPATNAME(route_intr)(void *cookie) 1725 { 1726 struct sockproto proto = { .sp_family = PF_XROUTE, }; 1727 struct route_info * const ri = &COMPATNAME(route_info); 1728 struct mbuf *m; 1729 int s; 1730 1731 mutex_enter(softnet_lock); 1732 KERNEL_LOCK(1, NULL); 1733 while (!IF_IS_EMPTY(&ri->ri_intrq)) { 1734 s = splnet(); 1735 IF_DEQUEUE(&ri->ri_intrq, m); 1736 splx(s); 1737 if (m == NULL) 1738 break; 1739 proto.sp_protocol = M_GETCTX(m, uintptr_t); 1740 raw_input(m, &proto, &ri->ri_src, &ri->ri_dst); 1741 } 1742 KERNEL_UNLOCK_ONE(NULL); 1743 mutex_exit(softnet_lock); 1744 } 1745 1746 /* 1747 * Enqueue a message to the software interrupt routine. 1748 */ 1749 void 1750 COMPATNAME(route_enqueue)(struct mbuf *m, int family) 1751 { 1752 struct route_info * const ri = &COMPATNAME(route_info); 1753 int s, wasempty; 1754 1755 s = splnet(); 1756 if (IF_QFULL(&ri->ri_intrq)) { 1757 IF_DROP(&ri->ri_intrq); 1758 m_freem(m); 1759 } else { 1760 wasempty = IF_IS_EMPTY(&ri->ri_intrq); 1761 M_SETCTX(m, (uintptr_t)family); 1762 IF_ENQUEUE(&ri->ri_intrq, m); 1763 if (wasempty) 1764 softint_schedule(ri->ri_sih); 1765 } 1766 splx(s); 1767 } 1768 1769 static void 1770 COMPATNAME(route_init)(void) 1771 { 1772 struct route_info * const ri = &COMPATNAME(route_info); 1773 1774 #ifndef COMPAT_RTSOCK 1775 rt_init(); 1776 #endif 1777 1778 sysctl_net_route_setup(NULL); 1779 ri->ri_intrq.ifq_maxlen = ri->ri_maxqlen; 1780 ri->ri_sih = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE, 1781 COMPATNAME(route_intr), NULL); 1782 } 1783 1784 /* 1785 * Definitions of protocols supported in the ROUTE domain. 1786 */ 1787 #ifndef COMPAT_RTSOCK 1788 PR_WRAP_USRREQS(route); 1789 #else 1790 PR_WRAP_USRREQS(compat_50_route); 1791 #endif 1792 1793 static const struct pr_usrreqs route_usrreqs = { 1794 .pr_attach = COMPATNAME(route_attach_wrapper), 1795 .pr_detach = COMPATNAME(route_detach_wrapper), 1796 .pr_accept = COMPATNAME(route_accept_wrapper), 1797 .pr_bind = COMPATNAME(route_bind_wrapper), 1798 .pr_listen = COMPATNAME(route_listen_wrapper), 1799 .pr_connect = COMPATNAME(route_connect_wrapper), 1800 .pr_connect2 = COMPATNAME(route_connect2_wrapper), 1801 .pr_disconnect = COMPATNAME(route_disconnect_wrapper), 1802 .pr_shutdown = COMPATNAME(route_shutdown_wrapper), 1803 .pr_abort = COMPATNAME(route_abort_wrapper), 1804 .pr_ioctl = COMPATNAME(route_ioctl_wrapper), 1805 .pr_stat = COMPATNAME(route_stat_wrapper), 1806 .pr_peeraddr = COMPATNAME(route_peeraddr_wrapper), 1807 .pr_sockaddr = COMPATNAME(route_sockaddr_wrapper), 1808 .pr_rcvd = COMPATNAME(route_rcvd_wrapper), 1809 .pr_recvoob = COMPATNAME(route_recvoob_wrapper), 1810 .pr_send = COMPATNAME(route_send_wrapper), 1811 .pr_sendoob = COMPATNAME(route_sendoob_wrapper), 1812 .pr_purgeif = COMPATNAME(route_purgeif_wrapper), 1813 }; 1814 1815 static const struct protosw COMPATNAME(route_protosw)[] = { 1816 { 1817 .pr_type = SOCK_RAW, 1818 .pr_domain = &COMPATNAME(routedomain), 1819 .pr_flags = PR_ATOMIC|PR_ADDR, 1820 .pr_input = raw_input, 1821 .pr_ctlinput = raw_ctlinput, 1822 .pr_usrreqs = &route_usrreqs, 1823 .pr_init = raw_init, 1824 }, 1825 }; 1826 1827 struct domain COMPATNAME(routedomain) = { 1828 .dom_family = PF_XROUTE, 1829 .dom_name = DOMAINNAME, 1830 .dom_init = COMPATNAME(route_init), 1831 .dom_protosw = COMPATNAME(route_protosw), 1832 .dom_protoswNPROTOSW = 1833 &COMPATNAME(route_protosw)[__arraycount(COMPATNAME(route_protosw))], 1834 }; 1835 1836 static void 1837 sysctl_net_route_setup(struct sysctllog **clog) 1838 { 1839 const struct sysctlnode *rnode = NULL; 1840 1841 sysctl_createv(clog, 0, NULL, &rnode, 1842 CTLFLAG_PERMANENT, 1843 CTLTYPE_NODE, DOMAINNAME, 1844 SYSCTL_DESCR("PF_ROUTE information"), 1845 NULL, 0, NULL, 0, 1846 CTL_NET, PF_XROUTE, CTL_EOL); 1847 1848 sysctl_createv(clog, 0, NULL, NULL, 1849 CTLFLAG_PERMANENT, 1850 CTLTYPE_NODE, "rtable", 1851 SYSCTL_DESCR("Routing table information"), 1852 sysctl_rtable, 0, NULL, 0, 1853 CTL_NET, PF_XROUTE, 0 /* any protocol */, CTL_EOL); 1854 1855 sysctl_createv(clog, 0, &rnode, NULL, 1856 CTLFLAG_PERMANENT, 1857 CTLTYPE_STRUCT, "stats", 1858 SYSCTL_DESCR("Routing statistics"), 1859 NULL, 0, &rtstat, sizeof(rtstat), 1860 CTL_CREATE, CTL_EOL); 1861 } 1862