xref: /netbsd-src/sys/net/radix.c (revision 4b896b232495b7a9b8b94a1cf1e21873296d53b8)
1 /*	$NetBSD: radix.c,v 1.23 2004/04/21 21:03:43 matt Exp $	*/
2 
3 /*
4  * Copyright (c) 1988, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)radix.c	8.6 (Berkeley) 10/17/95
32  */
33 
34 /*
35  * Routines to build and maintain radix trees for routing lookups.
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.23 2004/04/21 21:03:43 matt Exp $");
40 
41 #ifndef _NET_RADIX_H_
42 #include <sys/param.h>
43 #ifdef	_KERNEL
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #define	M_DONTWAIT M_NOWAIT
47 #include <sys/domain.h>
48 #else
49 #include <stdlib.h>
50 #endif
51 #include <sys/syslog.h>
52 #include <net/radix.h>
53 #endif
54 
55 int	max_keylen;
56 struct radix_mask *rn_mkfreelist;
57 struct radix_node_head *mask_rnhead;
58 static char *addmask_key;
59 static const char normal_chars[] =
60     {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
61 static char *rn_zeros, *rn_ones;
62 
63 #define rn_masktop (mask_rnhead->rnh_treetop)
64 #undef Bcmp
65 #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
66 
67 static int rn_satisfies_leaf(const char *, struct radix_node *, int);
68 static int rn_lexobetter(const void *, const void *);
69 static struct radix_mask *rn_new_radix_mask(struct radix_node *,
70     struct radix_mask *);
71 
72 /*
73  * The data structure for the keys is a radix tree with one way
74  * branching removed.  The index rn_b at an internal node n represents a bit
75  * position to be tested.  The tree is arranged so that all descendants
76  * of a node n have keys whose bits all agree up to position rn_b - 1.
77  * (We say the index of n is rn_b.)
78  *
79  * There is at least one descendant which has a one bit at position rn_b,
80  * and at least one with a zero there.
81  *
82  * A route is determined by a pair of key and mask.  We require that the
83  * bit-wise logical and of the key and mask to be the key.
84  * We define the index of a route to associated with the mask to be
85  * the first bit number in the mask where 0 occurs (with bit number 0
86  * representing the highest order bit).
87  *
88  * We say a mask is normal if every bit is 0, past the index of the mask.
89  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
90  * and m is a normal mask, then the route applies to every descendant of n.
91  * If the index(m) < rn_b, this implies the trailing last few bits of k
92  * before bit b are all 0, (and hence consequently true of every descendant
93  * of n), so the route applies to all descendants of the node as well.
94  *
95  * Similar logic shows that a non-normal mask m such that
96  * index(m) <= index(n) could potentially apply to many children of n.
97  * Thus, for each non-host route, we attach its mask to a list at an internal
98  * node as high in the tree as we can go.
99  *
100  * The present version of the code makes use of normal routes in short-
101  * circuiting an explict mask and compare operation when testing whether
102  * a key satisfies a normal route, and also in remembering the unique leaf
103  * that governs a subtree.
104  */
105 
106 struct radix_node *
107 rn_search(
108 	const void *v_arg,
109 	struct radix_node *head)
110 {
111 	const u_char * const v = v_arg;
112 	struct radix_node *x;
113 
114 	for (x = head; x->rn_b >= 0;) {
115 		if (x->rn_bmask & v[x->rn_off])
116 			x = x->rn_r;
117 		else
118 			x = x->rn_l;
119 	}
120 	return (x);
121 }
122 
123 struct radix_node *
124 rn_search_m(
125 	const void *v_arg,
126 	struct radix_node *head,
127 	const void *m_arg)
128 {
129 	struct radix_node *x;
130 	const u_char * const v = v_arg;
131 	const u_char * const m = m_arg;
132 
133 	for (x = head; x->rn_b >= 0;) {
134 		if ((x->rn_bmask & m[x->rn_off]) &&
135 		    (x->rn_bmask & v[x->rn_off]))
136 			x = x->rn_r;
137 		else
138 			x = x->rn_l;
139 	}
140 	return x;
141 }
142 
143 int
144 rn_refines(
145 	const void *m_arg,
146 	const void *n_arg)
147 {
148 	const char *m = m_arg;
149 	const char *n = n_arg;
150 	const char *lim = n + *(u_char *)n;
151 	const char *lim2 = lim;
152 	int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
153 	int masks_are_equal = 1;
154 
155 	if (longer > 0)
156 		lim -= longer;
157 	while (n < lim) {
158 		if (*n & ~(*m))
159 			return 0;
160 		if (*n++ != *m++)
161 			masks_are_equal = 0;
162 	}
163 	while (n < lim2)
164 		if (*n++)
165 			return 0;
166 	if (masks_are_equal && (longer < 0))
167 		for (lim2 = m - longer; m < lim2; )
168 			if (*m++)
169 				return 1;
170 	return (!masks_are_equal);
171 }
172 
173 struct radix_node *
174 rn_lookup(
175 	const void *v_arg,
176 	const void *m_arg,
177 	struct radix_node_head *head)
178 {
179 	struct radix_node *x;
180 	const char *netmask = NULL;
181 
182 	if (m_arg) {
183 		if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
184 			return (0);
185 		netmask = x->rn_key;
186 	}
187 	x = rn_match(v_arg, head);
188 	if (x && netmask) {
189 		while (x && x->rn_mask != netmask)
190 			x = x->rn_dupedkey;
191 	}
192 	return x;
193 }
194 
195 static int
196 rn_satisfies_leaf(
197 	const char *trial,
198 	struct radix_node *leaf,
199 	int skip)
200 {
201 	const char *cp = trial;
202 	const char *cp2 = leaf->rn_key;
203 	const char *cp3 = leaf->rn_mask;
204 	const char *cplim;
205 	int length = min(*(u_char *)cp, *(u_char *)cp2);
206 
207 	if (cp3 == 0)
208 		cp3 = rn_ones;
209 	else
210 		length = min(length, *(u_char *)cp3);
211 	cplim = cp + length; cp3 += skip; cp2 += skip;
212 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
213 		if ((*cp ^ *cp2) & *cp3)
214 			return 0;
215 	return 1;
216 }
217 
218 struct radix_node *
219 rn_match(
220 	const void *v_arg,
221 	struct radix_node_head *head)
222 {
223 	const char * const v = v_arg;
224 	struct radix_node *t = head->rnh_treetop;
225 	struct radix_node *top = t;
226 	struct radix_node *x;
227 	struct radix_node *saved_t;
228 	const char *cp = v;
229 	const char *cp2;
230 	const char *cplim;
231 	int off = t->rn_off;
232 	int vlen = *(u_char *)cp;
233 	int matched_off;
234 	int test, b, rn_b;
235 
236 	/*
237 	 * Open code rn_search(v, top) to avoid overhead of extra
238 	 * subroutine call.
239 	 */
240 	for (; t->rn_b >= 0; ) {
241 		if (t->rn_bmask & cp[t->rn_off])
242 			t = t->rn_r;
243 		else
244 			t = t->rn_l;
245 	}
246 	/*
247 	 * See if we match exactly as a host destination
248 	 * or at least learn how many bits match, for normal mask finesse.
249 	 *
250 	 * It doesn't hurt us to limit how many bytes to check
251 	 * to the length of the mask, since if it matches we had a genuine
252 	 * match and the leaf we have is the most specific one anyway;
253 	 * if it didn't match with a shorter length it would fail
254 	 * with a long one.  This wins big for class B&C netmasks which
255 	 * are probably the most common case...
256 	 */
257 	if (t->rn_mask)
258 		vlen = *(u_char *)t->rn_mask;
259 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
260 	for (; cp < cplim; cp++, cp2++)
261 		if (*cp != *cp2)
262 			goto on1;
263 	/*
264 	 * This extra grot is in case we are explicitly asked
265 	 * to look up the default.  Ugh!
266 	 */
267 	if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
268 		t = t->rn_dupedkey;
269 	return t;
270 on1:
271 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
272 	for (b = 7; (test >>= 1) > 0;)
273 		b--;
274 	matched_off = cp - v;
275 	b += matched_off << 3;
276 	rn_b = -1 - b;
277 	/*
278 	 * If there is a host route in a duped-key chain, it will be first.
279 	 */
280 	if ((saved_t = t)->rn_mask == 0)
281 		t = t->rn_dupedkey;
282 	for (; t; t = t->rn_dupedkey)
283 		/*
284 		 * Even if we don't match exactly as a host,
285 		 * we may match if the leaf we wound up at is
286 		 * a route to a net.
287 		 */
288 		if (t->rn_flags & RNF_NORMAL) {
289 			if (rn_b <= t->rn_b)
290 				return t;
291 		} else if (rn_satisfies_leaf(v, t, matched_off))
292 				return t;
293 	t = saved_t;
294 	/* start searching up the tree */
295 	do {
296 		struct radix_mask *m;
297 		t = t->rn_p;
298 		m = t->rn_mklist;
299 		if (m) {
300 			/*
301 			 * If non-contiguous masks ever become important
302 			 * we can restore the masking and open coding of
303 			 * the search and satisfaction test and put the
304 			 * calculation of "off" back before the "do".
305 			 */
306 			do {
307 				if (m->rm_flags & RNF_NORMAL) {
308 					if (rn_b <= m->rm_b)
309 						return (m->rm_leaf);
310 				} else {
311 					off = min(t->rn_off, matched_off);
312 					x = rn_search_m(v, t, m->rm_mask);
313 					while (x && x->rn_mask != m->rm_mask)
314 						x = x->rn_dupedkey;
315 					if (x && rn_satisfies_leaf(v, x, off))
316 						return x;
317 				}
318 				m = m->rm_mklist;
319 			} while (m);
320 		}
321 	} while (t != top);
322 	return 0;
323 }
324 
325 #ifdef RN_DEBUG
326 int	rn_nodenum;
327 struct	radix_node *rn_clist;
328 int	rn_saveinfo;
329 int	rn_debug =  1;
330 #endif
331 
332 struct radix_node *
333 rn_newpair(
334 	const void *v,
335 	int b,
336 	struct radix_node nodes[2])
337 {
338 	struct radix_node *tt = nodes;
339 	struct radix_node *t = tt + 1;
340 	t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
341 	t->rn_l = tt; t->rn_off = b >> 3;
342 	tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
343 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
344 #ifdef RN_DEBUG
345 	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
346 	tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
347 #endif
348 	return t;
349 }
350 
351 struct radix_node *
352 rn_insert(
353 	const void *v_arg,
354 	struct radix_node_head *head,
355 	int *dupentry,
356 	struct radix_node nodes[2])
357 {
358 	struct radix_node *top = head->rnh_treetop;
359 	struct radix_node *t = rn_search(v_arg, top);
360 	struct radix_node *tt;
361 	const char *v = v_arg;
362 	int head_off = top->rn_off;
363 	int vlen = *((u_char *)v);
364 	const char *cp = v + head_off;
365 	int b;
366     	/*
367 	 * Find first bit at which v and t->rn_key differ
368 	 */
369     {
370 	const char *cp2 = t->rn_key + head_off;
371 	const char *cplim = v + vlen;
372 	int cmp_res;
373 
374 	while (cp < cplim)
375 		if (*cp2++ != *cp++)
376 			goto on1;
377 	*dupentry = 1;
378 	return t;
379 on1:
380 	*dupentry = 0;
381 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
382 	for (b = (cp - v) << 3; cmp_res; b--)
383 		cmp_res >>= 1;
384     }
385     {
386 	struct radix_node *p, *x = top;
387 	cp = v;
388 	do {
389 		p = x;
390 		if (cp[x->rn_off] & x->rn_bmask)
391 			x = x->rn_r;
392 		else x = x->rn_l;
393 	} while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
394 #ifdef RN_DEBUG
395 	if (rn_debug)
396 		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
397 #endif
398 	t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
399 	if ((cp[p->rn_off] & p->rn_bmask) == 0)
400 		p->rn_l = t;
401 	else
402 		p->rn_r = t;
403 	x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
404 	if ((cp[t->rn_off] & t->rn_bmask) == 0) {
405 		t->rn_r = x;
406 	} else {
407 		t->rn_r = tt; t->rn_l = x;
408 	}
409 #ifdef RN_DEBUG
410 	if (rn_debug)
411 		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
412 #endif
413     }
414 	return (tt);
415 }
416 
417 struct radix_node *
418 rn_addmask(
419 	const void *n_arg,
420 	int search,
421 	int skip)
422 {
423 	const char *netmask = n_arg;
424 	const char *cp;
425 	const char *cplim;
426 	struct radix_node *x;
427 	struct radix_node *saved_x;
428 	int b = 0, mlen, j;
429 	int maskduplicated, m0, isnormal;
430 	static int last_zeroed = 0;
431 
432 	if ((mlen = *(u_char *)netmask) > max_keylen)
433 		mlen = max_keylen;
434 	if (skip == 0)
435 		skip = 1;
436 	if (mlen <= skip)
437 		return (mask_rnhead->rnh_nodes);
438 	if (skip > 1)
439 		Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
440 	if ((m0 = mlen) > skip)
441 		Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
442 	/*
443 	 * Trim trailing zeroes.
444 	 */
445 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
446 		cp--;
447 	mlen = cp - addmask_key;
448 	if (mlen <= skip) {
449 		if (m0 >= last_zeroed)
450 			last_zeroed = mlen;
451 		return (mask_rnhead->rnh_nodes);
452 	}
453 	if (m0 < last_zeroed)
454 		Bzero(addmask_key + m0, last_zeroed - m0);
455 	*addmask_key = last_zeroed = mlen;
456 	x = rn_search(addmask_key, rn_masktop);
457 	if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
458 		x = 0;
459 	if (x || search)
460 		return (x);
461 	R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
462 	if ((saved_x = x) == 0)
463 		return (0);
464 	Bzero(x, max_keylen + 2 * sizeof (*x));
465 	cp = netmask = (caddr_t)(x + 2);
466 	Bcopy(addmask_key, (caddr_t)(x + 2), mlen);
467 	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
468 	if (maskduplicated) {
469 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
470 		Free(saved_x);
471 		return (x);
472 	}
473 	/*
474 	 * Calculate index of mask, and check for normalcy.
475 	 */
476 	cplim = netmask + mlen; isnormal = 1;
477 	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
478 		cp++;
479 	if (cp != cplim) {
480 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
481 			b++;
482 		if (*cp != normal_chars[b] || cp != (cplim - 1))
483 			isnormal = 0;
484 	}
485 	b += (cp - netmask) << 3;
486 	x->rn_b = -1 - b;
487 	if (isnormal)
488 		x->rn_flags |= RNF_NORMAL;
489 	return (x);
490 }
491 
492 static int	/* XXX: arbitrary ordering for non-contiguous masks */
493 rn_lexobetter(
494 	const void *m_arg,
495 	const void *n_arg)
496 {
497 	const u_char *mp = m_arg;
498 	const u_char *np = n_arg;
499 	const u_char *lim;
500 
501 	if (*mp > *np)
502 		return 1;  /* not really, but need to check longer one first */
503 	if (*mp == *np)
504 		for (lim = mp + *mp; mp < lim;)
505 			if (*mp++ > *np++)
506 				return 1;
507 	return 0;
508 }
509 
510 static struct radix_mask *
511 rn_new_radix_mask(
512 	struct radix_node *tt,
513 	struct radix_mask *next)
514 {
515 	struct radix_mask *m;
516 
517 	MKGet(m);
518 	if (m == 0) {
519 		log(LOG_ERR, "Mask for route not entered\n");
520 		return (0);
521 	}
522 	Bzero(m, sizeof *m);
523 	m->rm_b = tt->rn_b;
524 	m->rm_flags = tt->rn_flags;
525 	if (tt->rn_flags & RNF_NORMAL)
526 		m->rm_leaf = tt;
527 	else
528 		m->rm_mask = tt->rn_mask;
529 	m->rm_mklist = next;
530 	tt->rn_mklist = m;
531 	return m;
532 }
533 
534 struct radix_node *
535 rn_addroute(
536 	const void *v_arg,
537 	const void *n_arg,
538 	struct radix_node_head *head,
539 	struct radix_node treenodes[2])
540 {
541 	const char *v = v_arg;
542 	const char *netmask = n_arg;
543 	struct radix_node *t;
544 	struct radix_node *x = 0;
545 	struct radix_node *tt;
546 	struct radix_node *saved_tt;
547 	struct radix_node *top = head->rnh_treetop;
548 	short b = 0, b_leaf = 0;
549 	int keyduplicated;
550 	const char *mmask;
551 	struct radix_mask *m, **mp;
552 
553 	/*
554 	 * In dealing with non-contiguous masks, there may be
555 	 * many different routes which have the same mask.
556 	 * We will find it useful to have a unique pointer to
557 	 * the mask to speed avoiding duplicate references at
558 	 * nodes and possibly save time in calculating indices.
559 	 */
560 	if (netmask)  {
561 		if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
562 			return (0);
563 		b_leaf = x->rn_b;
564 		b = -1 - x->rn_b;
565 		netmask = x->rn_key;
566 	}
567 	/*
568 	 * Deal with duplicated keys: attach node to previous instance
569 	 */
570 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
571 	if (keyduplicated) {
572 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
573 			if (tt->rn_mask == netmask)
574 				return (0);
575 			if (netmask == 0 ||
576 			    (tt->rn_mask &&
577 			     ((b_leaf < tt->rn_b) || /* index(netmask) > node */
578 			       rn_refines(netmask, tt->rn_mask) ||
579 			       rn_lexobetter(netmask, tt->rn_mask))))
580 				break;
581 		}
582 		/*
583 		 * If the mask is not duplicated, we wouldn't
584 		 * find it among possible duplicate key entries
585 		 * anyway, so the above test doesn't hurt.
586 		 *
587 		 * We sort the masks for a duplicated key the same way as
588 		 * in a masklist -- most specific to least specific.
589 		 * This may require the unfortunate nuisance of relocating
590 		 * the head of the list.
591 		 *
592 		 * We also reverse, or doubly link the list through the
593 		 * parent pointer.
594 		 */
595 		if (tt == saved_tt) {
596 			struct	radix_node *xx = x;
597 			/* link in at head of list */
598 			(tt = treenodes)->rn_dupedkey = t;
599 			tt->rn_flags = t->rn_flags;
600 			tt->rn_p = x = t->rn_p;
601 			t->rn_p = tt;
602 			if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
603 			saved_tt = tt; x = xx;
604 		} else {
605 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
606 			t->rn_dupedkey = tt;
607 			tt->rn_p = t;
608 			if (tt->rn_dupedkey)
609 				tt->rn_dupedkey->rn_p = tt;
610 		}
611 #ifdef RN_DEBUG
612 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
613 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
614 #endif
615 		tt->rn_key = (caddr_t) v;
616 		tt->rn_b = -1;
617 		tt->rn_flags = RNF_ACTIVE;
618 	}
619 	/*
620 	 * Put mask in tree.
621 	 */
622 	if (netmask) {
623 		tt->rn_mask = netmask;
624 		tt->rn_b = x->rn_b;
625 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
626 	}
627 	t = saved_tt->rn_p;
628 	if (keyduplicated)
629 		goto on2;
630 	b_leaf = -1 - t->rn_b;
631 	if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
632 	/* Promote general routes from below */
633 	if (x->rn_b < 0) {
634 	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
635 		if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
636 			*mp = m = rn_new_radix_mask(x, 0);
637 			if (m)
638 				mp = &m->rm_mklist;
639 		}
640 	} else if (x->rn_mklist) {
641 		/*
642 		 * Skip over masks whose index is > that of new node
643 		 */
644 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
645 			if (m->rm_b >= b_leaf)
646 				break;
647 		t->rn_mklist = m; *mp = 0;
648 	}
649 on2:
650 	/* Add new route to highest possible ancestor's list */
651 	if ((netmask == 0) || (b > t->rn_b ))
652 		return tt; /* can't lift at all */
653 	b_leaf = tt->rn_b;
654 	do {
655 		x = t;
656 		t = t->rn_p;
657 	} while (b <= t->rn_b && x != top);
658 	/*
659 	 * Search through routes associated with node to
660 	 * insert new route according to index.
661 	 * Need same criteria as when sorting dupedkeys to avoid
662 	 * double loop on deletion.
663 	 */
664 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
665 		if (m->rm_b < b_leaf)
666 			continue;
667 		if (m->rm_b > b_leaf)
668 			break;
669 		if (m->rm_flags & RNF_NORMAL) {
670 			mmask = m->rm_leaf->rn_mask;
671 			if (tt->rn_flags & RNF_NORMAL) {
672 				log(LOG_ERR, "Non-unique normal route,"
673 				    " mask not entered\n");
674 				return tt;
675 			}
676 		} else
677 			mmask = m->rm_mask;
678 		if (mmask == netmask) {
679 			m->rm_refs++;
680 			tt->rn_mklist = m;
681 			return tt;
682 		}
683 		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
684 			break;
685 	}
686 	*mp = rn_new_radix_mask(tt, *mp);
687 	return tt;
688 }
689 
690 struct radix_node *
691 rn_delete(
692 	const void *v_arg,
693 	const void *netmask_arg,
694 	struct radix_node_head *head)
695 {
696 	struct radix_node *t;
697 	struct radix_node *p;
698 	struct radix_node *x;
699 	struct radix_node *tt;
700 	struct radix_node *dupedkey;
701 	struct radix_node *saved_tt;
702 	struct radix_node *top;
703 	struct radix_mask *m;
704 	struct radix_mask *saved_m;
705 	struct radix_mask **mp;
706 	const char *v = v_arg;
707 	const char *netmask = netmask_arg;
708 	int b, head_off, vlen;
709 
710 	x = head->rnh_treetop;
711 	tt = rn_search(v, x);
712 	head_off = x->rn_off;
713 	vlen =  *(u_char *)v;
714 	saved_tt = tt;
715 	top = x;
716 	if (tt == 0 ||
717 	    Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
718 		return (0);
719 	/*
720 	 * Delete our route from mask lists.
721 	 */
722 	if (netmask) {
723 		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
724 			return (0);
725 		netmask = x->rn_key;
726 		while (tt->rn_mask != netmask)
727 			if ((tt = tt->rn_dupedkey) == 0)
728 				return (0);
729 	}
730 	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
731 		goto on1;
732 	if (tt->rn_flags & RNF_NORMAL) {
733 		if (m->rm_leaf != tt || m->rm_refs > 0) {
734 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
735 			return 0;  /* dangling ref could cause disaster */
736 		}
737 	} else {
738 		if (m->rm_mask != tt->rn_mask) {
739 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
740 			goto on1;
741 		}
742 		if (--m->rm_refs >= 0)
743 			goto on1;
744 	}
745 	b = -1 - tt->rn_b;
746 	t = saved_tt->rn_p;
747 	if (b > t->rn_b)
748 		goto on1; /* Wasn't lifted at all */
749 	do {
750 		x = t;
751 		t = t->rn_p;
752 	} while (b <= t->rn_b && x != top);
753 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
754 		if (m == saved_m) {
755 			*mp = m->rm_mklist;
756 			MKFree(m);
757 			break;
758 		}
759 	if (m == 0) {
760 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
761 		if (tt->rn_flags & RNF_NORMAL)
762 			return (0); /* Dangling ref to us */
763 	}
764 on1:
765 	/*
766 	 * Eliminate us from tree
767 	 */
768 	if (tt->rn_flags & RNF_ROOT)
769 		return (0);
770 #ifdef RN_DEBUG
771 	/* Get us out of the creation list */
772 	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
773 	if (t) t->rn_ybro = tt->rn_ybro;
774 #endif
775 	t = tt->rn_p;
776 	dupedkey = saved_tt->rn_dupedkey;
777 	if (dupedkey) {
778 		/*
779 		 * Here, tt is the deletion target, and
780 		 * saved_tt is the head of the dupedkey chain.
781 		 */
782 		if (tt == saved_tt) {
783 			x = dupedkey; x->rn_p = t;
784 			if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
785 		} else {
786 			/* find node in front of tt on the chain */
787 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
788 				p = p->rn_dupedkey;
789 			if (p) {
790 				p->rn_dupedkey = tt->rn_dupedkey;
791 				if (tt->rn_dupedkey)
792 					tt->rn_dupedkey->rn_p = p;
793 			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
794 		}
795 		t = tt + 1;
796 		if  (t->rn_flags & RNF_ACTIVE) {
797 #ifndef RN_DEBUG
798 			*++x = *t; p = t->rn_p;
799 #else
800 			b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
801 #endif
802 			if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
803 			x->rn_l->rn_p = x; x->rn_r->rn_p = x;
804 		}
805 		goto out;
806 	}
807 	if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
808 	p = t->rn_p;
809 	if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
810 	x->rn_p = p;
811 	/*
812 	 * Demote routes attached to us.
813 	 */
814 	if (t->rn_mklist) {
815 		if (x->rn_b >= 0) {
816 			for (mp = &x->rn_mklist; (m = *mp);)
817 				mp = &m->rm_mklist;
818 			*mp = t->rn_mklist;
819 		} else {
820 			/* If there are any key,mask pairs in a sibling
821 			   duped-key chain, some subset will appear sorted
822 			   in the same order attached to our mklist */
823 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
824 				if (m == x->rn_mklist) {
825 					struct radix_mask *mm = m->rm_mklist;
826 					x->rn_mklist = 0;
827 					if (--(m->rm_refs) < 0)
828 						MKFree(m);
829 					m = mm;
830 				}
831 			if (m)
832 				log(LOG_ERR, "%s %p at %p\n",
833 				    "rn_delete: Orphaned Mask", m, x);
834 		}
835 	}
836 	/*
837 	 * We may be holding an active internal node in the tree.
838 	 */
839 	x = tt + 1;
840 	if (t != x) {
841 #ifndef RN_DEBUG
842 		*t = *x;
843 #else
844 		b = t->rn_info; *t = *x; t->rn_info = b;
845 #endif
846 		t->rn_l->rn_p = t; t->rn_r->rn_p = t;
847 		p = x->rn_p;
848 		if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
849 	}
850 out:
851 	tt->rn_flags &= ~RNF_ACTIVE;
852 	tt[1].rn_flags &= ~RNF_ACTIVE;
853 	return (tt);
854 }
855 
856 int
857 rn_walktree(
858 	struct radix_node_head *h,
859 	int (*f)(struct radix_node *, void *),
860 	void *w)
861 {
862 	int error;
863 	struct radix_node *base;
864 	struct radix_node *next;
865 	struct radix_node *rn = h->rnh_treetop;
866 	/*
867 	 * This gets complicated because we may delete the node
868 	 * while applying the function f to it, so we need to calculate
869 	 * the successor node in advance.
870 	 */
871 	/* First time through node, go left */
872 	while (rn->rn_b >= 0)
873 		rn = rn->rn_l;
874 	for (;;) {
875 		base = rn;
876 		/* If at right child go back up, otherwise, go right */
877 		while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
878 			rn = rn->rn_p;
879 		/* Find the next *leaf* since next node might vanish, too */
880 		for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
881 			rn = rn->rn_l;
882 		next = rn;
883 		/* Process leaves */
884 		while ((rn = base) != NULL) {
885 			base = rn->rn_dupedkey;
886 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
887 				return (error);
888 		}
889 		rn = next;
890 		if (rn->rn_flags & RNF_ROOT)
891 			return (0);
892 	}
893 	/* NOTREACHED */
894 }
895 
896 int
897 rn_inithead(head, off)
898 	void **head;
899 	int off;
900 {
901 	struct radix_node_head *rnh;
902 
903 	if (*head)
904 		return (1);
905 	R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
906 	if (rnh == 0)
907 		return (0);
908 	*head = rnh;
909 	return rn_inithead0(rnh, off);
910 }
911 
912 int
913 rn_inithead0(rnh, off)
914 	struct radix_node_head *rnh;
915 	int off;
916 {
917 	struct radix_node *t;
918 	struct radix_node *tt;
919 	struct radix_node *ttt;
920 
921 	Bzero(rnh, sizeof (*rnh));
922 	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
923 	ttt = rnh->rnh_nodes + 2;
924 	t->rn_r = ttt;
925 	t->rn_p = t;
926 	tt = t->rn_l;
927 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
928 	tt->rn_b = -1 - off;
929 	*ttt = *tt;
930 	ttt->rn_key = rn_ones;
931 	rnh->rnh_addaddr = rn_addroute;
932 	rnh->rnh_deladdr = rn_delete;
933 	rnh->rnh_matchaddr = rn_match;
934 	rnh->rnh_lookup = rn_lookup;
935 	rnh->rnh_walktree = rn_walktree;
936 	rnh->rnh_treetop = t;
937 	return (1);
938 }
939 
940 void
941 rn_init()
942 {
943 	char *cp, *cplim;
944 #ifdef _KERNEL
945 	struct domain *dom;
946 
947 	for (dom = domains; dom; dom = dom->dom_next)
948 		if (dom->dom_maxrtkey > max_keylen)
949 			max_keylen = dom->dom_maxrtkey;
950 #endif
951 	if (max_keylen == 0) {
952 		log(LOG_ERR,
953 		    "rn_init: radix functions require max_keylen be set\n");
954 		return;
955 	}
956 	R_Malloc(rn_zeros, char *, 3 * max_keylen);
957 	if (rn_zeros == NULL)
958 		panic("rn_init");
959 	Bzero(rn_zeros, 3 * max_keylen);
960 	rn_ones = cp = rn_zeros + max_keylen;
961 	addmask_key = cplim = rn_ones + max_keylen;
962 	while (cp < cplim)
963 		*cp++ = -1;
964 	if (rn_inithead((void *)&mask_rnhead, 0) == 0)
965 		panic("rn_init 2");
966 }
967