xref: /netbsd-src/sys/net/route.c (revision aef5eb5f59cdfe8314f1b5f78ac04eb144e44010)
1 /*	$NetBSD: route.c,v 1.234 2022/09/20 02:23:37 knakahara Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Kevin M. Lahey of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the project nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  */
61 
62 /*
63  * Copyright (c) 1980, 1986, 1991, 1993
64  *	The Regents of the University of California.  All rights reserved.
65  *
66  * Redistribution and use in source and binary forms, with or without
67  * modification, are permitted provided that the following conditions
68  * are met:
69  * 1. Redistributions of source code must retain the above copyright
70  *    notice, this list of conditions and the following disclaimer.
71  * 2. Redistributions in binary form must reproduce the above copyright
72  *    notice, this list of conditions and the following disclaimer in the
73  *    documentation and/or other materials provided with the distribution.
74  * 3. Neither the name of the University nor the names of its contributors
75  *    may be used to endorse or promote products derived from this software
76  *    without specific prior written permission.
77  *
78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88  * SUCH DAMAGE.
89  *
90  *	@(#)route.c	8.3 (Berkeley) 1/9/95
91  */
92 
93 #ifdef _KERNEL_OPT
94 #include "opt_inet.h"
95 #include "opt_route.h"
96 #include "opt_net_mpsafe.h"
97 #endif
98 
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: route.c,v 1.234 2022/09/20 02:23:37 knakahara Exp $");
101 
102 #include <sys/param.h>
103 #ifdef RTFLUSH_DEBUG
104 #include <sys/sysctl.h>
105 #endif
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/proc.h>
109 #include <sys/mbuf.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/domain.h>
113 #include <sys/kernel.h>
114 #include <sys/ioctl.h>
115 #include <sys/pool.h>
116 #include <sys/kauth.h>
117 #include <sys/workqueue.h>
118 #include <sys/syslog.h>
119 #include <sys/rwlock.h>
120 #include <sys/mutex.h>
121 #include <sys/cpu.h>
122 #include <sys/kmem.h>
123 
124 #include <net/if.h>
125 #include <net/if_dl.h>
126 #include <net/route.h>
127 #if defined(INET) || defined(INET6)
128 #include <net/if_llatbl.h>
129 #endif
130 
131 #include <netinet/in.h>
132 #include <netinet/in_var.h>
133 
134 #define	PRESERVED_RTF	(RTF_UP | RTF_GATEWAY | RTF_HOST | RTF_DONE | RTF_MASK)
135 
136 #ifdef RTFLUSH_DEBUG
137 #define	rtcache_debug() __predict_false(_rtcache_debug)
138 #else /* RTFLUSH_DEBUG */
139 #define	rtcache_debug() 0
140 #endif /* RTFLUSH_DEBUG */
141 
142 #ifdef RT_DEBUG
143 #define RT_REFCNT_TRACE(rt)	printf("%s:%d: rt=%p refcnt=%d\n", \
144 				    __func__, __LINE__, (rt), (rt)->rt_refcnt)
145 #else
146 #define RT_REFCNT_TRACE(rt)	do {} while (0)
147 #endif
148 
149 #ifdef RT_DEBUG
150 #define dlog(level, fmt, args...)	log(level, fmt, ##args)
151 #else
152 #define dlog(level, fmt, args...)	do {} while (0)
153 #endif
154 
155 struct rtstat		rtstat;
156 
157 static int		rttrash;	/* routes not in table but not freed */
158 
159 static struct pool	rtentry_pool;
160 static struct pool	rttimer_pool;
161 
162 static struct callout	rt_timer_ch; /* callout for rt_timer_timer() */
163 static struct workqueue	*rt_timer_wq;
164 static struct work	rt_timer_wk;
165 
166 static void	rt_timer_init(void);
167 static void	rt_timer_queue_remove_all(struct rttimer_queue *);
168 static void	rt_timer_remove_all(struct rtentry *);
169 static void	rt_timer_timer(void *);
170 
171 /*
172  * Locking notes:
173  * - The routing table is protected by a global rwlock
174  *   - API: RT_RLOCK and friends
175  * - rtcaches are NOT protected by the framework
176  *   - Callers must guarantee a rtcache isn't accessed simultaneously
177  *   - How the constraint is guaranteed in the wild
178  *     - Protect a rtcache by a mutex (e.g., inp_route)
179  *     - Make rtcache per-CPU and allow only accesses from softint
180  *       (e.g., ipforward_rt_percpu)
181  * - References to a rtentry is managed by reference counting and psref
182  *   - Reference counting is used for temporal reference when a rtentry
183  *     is fetched from the routing table
184  *   - psref is used for temporal reference when a rtentry is fetched
185  *     from a rtcache
186  *     - struct route (rtcache) has struct psref, so we cannot obtain
187  *       a reference twice on the same struct route
188  *   - Before destroying or updating a rtentry, we have to wait for
189  *     all references left (see below for details)
190  *   - APIs
191  *     - An obtained rtentry via rtalloc1 or rtrequest* must be
192  *       unreferenced by rt_unref
193  *     - An obtained rtentry via rtcache_* must be unreferenced by
194  *       rtcache_unref
195  *   - TODO: once we get a lockless routing table, we should use only
196  *           psref for rtentries
197  * - rtentry destruction
198  *   - A rtentry is destroyed (freed) only when we call rtrequest(RTM_DELETE)
199  *   - If a caller of rtrequest grabs a reference of a rtentry, the caller
200  *     has a responsibility to destroy the rtentry by itself by calling
201  *     rt_free
202  *     - If not, rtrequest itself does that
203  *   - If rt_free is called in softint, the actual destruction routine is
204  *     deferred to a workqueue
205  * - rtentry update
206  *   - When updating a rtentry, RTF_UPDATING flag is set
207  *   - If a rtentry is set RTF_UPDATING, fetching the rtentry from
208  *     the routing table or a rtcache results in either of the following
209  *     cases:
210  *     - if the caller runs in softint, the caller fails to fetch
211  *     - otherwise, the caller waits for the update completed and retries
212  *       to fetch (probably succeed to fetch for the second time)
213  * - rtcache invalidation
214  *   - There is a global generation counter that is incremented when
215  *     any routes have been added or deleted
216  *   - When a rtcache caches a rtentry into itself, it also stores
217  *     a snapshot of the generation counter
218  *   - If the snapshot equals to the global counter, the cache is valid,
219  *     otherwise the cache is invalidated
220  */
221 
222 /*
223  * Global lock for the routing table.
224  */
225 static krwlock_t		rt_lock __cacheline_aligned;
226 #ifdef NET_MPSAFE
227 #define RT_RLOCK()		rw_enter(&rt_lock, RW_READER)
228 #define RT_WLOCK()		rw_enter(&rt_lock, RW_WRITER)
229 #define RT_UNLOCK()		rw_exit(&rt_lock)
230 #define RT_WLOCKED()		rw_write_held(&rt_lock)
231 #define	RT_ASSERT_WLOCK()	KASSERT(rw_write_held(&rt_lock))
232 #else
233 #define RT_RLOCK()		do {} while (0)
234 #define RT_WLOCK()		do {} while (0)
235 #define RT_UNLOCK()		do {} while (0)
236 #define RT_WLOCKED()		true
237 #define	RT_ASSERT_WLOCK()	do {} while (0)
238 #endif
239 
240 static uint64_t rtcache_generation;
241 
242 /*
243  * mutex and cv that are used to wait for references to a rtentry left
244  * before updating the rtentry.
245  */
246 static struct {
247 	kmutex_t		lock;
248 	kcondvar_t		cv;
249 	bool			ongoing;
250 	const struct lwp	*lwp;
251 } rt_update_global __cacheline_aligned;
252 
253 /*
254  * A workqueue and stuff that are used to defer the destruction routine
255  * of rtentries.
256  */
257 static struct {
258 	struct workqueue	*wq;
259 	struct work		wk;
260 	kmutex_t		lock;
261 	SLIST_HEAD(, rtentry)	queue;
262 	bool			enqueued;
263 } rt_free_global __cacheline_aligned;
264 
265 /* psref for rtentry */
266 static struct psref_class *rt_psref_class __read_mostly;
267 
268 #ifdef RTFLUSH_DEBUG
269 static int _rtcache_debug = 0;
270 #endif /* RTFLUSH_DEBUG */
271 
272 static kauth_listener_t route_listener;
273 
274 static int rtdeletemsg(struct rtentry *);
275 
276 static void rt_maskedcopy(const struct sockaddr *,
277     struct sockaddr *, const struct sockaddr *);
278 
279 static void rtcache_invalidate(void);
280 
281 static void rt_ref(struct rtentry *);
282 
283 static struct rtentry *
284     rtalloc1_locked(const struct sockaddr *, int, bool, bool);
285 
286 static struct ifaddr *rt_getifa(struct rt_addrinfo *, struct psref *);
287 static struct ifnet *rt_getifp(struct rt_addrinfo *, struct psref *);
288 static struct ifaddr *ifa_ifwithroute_psref(int, const struct sockaddr *,
289     const struct sockaddr *, struct psref *);
290 
291 static void rtcache_ref(struct rtentry *, struct route *);
292 
293 #ifdef NET_MPSAFE
294 static void rt_update_wait(void);
295 #endif
296 
297 static bool rt_wait_ok(void);
298 static void rt_wait_refcnt(const char *, struct rtentry *, int);
299 static void rt_wait_psref(struct rtentry *);
300 
301 #ifdef DDB
302 static void db_print_sa(const struct sockaddr *);
303 static void db_print_ifa(struct ifaddr *);
304 static int db_show_rtentry(struct rtentry *, void *);
305 #endif
306 
307 #ifdef RTFLUSH_DEBUG
308 static void sysctl_net_rtcache_setup(struct sysctllog **);
309 static void
310 sysctl_net_rtcache_setup(struct sysctllog **clog)
311 {
312 	const struct sysctlnode *rnode;
313 
314 	if (sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT,
315 	    CTLTYPE_NODE,
316 	    "rtcache", SYSCTL_DESCR("Route cache related settings"),
317 	    NULL, 0, NULL, 0, CTL_NET, CTL_CREATE, CTL_EOL) != 0)
318 		return;
319 	if (sysctl_createv(clog, 0, &rnode, &rnode,
320 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
321 	    "debug", SYSCTL_DESCR("Debug route caches"),
322 	    NULL, 0, &_rtcache_debug, 0, CTL_CREATE, CTL_EOL) != 0)
323 		return;
324 }
325 #endif /* RTFLUSH_DEBUG */
326 
327 static inline void
328 rt_destroy(struct rtentry *rt)
329 {
330 	if (rt->_rt_key != NULL)
331 		sockaddr_free(rt->_rt_key);
332 	if (rt->rt_gateway != NULL)
333 		sockaddr_free(rt->rt_gateway);
334 	if (rt_gettag(rt) != NULL)
335 		sockaddr_free(rt_gettag(rt));
336 	rt->_rt_key = rt->rt_gateway = rt->rt_tag = NULL;
337 }
338 
339 static inline const struct sockaddr *
340 rt_setkey(struct rtentry *rt, const struct sockaddr *key, int flags)
341 {
342 	if (rt->_rt_key == key)
343 		goto out;
344 
345 	if (rt->_rt_key != NULL)
346 		sockaddr_free(rt->_rt_key);
347 	rt->_rt_key = sockaddr_dup(key, flags);
348 out:
349 	rt->rt_nodes->rn_key = (const char *)rt->_rt_key;
350 	return rt->_rt_key;
351 }
352 
353 struct ifaddr *
354 rt_get_ifa(struct rtentry *rt)
355 {
356 	struct ifaddr *ifa;
357 
358 	ifa = rt->rt_ifa;
359 	if (ifa->ifa_getifa == NULL)
360 		return ifa;
361 #if 0
362 	else if (ifa->ifa_seqno != NULL && *ifa->ifa_seqno == rt->rt_ifa_seqno)
363 		return ifa;
364 #endif
365 	else {
366 		ifa = (*ifa->ifa_getifa)(ifa, rt_getkey(rt));
367 		if (ifa == NULL)
368 			return NULL;
369 		rt_replace_ifa(rt, ifa);
370 		return ifa;
371 	}
372 }
373 
374 static void
375 rt_set_ifa1(struct rtentry *rt, struct ifaddr *ifa)
376 {
377 	rt->rt_ifa = ifa;
378 	if (ifa->ifa_seqno != NULL)
379 		rt->rt_ifa_seqno = *ifa->ifa_seqno;
380 }
381 
382 /*
383  * Is this route the connected route for the ifa?
384  */
385 static int
386 rt_ifa_connected(const struct rtentry *rt, const struct ifaddr *ifa)
387 {
388 	const struct sockaddr *key, *dst, *odst;
389 	struct sockaddr_storage maskeddst;
390 
391 	key = rt_getkey(rt);
392 	dst = rt->rt_flags & RTF_HOST ? ifa->ifa_dstaddr : ifa->ifa_addr;
393 	if (dst == NULL ||
394 	    dst->sa_family != key->sa_family ||
395 	    dst->sa_len != key->sa_len)
396 		return 0;
397 	if ((rt->rt_flags & RTF_HOST) == 0 && ifa->ifa_netmask) {
398 		odst = dst;
399 		dst = (struct sockaddr *)&maskeddst;
400 		rt_maskedcopy(odst, (struct sockaddr *)&maskeddst,
401 		    ifa->ifa_netmask);
402 	}
403 	return (memcmp(dst, key, dst->sa_len) == 0);
404 }
405 
406 void
407 rt_replace_ifa(struct rtentry *rt, struct ifaddr *ifa)
408 {
409 	struct ifaddr *old;
410 
411 	if (rt->rt_ifa == ifa)
412 		return;
413 
414 	if (rt->rt_ifa != ifa &&
415 	    rt->rt_ifa->ifa_flags & IFA_ROUTE &&
416 	    rt_ifa_connected(rt, rt->rt_ifa))
417 	{
418 		RT_DPRINTF("rt->_rt_key = %p, ifa = %p, "
419 		    "replace deleted IFA_ROUTE\n",
420 		    (void *)rt->_rt_key, (void *)rt->rt_ifa);
421 		rt->rt_ifa->ifa_flags &= ~IFA_ROUTE;
422 		if (rt_ifa_connected(rt, ifa)) {
423 			RT_DPRINTF("rt->_rt_key = %p, ifa = %p, "
424 			    "replace added IFA_ROUTE\n",
425 			    (void *)rt->_rt_key, (void *)ifa);
426 			ifa->ifa_flags |= IFA_ROUTE;
427 		}
428 	}
429 
430 	ifaref(ifa);
431 	old = rt->rt_ifa;
432 	rt_set_ifa1(rt, ifa);
433 	ifafree(old);
434 }
435 
436 static void
437 rt_set_ifa(struct rtentry *rt, struct ifaddr *ifa)
438 {
439 	ifaref(ifa);
440 	rt_set_ifa1(rt, ifa);
441 }
442 
443 static int
444 route_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
445     void *arg0, void *arg1, void *arg2, void *arg3)
446 {
447 	struct rt_msghdr *rtm;
448 	int result;
449 
450 	result = KAUTH_RESULT_DEFER;
451 	rtm = arg1;
452 
453 	if (action != KAUTH_NETWORK_ROUTE)
454 		return result;
455 
456 	if (rtm->rtm_type == RTM_GET)
457 		result = KAUTH_RESULT_ALLOW;
458 
459 	return result;
460 }
461 
462 static void rt_free_work(struct work *, void *);
463 
464 void
465 rt_init(void)
466 {
467 	int error;
468 
469 #ifdef RTFLUSH_DEBUG
470 	sysctl_net_rtcache_setup(NULL);
471 #endif
472 
473 	mutex_init(&rt_free_global.lock, MUTEX_DEFAULT, IPL_SOFTNET);
474 	SLIST_INIT(&rt_free_global.queue);
475 	rt_free_global.enqueued = false;
476 
477 	rt_psref_class = psref_class_create("rtentry", IPL_SOFTNET);
478 
479 	error = workqueue_create(&rt_free_global.wq, "rt_free",
480 	    rt_free_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
481 	if (error)
482 		panic("%s: workqueue_create failed (%d)\n", __func__, error);
483 
484 	mutex_init(&rt_update_global.lock, MUTEX_DEFAULT, IPL_SOFTNET);
485 	cv_init(&rt_update_global.cv, "rt_update");
486 
487 	pool_init(&rtentry_pool, sizeof(struct rtentry), 0, 0, 0, "rtentpl",
488 	    NULL, IPL_SOFTNET);
489 	pool_init(&rttimer_pool, sizeof(struct rttimer), 0, 0, 0, "rttmrpl",
490 	    NULL, IPL_SOFTNET);
491 
492 	rn_init();	/* initialize all zeroes, all ones, mask table */
493 	rtbl_init();
494 
495 	route_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
496 	    route_listener_cb, NULL);
497 }
498 
499 static void
500 rtcache_invalidate(void)
501 {
502 
503 	RT_ASSERT_WLOCK();
504 
505 	if (rtcache_debug())
506 		printf("%s: enter\n", __func__);
507 
508 	rtcache_generation++;
509 }
510 
511 #ifdef RT_DEBUG
512 static void
513 dump_rt(const struct rtentry *rt)
514 {
515 	char buf[512];
516 
517 	log(LOG_DEBUG, "rt: ");
518 	log(LOG_DEBUG, "p=%p ", rt);
519 	if (rt->_rt_key == NULL) {
520 		log(LOG_DEBUG, "dst=(NULL) ");
521 	} else {
522 		sockaddr_format(rt->_rt_key, buf, sizeof(buf));
523 		log(LOG_DEBUG, "dst=%s ", buf);
524 	}
525 	if (rt->rt_gateway == NULL) {
526 		log(LOG_DEBUG, "gw=(NULL) ");
527 	} else {
528 		sockaddr_format(rt->_rt_key, buf, sizeof(buf));
529 		log(LOG_DEBUG, "gw=%s ", buf);
530 	}
531 	log(LOG_DEBUG, "flags=%x ", rt->rt_flags);
532 	if (rt->rt_ifp == NULL) {
533 		log(LOG_DEBUG, "if=(NULL) ");
534 	} else {
535 		log(LOG_DEBUG, "if=%s ", rt->rt_ifp->if_xname);
536 	}
537 	log(LOG_DEBUG, "\n");
538 }
539 #endif /* RT_DEBUG */
540 
541 /*
542  * Packet routing routines. If success, refcnt of a returned rtentry
543  * will be incremented. The caller has to rtfree it by itself.
544  */
545 struct rtentry *
546 rtalloc1_locked(const struct sockaddr *dst, int report, bool wait_ok,
547     bool wlock)
548 {
549 	rtbl_t *rtbl;
550 	struct rtentry *rt;
551 	int s;
552 
553 #ifdef NET_MPSAFE
554 retry:
555 #endif
556 	s = splsoftnet();
557 	rtbl = rt_gettable(dst->sa_family);
558 	if (rtbl == NULL)
559 		goto miss;
560 
561 	rt = rt_matchaddr(rtbl, dst);
562 	if (rt == NULL)
563 		goto miss;
564 
565 	if (!ISSET(rt->rt_flags, RTF_UP))
566 		goto miss;
567 
568 #ifdef NET_MPSAFE
569 	if (ISSET(rt->rt_flags, RTF_UPDATING) &&
570 	    /* XXX updater should be always able to acquire */
571 	    curlwp != rt_update_global.lwp) {
572 		if (!wait_ok || !rt_wait_ok())
573 			goto miss;
574 		RT_UNLOCK();
575 		splx(s);
576 
577 		/* We can wait until the update is complete */
578 		rt_update_wait();
579 
580 		if (wlock)
581 			RT_WLOCK();
582 		else
583 			RT_RLOCK();
584 		goto retry;
585 	}
586 #endif /* NET_MPSAFE */
587 
588 	rt_ref(rt);
589 	RT_REFCNT_TRACE(rt);
590 
591 	splx(s);
592 	return rt;
593 miss:
594 	rtstat.rts_unreach++;
595 	if (report) {
596 		struct rt_addrinfo info;
597 
598 		memset(&info, 0, sizeof(info));
599 		info.rti_info[RTAX_DST] = dst;
600 		rt_missmsg(RTM_MISS, &info, 0, 0);
601 	}
602 	splx(s);
603 	return NULL;
604 }
605 
606 struct rtentry *
607 rtalloc1(const struct sockaddr *dst, int report)
608 {
609 	struct rtentry *rt;
610 
611 	RT_RLOCK();
612 	rt = rtalloc1_locked(dst, report, true, false);
613 	RT_UNLOCK();
614 
615 	return rt;
616 }
617 
618 static void
619 rt_ref(struct rtentry *rt)
620 {
621 
622 	KASSERTMSG(rt->rt_refcnt >= 0, "rt_refcnt=%d", rt->rt_refcnt);
623 	atomic_inc_uint(&rt->rt_refcnt);
624 }
625 
626 void
627 rt_unref(struct rtentry *rt)
628 {
629 
630 	KASSERT(rt != NULL);
631 	KASSERTMSG(rt->rt_refcnt > 0, "refcnt=%d", rt->rt_refcnt);
632 
633 	atomic_dec_uint(&rt->rt_refcnt);
634 	if (!ISSET(rt->rt_flags, RTF_UP) || ISSET(rt->rt_flags, RTF_UPDATING)) {
635 		mutex_enter(&rt_free_global.lock);
636 		cv_broadcast(&rt->rt_cv);
637 		mutex_exit(&rt_free_global.lock);
638 	}
639 }
640 
641 static bool
642 rt_wait_ok(void)
643 {
644 
645 	KASSERT(!cpu_intr_p());
646 	return !cpu_softintr_p();
647 }
648 
649 void
650 rt_wait_refcnt(const char *title, struct rtentry *rt, int cnt)
651 {
652 	mutex_enter(&rt_free_global.lock);
653 	while (rt->rt_refcnt > cnt) {
654 		dlog(LOG_DEBUG, "%s: %s waiting (refcnt=%d)\n",
655 		    __func__, title, rt->rt_refcnt);
656 		cv_wait(&rt->rt_cv, &rt_free_global.lock);
657 		dlog(LOG_DEBUG, "%s: %s waited (refcnt=%d)\n",
658 		    __func__, title, rt->rt_refcnt);
659 	}
660 	mutex_exit(&rt_free_global.lock);
661 }
662 
663 void
664 rt_wait_psref(struct rtentry *rt)
665 {
666 
667 	psref_target_destroy(&rt->rt_psref, rt_psref_class);
668 	psref_target_init(&rt->rt_psref, rt_psref_class);
669 }
670 
671 static void
672 _rt_free(struct rtentry *rt)
673 {
674 	struct ifaddr *ifa;
675 
676 	/*
677 	 * Need to avoid a deadlock on rt_wait_refcnt of update
678 	 * and a conflict on psref_target_destroy of update.
679 	 */
680 #ifdef NET_MPSAFE
681 	rt_update_wait();
682 #endif
683 
684 	RT_REFCNT_TRACE(rt);
685 	KASSERTMSG(rt->rt_refcnt >= 0, "refcnt=%d", rt->rt_refcnt);
686 	rt_wait_refcnt("free", rt, 0);
687 #ifdef NET_MPSAFE
688 	psref_target_destroy(&rt->rt_psref, rt_psref_class);
689 #endif
690 
691 	rt_assert_inactive(rt);
692 	rttrash--;
693 	ifa = rt->rt_ifa;
694 	rt->rt_ifa = NULL;
695 	ifafree(ifa);
696 	rt->rt_ifp = NULL;
697 	cv_destroy(&rt->rt_cv);
698 	rt_destroy(rt);
699 	pool_put(&rtentry_pool, rt);
700 }
701 
702 static void
703 rt_free_work(struct work *wk, void *arg)
704 {
705 
706 	for (;;) {
707 		struct rtentry *rt;
708 
709 		mutex_enter(&rt_free_global.lock);
710 		if ((rt = SLIST_FIRST(&rt_free_global.queue)) == NULL) {
711 			rt_free_global.enqueued = false;
712 			mutex_exit(&rt_free_global.lock);
713 			return;
714 		}
715 		SLIST_REMOVE_HEAD(&rt_free_global.queue, rt_free);
716 		mutex_exit(&rt_free_global.lock);
717 		atomic_dec_uint(&rt->rt_refcnt);
718 		_rt_free(rt);
719 	}
720 }
721 
722 void
723 rt_free(struct rtentry *rt)
724 {
725 
726 	KASSERTMSG(rt->rt_refcnt > 0, "rt_refcnt=%d", rt->rt_refcnt);
727 	if (rt_wait_ok()) {
728 		atomic_dec_uint(&rt->rt_refcnt);
729 		_rt_free(rt);
730 		return;
731 	}
732 
733 	mutex_enter(&rt_free_global.lock);
734 	/* No need to add a reference here. */
735 	SLIST_INSERT_HEAD(&rt_free_global.queue, rt, rt_free);
736 	if (!rt_free_global.enqueued) {
737 		workqueue_enqueue(rt_free_global.wq, &rt_free_global.wk, NULL);
738 		rt_free_global.enqueued = true;
739 	}
740 	mutex_exit(&rt_free_global.lock);
741 }
742 
743 #ifdef NET_MPSAFE
744 static void
745 rt_update_wait(void)
746 {
747 
748 	mutex_enter(&rt_update_global.lock);
749 	while (rt_update_global.ongoing) {
750 		dlog(LOG_DEBUG, "%s: waiting lwp=%p\n", __func__, curlwp);
751 		cv_wait(&rt_update_global.cv, &rt_update_global.lock);
752 		dlog(LOG_DEBUG, "%s: waited lwp=%p\n", __func__, curlwp);
753 	}
754 	mutex_exit(&rt_update_global.lock);
755 }
756 #endif
757 
758 int
759 rt_update_prepare(struct rtentry *rt)
760 {
761 
762 	dlog(LOG_DEBUG, "%s: updating rt=%p lwp=%p\n", __func__, rt, curlwp);
763 
764 	RT_WLOCK();
765 	/* If the entry is being destroyed, don't proceed the update. */
766 	if (!ISSET(rt->rt_flags, RTF_UP)) {
767 		RT_UNLOCK();
768 		return ESRCH;
769 	}
770 	rt->rt_flags |= RTF_UPDATING;
771 	RT_UNLOCK();
772 
773 	mutex_enter(&rt_update_global.lock);
774 	while (rt_update_global.ongoing) {
775 		dlog(LOG_DEBUG, "%s: waiting ongoing updating rt=%p lwp=%p\n",
776 		    __func__, rt, curlwp);
777 		cv_wait(&rt_update_global.cv, &rt_update_global.lock);
778 		dlog(LOG_DEBUG, "%s: waited ongoing updating rt=%p lwp=%p\n",
779 		    __func__, rt, curlwp);
780 	}
781 	rt_update_global.ongoing = true;
782 	/* XXX need it to avoid rt_update_wait by updater itself. */
783 	rt_update_global.lwp = curlwp;
784 	mutex_exit(&rt_update_global.lock);
785 
786 	rt_wait_refcnt("update", rt, 1);
787 	rt_wait_psref(rt);
788 
789 	return 0;
790 }
791 
792 void
793 rt_update_finish(struct rtentry *rt)
794 {
795 
796 	RT_WLOCK();
797 	rt->rt_flags &= ~RTF_UPDATING;
798 	RT_UNLOCK();
799 
800 	mutex_enter(&rt_update_global.lock);
801 	rt_update_global.ongoing = false;
802 	rt_update_global.lwp = NULL;
803 	cv_broadcast(&rt_update_global.cv);
804 	mutex_exit(&rt_update_global.lock);
805 
806 	dlog(LOG_DEBUG, "%s: updated rt=%p lwp=%p\n", __func__, rt, curlwp);
807 }
808 
809 /*
810  * Force a routing table entry to the specified
811  * destination to go through the given gateway.
812  * Normally called as a result of a routing redirect
813  * message from the network layer.
814  *
815  * N.B.: must be called at splsoftnet
816  */
817 void
818 rtredirect(const struct sockaddr *dst, const struct sockaddr *gateway,
819 	const struct sockaddr *netmask, int flags, const struct sockaddr *src,
820 	struct rtentry **rtp)
821 {
822 	struct rtentry *rt;
823 	int error = 0;
824 	uint64_t *stat = NULL;
825 	struct rt_addrinfo info;
826 	struct ifaddr *ifa;
827 	struct psref psref;
828 
829 	/* verify the gateway is directly reachable */
830 	if ((ifa = ifa_ifwithnet_psref(gateway, &psref)) == NULL) {
831 		error = ENETUNREACH;
832 		goto out;
833 	}
834 	rt = rtalloc1(dst, 0);
835 	/*
836 	 * If the redirect isn't from our current router for this dst,
837 	 * it's either old or wrong.  If it redirects us to ourselves,
838 	 * we have a routing loop, perhaps as a result of an interface
839 	 * going down recently.
840 	 */
841 	if (!(flags & RTF_DONE) && rt &&
842 	     (sockaddr_cmp(src, rt->rt_gateway) != 0 || rt->rt_ifa != ifa))
843 		error = EINVAL;
844 	else {
845 		int s = pserialize_read_enter();
846 		struct ifaddr *_ifa;
847 
848 		_ifa = ifa_ifwithaddr(gateway);
849 		if (_ifa != NULL)
850 			error = EHOSTUNREACH;
851 		pserialize_read_exit(s);
852 	}
853 	if (error)
854 		goto done;
855 	/*
856 	 * Create a new entry if we just got back a wildcard entry
857 	 * or the lookup failed.  This is necessary for hosts
858 	 * which use routing redirects generated by smart gateways
859 	 * to dynamically build the routing tables.
860 	 */
861 	if (rt == NULL || (rt_mask(rt) && rt_mask(rt)->sa_len < 2))
862 		goto create;
863 	/*
864 	 * Don't listen to the redirect if it's
865 	 * for a route to an interface.
866 	 */
867 	if (rt->rt_flags & RTF_GATEWAY) {
868 		if (((rt->rt_flags & RTF_HOST) == 0) && (flags & RTF_HOST)) {
869 			/*
870 			 * Changing from route to net => route to host.
871 			 * Create new route, rather than smashing route to net.
872 			 */
873 		create:
874 			if (rt != NULL)
875 				rt_unref(rt);
876 			flags |=  RTF_GATEWAY | RTF_DYNAMIC;
877 			memset(&info, 0, sizeof(info));
878 			info.rti_info[RTAX_DST] = dst;
879 			info.rti_info[RTAX_GATEWAY] = gateway;
880 			info.rti_info[RTAX_NETMASK] = netmask;
881 			info.rti_ifa = ifa;
882 			info.rti_flags = flags;
883 			rt = NULL;
884 			error = rtrequest1(RTM_ADD, &info, &rt);
885 			if (rt != NULL)
886 				flags = rt->rt_flags;
887 			if (error == 0)
888 				rt_newmsg_dynamic(RTM_ADD, rt);
889 			stat = &rtstat.rts_dynamic;
890 		} else {
891 			/*
892 			 * Smash the current notion of the gateway to
893 			 * this destination.  Should check about netmask!!!
894 			 */
895 #ifdef NET_MPSAFE
896 			KASSERT(!cpu_softintr_p());
897 
898 			error = rt_update_prepare(rt);
899 			if (error == 0) {
900 #endif
901 				RT_WLOCK();
902 				error = rt_setgate(rt, gateway);
903 				if (error == 0) {
904 					rt->rt_flags |= RTF_MODIFIED;
905 					flags |= RTF_MODIFIED;
906 				}
907 				RT_UNLOCK();
908 #ifdef NET_MPSAFE
909 				rt_update_finish(rt);
910 			} else {
911 				/*
912 				 * If error != 0, the rtentry is being
913 				 * destroyed, so doing nothing doesn't
914 				 * matter.
915 				 */
916 			}
917 #endif
918 			stat = &rtstat.rts_newgateway;
919 		}
920 	} else
921 		error = EHOSTUNREACH;
922 done:
923 	if (rt) {
924 		if (rtp != NULL && !error)
925 			*rtp = rt;
926 		else
927 			rt_unref(rt);
928 	}
929 out:
930 	if (error)
931 		rtstat.rts_badredirect++;
932 	else if (stat != NULL)
933 		(*stat)++;
934 	memset(&info, 0, sizeof(info));
935 	info.rti_info[RTAX_DST] = dst;
936 	info.rti_info[RTAX_GATEWAY] = gateway;
937 	info.rti_info[RTAX_NETMASK] = netmask;
938 	info.rti_info[RTAX_AUTHOR] = src;
939 	rt_missmsg(RTM_REDIRECT, &info, flags, error);
940 	ifa_release(ifa, &psref);
941 }
942 
943 /*
944  * Delete a route and generate a message.
945  * It doesn't free a passed rt.
946  */
947 static int
948 rtdeletemsg(struct rtentry *rt)
949 {
950 	int error;
951 	struct rt_addrinfo info;
952 	struct rtentry *retrt;
953 
954 	/*
955 	 * Request the new route so that the entry is not actually
956 	 * deleted.  That will allow the information being reported to
957 	 * be accurate (and consistent with route_output()).
958 	 */
959 	memset(&info, 0, sizeof(info));
960 	info.rti_info[RTAX_DST] = rt_getkey(rt);
961 	info.rti_info[RTAX_NETMASK] = rt_mask(rt);
962 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
963 	info.rti_flags = rt->rt_flags;
964 	error = rtrequest1(RTM_DELETE, &info, &retrt);
965 
966 	rt_missmsg(RTM_DELETE, &info, info.rti_flags, error);
967 
968 	return error;
969 }
970 
971 static struct ifaddr *
972 ifa_ifwithroute_psref(int flags, const struct sockaddr *dst,
973     const struct sockaddr *gateway, struct psref *psref)
974 {
975 	struct ifaddr *ifa = NULL;
976 
977 	if ((flags & RTF_GATEWAY) == 0) {
978 		/*
979 		 * If we are adding a route to an interface,
980 		 * and the interface is a pt to pt link
981 		 * we should search for the destination
982 		 * as our clue to the interface.  Otherwise
983 		 * we can use the local address.
984 		 */
985 		if ((flags & RTF_HOST) && gateway->sa_family != AF_LINK)
986 			ifa = ifa_ifwithdstaddr_psref(dst, psref);
987 		if (ifa == NULL)
988 			ifa = ifa_ifwithaddr_psref(gateway, psref);
989 	} else {
990 		/*
991 		 * If we are adding a route to a remote net
992 		 * or host, the gateway may still be on the
993 		 * other end of a pt to pt link.
994 		 */
995 		ifa = ifa_ifwithdstaddr_psref(gateway, psref);
996 	}
997 	if (ifa == NULL)
998 		ifa = ifa_ifwithnet_psref(gateway, psref);
999 	if (ifa == NULL) {
1000 		int s;
1001 		struct rtentry *rt;
1002 
1003 		rt = rtalloc1_locked(gateway, 0, true, true);
1004 		if (rt == NULL)
1005 			return NULL;
1006 		if (rt->rt_flags & RTF_GATEWAY) {
1007 			rt_unref(rt);
1008 			return NULL;
1009 		}
1010 		/*
1011 		 * Just in case. May not need to do this workaround.
1012 		 * Revisit when working on rtentry MP-ification.
1013 		 */
1014 		s = pserialize_read_enter();
1015 		IFADDR_READER_FOREACH(ifa, rt->rt_ifp) {
1016 			if (ifa == rt->rt_ifa)
1017 				break;
1018 		}
1019 		if (ifa != NULL)
1020 			ifa_acquire(ifa, psref);
1021 		pserialize_read_exit(s);
1022 		rt_unref(rt);
1023 		if (ifa == NULL)
1024 			return NULL;
1025 	}
1026 	if (ifa->ifa_addr->sa_family != dst->sa_family) {
1027 		struct ifaddr *nifa;
1028 		int s;
1029 
1030 		s = pserialize_read_enter();
1031 		nifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp);
1032 		if (nifa != NULL) {
1033 			ifa_release(ifa, psref);
1034 			ifa_acquire(nifa, psref);
1035 			ifa = nifa;
1036 		}
1037 		pserialize_read_exit(s);
1038 	}
1039 	return ifa;
1040 }
1041 
1042 /*
1043  * If it suceeds and ret_nrt isn't NULL, refcnt of ret_nrt is incremented.
1044  * The caller has to rtfree it by itself.
1045  */
1046 int
1047 rtrequest(int req, const struct sockaddr *dst, const struct sockaddr *gateway,
1048 	const struct sockaddr *netmask, int flags, struct rtentry **ret_nrt)
1049 {
1050 	struct rt_addrinfo info;
1051 
1052 	memset(&info, 0, sizeof(info));
1053 	info.rti_flags = flags;
1054 	info.rti_info[RTAX_DST] = dst;
1055 	info.rti_info[RTAX_GATEWAY] = gateway;
1056 	info.rti_info[RTAX_NETMASK] = netmask;
1057 	return rtrequest1(req, &info, ret_nrt);
1058 }
1059 
1060 static struct ifnet *
1061 rt_getifp(struct rt_addrinfo *info, struct psref *psref)
1062 {
1063 	const struct sockaddr *ifpaddr = info->rti_info[RTAX_IFP];
1064 
1065 	if (info->rti_ifp != NULL)
1066 		return NULL;
1067 	/*
1068 	 * ifp may be specified by sockaddr_dl when protocol address
1069 	 * is ambiguous
1070 	 */
1071 	if (ifpaddr != NULL && ifpaddr->sa_family == AF_LINK) {
1072 		struct ifaddr *ifa;
1073 		int s = pserialize_read_enter();
1074 
1075 		ifa = ifa_ifwithnet(ifpaddr);
1076 		if (ifa != NULL)
1077 			info->rti_ifp = if_get_byindex(ifa->ifa_ifp->if_index,
1078 			    psref);
1079 		pserialize_read_exit(s);
1080 	}
1081 
1082 	return info->rti_ifp;
1083 }
1084 
1085 static struct ifaddr *
1086 rt_getifa(struct rt_addrinfo *info, struct psref *psref)
1087 {
1088 	struct ifaddr *ifa = NULL;
1089 	const struct sockaddr *dst = info->rti_info[RTAX_DST];
1090 	const struct sockaddr *gateway = info->rti_info[RTAX_GATEWAY];
1091 	const struct sockaddr *ifaaddr = info->rti_info[RTAX_IFA];
1092 	int flags = info->rti_flags;
1093 	const struct sockaddr *sa;
1094 
1095 	if (info->rti_ifa == NULL && ifaaddr != NULL) {
1096 		ifa = ifa_ifwithaddr_psref(ifaaddr, psref);
1097 		if (ifa != NULL)
1098 			goto got;
1099 	}
1100 
1101 	sa = ifaaddr != NULL ? ifaaddr :
1102 	    (gateway != NULL ? gateway : dst);
1103 	if (sa != NULL && info->rti_ifp != NULL)
1104 		ifa = ifaof_ifpforaddr_psref(sa, info->rti_ifp, psref);
1105 	else if (dst != NULL && gateway != NULL)
1106 		ifa = ifa_ifwithroute_psref(flags, dst, gateway, psref);
1107 	else if (sa != NULL)
1108 		ifa = ifa_ifwithroute_psref(flags, sa, sa, psref);
1109 	if (ifa == NULL)
1110 		return NULL;
1111 got:
1112 	if (ifa->ifa_getifa != NULL) {
1113 		/* FIXME ifa_getifa is NOMPSAFE */
1114 		ifa = (*ifa->ifa_getifa)(ifa, dst);
1115 		if (ifa == NULL)
1116 			return NULL;
1117 		ifa_acquire(ifa, psref);
1118 	}
1119 	info->rti_ifa = ifa;
1120 	if (info->rti_ifp == NULL)
1121 		info->rti_ifp = ifa->ifa_ifp;
1122 	return ifa;
1123 }
1124 
1125 /*
1126  * If it suceeds and ret_nrt isn't NULL, refcnt of ret_nrt is incremented.
1127  * The caller has to rtfree it by itself.
1128  */
1129 int
1130 rtrequest1(int req, struct rt_addrinfo *info, struct rtentry **ret_nrt)
1131 {
1132 	int s = splsoftnet(), ss;
1133 	int error = 0, rc;
1134 	struct rtentry *rt;
1135 	rtbl_t *rtbl;
1136 	struct ifaddr *ifa = NULL;
1137 	struct sockaddr_storage maskeddst;
1138 	const struct sockaddr *dst = info->rti_info[RTAX_DST];
1139 	const struct sockaddr *gateway = info->rti_info[RTAX_GATEWAY];
1140 	const struct sockaddr *netmask = info->rti_info[RTAX_NETMASK];
1141 	int flags = info->rti_flags;
1142 	struct psref psref_ifp, psref_ifa;
1143 	int bound = 0;
1144 	struct ifnet *ifp = NULL;
1145 	bool need_to_release_ifa = true;
1146 	bool need_unlock = true;
1147 #define senderr(x) { error = x ; goto bad; }
1148 
1149 	RT_WLOCK();
1150 
1151 	bound = curlwp_bind();
1152 	if ((rtbl = rt_gettable(dst->sa_family)) == NULL)
1153 		senderr(ESRCH);
1154 	if (flags & RTF_HOST)
1155 		netmask = NULL;
1156 	switch (req) {
1157 	case RTM_DELETE:
1158 		if (netmask) {
1159 			rt_maskedcopy(dst, (struct sockaddr *)&maskeddst,
1160 			    netmask);
1161 			dst = (struct sockaddr *)&maskeddst;
1162 		}
1163 		if ((rt = rt_lookup(rtbl, dst, netmask)) == NULL)
1164 			senderr(ESRCH);
1165 		if ((rt = rt_deladdr(rtbl, dst, netmask)) == NULL)
1166 			senderr(ESRCH);
1167 		rt->rt_flags &= ~RTF_UP;
1168 		ifa = rt->rt_ifa;
1169 		if (ifa->ifa_flags & IFA_ROUTE &&
1170 		    rt_ifa_connected(rt, ifa)) {
1171 			RT_DPRINTF("rt->_rt_key = %p, ifa = %p, "
1172 			    "deleted IFA_ROUTE\n",
1173 			    (void *)rt->_rt_key, (void *)ifa);
1174 			ifa->ifa_flags &= ~IFA_ROUTE;
1175 		}
1176 		if (ifa->ifa_rtrequest)
1177 			ifa->ifa_rtrequest(RTM_DELETE, rt, info);
1178 		ifa = NULL;
1179 		rttrash++;
1180 		if (ret_nrt) {
1181 			*ret_nrt = rt;
1182 			rt_ref(rt);
1183 			RT_REFCNT_TRACE(rt);
1184 		}
1185 		rtcache_invalidate();
1186 		RT_UNLOCK();
1187 		need_unlock = false;
1188 		rt_timer_remove_all(rt);
1189 #if defined(INET) || defined(INET6)
1190 		if (netmask != NULL)
1191 			lltable_prefix_free(dst->sa_family, dst, netmask, 0);
1192 #endif
1193 		if (ret_nrt == NULL) {
1194 			/* Adjust the refcount */
1195 			rt_ref(rt);
1196 			RT_REFCNT_TRACE(rt);
1197 			rt_free(rt);
1198 		}
1199 		break;
1200 
1201 	case RTM_ADD:
1202 		if (info->rti_ifa == NULL) {
1203 			ifp = rt_getifp(info, &psref_ifp);
1204 			ifa = rt_getifa(info, &psref_ifa);
1205 			if (ifa == NULL)
1206 				senderr(ENETUNREACH);
1207 		} else {
1208 			/* Caller should have a reference of ifa */
1209 			ifa = info->rti_ifa;
1210 			need_to_release_ifa = false;
1211 		}
1212 		rt = pool_get(&rtentry_pool, PR_NOWAIT);
1213 		if (rt == NULL)
1214 			senderr(ENOBUFS);
1215 		memset(rt, 0, sizeof(*rt));
1216 		rt->rt_flags = RTF_UP | (flags & ~RTF_DONTCHANGEIFA);
1217 		LIST_INIT(&rt->rt_timer);
1218 
1219 		RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1220 		if (netmask) {
1221 			rt_maskedcopy(dst, (struct sockaddr *)&maskeddst,
1222 			    netmask);
1223 			rt_setkey(rt, (struct sockaddr *)&maskeddst, M_NOWAIT);
1224 		} else {
1225 			rt_setkey(rt, dst, M_NOWAIT);
1226 		}
1227 		RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1228 		if (rt_getkey(rt) == NULL ||
1229 		    rt_setgate(rt, gateway) != 0) {
1230 			pool_put(&rtentry_pool, rt);
1231 			senderr(ENOBUFS);
1232 		}
1233 
1234 		rt_set_ifa(rt, ifa);
1235 		if (info->rti_info[RTAX_TAG] != NULL) {
1236 			const struct sockaddr *tag;
1237 			tag = rt_settag(rt, info->rti_info[RTAX_TAG]);
1238 			if (tag == NULL)
1239 				senderr(ENOBUFS);
1240 		}
1241 		RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1242 
1243 		ss = pserialize_read_enter();
1244 		if (info->rti_info[RTAX_IFP] != NULL) {
1245 			struct ifaddr *ifa2;
1246 			ifa2 = ifa_ifwithnet(info->rti_info[RTAX_IFP]);
1247 			if (ifa2 != NULL)
1248 				rt->rt_ifp = ifa2->ifa_ifp;
1249 			else
1250 				rt->rt_ifp = ifa->ifa_ifp;
1251 		} else
1252 			rt->rt_ifp = ifa->ifa_ifp;
1253 		pserialize_read_exit(ss);
1254 		cv_init(&rt->rt_cv, "rtentry");
1255 		psref_target_init(&rt->rt_psref, rt_psref_class);
1256 
1257 		RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1258 		rc = rt_addaddr(rtbl, rt, netmask);
1259 		RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1260 		if (rc != 0) {
1261 			ifafree(ifa); /* for rt_set_ifa above */
1262 			cv_destroy(&rt->rt_cv);
1263 			rt_destroy(rt);
1264 			pool_put(&rtentry_pool, rt);
1265 			senderr(rc);
1266 		}
1267 		RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1268 		if (ifa->ifa_rtrequest)
1269 			ifa->ifa_rtrequest(req, rt, info);
1270 		if (need_to_release_ifa)
1271 			ifa_release(ifa, &psref_ifa);
1272 		ifa = NULL;
1273 		if_put(ifp, &psref_ifp);
1274 		ifp = NULL;
1275 		RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1276 		if (ret_nrt) {
1277 			*ret_nrt = rt;
1278 			rt_ref(rt);
1279 			RT_REFCNT_TRACE(rt);
1280 		}
1281 		rtcache_invalidate();
1282 		RT_UNLOCK();
1283 		need_unlock = false;
1284 		break;
1285 	case RTM_GET:
1286 		if (netmask != NULL) {
1287 			rt_maskedcopy(dst, (struct sockaddr *)&maskeddst,
1288 			    netmask);
1289 			dst = (struct sockaddr *)&maskeddst;
1290 		}
1291 		if ((rt = rt_lookup(rtbl, dst, netmask)) == NULL)
1292 			senderr(ESRCH);
1293 		if (ret_nrt != NULL) {
1294 			*ret_nrt = rt;
1295 			rt_ref(rt);
1296 			RT_REFCNT_TRACE(rt);
1297 		}
1298 		break;
1299 	}
1300 bad:
1301 	if (need_to_release_ifa)
1302 		ifa_release(ifa, &psref_ifa);
1303 	if_put(ifp, &psref_ifp);
1304 	curlwp_bindx(bound);
1305 	if (need_unlock)
1306 		RT_UNLOCK();
1307 	splx(s);
1308 	return error;
1309 }
1310 
1311 int
1312 rt_setgate(struct rtentry *rt, const struct sockaddr *gate)
1313 {
1314 	struct sockaddr *new, *old;
1315 
1316 	KASSERT(RT_WLOCKED());
1317 	KASSERT(rt->_rt_key != NULL);
1318 	RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1319 
1320 	new = sockaddr_dup(gate, M_ZERO | M_NOWAIT);
1321 	if (new == NULL)
1322 		return ENOMEM;
1323 
1324 	old = rt->rt_gateway;
1325 	rt->rt_gateway = new;
1326 	if (old != NULL)
1327 		sockaddr_free(old);
1328 
1329 	KASSERT(rt->_rt_key != NULL);
1330 	RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1331 
1332 	if (rt->rt_flags & RTF_GATEWAY) {
1333 		struct rtentry *gwrt;
1334 
1335 		gwrt = rtalloc1_locked(gate, 1, false, true);
1336 		/*
1337 		 * If we switched gateways, grab the MTU from the new
1338 		 * gateway route if the current MTU, if the current MTU is
1339 		 * greater than the MTU of gateway.
1340 		 * Note that, if the MTU of gateway is 0, we will reset the
1341 		 * MTU of the route to run PMTUD again from scratch. XXX
1342 		 */
1343 		if (gwrt != NULL) {
1344 			KASSERT(gwrt->_rt_key != NULL);
1345 			RT_DPRINTF("gwrt->_rt_key = %p\n", gwrt->_rt_key);
1346 			if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 &&
1347 			    rt->rt_rmx.rmx_mtu &&
1348 			    rt->rt_rmx.rmx_mtu > gwrt->rt_rmx.rmx_mtu) {
1349 				rt->rt_rmx.rmx_mtu = gwrt->rt_rmx.rmx_mtu;
1350 			}
1351 			rt_unref(gwrt);
1352 		}
1353 	}
1354 	KASSERT(rt->_rt_key != NULL);
1355 	RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1356 	return 0;
1357 }
1358 
1359 static struct ifaddr *
1360 rt_update_get_ifa(const struct rt_addrinfo *info, const struct rtentry *rt,
1361     struct ifnet **ifp, struct psref *psref_ifp, struct psref *psref)
1362 {
1363 	struct ifaddr *ifa = NULL;
1364 
1365 	*ifp = NULL;
1366 	if (info->rti_info[RTAX_IFP] != NULL) {
1367 		ifa = ifa_ifwithnet_psref(info->rti_info[RTAX_IFP], psref);
1368 		if (ifa == NULL)
1369 			goto next;
1370 		*ifp = ifa->ifa_ifp;
1371 		if_acquire(*ifp, psref_ifp);
1372 		if (info->rti_info[RTAX_IFA] == NULL &&
1373 		    info->rti_info[RTAX_GATEWAY] == NULL)
1374 			goto out;
1375 		ifa_release(ifa, psref);
1376 		if (info->rti_info[RTAX_IFA] == NULL) {
1377 			/* route change <dst> <gw> -ifp <if> */
1378 			ifa = ifaof_ifpforaddr_psref(
1379 			    info->rti_info[RTAX_GATEWAY], *ifp, psref);
1380 		} else {
1381 			/* route change <dst> -ifp <if> -ifa <addr> */
1382 			ifa = ifa_ifwithaddr_psref(info->rti_info[RTAX_IFA],
1383 			    psref);
1384 			if (ifa != NULL)
1385 				goto out;
1386 			ifa = ifaof_ifpforaddr_psref(info->rti_info[RTAX_IFA],
1387 			    *ifp, psref);
1388 		}
1389 		goto out;
1390 	}
1391 next:
1392 	if (info->rti_info[RTAX_IFA] != NULL) {
1393 		/* route change <dst> <gw> -ifa <addr> */
1394 		ifa = ifa_ifwithaddr_psref(info->rti_info[RTAX_IFA], psref);
1395 		if (ifa != NULL)
1396 			goto out;
1397 	}
1398 	if (info->rti_info[RTAX_GATEWAY] != NULL) {
1399 		/* route change <dst> <gw> */
1400 		ifa = ifa_ifwithroute_psref(rt->rt_flags, rt_getkey(rt),
1401 		    info->rti_info[RTAX_GATEWAY], psref);
1402 	}
1403 out:
1404 	if (ifa != NULL && *ifp == NULL) {
1405 		*ifp = ifa->ifa_ifp;
1406 		if_acquire(*ifp, psref_ifp);
1407 	}
1408 	if (ifa == NULL && *ifp != NULL) {
1409 		if_put(*ifp, psref_ifp);
1410 		*ifp = NULL;
1411 	}
1412 	return ifa;
1413 }
1414 
1415 int
1416 rt_update(struct rtentry *rt, struct rt_addrinfo *info, void *rtm)
1417 {
1418 	int error = 0;
1419 	struct ifnet *ifp = NULL, *new_ifp = NULL;
1420 	struct ifaddr *ifa = NULL, *new_ifa;
1421 	struct psref psref_ifa, psref_new_ifa, psref_ifp, psref_new_ifp;
1422 	bool newgw, ifp_changed = false;
1423 
1424 	RT_WLOCK();
1425 	/*
1426 	 * New gateway could require new ifaddr, ifp;
1427 	 * flags may also be different; ifp may be specified
1428 	 * by ll sockaddr when protocol address is ambiguous
1429 	 */
1430 	newgw = info->rti_info[RTAX_GATEWAY] != NULL &&
1431 	    sockaddr_cmp(info->rti_info[RTAX_GATEWAY], rt->rt_gateway) != 0;
1432 
1433 	if (newgw || info->rti_info[RTAX_IFP] != NULL ||
1434 	    info->rti_info[RTAX_IFA] != NULL) {
1435 		ifp = rt_getifp(info, &psref_ifp);
1436 		/* info refers ifp so we need to keep a reference */
1437 		ifa = rt_getifa(info, &psref_ifa);
1438 		if (ifa == NULL) {
1439 			error = ENETUNREACH;
1440 			goto out;
1441 		}
1442 	}
1443 	if (newgw) {
1444 		error = rt_setgate(rt, info->rti_info[RTAX_GATEWAY]);
1445 		if (error != 0)
1446 			goto out;
1447 	}
1448 	if (info->rti_info[RTAX_TAG]) {
1449 		const struct sockaddr *tag;
1450 		tag = rt_settag(rt, info->rti_info[RTAX_TAG]);
1451 		if (tag == NULL) {
1452 			error = ENOBUFS;
1453 			goto out;
1454 		}
1455 	}
1456 	/*
1457 	 * New gateway could require new ifaddr, ifp;
1458 	 * flags may also be different; ifp may be specified
1459 	 * by ll sockaddr when protocol address is ambiguous
1460 	 */
1461 	new_ifa = rt_update_get_ifa(info, rt, &new_ifp, &psref_new_ifp,
1462 	    &psref_new_ifa);
1463 	if (new_ifa != NULL) {
1464 		ifa_release(ifa, &psref_ifa);
1465 		ifa = new_ifa;
1466 	}
1467 	if (ifa) {
1468 		struct ifaddr *oifa = rt->rt_ifa;
1469 		if (oifa != ifa && !ifa_is_destroying(ifa) &&
1470 		    new_ifp != NULL && !if_is_deactivated(new_ifp)) {
1471 			if (oifa && oifa->ifa_rtrequest)
1472 				oifa->ifa_rtrequest(RTM_DELETE, rt, info);
1473 			rt_replace_ifa(rt, ifa);
1474 			rt->rt_ifp = new_ifp;
1475 			ifp_changed = true;
1476 		}
1477 		if (new_ifa == NULL)
1478 			ifa_release(ifa, &psref_ifa);
1479 		/* To avoid ifa_release below */
1480 		ifa = NULL;
1481 	}
1482 	ifa_release(new_ifa, &psref_new_ifa);
1483 	if (new_ifp && rt->rt_ifp != new_ifp && !if_is_deactivated(new_ifp)) {
1484 		rt->rt_ifp = new_ifp;
1485 		ifp_changed = true;
1486 	}
1487 	rt_setmetrics(rtm, rt);
1488 	if (rt->rt_flags != info->rti_flags) {
1489 		rt->rt_flags = (info->rti_flags & ~PRESERVED_RTF) |
1490 		    (rt->rt_flags & PRESERVED_RTF);
1491 	}
1492 	if (rt->rt_ifa->ifa_rtrequest)
1493 		rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, info);
1494 #if defined(INET) || defined(INET6)
1495 	if (ifp_changed && rt_mask(rt) != NULL)
1496 		lltable_prefix_free(rt_getkey(rt)->sa_family, rt_getkey(rt),
1497 		    rt_mask(rt), 0);
1498 #else
1499 	(void)ifp_changed; /* XXX gcc */
1500 #endif
1501 out:
1502 	ifa_release(ifa, &psref_ifa);
1503 	if_put(new_ifp, &psref_new_ifp);
1504 	if_put(ifp, &psref_ifp);
1505 
1506 	RT_UNLOCK();
1507 
1508 	return error;
1509 }
1510 
1511 static void
1512 rt_maskedcopy(const struct sockaddr *src, struct sockaddr *dst,
1513 	const struct sockaddr *netmask)
1514 {
1515 	const char *netmaskp = &netmask->sa_data[0],
1516 	           *srcp = &src->sa_data[0];
1517 	char *dstp = &dst->sa_data[0];
1518 	const char *maskend = (char *)dst + MIN(netmask->sa_len, src->sa_len);
1519 	const char *srcend = (char *)dst + src->sa_len;
1520 
1521 	dst->sa_len = src->sa_len;
1522 	dst->sa_family = src->sa_family;
1523 
1524 	while (dstp < maskend)
1525 		*dstp++ = *srcp++ & *netmaskp++;
1526 	if (dstp < srcend)
1527 		memset(dstp, 0, (size_t)(srcend - dstp));
1528 }
1529 
1530 /*
1531  * Inform the routing socket of a route change.
1532  */
1533 void
1534 rt_newmsg(const int cmd, const struct rtentry *rt)
1535 {
1536 	struct rt_addrinfo info;
1537 
1538 	memset((void *)&info, 0, sizeof(info));
1539 	info.rti_info[RTAX_DST] = rt_getkey(rt);
1540 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1541 	info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1542 	if (rt->rt_ifp) {
1543 		info.rti_info[RTAX_IFP] = rt->rt_ifp->if_dl->ifa_addr;
1544 		info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1545 	}
1546 
1547 	rt_missmsg(cmd, &info, rt->rt_flags, 0);
1548 }
1549 
1550 /*
1551  * Inform the routing socket of a route change for RTF_DYNAMIC.
1552  */
1553 void
1554 rt_newmsg_dynamic(const int cmd, const struct rtentry *rt)
1555 {
1556 	struct rt_addrinfo info;
1557 	struct sockaddr *gateway = rt->rt_gateway;
1558 
1559 	if (gateway == NULL)
1560 		return;
1561 
1562 	switch(gateway->sa_family) {
1563 #ifdef INET
1564 	case AF_INET: {
1565 		extern bool icmp_dynamic_rt_msg;
1566 		if (!icmp_dynamic_rt_msg)
1567 			return;
1568 		break;
1569 	}
1570 #endif
1571 #ifdef INET6
1572 	case AF_INET6: {
1573 		extern bool icmp6_dynamic_rt_msg;
1574 		if (!icmp6_dynamic_rt_msg)
1575 			return;
1576 		break;
1577 	}
1578 #endif
1579 	default:
1580 		return;
1581 	}
1582 
1583 	memset((void *)&info, 0, sizeof(info));
1584 	info.rti_info[RTAX_DST] = rt_getkey(rt);
1585 	info.rti_info[RTAX_GATEWAY] = gateway;
1586 	info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1587 	if (rt->rt_ifp) {
1588 		info.rti_info[RTAX_IFP] = rt->rt_ifp->if_dl->ifa_addr;
1589 		info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1590 	}
1591 
1592 	rt_missmsg(cmd, &info, rt->rt_flags, 0);
1593 }
1594 
1595 /*
1596  * Set up or tear down a routing table entry, normally
1597  * for an interface.
1598  */
1599 int
1600 rtinit(struct ifaddr *ifa, int cmd, int flags)
1601 {
1602 	struct rtentry *rt;
1603 	struct sockaddr *dst, *odst;
1604 	struct sockaddr_storage maskeddst;
1605 	struct rtentry *nrt = NULL;
1606 	int error;
1607 	struct rt_addrinfo info;
1608 
1609 	dst = flags & RTF_HOST ? ifa->ifa_dstaddr : ifa->ifa_addr;
1610 	if (cmd == RTM_DELETE) {
1611 		if ((flags & RTF_HOST) == 0 && ifa->ifa_netmask) {
1612 			/* Delete subnet route for this interface */
1613 			odst = dst;
1614 			dst = (struct sockaddr *)&maskeddst;
1615 			rt_maskedcopy(odst, dst, ifa->ifa_netmask);
1616 		}
1617 		if ((rt = rtalloc1(dst, 0)) != NULL) {
1618 			if (rt->rt_ifa != ifa) {
1619 				rt_unref(rt);
1620 				return (flags & RTF_HOST) ? EHOSTUNREACH
1621 							: ENETUNREACH;
1622 			}
1623 			rt_unref(rt);
1624 		}
1625 	}
1626 	memset(&info, 0, sizeof(info));
1627 	info.rti_ifa = ifa;
1628 	info.rti_flags = flags | ifa->ifa_flags | RTF_DONTCHANGEIFA;
1629 	info.rti_info[RTAX_DST] = dst;
1630 	info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr;
1631 
1632 	/*
1633 	 * XXX here, it seems that we are assuming that ifa_netmask is NULL
1634 	 * for RTF_HOST.  bsdi4 passes NULL explicitly (via intermediate
1635 	 * variable) when RTF_HOST is 1.  still not sure if i can safely
1636 	 * change it to meet bsdi4 behavior.
1637 	 */
1638 	if (cmd != RTM_LLINFO_UPD)
1639 		info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1640 	error = rtrequest1((cmd == RTM_LLINFO_UPD) ? RTM_GET : cmd, &info,
1641 	    &nrt);
1642 	if (error != 0)
1643 		return error;
1644 
1645 	rt = nrt;
1646 	RT_REFCNT_TRACE(rt);
1647 	switch (cmd) {
1648 	case RTM_DELETE:
1649 		rt_newmsg(cmd, rt);
1650 		rt_free(rt);
1651 		break;
1652 	case RTM_LLINFO_UPD:
1653 		if (cmd == RTM_LLINFO_UPD && ifa->ifa_rtrequest != NULL)
1654 			ifa->ifa_rtrequest(RTM_LLINFO_UPD, rt, &info);
1655 		rt_newmsg(RTM_CHANGE, rt);
1656 		rt_unref(rt);
1657 		break;
1658 	case RTM_ADD:
1659 		KASSERT(rt->rt_ifa == ifa);
1660 		rt_newmsg(cmd, rt);
1661 		rt_unref(rt);
1662 		RT_REFCNT_TRACE(rt);
1663 		break;
1664 	}
1665 	return error;
1666 }
1667 
1668 /*
1669  * Create a local route entry for the address.
1670  * Announce the addition of the address and the route to the routing socket.
1671  */
1672 int
1673 rt_ifa_addlocal(struct ifaddr *ifa)
1674 {
1675 	struct rtentry *rt;
1676 	int e;
1677 
1678 	/* If there is no loopback entry, allocate one. */
1679 	rt = rtalloc1(ifa->ifa_addr, 0);
1680 #ifdef RT_DEBUG
1681 	if (rt != NULL)
1682 		dump_rt(rt);
1683 #endif
1684 	if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
1685 	    (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
1686 	{
1687 		struct rt_addrinfo info;
1688 		struct rtentry *nrt;
1689 
1690 		memset(&info, 0, sizeof(info));
1691 		info.rti_flags = RTF_HOST | RTF_LOCAL | RTF_DONTCHANGEIFA;
1692 		info.rti_info[RTAX_DST] = ifa->ifa_addr;
1693 		info.rti_info[RTAX_GATEWAY] =
1694 		    (const struct sockaddr *)ifa->ifa_ifp->if_sadl;
1695 		info.rti_ifa = ifa;
1696 		nrt = NULL;
1697 		e = rtrequest1(RTM_ADD, &info, &nrt);
1698 		rt_addrmsg_rt(RTM_ADD, ifa, e, nrt);
1699 		if (nrt != NULL) {
1700 			KASSERT(nrt->rt_ifa == ifa);
1701 #ifdef RT_DEBUG
1702 			dump_rt(nrt);
1703 #endif
1704 			rt_unref(nrt);
1705 			RT_REFCNT_TRACE(nrt);
1706 		}
1707 	} else {
1708 		e = 0;
1709 		rt_addrmsg(RTM_NEWADDR, ifa);
1710 	}
1711 	if (rt != NULL)
1712 		rt_unref(rt);
1713 	return e;
1714 }
1715 
1716 /*
1717  * Remove the local route entry for the address.
1718  * Announce the removal of the address and the route to the routing socket.
1719  */
1720 int
1721 rt_ifa_remlocal(struct ifaddr *ifa, struct ifaddr *alt_ifa)
1722 {
1723 	struct rtentry *rt;
1724 	int e = 0;
1725 
1726 	rt = rtalloc1(ifa->ifa_addr, 0);
1727 
1728 	/*
1729 	 * Before deleting, check if a corresponding loopbacked
1730 	 * host route surely exists.  With this check, we can avoid
1731 	 * deleting an interface direct route whose destination is
1732 	 * the same as the address being removed.  This can happen
1733 	 * when removing a subnet-router anycast address on an
1734 	 * interface attached to a shared medium.
1735 	 */
1736 	if (rt != NULL &&
1737 	    (rt->rt_flags & RTF_HOST) &&
1738 	    (rt->rt_ifp->if_flags & IFF_LOOPBACK))
1739 	{
1740 		/* If we cannot replace the route's ifaddr with the equivalent
1741 		 * ifaddr of another interface, I believe it is safest to
1742 		 * delete the route.
1743 		 */
1744 		if (alt_ifa == NULL) {
1745 			e = rtdeletemsg(rt);
1746 			if (e == 0) {
1747 				rt_unref(rt);
1748 				rt_free(rt);
1749 				rt = NULL;
1750 			}
1751 			rt_addrmsg(RTM_DELADDR, ifa);
1752 		} else {
1753 #ifdef NET_MPSAFE
1754 			int error = rt_update_prepare(rt);
1755 			if (error == 0) {
1756 				rt_replace_ifa(rt, alt_ifa);
1757 				rt_update_finish(rt);
1758 			} else {
1759 				/*
1760 				 * If error != 0, the rtentry is being
1761 				 * destroyed, so doing nothing doesn't
1762 				 * matter.
1763 				 */
1764 			}
1765 #else
1766 			rt_replace_ifa(rt, alt_ifa);
1767 #endif
1768 			rt_newmsg(RTM_CHANGE, rt);
1769 		}
1770 	} else
1771 		rt_addrmsg(RTM_DELADDR, ifa);
1772 	if (rt != NULL)
1773 		rt_unref(rt);
1774 	return e;
1775 }
1776 
1777 /*
1778  * Route timer routines.  These routes allow functions to be called
1779  * for various routes at any time.  This is useful in supporting
1780  * path MTU discovery and redirect route deletion.
1781  *
1782  * This is similar to some BSDI internal functions, but it provides
1783  * for multiple queues for efficiency's sake...
1784  */
1785 
1786 LIST_HEAD(, rttimer_queue) rttimer_queue_head;
1787 static int rt_init_done = 0;
1788 
1789 /*
1790  * Some subtle order problems with domain initialization mean that
1791  * we cannot count on this being run from rt_init before various
1792  * protocol initializations are done.  Therefore, we make sure
1793  * that this is run when the first queue is added...
1794  */
1795 
1796 static void rt_timer_work(struct work *, void *);
1797 
1798 static void
1799 rt_timer_init(void)
1800 {
1801 	int error;
1802 
1803 	assert(rt_init_done == 0);
1804 
1805 	/* XXX should be in rt_init */
1806 	rw_init(&rt_lock);
1807 
1808 	LIST_INIT(&rttimer_queue_head);
1809 	callout_init(&rt_timer_ch, CALLOUT_MPSAFE);
1810 	error = workqueue_create(&rt_timer_wq, "rt_timer",
1811 	    rt_timer_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
1812 	if (error)
1813 		panic("%s: workqueue_create failed (%d)\n", __func__, error);
1814 	callout_reset(&rt_timer_ch, hz, rt_timer_timer, NULL);
1815 	rt_init_done = 1;
1816 }
1817 
1818 struct rttimer_queue *
1819 rt_timer_queue_create(u_int timeout)
1820 {
1821 	struct rttimer_queue *rtq;
1822 
1823 	if (rt_init_done == 0)
1824 		rt_timer_init();
1825 
1826 	R_Malloc(rtq, struct rttimer_queue *, sizeof *rtq);
1827 	if (rtq == NULL)
1828 		return NULL;
1829 	memset(rtq, 0, sizeof(*rtq));
1830 
1831 	rtq->rtq_timeout = timeout;
1832 	TAILQ_INIT(&rtq->rtq_head);
1833 	RT_WLOCK();
1834 	LIST_INSERT_HEAD(&rttimer_queue_head, rtq, rtq_link);
1835 	RT_UNLOCK();
1836 
1837 	return rtq;
1838 }
1839 
1840 void
1841 rt_timer_queue_change(struct rttimer_queue *rtq, long timeout)
1842 {
1843 
1844 	rtq->rtq_timeout = timeout;
1845 }
1846 
1847 static void
1848 rt_timer_queue_remove_all(struct rttimer_queue *rtq)
1849 {
1850 	struct rttimer *r;
1851 
1852 	RT_ASSERT_WLOCK();
1853 
1854 	while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL) {
1855 		LIST_REMOVE(r, rtt_link);
1856 		TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next);
1857 		rt_ref(r->rtt_rt); /* XXX */
1858 		RT_REFCNT_TRACE(r->rtt_rt);
1859 		RT_UNLOCK();
1860 		(*r->rtt_func)(r->rtt_rt, r);
1861 		pool_put(&rttimer_pool, r);
1862 		RT_WLOCK();
1863 		if (rtq->rtq_count > 0)
1864 			rtq->rtq_count--;
1865 		else
1866 			printf("rt_timer_queue_remove_all: "
1867 			    "rtq_count reached 0\n");
1868 	}
1869 }
1870 
1871 void
1872 rt_timer_queue_destroy(struct rttimer_queue *rtq)
1873 {
1874 
1875 	RT_WLOCK();
1876 	rt_timer_queue_remove_all(rtq);
1877 	LIST_REMOVE(rtq, rtq_link);
1878 	RT_UNLOCK();
1879 
1880 	/*
1881 	 * Caller is responsible for freeing the rttimer_queue structure.
1882 	 */
1883 }
1884 
1885 unsigned long
1886 rt_timer_count(struct rttimer_queue *rtq)
1887 {
1888 	return rtq->rtq_count;
1889 }
1890 
1891 static void
1892 rt_timer_remove_all(struct rtentry *rt)
1893 {
1894 	struct rttimer *r;
1895 
1896 	RT_WLOCK();
1897 	while ((r = LIST_FIRST(&rt->rt_timer)) != NULL) {
1898 		LIST_REMOVE(r, rtt_link);
1899 		TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next);
1900 		if (r->rtt_queue->rtq_count > 0)
1901 			r->rtt_queue->rtq_count--;
1902 		else
1903 			printf("rt_timer_remove_all: rtq_count reached 0\n");
1904 		pool_put(&rttimer_pool, r);
1905 	}
1906 	RT_UNLOCK();
1907 }
1908 
1909 int
1910 rt_timer_add(struct rtentry *rt,
1911 	void (*func)(struct rtentry *, struct rttimer *),
1912 	struct rttimer_queue *queue)
1913 {
1914 	struct rttimer *r;
1915 
1916 	KASSERT(func != NULL);
1917 	RT_WLOCK();
1918 	/*
1919 	 * If there's already a timer with this action, destroy it before
1920 	 * we add a new one.
1921 	 */
1922 	LIST_FOREACH(r, &rt->rt_timer, rtt_link) {
1923 		if (r->rtt_func == func)
1924 			break;
1925 	}
1926 	if (r != NULL) {
1927 		LIST_REMOVE(r, rtt_link);
1928 		TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next);
1929 		if (r->rtt_queue->rtq_count > 0)
1930 			r->rtt_queue->rtq_count--;
1931 		else
1932 			printf("rt_timer_add: rtq_count reached 0\n");
1933 	} else {
1934 		r = pool_get(&rttimer_pool, PR_NOWAIT);
1935 		if (r == NULL) {
1936 			RT_UNLOCK();
1937 			return ENOBUFS;
1938 		}
1939 	}
1940 
1941 	memset(r, 0, sizeof(*r));
1942 
1943 	r->rtt_rt = rt;
1944 	r->rtt_time = time_uptime;
1945 	r->rtt_func = func;
1946 	r->rtt_queue = queue;
1947 	LIST_INSERT_HEAD(&rt->rt_timer, r, rtt_link);
1948 	TAILQ_INSERT_TAIL(&queue->rtq_head, r, rtt_next);
1949 	r->rtt_queue->rtq_count++;
1950 
1951 	RT_UNLOCK();
1952 
1953 	return 0;
1954 }
1955 
1956 static void
1957 rt_timer_work(struct work *wk, void *arg)
1958 {
1959 	struct rttimer_queue *rtq;
1960 	struct rttimer *r;
1961 
1962 	RT_WLOCK();
1963 	LIST_FOREACH(rtq, &rttimer_queue_head, rtq_link) {
1964 		while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL &&
1965 		    (r->rtt_time + rtq->rtq_timeout) < time_uptime) {
1966 			LIST_REMOVE(r, rtt_link);
1967 			TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next);
1968 			/*
1969 			 * Take a reference to avoid the rtentry is freed
1970 			 * accidentally after RT_UNLOCK.  The callback
1971 			 * (rtt_func) must rt_unref it by itself.
1972 			 */
1973 			rt_ref(r->rtt_rt);
1974 			RT_REFCNT_TRACE(r->rtt_rt);
1975 			RT_UNLOCK();
1976 			(*r->rtt_func)(r->rtt_rt, r);
1977 			pool_put(&rttimer_pool, r);
1978 			RT_WLOCK();
1979 			if (rtq->rtq_count > 0)
1980 				rtq->rtq_count--;
1981 			else
1982 				printf("rt_timer_timer: rtq_count reached 0\n");
1983 		}
1984 	}
1985 	RT_UNLOCK();
1986 
1987 	callout_reset(&rt_timer_ch, hz, rt_timer_timer, NULL);
1988 }
1989 
1990 static void
1991 rt_timer_timer(void *arg)
1992 {
1993 
1994 	workqueue_enqueue(rt_timer_wq, &rt_timer_wk, NULL);
1995 }
1996 
1997 static struct rtentry *
1998 _rtcache_init(struct route *ro, int flag)
1999 {
2000 	struct rtentry *rt;
2001 
2002 	rtcache_invariants(ro);
2003 	KASSERT(ro->_ro_rt == NULL);
2004 
2005 	if (rtcache_getdst(ro) == NULL)
2006 		return NULL;
2007 	rt = rtalloc1(rtcache_getdst(ro), flag);
2008 	if (rt != NULL) {
2009 		RT_RLOCK();
2010 		if (ISSET(rt->rt_flags, RTF_UP)) {
2011 			ro->_ro_rt = rt;
2012 			ro->ro_rtcache_generation = rtcache_generation;
2013 			rtcache_ref(rt, ro);
2014 		}
2015 		RT_UNLOCK();
2016 		rt_unref(rt);
2017 	}
2018 
2019 	rtcache_invariants(ro);
2020 	return ro->_ro_rt;
2021 }
2022 
2023 struct rtentry *
2024 rtcache_init(struct route *ro)
2025 {
2026 
2027 	return _rtcache_init(ro, 1);
2028 }
2029 
2030 struct rtentry *
2031 rtcache_init_noclone(struct route *ro)
2032 {
2033 
2034 	return _rtcache_init(ro, 0);
2035 }
2036 
2037 struct rtentry *
2038 rtcache_update(struct route *ro, int clone)
2039 {
2040 
2041 	ro->_ro_rt = NULL;
2042 	return _rtcache_init(ro, clone);
2043 }
2044 
2045 void
2046 rtcache_copy(struct route *new_ro, struct route *old_ro)
2047 {
2048 	struct rtentry *rt;
2049 	int ret;
2050 
2051 	KASSERT(new_ro != old_ro);
2052 	rtcache_invariants(new_ro);
2053 	rtcache_invariants(old_ro);
2054 
2055 	rt = rtcache_validate(old_ro);
2056 
2057 	if (rtcache_getdst(old_ro) == NULL)
2058 		goto out;
2059 	ret = rtcache_setdst(new_ro, rtcache_getdst(old_ro));
2060 	if (ret != 0)
2061 		goto out;
2062 
2063 	RT_RLOCK();
2064 	new_ro->_ro_rt = rt;
2065 	new_ro->ro_rtcache_generation = rtcache_generation;
2066 	RT_UNLOCK();
2067 	rtcache_invariants(new_ro);
2068 out:
2069 	rtcache_unref(rt, old_ro);
2070 	return;
2071 }
2072 
2073 #if defined(RT_DEBUG) && defined(NET_MPSAFE)
2074 static void
2075 rtcache_trace(const char *func, struct rtentry *rt, struct route *ro)
2076 {
2077 	char dst[64];
2078 
2079 	sockaddr_format(ro->ro_sa, dst, 64);
2080 	printf("trace: %s:\tdst=%s cpu=%d lwp=%p psref=%p target=%p\n", func, dst,
2081 	    cpu_index(curcpu()), curlwp, &ro->ro_psref, &rt->rt_psref);
2082 }
2083 #define RTCACHE_PSREF_TRACE(rt, ro)	rtcache_trace(__func__, (rt), (ro))
2084 #else
2085 #define RTCACHE_PSREF_TRACE(rt, ro)	do {} while (0)
2086 #endif
2087 
2088 static void
2089 rtcache_ref(struct rtentry *rt, struct route *ro)
2090 {
2091 
2092 	KASSERT(rt != NULL);
2093 
2094 #ifdef NET_MPSAFE
2095 	RTCACHE_PSREF_TRACE(rt, ro);
2096 	ro->ro_bound = curlwp_bind();
2097 	/* XXX Use a real caller's address */
2098 	PSREF_DEBUG_FILL_RETURN_ADDRESS(&ro->ro_psref);
2099 	psref_acquire(&ro->ro_psref, &rt->rt_psref, rt_psref_class);
2100 #endif
2101 }
2102 
2103 void
2104 rtcache_unref(struct rtentry *rt, struct route *ro)
2105 {
2106 
2107 	if (rt == NULL)
2108 		return;
2109 
2110 #ifdef NET_MPSAFE
2111 	psref_release(&ro->ro_psref, &rt->rt_psref, rt_psref_class);
2112 	curlwp_bindx(ro->ro_bound);
2113 	RTCACHE_PSREF_TRACE(rt, ro);
2114 #endif
2115 }
2116 
2117 struct rtentry *
2118 rtcache_validate(struct route *ro)
2119 {
2120 	struct rtentry *rt = NULL;
2121 
2122 #ifdef NET_MPSAFE
2123 retry:
2124 #endif
2125 	rtcache_invariants(ro);
2126 	RT_RLOCK();
2127 	if (ro->ro_rtcache_generation != rtcache_generation) {
2128 		/* The cache is invalidated */
2129 		rt = NULL;
2130 		goto out;
2131 	}
2132 
2133 	rt = ro->_ro_rt;
2134 	if (rt == NULL)
2135 		goto out;
2136 
2137 	if ((rt->rt_flags & RTF_UP) == 0) {
2138 		rt = NULL;
2139 		goto out;
2140 	}
2141 #ifdef NET_MPSAFE
2142 	if (ISSET(rt->rt_flags, RTF_UPDATING)) {
2143 		if (rt_wait_ok()) {
2144 			RT_UNLOCK();
2145 
2146 			/* We can wait until the update is complete */
2147 			rt_update_wait();
2148 			goto retry;
2149 		} else {
2150 			rt = NULL;
2151 		}
2152 	} else
2153 #endif
2154 		rtcache_ref(rt, ro);
2155 out:
2156 	RT_UNLOCK();
2157 	return rt;
2158 }
2159 
2160 struct rtentry *
2161 rtcache_lookup2(struct route *ro, const struct sockaddr *dst,
2162     int clone, int *hitp)
2163 {
2164 	const struct sockaddr *odst;
2165 	struct rtentry *rt = NULL;
2166 
2167 	odst = rtcache_getdst(ro);
2168 	if (odst == NULL)
2169 		goto miss;
2170 
2171 	if (sockaddr_cmp(odst, dst) != 0) {
2172 		rtcache_free(ro);
2173 		goto miss;
2174 	}
2175 
2176 	rt = rtcache_validate(ro);
2177 	if (rt == NULL) {
2178 		ro->_ro_rt = NULL;
2179 		goto miss;
2180 	}
2181 
2182 	rtcache_invariants(ro);
2183 
2184 	if (hitp != NULL)
2185 		*hitp = 1;
2186 	return rt;
2187 miss:
2188 	if (hitp != NULL)
2189 		*hitp = 0;
2190 	if (rtcache_setdst(ro, dst) == 0)
2191 		rt = _rtcache_init(ro, clone);
2192 
2193 	rtcache_invariants(ro);
2194 
2195 	return rt;
2196 }
2197 
2198 void
2199 rtcache_free(struct route *ro)
2200 {
2201 
2202 	ro->_ro_rt = NULL;
2203 	if (ro->ro_sa != NULL) {
2204 		sockaddr_free(ro->ro_sa);
2205 		ro->ro_sa = NULL;
2206 	}
2207 	rtcache_invariants(ro);
2208 }
2209 
2210 int
2211 rtcache_setdst(struct route *ro, const struct sockaddr *sa)
2212 {
2213 	KASSERT(sa != NULL);
2214 
2215 	rtcache_invariants(ro);
2216 	if (ro->ro_sa != NULL) {
2217 		if (ro->ro_sa->sa_family == sa->sa_family) {
2218 			ro->_ro_rt = NULL;
2219 			sockaddr_copy(ro->ro_sa, ro->ro_sa->sa_len, sa);
2220 			rtcache_invariants(ro);
2221 			return 0;
2222 		}
2223 		/* free ro_sa, wrong family */
2224 		rtcache_free(ro);
2225 	}
2226 
2227 	KASSERT(ro->_ro_rt == NULL);
2228 
2229 	if ((ro->ro_sa = sockaddr_dup(sa, M_ZERO | M_NOWAIT)) == NULL) {
2230 		rtcache_invariants(ro);
2231 		return ENOMEM;
2232 	}
2233 	rtcache_invariants(ro);
2234 	return 0;
2235 }
2236 
2237 static void
2238 rtcache_percpu_init_cpu(void *p, void *arg __unused, struct cpu_info *ci __unused)
2239 {
2240 	struct route **rop = p;
2241 
2242 	/*
2243 	 * We can't have struct route as percpu data because it can be destroyed
2244 	 * over a memory enlargement processing of percpu.
2245 	 */
2246 	*rop = kmem_zalloc(sizeof(**rop), KM_SLEEP);
2247 }
2248 
2249 percpu_t *
2250 rtcache_percpu_alloc(void)
2251 {
2252 
2253 	return percpu_create(sizeof(struct route *),
2254 	    rtcache_percpu_init_cpu, NULL, NULL);
2255 }
2256 
2257 const struct sockaddr *
2258 rt_settag(struct rtentry *rt, const struct sockaddr *tag)
2259 {
2260 	if (rt->rt_tag != tag) {
2261 		if (rt->rt_tag != NULL)
2262 			sockaddr_free(rt->rt_tag);
2263 		rt->rt_tag = sockaddr_dup(tag, M_ZERO | M_NOWAIT);
2264 	}
2265 	return rt->rt_tag;
2266 }
2267 
2268 struct sockaddr *
2269 rt_gettag(const struct rtentry *rt)
2270 {
2271 	return rt->rt_tag;
2272 }
2273 
2274 int
2275 rt_check_reject_route(const struct rtentry *rt, const struct ifnet *ifp)
2276 {
2277 
2278 	if ((rt->rt_flags & RTF_REJECT) != 0) {
2279 		/* Mimic looutput */
2280 		if (ifp->if_flags & IFF_LOOPBACK)
2281 			return (rt->rt_flags & RTF_HOST) ?
2282 			    EHOSTUNREACH : ENETUNREACH;
2283 		else if (rt->rt_rmx.rmx_expire == 0 ||
2284 		    time_uptime < rt->rt_rmx.rmx_expire)
2285 			return (rt->rt_flags & RTF_GATEWAY) ?
2286 			    EHOSTUNREACH : EHOSTDOWN;
2287 	}
2288 
2289 	return 0;
2290 }
2291 
2292 void
2293 rt_delete_matched_entries(sa_family_t family, int (*f)(struct rtentry *, void *),
2294     void *v, bool notify)
2295 {
2296 
2297 	for (;;) {
2298 		int s;
2299 		int error;
2300 		struct rtentry *rt, *retrt = NULL;
2301 
2302 		RT_RLOCK();
2303 		s = splsoftnet();
2304 		rt = rtbl_search_matched_entry(family, f, v);
2305 		if (rt == NULL) {
2306 			splx(s);
2307 			RT_UNLOCK();
2308 			return;
2309 		}
2310 		rt_ref(rt);
2311 		RT_REFCNT_TRACE(rt);
2312 		splx(s);
2313 		RT_UNLOCK();
2314 
2315 		error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
2316 		    rt_mask(rt), rt->rt_flags, &retrt);
2317 		if (error == 0) {
2318 			KASSERT(retrt == rt);
2319 			KASSERT((retrt->rt_flags & RTF_UP) == 0);
2320 			if (notify)
2321 				rt_newmsg(RTM_DELETE, retrt);
2322 			retrt->rt_ifp = NULL;
2323 			rt_unref(rt);
2324 			RT_REFCNT_TRACE(rt);
2325 			rt_free(retrt);
2326 		} else if (error == ESRCH) {
2327 			/* Someone deleted the entry already. */
2328 			rt_unref(rt);
2329 			RT_REFCNT_TRACE(rt);
2330 		} else {
2331 			log(LOG_ERR, "%s: unable to delete rtentry @ %p, "
2332 			    "error = %d\n", rt->rt_ifp->if_xname, rt, error);
2333 			/* XXX how to treat this case? */
2334 		}
2335 	}
2336 }
2337 
2338 static int
2339 rt_walktree_locked(sa_family_t family, int (*f)(struct rtentry *, void *),
2340     void *v)
2341 {
2342 
2343 	return rtbl_walktree(family, f, v);
2344 }
2345 
2346 void
2347 rt_replace_ifa_matched_entries(sa_family_t family,
2348     int (*f)(struct rtentry *, void *), void *v, struct ifaddr *ifa)
2349 {
2350 
2351 	for (;;) {
2352 		int s;
2353 #ifdef NET_MPSAFE
2354 		int error;
2355 #endif
2356 		struct rtentry *rt;
2357 
2358 		RT_RLOCK();
2359 		s = splsoftnet();
2360 		rt = rtbl_search_matched_entry(family, f, v);
2361 		if (rt == NULL) {
2362 			splx(s);
2363 			RT_UNLOCK();
2364 			return;
2365 		}
2366 		rt_ref(rt);
2367 		RT_REFCNT_TRACE(rt);
2368 		splx(s);
2369 		RT_UNLOCK();
2370 
2371 #ifdef NET_MPSAFE
2372 		error = rt_update_prepare(rt);
2373 		if (error == 0) {
2374 			rt_replace_ifa(rt, ifa);
2375 			rt_update_finish(rt);
2376 			rt_newmsg(RTM_CHANGE, rt);
2377 		} else {
2378 			/*
2379 			 * If error != 0, the rtentry is being
2380 			 * destroyed, so doing nothing doesn't
2381 			 * matter.
2382 			 */
2383 		}
2384 #else
2385 		rt_replace_ifa(rt, ifa);
2386 		rt_newmsg(RTM_CHANGE, rt);
2387 #endif
2388 		rt_unref(rt);
2389 		RT_REFCNT_TRACE(rt);
2390 	}
2391 }
2392 
2393 int
2394 rt_walktree(sa_family_t family, int (*f)(struct rtentry *, void *), void *v)
2395 {
2396 	int error;
2397 
2398 	RT_RLOCK();
2399 	error = rt_walktree_locked(family, f, v);
2400 	RT_UNLOCK();
2401 
2402 	return error;
2403 }
2404 
2405 #ifdef DDB
2406 
2407 #include <machine/db_machdep.h>
2408 #include <ddb/db_interface.h>
2409 #include <ddb/db_output.h>
2410 
2411 #define	rt_expire rt_rmx.rmx_expire
2412 
2413 static void
2414 db_print_sa(const struct sockaddr *sa)
2415 {
2416 	int len;
2417 	const u_char *p;
2418 
2419 	if (sa == NULL) {
2420 		db_printf("[NULL]");
2421 		return;
2422 	}
2423 
2424 	p = (const u_char *)sa;
2425 	len = sa->sa_len;
2426 	db_printf("[");
2427 	while (len > 0) {
2428 		db_printf("%d", *p);
2429 		p++; len--;
2430 		if (len) db_printf(",");
2431 	}
2432 	db_printf("]\n");
2433 }
2434 
2435 static void
2436 db_print_ifa(struct ifaddr *ifa)
2437 {
2438 	if (ifa == NULL)
2439 		return;
2440 	db_printf("  ifa_addr=");
2441 	db_print_sa(ifa->ifa_addr);
2442 	db_printf("  ifa_dsta=");
2443 	db_print_sa(ifa->ifa_dstaddr);
2444 	db_printf("  ifa_mask=");
2445 	db_print_sa(ifa->ifa_netmask);
2446 	db_printf("  flags=0x%x,refcnt=%d,metric=%d\n",
2447 			  ifa->ifa_flags,
2448 			  ifa->ifa_refcnt,
2449 			  ifa->ifa_metric);
2450 }
2451 
2452 /*
2453  * Function to pass to rt_walktree().
2454  * Return non-zero error to abort walk.
2455  */
2456 static int
2457 db_show_rtentry(struct rtentry *rt, void *w)
2458 {
2459 	db_printf("rtentry=%p", rt);
2460 
2461 	db_printf(" flags=0x%x refcnt=%d use=%"PRId64" expire=%"PRId64"\n",
2462 			  rt->rt_flags, rt->rt_refcnt,
2463 			  rt->rt_use, (uint64_t)rt->rt_expire);
2464 
2465 	db_printf(" key="); db_print_sa(rt_getkey(rt));
2466 	db_printf(" mask="); db_print_sa(rt_mask(rt));
2467 	db_printf(" gw="); db_print_sa(rt->rt_gateway);
2468 
2469 	db_printf(" ifp=%p ", rt->rt_ifp);
2470 	if (rt->rt_ifp)
2471 		db_printf("(%s)", rt->rt_ifp->if_xname);
2472 	else
2473 		db_printf("(NULL)");
2474 
2475 	db_printf(" ifa=%p\n", rt->rt_ifa);
2476 	db_print_ifa(rt->rt_ifa);
2477 
2478 	db_printf(" gwroute=%p llinfo=%p\n",
2479 			  rt->rt_gwroute, rt->rt_llinfo);
2480 
2481 	return 0;
2482 }
2483 
2484 /*
2485  * Function to print all the route trees.
2486  * Use this from ddb:  "show routes"
2487  */
2488 void
2489 db_show_routes(db_expr_t addr, bool have_addr,
2490     db_expr_t count, const char *modif)
2491 {
2492 
2493 	/* Taking RT_LOCK will fail if LOCKDEBUG is enabled. */
2494 	rt_walktree_locked(AF_INET, db_show_rtentry, NULL);
2495 }
2496 #endif
2497