xref: /netbsd-src/sys/net/radix.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: radix.c,v 1.44 2011/07/17 20:54:52 joerg Exp $	*/
2 
3 /*
4  * Copyright (c) 1988, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)radix.c	8.6 (Berkeley) 10/17/95
32  */
33 
34 /*
35  * Routines to build and maintain radix trees for routing lookups.
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.44 2011/07/17 20:54:52 joerg Exp $");
40 
41 #ifndef _NET_RADIX_H_
42 #include <sys/param.h>
43 #include <sys/queue.h>
44 #include <sys/kmem.h>
45 #ifdef	_KERNEL
46 #include "opt_inet.h"
47 
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #define	M_DONTWAIT M_NOWAIT
51 #include <sys/domain.h>
52 #else
53 #include <stdlib.h>
54 #endif
55 #include <sys/syslog.h>
56 #include <net/radix.h>
57 #endif
58 
59 typedef void (*rn_printer_t)(void *, const char *fmt, ...);
60 
61 int	max_keylen;
62 struct radix_mask *rn_mkfreelist;
63 struct radix_node_head *mask_rnhead;
64 static char *addmask_key;
65 static const char normal_chars[] =
66     {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
67 static char *rn_zeros, *rn_ones;
68 
69 #define rn_masktop (mask_rnhead->rnh_treetop)
70 
71 static int rn_satisfies_leaf(const char *, struct radix_node *, int);
72 static int rn_lexobetter(const void *, const void *);
73 static struct radix_mask *rn_new_radix_mask(struct radix_node *,
74     struct radix_mask *);
75 static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t,
76     void *);
77 static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t,
78     void *);
79 static void rn_nodeprint(struct radix_node *, rn_printer_t, void *,
80     const char *);
81 
82 #define	SUBTREE_OPEN	"[ "
83 #define	SUBTREE_CLOSE	" ]"
84 
85 #ifdef RN_DEBUG
86 static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *);
87 #endif /* RN_DEBUG */
88 
89 /*
90  * The data structure for the keys is a radix tree with one way
91  * branching removed.  The index rn_b at an internal node n represents a bit
92  * position to be tested.  The tree is arranged so that all descendants
93  * of a node n have keys whose bits all agree up to position rn_b - 1.
94  * (We say the index of n is rn_b.)
95  *
96  * There is at least one descendant which has a one bit at position rn_b,
97  * and at least one with a zero there.
98  *
99  * A route is determined by a pair of key and mask.  We require that the
100  * bit-wise logical and of the key and mask to be the key.
101  * We define the index of a route to associated with the mask to be
102  * the first bit number in the mask where 0 occurs (with bit number 0
103  * representing the highest order bit).
104  *
105  * We say a mask is normal if every bit is 0, past the index of the mask.
106  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
107  * and m is a normal mask, then the route applies to every descendant of n.
108  * If the index(m) < rn_b, this implies the trailing last few bits of k
109  * before bit b are all 0, (and hence consequently true of every descendant
110  * of n), so the route applies to all descendants of the node as well.
111  *
112  * Similar logic shows that a non-normal mask m such that
113  * index(m) <= index(n) could potentially apply to many children of n.
114  * Thus, for each non-host route, we attach its mask to a list at an internal
115  * node as high in the tree as we can go.
116  *
117  * The present version of the code makes use of normal routes in short-
118  * circuiting an explicit mask and compare operation when testing whether
119  * a key satisfies a normal route, and also in remembering the unique leaf
120  * that governs a subtree.
121  */
122 
123 struct radix_node *
124 rn_search(
125 	const void *v_arg,
126 	struct radix_node *head)
127 {
128 	const u_char * const v = v_arg;
129 	struct radix_node *x;
130 
131 	for (x = head; x->rn_b >= 0;) {
132 		if (x->rn_bmask & v[x->rn_off])
133 			x = x->rn_r;
134 		else
135 			x = x->rn_l;
136 	}
137 	return x;
138 }
139 
140 struct radix_node *
141 rn_search_m(
142 	const void *v_arg,
143 	struct radix_node *head,
144 	const void *m_arg)
145 {
146 	struct radix_node *x;
147 	const u_char * const v = v_arg;
148 	const u_char * const m = m_arg;
149 
150 	for (x = head; x->rn_b >= 0;) {
151 		if ((x->rn_bmask & m[x->rn_off]) &&
152 		    (x->rn_bmask & v[x->rn_off]))
153 			x = x->rn_r;
154 		else
155 			x = x->rn_l;
156 	}
157 	return x;
158 }
159 
160 int
161 rn_refines(
162 	const void *m_arg,
163 	const void *n_arg)
164 {
165 	const char *m = m_arg;
166 	const char *n = n_arg;
167 	const char *lim = n + *(const u_char *)n;
168 	const char *lim2 = lim;
169 	int longer = (*(const u_char *)n++) - (int)(*(const u_char *)m++);
170 	int masks_are_equal = 1;
171 
172 	if (longer > 0)
173 		lim -= longer;
174 	while (n < lim) {
175 		if (*n & ~(*m))
176 			return 0;
177 		if (*n++ != *m++)
178 			masks_are_equal = 0;
179 	}
180 	while (n < lim2)
181 		if (*n++)
182 			return 0;
183 	if (masks_are_equal && (longer < 0))
184 		for (lim2 = m - longer; m < lim2; )
185 			if (*m++)
186 				return 1;
187 	return !masks_are_equal;
188 }
189 
190 struct radix_node *
191 rn_lookup(
192 	const void *v_arg,
193 	const void *m_arg,
194 	struct radix_node_head *head)
195 {
196 	struct radix_node *x;
197 	const char *netmask = NULL;
198 
199 	if (m_arg) {
200 		if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
201 			return NULL;
202 		netmask = x->rn_key;
203 	}
204 	x = rn_match(v_arg, head);
205 	if (x != NULL && netmask != NULL) {
206 		while (x != NULL && x->rn_mask != netmask)
207 			x = x->rn_dupedkey;
208 	}
209 	return x;
210 }
211 
212 static int
213 rn_satisfies_leaf(
214 	const char *trial,
215 	struct radix_node *leaf,
216 	int skip)
217 {
218 	const char *cp = trial;
219 	const char *cp2 = leaf->rn_key;
220 	const char *cp3 = leaf->rn_mask;
221 	const char *cplim;
222 	int length = min(*(const u_char *)cp, *(const u_char *)cp2);
223 
224 	if (cp3 == 0)
225 		cp3 = rn_ones;
226 	else
227 		length = min(length, *(const u_char *)cp3);
228 	cplim = cp + length; cp3 += skip; cp2 += skip;
229 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
230 		if ((*cp ^ *cp2) & *cp3)
231 			return 0;
232 	return 1;
233 }
234 
235 struct radix_node *
236 rn_match(
237 	const void *v_arg,
238 	struct radix_node_head *head)
239 {
240 	const char * const v = v_arg;
241 	struct radix_node *t = head->rnh_treetop;
242 	struct radix_node *top = t;
243 	struct radix_node *x;
244 	struct radix_node *saved_t;
245 	const char *cp = v;
246 	const char *cp2;
247 	const char *cplim;
248 	int off = t->rn_off;
249 	int vlen = *(const u_char *)cp;
250 	int matched_off;
251 	int test, b, rn_b;
252 
253 	/*
254 	 * Open code rn_search(v, top) to avoid overhead of extra
255 	 * subroutine call.
256 	 */
257 	for (; t->rn_b >= 0; ) {
258 		if (t->rn_bmask & cp[t->rn_off])
259 			t = t->rn_r;
260 		else
261 			t = t->rn_l;
262 	}
263 	/*
264 	 * See if we match exactly as a host destination
265 	 * or at least learn how many bits match, for normal mask finesse.
266 	 *
267 	 * It doesn't hurt us to limit how many bytes to check
268 	 * to the length of the mask, since if it matches we had a genuine
269 	 * match and the leaf we have is the most specific one anyway;
270 	 * if it didn't match with a shorter length it would fail
271 	 * with a long one.  This wins big for class B&C netmasks which
272 	 * are probably the most common case...
273 	 */
274 	if (t->rn_mask)
275 		vlen = *(const u_char *)t->rn_mask;
276 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
277 	for (; cp < cplim; cp++, cp2++)
278 		if (*cp != *cp2)
279 			goto on1;
280 	/*
281 	 * This extra grot is in case we are explicitly asked
282 	 * to look up the default.  Ugh!
283 	 */
284 	if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
285 		t = t->rn_dupedkey;
286 	return t;
287 on1:
288 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
289 	for (b = 7; (test >>= 1) > 0;)
290 		b--;
291 	matched_off = cp - v;
292 	b += matched_off << 3;
293 	rn_b = -1 - b;
294 	/*
295 	 * If there is a host route in a duped-key chain, it will be first.
296 	 */
297 	if ((saved_t = t)->rn_mask == 0)
298 		t = t->rn_dupedkey;
299 	for (; t; t = t->rn_dupedkey)
300 		/*
301 		 * Even if we don't match exactly as a host,
302 		 * we may match if the leaf we wound up at is
303 		 * a route to a net.
304 		 */
305 		if (t->rn_flags & RNF_NORMAL) {
306 			if (rn_b <= t->rn_b)
307 				return t;
308 		} else if (rn_satisfies_leaf(v, t, matched_off))
309 				return t;
310 	t = saved_t;
311 	/* start searching up the tree */
312 	do {
313 		struct radix_mask *m;
314 		t = t->rn_p;
315 		m = t->rn_mklist;
316 		if (m) {
317 			/*
318 			 * If non-contiguous masks ever become important
319 			 * we can restore the masking and open coding of
320 			 * the search and satisfaction test and put the
321 			 * calculation of "off" back before the "do".
322 			 */
323 			do {
324 				if (m->rm_flags & RNF_NORMAL) {
325 					if (rn_b <= m->rm_b)
326 						return m->rm_leaf;
327 				} else {
328 					off = min(t->rn_off, matched_off);
329 					x = rn_search_m(v, t, m->rm_mask);
330 					while (x && x->rn_mask != m->rm_mask)
331 						x = x->rn_dupedkey;
332 					if (x && rn_satisfies_leaf(v, x, off))
333 						return x;
334 				}
335 				m = m->rm_mklist;
336 			} while (m);
337 		}
338 	} while (t != top);
339 	return NULL;
340 }
341 
342 static void
343 rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg,
344     const char *delim)
345 {
346 	(*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)",
347 	    delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p,
348 	    rn->rn_l, rn->rn_r);
349 }
350 
351 #ifdef RN_DEBUG
352 int	rn_debug =  1;
353 
354 static void
355 rn_dbg_print(void *arg, const char *fmt, ...)
356 {
357 	va_list ap;
358 
359 	va_start(ap, fmt);
360 	vlog(LOG_DEBUG, fmt, ap);
361 	va_end(ap);
362 }
363 
364 static void
365 rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg)
366 {
367 	struct radix_node *dup, *rn;
368 	const char *delim;
369 
370 	if (printer == NULL)
371 		return;
372 
373 	rn = rn_walkfirst(h->rnh_treetop, printer, arg);
374 	for (;;) {
375 		/* Process leaves */
376 		delim = "";
377 		for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) {
378 			if ((dup->rn_flags & RNF_ROOT) != 0)
379 				continue;
380 			rn_nodeprint(dup, printer, arg, delim);
381 			delim = ", ";
382 		}
383 		rn = rn_walknext(rn, printer, arg);
384 		if (rn->rn_flags & RNF_ROOT)
385 			return;
386 	}
387 	/* NOTREACHED */
388 }
389 
390 #define	traverse(__head, __rn)	rn_treeprint((__head), rn_dbg_print, (__rn))
391 #endif /* RN_DEBUG */
392 
393 struct radix_node *
394 rn_newpair(
395 	const void *v,
396 	int b,
397 	struct radix_node nodes[2])
398 {
399 	struct radix_node *tt = nodes;
400 	struct radix_node *t = tt + 1;
401 	t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
402 	t->rn_l = tt; t->rn_off = b >> 3;
403 	tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
404 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
405 	return t;
406 }
407 
408 struct radix_node *
409 rn_insert(
410 	const void *v_arg,
411 	struct radix_node_head *head,
412 	int *dupentry,
413 	struct radix_node nodes[2])
414 {
415 	struct radix_node *top = head->rnh_treetop;
416 	struct radix_node *t = rn_search(v_arg, top);
417 	struct radix_node *tt;
418 	const char *v = v_arg;
419 	int head_off = top->rn_off;
420 	int vlen = *((const u_char *)v);
421 	const char *cp = v + head_off;
422 	int b;
423     	/*
424 	 * Find first bit at which v and t->rn_key differ
425 	 */
426     {
427 	const char *cp2 = t->rn_key + head_off;
428 	const char *cplim = v + vlen;
429 	int cmp_res;
430 
431 	while (cp < cplim)
432 		if (*cp2++ != *cp++)
433 			goto on1;
434 	*dupentry = 1;
435 	return t;
436 on1:
437 	*dupentry = 0;
438 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
439 	for (b = (cp - v) << 3; cmp_res; b--)
440 		cmp_res >>= 1;
441     }
442     {
443 	struct radix_node *p, *x = top;
444 	cp = v;
445 	do {
446 		p = x;
447 		if (cp[x->rn_off] & x->rn_bmask)
448 			x = x->rn_r;
449 		else x = x->rn_l;
450 	} while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
451 #ifdef RN_DEBUG
452 	if (rn_debug)
453 		log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p);
454 #endif
455 	t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
456 	if ((cp[p->rn_off] & p->rn_bmask) == 0)
457 		p->rn_l = t;
458 	else
459 		p->rn_r = t;
460 	x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
461 	if ((cp[t->rn_off] & t->rn_bmask) == 0) {
462 		t->rn_r = x;
463 	} else {
464 		t->rn_r = tt; t->rn_l = x;
465 	}
466 #ifdef RN_DEBUG
467 	if (rn_debug) {
468 		log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
469 		    traverse(head, p);
470 	}
471 #endif /* RN_DEBUG */
472     }
473 	return tt;
474 }
475 
476 struct radix_node *
477 rn_addmask(
478 	const void *n_arg,
479 	int search,
480 	int skip)
481 {
482 	const char *netmask = n_arg;
483 	const char *cp;
484 	const char *cplim;
485 	struct radix_node *x;
486 	struct radix_node *saved_x;
487 	int b = 0, mlen, j;
488 	int maskduplicated, m0, isnormal;
489 	static int last_zeroed = 0;
490 
491 	if ((mlen = *(const u_char *)netmask) > max_keylen)
492 		mlen = max_keylen;
493 	if (skip == 0)
494 		skip = 1;
495 	if (mlen <= skip)
496 		return mask_rnhead->rnh_nodes;
497 	if (skip > 1)
498 		memmove(addmask_key + 1, rn_ones + 1, skip - 1);
499 	if ((m0 = mlen) > skip)
500 		memmove(addmask_key + skip, netmask + skip, mlen - skip);
501 	/*
502 	 * Trim trailing zeroes.
503 	 */
504 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
505 		cp--;
506 	mlen = cp - addmask_key;
507 	if (mlen <= skip) {
508 		if (m0 >= last_zeroed)
509 			last_zeroed = mlen;
510 		return mask_rnhead->rnh_nodes;
511 	}
512 	if (m0 < last_zeroed)
513 		memset(addmask_key + m0, 0, last_zeroed - m0);
514 	*addmask_key = last_zeroed = mlen;
515 	x = rn_search(addmask_key, rn_masktop);
516 	if (memcmp(addmask_key, x->rn_key, mlen) != 0)
517 		x = 0;
518 	if (x || search)
519 		return x;
520 	R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
521 	if ((saved_x = x) == NULL)
522 		return NULL;
523 	memset(x, 0, max_keylen + 2 * sizeof (*x));
524 	cp = netmask = (void *)(x + 2);
525 	memmove(x + 2, addmask_key, mlen);
526 	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
527 	if (maskduplicated) {
528 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
529 		Free(saved_x);
530 		return x;
531 	}
532 	/*
533 	 * Calculate index of mask, and check for normalcy.
534 	 */
535 	cplim = netmask + mlen; isnormal = 1;
536 	for (cp = netmask + skip; (cp < cplim) && *(const u_char *)cp == 0xff;)
537 		cp++;
538 	if (cp != cplim) {
539 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
540 			b++;
541 		if (*cp != normal_chars[b] || cp != (cplim - 1))
542 			isnormal = 0;
543 	}
544 	b += (cp - netmask) << 3;
545 	x->rn_b = -1 - b;
546 	if (isnormal)
547 		x->rn_flags |= RNF_NORMAL;
548 	return x;
549 }
550 
551 static int	/* XXX: arbitrary ordering for non-contiguous masks */
552 rn_lexobetter(
553 	const void *m_arg,
554 	const void *n_arg)
555 {
556 	const u_char *mp = m_arg;
557 	const u_char *np = n_arg;
558 	const u_char *lim;
559 
560 	if (*mp > *np)
561 		return 1;  /* not really, but need to check longer one first */
562 	if (*mp == *np)
563 		for (lim = mp + *mp; mp < lim;)
564 			if (*mp++ > *np++)
565 				return 1;
566 	return 0;
567 }
568 
569 static struct radix_mask *
570 rn_new_radix_mask(
571 	struct radix_node *tt,
572 	struct radix_mask *next)
573 {
574 	struct radix_mask *m;
575 
576 	MKGet(m);
577 	if (m == NULL) {
578 		log(LOG_ERR, "Mask for route not entered\n");
579 		return NULL;
580 	}
581 	memset(m, 0, sizeof(*m));
582 	m->rm_b = tt->rn_b;
583 	m->rm_flags = tt->rn_flags;
584 	if (tt->rn_flags & RNF_NORMAL)
585 		m->rm_leaf = tt;
586 	else
587 		m->rm_mask = tt->rn_mask;
588 	m->rm_mklist = next;
589 	tt->rn_mklist = m;
590 	return m;
591 }
592 
593 struct radix_node *
594 rn_addroute(
595 	const void *v_arg,
596 	const void *n_arg,
597 	struct radix_node_head *head,
598 	struct radix_node treenodes[2])
599 {
600 	const char *v = v_arg, *netmask = n_arg;
601 	struct radix_node *t, *x = NULL, *tt;
602 	struct radix_node *saved_tt, *top = head->rnh_treetop;
603 	short b = 0, b_leaf = 0;
604 	int keyduplicated;
605 	const char *mmask;
606 	struct radix_mask *m, **mp;
607 
608 	/*
609 	 * In dealing with non-contiguous masks, there may be
610 	 * many different routes which have the same mask.
611 	 * We will find it useful to have a unique pointer to
612 	 * the mask to speed avoiding duplicate references at
613 	 * nodes and possibly save time in calculating indices.
614 	 */
615 	if (netmask != NULL) {
616 		if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL)
617 			return NULL;
618 		b_leaf = x->rn_b;
619 		b = -1 - x->rn_b;
620 		netmask = x->rn_key;
621 	}
622 	/*
623 	 * Deal with duplicated keys: attach node to previous instance
624 	 */
625 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
626 	if (keyduplicated) {
627 		for (t = tt; tt != NULL; t = tt, tt = tt->rn_dupedkey) {
628 			if (tt->rn_mask == netmask)
629 				return NULL;
630 			if (netmask == NULL ||
631 			    (tt->rn_mask != NULL &&
632 			     (b_leaf < tt->rn_b || /* index(netmask) > node */
633 			       rn_refines(netmask, tt->rn_mask) ||
634 			       rn_lexobetter(netmask, tt->rn_mask))))
635 				break;
636 		}
637 		/*
638 		 * If the mask is not duplicated, we wouldn't
639 		 * find it among possible duplicate key entries
640 		 * anyway, so the above test doesn't hurt.
641 		 *
642 		 * We sort the masks for a duplicated key the same way as
643 		 * in a masklist -- most specific to least specific.
644 		 * This may require the unfortunate nuisance of relocating
645 		 * the head of the list.
646 		 *
647 		 * We also reverse, or doubly link the list through the
648 		 * parent pointer.
649 		 */
650 		if (tt == saved_tt) {
651 			struct	radix_node *xx = x;
652 			/* link in at head of list */
653 			(tt = treenodes)->rn_dupedkey = t;
654 			tt->rn_flags = t->rn_flags;
655 			tt->rn_p = x = t->rn_p;
656 			t->rn_p = tt;
657 			if (x->rn_l == t)
658 				x->rn_l = tt;
659 			else
660 				x->rn_r = tt;
661 			saved_tt = tt;
662 			x = xx;
663 		} else {
664 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
665 			t->rn_dupedkey = tt;
666 			tt->rn_p = t;
667 			if (tt->rn_dupedkey)
668 				tt->rn_dupedkey->rn_p = tt;
669 		}
670 		tt->rn_key = v;
671 		tt->rn_b = -1;
672 		tt->rn_flags = RNF_ACTIVE;
673 	}
674 	/*
675 	 * Put mask in tree.
676 	 */
677 	if (netmask != NULL) {
678 		tt->rn_mask = netmask;
679 		tt->rn_b = x->rn_b;
680 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
681 	}
682 	t = saved_tt->rn_p;
683 	if (keyduplicated)
684 		goto on2;
685 	b_leaf = -1 - t->rn_b;
686 	if (t->rn_r == saved_tt)
687 		x = t->rn_l;
688 	else
689 		x = t->rn_r;
690 	/* Promote general routes from below */
691 	if (x->rn_b < 0) {
692 		for (mp = &t->rn_mklist; x != NULL; x = x->rn_dupedkey) {
693 			if (x->rn_mask != NULL && x->rn_b >= b_leaf &&
694 			    x->rn_mklist == NULL) {
695 				*mp = m = rn_new_radix_mask(x, NULL);
696 				if (m != NULL)
697 					mp = &m->rm_mklist;
698 			}
699 		}
700 	} else if (x->rn_mklist != NULL) {
701 		/*
702 		 * Skip over masks whose index is > that of new node
703 		 */
704 		for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
705 			if (m->rm_b >= b_leaf)
706 				break;
707 		t->rn_mklist = m;
708 		*mp = NULL;
709 	}
710 on2:
711 	/* Add new route to highest possible ancestor's list */
712 	if (netmask == NULL || b > t->rn_b)
713 		return tt; /* can't lift at all */
714 	b_leaf = tt->rn_b;
715 	do {
716 		x = t;
717 		t = t->rn_p;
718 	} while (b <= t->rn_b && x != top);
719 	/*
720 	 * Search through routes associated with node to
721 	 * insert new route according to index.
722 	 * Need same criteria as when sorting dupedkeys to avoid
723 	 * double loop on deletion.
724 	 */
725 	for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
726 		if (m->rm_b < b_leaf)
727 			continue;
728 		if (m->rm_b > b_leaf)
729 			break;
730 		if (m->rm_flags & RNF_NORMAL) {
731 			mmask = m->rm_leaf->rn_mask;
732 			if (tt->rn_flags & RNF_NORMAL) {
733 				log(LOG_ERR, "Non-unique normal route,"
734 				    " mask not entered\n");
735 				return tt;
736 			}
737 		} else
738 			mmask = m->rm_mask;
739 		if (mmask == netmask) {
740 			m->rm_refs++;
741 			tt->rn_mklist = m;
742 			return tt;
743 		}
744 		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
745 			break;
746 	}
747 	*mp = rn_new_radix_mask(tt, *mp);
748 	return tt;
749 }
750 
751 struct radix_node *
752 rn_delete1(
753 	const void *v_arg,
754 	const void *netmask_arg,
755 	struct radix_node_head *head,
756 	struct radix_node *rn)
757 {
758 	struct radix_node *t, *p, *x, *tt;
759 	struct radix_mask *m, *saved_m, **mp;
760 	struct radix_node *dupedkey, *saved_tt, *top;
761 	const char *v, *netmask;
762 	int b, head_off, vlen;
763 
764 	v = v_arg;
765 	netmask = netmask_arg;
766 	x = head->rnh_treetop;
767 	tt = rn_search(v, x);
768 	head_off = x->rn_off;
769 	vlen =  *(const u_char *)v;
770 	saved_tt = tt;
771 	top = x;
772 	if (tt == NULL ||
773 	    memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off) != 0)
774 		return NULL;
775 	/*
776 	 * Delete our route from mask lists.
777 	 */
778 	if (netmask != NULL) {
779 		if ((x = rn_addmask(netmask, 1, head_off)) == NULL)
780 			return NULL;
781 		netmask = x->rn_key;
782 		while (tt->rn_mask != netmask)
783 			if ((tt = tt->rn_dupedkey) == NULL)
784 				return NULL;
785 	}
786 	if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
787 		goto on1;
788 	if (tt->rn_flags & RNF_NORMAL) {
789 		if (m->rm_leaf != tt || m->rm_refs > 0) {
790 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
791 			return NULL;  /* dangling ref could cause disaster */
792 		}
793 	} else {
794 		if (m->rm_mask != tt->rn_mask) {
795 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
796 			goto on1;
797 		}
798 		if (--m->rm_refs >= 0)
799 			goto on1;
800 	}
801 	b = -1 - tt->rn_b;
802 	t = saved_tt->rn_p;
803 	if (b > t->rn_b)
804 		goto on1; /* Wasn't lifted at all */
805 	do {
806 		x = t;
807 		t = t->rn_p;
808 	} while (b <= t->rn_b && x != top);
809 	for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
810 		if (m == saved_m) {
811 			*mp = m->rm_mklist;
812 			MKFree(m);
813 			break;
814 		}
815 	}
816 	if (m == NULL) {
817 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
818 		if (tt->rn_flags & RNF_NORMAL)
819 			return NULL; /* Dangling ref to us */
820 	}
821 on1:
822 	/*
823 	 * Eliminate us from tree
824 	 */
825 	if (tt->rn_flags & RNF_ROOT)
826 		return NULL;
827 #ifdef RN_DEBUG
828 	if (rn_debug)
829 		log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt);
830 #endif
831 	t = tt->rn_p;
832 	dupedkey = saved_tt->rn_dupedkey;
833 	if (dupedkey != NULL) {
834 		/*
835 		 * Here, tt is the deletion target, and
836 		 * saved_tt is the head of the dupedkey chain.
837 		 */
838 		if (tt == saved_tt) {
839 			x = dupedkey;
840 			x->rn_p = t;
841 			if (t->rn_l == tt)
842 				t->rn_l = x;
843 			else
844 				t->rn_r = x;
845 		} else {
846 			/* find node in front of tt on the chain */
847 			for (x = p = saved_tt;
848 			     p != NULL && p->rn_dupedkey != tt;)
849 				p = p->rn_dupedkey;
850 			if (p != NULL) {
851 				p->rn_dupedkey = tt->rn_dupedkey;
852 				if (tt->rn_dupedkey != NULL)
853 					tt->rn_dupedkey->rn_p = p;
854 			} else
855 				log(LOG_ERR, "rn_delete: couldn't find us\n");
856 		}
857 		t = tt + 1;
858 		if  (t->rn_flags & RNF_ACTIVE) {
859 			*++x = *t;
860 			p = t->rn_p;
861 			if (p->rn_l == t)
862 				p->rn_l = x;
863 			else
864 				p->rn_r = x;
865 			x->rn_l->rn_p = x;
866 			x->rn_r->rn_p = x;
867 		}
868 		goto out;
869 	}
870 	if (t->rn_l == tt)
871 		x = t->rn_r;
872 	else
873 		x = t->rn_l;
874 	p = t->rn_p;
875 	if (p->rn_r == t)
876 		p->rn_r = x;
877 	else
878 		p->rn_l = x;
879 	x->rn_p = p;
880 	/*
881 	 * Demote routes attached to us.
882 	 */
883 	if (t->rn_mklist == NULL)
884 		;
885 	else if (x->rn_b >= 0) {
886 		for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
887 			;
888 		*mp = t->rn_mklist;
889 	} else {
890 		/* If there are any key,mask pairs in a sibling
891 		   duped-key chain, some subset will appear sorted
892 		   in the same order attached to our mklist */
893 		for (m = t->rn_mklist;
894 		     m != NULL && x != NULL;
895 		     x = x->rn_dupedkey) {
896 			if (m == x->rn_mklist) {
897 				struct radix_mask *mm = m->rm_mklist;
898 				x->rn_mklist = NULL;
899 				if (--(m->rm_refs) < 0)
900 					MKFree(m);
901 				m = mm;
902 			}
903 		}
904 		if (m != NULL) {
905 			log(LOG_ERR, "rn_delete: Orphaned Mask %p at %p\n",
906 			    m, x);
907 		}
908 	}
909 	/*
910 	 * We may be holding an active internal node in the tree.
911 	 */
912 	x = tt + 1;
913 	if (t != x) {
914 		*t = *x;
915 		t->rn_l->rn_p = t;
916 		t->rn_r->rn_p = t;
917 		p = x->rn_p;
918 		if (p->rn_l == x)
919 			p->rn_l = t;
920 		else
921 			p->rn_r = t;
922 	}
923 out:
924 #ifdef RN_DEBUG
925 	if (rn_debug) {
926 		log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
927 		    traverse(head, tt);
928 	}
929 #endif /* RN_DEBUG */
930 	tt->rn_flags &= ~RNF_ACTIVE;
931 	tt[1].rn_flags &= ~RNF_ACTIVE;
932 	return tt;
933 }
934 
935 struct radix_node *
936 rn_delete(
937 	const void *v_arg,
938 	const void *netmask_arg,
939 	struct radix_node_head *head)
940 {
941 	return rn_delete1(v_arg, netmask_arg, head, NULL);
942 }
943 
944 static struct radix_node *
945 rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg)
946 {
947 	/* If at right child go back up, otherwise, go right */
948 	while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) {
949 		if (printer != NULL)
950 			(*printer)(arg, SUBTREE_CLOSE);
951 		rn = rn->rn_p;
952 	}
953 	if (printer)
954 		rn_nodeprint(rn->rn_p, printer, arg, "");
955 	/* Find the next *leaf* since next node might vanish, too */
956 	for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) {
957 		if (printer != NULL)
958 			(*printer)(arg, SUBTREE_OPEN);
959 		rn = rn->rn_l;
960 	}
961 	return rn;
962 }
963 
964 static struct radix_node *
965 rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg)
966 {
967 	/* First time through node, go left */
968 	while (rn->rn_b >= 0) {
969 		if (printer != NULL)
970 			(*printer)(arg, SUBTREE_OPEN);
971 		rn = rn->rn_l;
972 	}
973 	return rn;
974 }
975 
976 int
977 rn_walktree(
978 	struct radix_node_head *h,
979 	int (*f)(struct radix_node *, void *),
980 	void *w)
981 {
982 	int error;
983 	struct radix_node *base, *next, *rn;
984 	/*
985 	 * This gets complicated because we may delete the node
986 	 * while applying the function f to it, so we need to calculate
987 	 * the successor node in advance.
988 	 */
989 	rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
990 	for (;;) {
991 		base = rn;
992 		next = rn_walknext(rn, NULL, NULL);
993 		/* Process leaves */
994 		while ((rn = base) != NULL) {
995 			base = rn->rn_dupedkey;
996 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
997 				return error;
998 		}
999 		rn = next;
1000 		if (rn->rn_flags & RNF_ROOT)
1001 			return 0;
1002 	}
1003 	/* NOTREACHED */
1004 }
1005 
1006 struct delayinit {
1007 	void **head;
1008 	int off;
1009 	SLIST_ENTRY(delayinit) entries;
1010 };
1011 static SLIST_HEAD(, delayinit) delayinits = SLIST_HEAD_INITIALIZER(delayheads);
1012 static int radix_initialized;
1013 
1014 /*
1015  * Initialize a radix tree once radix is initialized.  Only for bootstrap.
1016  * Assume that no concurrency protection is necessary at this stage.
1017  */
1018 void
1019 rn_delayedinit(void **head, int off)
1020 {
1021 	struct delayinit *di;
1022 
1023 	KASSERT(radix_initialized == 0);
1024 
1025 	di = kmem_alloc(sizeof(*di), KM_SLEEP);
1026 	di->head = head;
1027 	di->off = off;
1028 	SLIST_INSERT_HEAD(&delayinits, di, entries);
1029 }
1030 
1031 int
1032 rn_inithead(void **head, int off)
1033 {
1034 	struct radix_node_head *rnh;
1035 
1036 	if (*head != NULL)
1037 		return 1;
1038 	R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
1039 	if (rnh == NULL)
1040 		return 0;
1041 	*head = rnh;
1042 	return rn_inithead0(rnh, off);
1043 }
1044 
1045 int
1046 rn_inithead0(struct radix_node_head *rnh, int off)
1047 {
1048 	struct radix_node *t;
1049 	struct radix_node *tt;
1050 	struct radix_node *ttt;
1051 
1052 	memset(rnh, 0, sizeof(*rnh));
1053 	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1054 	ttt = rnh->rnh_nodes + 2;
1055 	t->rn_r = ttt;
1056 	t->rn_p = t;
1057 	tt = t->rn_l;
1058 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1059 	tt->rn_b = -1 - off;
1060 	*ttt = *tt;
1061 	ttt->rn_key = rn_ones;
1062 	rnh->rnh_addaddr = rn_addroute;
1063 	rnh->rnh_deladdr = rn_delete;
1064 	rnh->rnh_matchaddr = rn_match;
1065 	rnh->rnh_lookup = rn_lookup;
1066 	rnh->rnh_treetop = t;
1067 	return 1;
1068 }
1069 
1070 void
1071 rn_init(void)
1072 {
1073 	char *cp, *cplim;
1074 	struct delayinit *di;
1075 #ifdef _KERNEL
1076 	struct domain *dp;
1077 
1078 	if (radix_initialized)
1079 		panic("radix already initialized");
1080 	radix_initialized = 1;
1081 
1082 	DOMAIN_FOREACH(dp) {
1083 		if (dp->dom_maxrtkey > max_keylen)
1084 			max_keylen = dp->dom_maxrtkey;
1085 	}
1086 #endif
1087 	if (max_keylen == 0) {
1088 		log(LOG_ERR,
1089 		    "rn_init: radix functions require max_keylen be set\n");
1090 		return;
1091 	}
1092 
1093 	R_Malloc(rn_zeros, char *, 3 * max_keylen);
1094 	if (rn_zeros == NULL)
1095 		panic("rn_init");
1096 	memset(rn_zeros, 0, 3 * max_keylen);
1097 	rn_ones = cp = rn_zeros + max_keylen;
1098 	addmask_key = cplim = rn_ones + max_keylen;
1099 	while (cp < cplim)
1100 		*cp++ = -1;
1101 	if (rn_inithead((void *)&mask_rnhead, 0) == 0)
1102 		panic("rn_init 2");
1103 
1104 	while ((di = SLIST_FIRST(&delayinits)) != NULL) {
1105 		if (!rn_inithead(di->head, di->off))
1106 			panic("delayed rn_inithead failed");
1107 		SLIST_REMOVE_HEAD(&delayinits, entries);
1108 		kmem_free(di, sizeof(*di));
1109 	}
1110 }
1111