xref: /netbsd-src/sys/net/radix.c (revision 2a399c6883d870daece976daec6ffa7bb7f934ce)
1 /*	$NetBSD: radix.c,v 1.12 1997/04/02 21:17:30 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1988, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)radix.c	8.5 (Berkeley) 5/19/95
36  */
37 
38 /*
39  * Routines to build and maintain radix trees for routing lookups.
40  */
41 #ifndef _NET_RADIX_H_
42 #include <sys/param.h>
43 #ifdef	_KERNEL
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #define	M_DONTWAIT M_NOWAIT
47 #include <sys/domain.h>
48 #else
49 #include <stdlib.h>
50 #endif
51 #include <sys/syslog.h>
52 #include <net/radix.h>
53 #endif
54 
55 int	max_keylen;
56 struct radix_mask *rn_mkfreelist;
57 struct radix_node_head *mask_rnhead;
58 static char *addmask_key;
59 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
60 static char *rn_zeros, *rn_ones;
61 
62 #define rn_masktop (mask_rnhead->rnh_treetop)
63 #undef Bcmp
64 #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
65 
66 static int rn_satsifies_leaf __P((char *, struct radix_node *, int));
67 static int rn_lexobetter __P((void *, void *));
68 static struct radix_mask *rn_new_radix_mask __P((struct radix_node *,
69     struct radix_mask *));
70 
71 /*
72  * The data structure for the keys is a radix tree with one way
73  * branching removed.  The index rn_b at an internal node n represents a bit
74  * position to be tested.  The tree is arranged so that all descendants
75  * of a node n have keys whose bits all agree up to position rn_b - 1.
76  * (We say the index of n is rn_b.)
77  *
78  * There is at least one descendant which has a one bit at position rn_b,
79  * and at least one with a zero there.
80  *
81  * A route is determined by a pair of key and mask.  We require that the
82  * bit-wise logical and of the key and mask to be the key.
83  * We define the index of a route to associated with the mask to be
84  * the first bit number in the mask where 0 occurs (with bit number 0
85  * representing the highest order bit).
86  *
87  * We say a mask is normal if every bit is 0, past the index of the mask.
88  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
89  * and m is a normal mask, then the route applies to every descendant of n.
90  * If the index(m) < rn_b, this implies the trailing last few bits of k
91  * before bit b are all 0, (and hence consequently true of every descendant
92  * of n), so the route applies to all descendants of the node as well.
93  *
94  * Similar logic shows that a non-normal mask m such that
95  * index(m) <= index(n) could potentially apply to many children of n.
96  * Thus, for each non-host route, we attach its mask to a list at an internal
97  * node as high in the tree as we can go.
98  *
99  * The present version of the code makes use of normal routes in short-
100  * circuiting an explict mask and compare operation when testing whether
101  * a key satisfies a normal route, and also in remembering the unique leaf
102  * that governs a subtree.
103  */
104 
105 struct radix_node *
106 rn_search(v_arg, head)
107 	void *v_arg;
108 	struct radix_node *head;
109 {
110 	register struct radix_node *x;
111 	register caddr_t v;
112 
113 	for (x = head, v = v_arg; x->rn_b >= 0;) {
114 		if (x->rn_bmask & v[x->rn_off])
115 			x = x->rn_r;
116 		else
117 			x = x->rn_l;
118 	}
119 	return (x);
120 };
121 
122 struct radix_node *
123 rn_search_m(v_arg, head, m_arg)
124 	struct radix_node *head;
125 	void *v_arg, *m_arg;
126 {
127 	register struct radix_node *x;
128 	register caddr_t v = v_arg, m = m_arg;
129 
130 	for (x = head; x->rn_b >= 0;) {
131 		if ((x->rn_bmask & m[x->rn_off]) &&
132 		    (x->rn_bmask & v[x->rn_off]))
133 			x = x->rn_r;
134 		else
135 			x = x->rn_l;
136 	}
137 	return x;
138 };
139 
140 int
141 rn_refines(m_arg, n_arg)
142 	void *m_arg, *n_arg;
143 {
144 	register caddr_t m = m_arg, n = n_arg;
145 	register caddr_t lim, lim2 = lim = n + *(u_char *)n;
146 	int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
147 	int masks_are_equal = 1;
148 
149 	if (longer > 0)
150 		lim -= longer;
151 	while (n < lim) {
152 		if (*n & ~(*m))
153 			return 0;
154 		if (*n++ != *m++)
155 			masks_are_equal = 0;
156 	}
157 	while (n < lim2)
158 		if (*n++)
159 			return 0;
160 	if (masks_are_equal && (longer < 0))
161 		for (lim2 = m - longer; m < lim2; )
162 			if (*m++)
163 				return 1;
164 	return (!masks_are_equal);
165 }
166 
167 struct radix_node *
168 rn_lookup(v_arg, m_arg, head)
169 	void *v_arg, *m_arg;
170 	struct radix_node_head *head;
171 {
172 	register struct radix_node *x;
173 	caddr_t netmask = 0;
174 
175 	if (m_arg) {
176 		if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
177 			return (0);
178 		netmask = x->rn_key;
179 	}
180 	x = rn_match(v_arg, head);
181 	if (x && netmask) {
182 		while (x && x->rn_mask != netmask)
183 			x = x->rn_dupedkey;
184 	}
185 	return x;
186 }
187 
188 static int
189 rn_satsifies_leaf(trial, leaf, skip)
190 	char *trial;
191 	register struct radix_node *leaf;
192 	int skip;
193 {
194 	register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
195 	char *cplim;
196 	int length = min(*(u_char *)cp, *(u_char *)cp2);
197 
198 	if (cp3 == 0)
199 		cp3 = rn_ones;
200 	else
201 		length = min(length, *(u_char *)cp3);
202 	cplim = cp + length; cp3 += skip; cp2 += skip;
203 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
204 		if ((*cp ^ *cp2) & *cp3)
205 			return 0;
206 	return 1;
207 }
208 
209 struct radix_node *
210 rn_match(v_arg, head)
211 	void *v_arg;
212 	struct radix_node_head *head;
213 {
214 	caddr_t v = v_arg;
215 	register struct radix_node *t = head->rnh_treetop, *x;
216 	register caddr_t cp = v, cp2;
217 	caddr_t cplim;
218 	struct radix_node *saved_t, *top = t;
219 	int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
220 	register int test, b, rn_b;
221 
222 	/*
223 	 * Open code rn_search(v, top) to avoid overhead of extra
224 	 * subroutine call.
225 	 */
226 	for (; t->rn_b >= 0; ) {
227 		if (t->rn_bmask & cp[t->rn_off])
228 			t = t->rn_r;
229 		else
230 			t = t->rn_l;
231 	}
232 	/*
233 	 * See if we match exactly as a host destination
234 	 * or at least learn how many bits match, for normal mask finesse.
235 	 *
236 	 * It doesn't hurt us to limit how many bytes to check
237 	 * to the length of the mask, since if it matches we had a genuine
238 	 * match and the leaf we have is the most specific one anyway;
239 	 * if it didn't match with a shorter length it would fail
240 	 * with a long one.  This wins big for class B&C netmasks which
241 	 * are probably the most common case...
242 	 */
243 	if (t->rn_mask)
244 		vlen = *(u_char *)t->rn_mask;
245 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
246 	for (; cp < cplim; cp++, cp2++)
247 		if (*cp != *cp2)
248 			goto on1;
249 	/*
250 	 * This extra grot is in case we are explicitly asked
251 	 * to look up the default.  Ugh!
252 	 */
253 	if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
254 		t = t->rn_dupedkey;
255 	return t;
256 on1:
257 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
258 	for (b = 7; (test >>= 1) > 0;)
259 		b--;
260 	matched_off = cp - v;
261 	b += matched_off << 3;
262 	rn_b = -1 - b;
263 	/*
264 	 * If there is a host route in a duped-key chain, it will be first.
265 	 */
266 	if ((saved_t = t)->rn_mask == 0)
267 		t = t->rn_dupedkey;
268 	for (; t; t = t->rn_dupedkey)
269 		/*
270 		 * Even if we don't match exactly as a host,
271 		 * we may match if the leaf we wound up at is
272 		 * a route to a net.
273 		 */
274 		if (t->rn_flags & RNF_NORMAL) {
275 			if (rn_b <= t->rn_b)
276 				return t;
277 		} else if (rn_satsifies_leaf(v, t, matched_off))
278 				return t;
279 	t = saved_t;
280 	/* start searching up the tree */
281 	do {
282 		register struct radix_mask *m;
283 		t = t->rn_p;
284 		m = t->rn_mklist;
285 		if (m) {
286 			/*
287 			 * If non-contiguous masks ever become important
288 			 * we can restore the masking and open coding of
289 			 * the search and satisfaction test and put the
290 			 * calculation of "off" back before the "do".
291 			 */
292 			do {
293 				if (m->rm_flags & RNF_NORMAL) {
294 					if (rn_b <= m->rm_b)
295 						return (m->rm_leaf);
296 				} else {
297 					off = min(t->rn_off, matched_off);
298 					x = rn_search_m(v, t, m->rm_mask);
299 					while (x && x->rn_mask != m->rm_mask)
300 						x = x->rn_dupedkey;
301 					if (x && rn_satsifies_leaf(v, x, off))
302 						    return x;
303 				}
304 			m = m->rm_mklist;
305 			} while (m);
306 		}
307 	} while (t != top);
308 	return 0;
309 };
310 
311 #ifdef RN_DEBUG
312 int	rn_nodenum;
313 struct	radix_node *rn_clist;
314 int	rn_saveinfo;
315 int	rn_debug =  1;
316 #endif
317 
318 struct radix_node *
319 rn_newpair(v, b, nodes)
320 	void *v;
321 	int b;
322 	struct radix_node nodes[2];
323 {
324 	register struct radix_node *tt = nodes, *t = tt + 1;
325 	t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
326 	t->rn_l = tt; t->rn_off = b >> 3;
327 	tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
328 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
329 #ifdef RN_DEBUG
330 	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
331 	tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
332 #endif
333 	return t;
334 }
335 
336 struct radix_node *
337 rn_insert(v_arg, head, dupentry, nodes)
338 	void *v_arg;
339 	struct radix_node_head *head;
340 	int *dupentry;
341 	struct radix_node nodes[2];
342 {
343 	caddr_t v = v_arg;
344 	struct radix_node *top = head->rnh_treetop;
345 	int head_off = top->rn_off, vlen = (int)*((u_char *)v);
346 	register struct radix_node *t = rn_search(v_arg, top);
347 	register caddr_t cp = v + head_off;
348 	register int b;
349 	struct radix_node *tt;
350     	/*
351 	 * Find first bit at which v and t->rn_key differ
352 	 */
353     {
354 	register caddr_t cp2 = t->rn_key + head_off;
355 	register int cmp_res;
356 	caddr_t cplim = v + vlen;
357 
358 	while (cp < cplim)
359 		if (*cp2++ != *cp++)
360 			goto on1;
361 	*dupentry = 1;
362 	return t;
363 on1:
364 	*dupentry = 0;
365 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
366 	for (b = (cp - v) << 3; cmp_res; b--)
367 		cmp_res >>= 1;
368     }
369     {
370 	register struct radix_node *p, *x = top;
371 	cp = v;
372 	do {
373 		p = x;
374 		if (cp[x->rn_off] & x->rn_bmask)
375 			x = x->rn_r;
376 		else x = x->rn_l;
377 	} while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
378 #ifdef RN_DEBUG
379 	if (rn_debug)
380 		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
381 #endif
382 	t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
383 	if ((cp[p->rn_off] & p->rn_bmask) == 0)
384 		p->rn_l = t;
385 	else
386 		p->rn_r = t;
387 	x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
388 	if ((cp[t->rn_off] & t->rn_bmask) == 0) {
389 		t->rn_r = x;
390 	} else {
391 		t->rn_r = tt; t->rn_l = x;
392 	}
393 #ifdef RN_DEBUG
394 	if (rn_debug)
395 		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
396 #endif
397     }
398 	return (tt);
399 }
400 
401 struct radix_node *
402 rn_addmask(n_arg, search, skip)
403 	int search, skip;
404 	void *n_arg;
405 {
406 	caddr_t netmask = (caddr_t)n_arg;
407 	register struct radix_node *x;
408 	register caddr_t cp, cplim;
409 	register int b = 0, mlen, j;
410 	int maskduplicated, m0, isnormal;
411 	struct radix_node *saved_x;
412 	static int last_zeroed = 0;
413 
414 	if ((mlen = *(u_char *)netmask) > max_keylen)
415 		mlen = max_keylen;
416 	if (skip == 0)
417 		skip = 1;
418 	if (mlen <= skip)
419 		return (mask_rnhead->rnh_nodes);
420 	if (skip > 1)
421 		Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
422 	if ((m0 = mlen) > skip)
423 		Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
424 	/*
425 	 * Trim trailing zeroes.
426 	 */
427 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
428 		cp--;
429 	mlen = cp - addmask_key;
430 	if (mlen <= skip) {
431 		if (m0 >= last_zeroed)
432 			last_zeroed = mlen;
433 		return (mask_rnhead->rnh_nodes);
434 	}
435 	if (m0 < last_zeroed)
436 		Bzero(addmask_key + m0, last_zeroed - m0);
437 	*addmask_key = last_zeroed = mlen;
438 	x = rn_search(addmask_key, rn_masktop);
439 	if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
440 		x = 0;
441 	if (x || search)
442 		return (x);
443 	R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
444 	if ((saved_x = x) == 0)
445 		return (0);
446 	Bzero(x, max_keylen + 2 * sizeof (*x));
447 	netmask = cp = (caddr_t)(x + 2);
448 	Bcopy(addmask_key, cp, mlen);
449 	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
450 	if (maskduplicated) {
451 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
452 		Free(saved_x);
453 		return (x);
454 	}
455 	/*
456 	 * Calculate index of mask, and check for normalcy.
457 	 */
458 	cplim = netmask + mlen; isnormal = 1;
459 	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
460 		cp++;
461 	if (cp != cplim) {
462 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
463 			b++;
464 		if (*cp != normal_chars[b] || cp != (cplim - 1))
465 			isnormal = 0;
466 	}
467 	b += (cp - netmask) << 3;
468 	x->rn_b = -1 - b;
469 	if (isnormal)
470 		x->rn_flags |= RNF_NORMAL;
471 	return (x);
472 }
473 
474 static int	/* XXX: arbitrary ordering for non-contiguous masks */
475 rn_lexobetter(m_arg, n_arg)
476 	void *m_arg, *n_arg;
477 {
478 	register u_char *mp = m_arg, *np = n_arg, *lim;
479 
480 	if (*mp > *np)
481 		return 1;  /* not really, but need to check longer one first */
482 	if (*mp == *np)
483 		for (lim = mp + *mp; mp < lim;)
484 			if (*mp++ > *np++)
485 				return 1;
486 	return 0;
487 }
488 
489 static struct radix_mask *
490 rn_new_radix_mask(tt, next)
491 	register struct radix_node *tt;
492 	register struct radix_mask *next;
493 {
494 	register struct radix_mask *m;
495 
496 	MKGet(m);
497 	if (m == 0) {
498 		log(LOG_ERR, "Mask for route not entered\n");
499 		return (0);
500 	}
501 	Bzero(m, sizeof *m);
502 	m->rm_b = tt->rn_b;
503 	m->rm_flags = tt->rn_flags;
504 	if (tt->rn_flags & RNF_NORMAL)
505 		m->rm_leaf = tt;
506 	else
507 		m->rm_mask = tt->rn_mask;
508 	m->rm_mklist = next;
509 	tt->rn_mklist = m;
510 	return m;
511 }
512 
513 struct radix_node *
514 rn_addroute(v_arg, n_arg, head, treenodes)
515 	void *v_arg, *n_arg;
516 	struct radix_node_head *head;
517 	struct radix_node treenodes[2];
518 {
519 	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
520 	register struct radix_node *t, *x = 0, *tt;
521 	struct radix_node *saved_tt, *top = head->rnh_treetop;
522 	short b = 0, b_leaf = 0;
523 	int keyduplicated;
524 	caddr_t mmask;
525 	struct radix_mask *m, **mp;
526 
527 	/*
528 	 * In dealing with non-contiguous masks, there may be
529 	 * many different routes which have the same mask.
530 	 * We will find it useful to have a unique pointer to
531 	 * the mask to speed avoiding duplicate references at
532 	 * nodes and possibly save time in calculating indices.
533 	 */
534 	if (netmask)  {
535 		if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
536 			return (0);
537 		b_leaf = x->rn_b;
538 		b = -1 - x->rn_b;
539 		netmask = x->rn_key;
540 	}
541 	/*
542 	 * Deal with duplicated keys: attach node to previous instance
543 	 */
544 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
545 	if (keyduplicated) {
546 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
547 			if (tt->rn_mask == netmask)
548 				return (0);
549 			if (netmask == 0 ||
550 			    (tt->rn_mask &&
551 			     ((b_leaf < tt->rn_b) || /* index(netmask) > node */
552 			       rn_refines(netmask, tt->rn_mask) ||
553 			       rn_lexobetter(netmask, tt->rn_mask))))
554 				break;
555 		}
556 		/*
557 		 * If the mask is not duplicated, we wouldn't
558 		 * find it among possible duplicate key entries
559 		 * anyway, so the above test doesn't hurt.
560 		 *
561 		 * We sort the masks for a duplicated key the same way as
562 		 * in a masklist -- most specific to least specific.
563 		 * This may require the unfortunate nuisance of relocating
564 		 * the head of the list.
565 		 *
566 		 * We also reverse, or doubly link the list through the
567 		 * parent pointer.
568 		 */
569 		if (tt == saved_tt) {
570 			struct	radix_node *xx = x;
571 			/* link in at head of list */
572 			(tt = treenodes)->rn_dupedkey = t;
573 			tt->rn_flags = t->rn_flags;
574 			tt->rn_p = x = t->rn_p;
575 			t->rn_p = tt;
576 			if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
577 			saved_tt = tt; x = xx;
578 		} else {
579 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
580 			t->rn_dupedkey = tt;
581 			tt->rn_p = t;
582 			if (tt->rn_dupedkey)
583 				tt->rn_dupedkey->rn_p = tt;
584 		}
585 #ifdef RN_DEBUG
586 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
587 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
588 #endif
589 		tt->rn_key = (caddr_t) v;
590 		tt->rn_b = -1;
591 		tt->rn_flags = RNF_ACTIVE;
592 	}
593 	/*
594 	 * Put mask in tree.
595 	 */
596 	if (netmask) {
597 		tt->rn_mask = netmask;
598 		tt->rn_b = x->rn_b;
599 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
600 	}
601 	t = saved_tt->rn_p;
602 	if (keyduplicated)
603 		goto on2;
604 	b_leaf = -1 - t->rn_b;
605 	if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
606 	/* Promote general routes from below */
607 	if (x->rn_b < 0) {
608 	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
609 		if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
610 			*mp = m = rn_new_radix_mask(x, 0);
611 			if (m)
612 				mp = &m->rm_mklist;
613 		}
614 	} else if (x->rn_mklist) {
615 		/*
616 		 * Skip over masks whose index is > that of new node
617 		 */
618 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
619 			if (m->rm_b >= b_leaf)
620 				break;
621 		t->rn_mklist = m; *mp = 0;
622 	}
623 on2:
624 	/* Add new route to highest possible ancestor's list */
625 	if ((netmask == 0) || (b > t->rn_b ))
626 		return tt; /* can't lift at all */
627 	b_leaf = tt->rn_b;
628 	do {
629 		x = t;
630 		t = t->rn_p;
631 	} while (b <= t->rn_b && x != top);
632 	/*
633 	 * Search through routes associated with node to
634 	 * insert new route according to index.
635 	 * Need same criteria as when sorting dupedkeys to avoid
636 	 * double loop on deletion.
637 	 */
638 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
639 		if (m->rm_b < b_leaf)
640 			continue;
641 		if (m->rm_b > b_leaf)
642 			break;
643 		if (m->rm_flags & RNF_NORMAL) {
644 			mmask = m->rm_leaf->rn_mask;
645 			if (tt->rn_flags & RNF_NORMAL) {
646 				log(LOG_ERR,
647 				   "Non-unique normal route, mask not entered");
648 				return tt;
649 			}
650 		} else
651 			mmask = m->rm_mask;
652 		if (mmask == netmask) {
653 			m->rm_refs++;
654 			tt->rn_mklist = m;
655 			return tt;
656 		}
657 		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
658 			break;
659 	}
660 	*mp = rn_new_radix_mask(tt, *mp);
661 	return tt;
662 }
663 
664 struct radix_node *
665 rn_delete(v_arg, netmask_arg, head)
666 	void *v_arg, *netmask_arg;
667 	struct radix_node_head *head;
668 {
669 	register struct radix_node *t, *p, *x, *tt;
670 	struct radix_mask *m, *saved_m, **mp;
671 	struct radix_node *dupedkey, *saved_tt, *top;
672 	caddr_t v, netmask;
673 	int b, head_off, vlen;
674 
675 	v = v_arg;
676 	netmask = netmask_arg;
677 	x = head->rnh_treetop;
678 	tt = rn_search(v, x);
679 	head_off = x->rn_off;
680 	vlen =  *(u_char *)v;
681 	saved_tt = tt;
682 	top = x;
683 	if (tt == 0 ||
684 	    Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
685 		return (0);
686 	/*
687 	 * Delete our route from mask lists.
688 	 */
689 	if (netmask) {
690 		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
691 			return (0);
692 		netmask = x->rn_key;
693 		while (tt->rn_mask != netmask)
694 			if ((tt = tt->rn_dupedkey) == 0)
695 				return (0);
696 	}
697 	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
698 		goto on1;
699 	if (tt->rn_flags & RNF_NORMAL) {
700 		if (m->rm_leaf != tt || m->rm_refs > 0) {
701 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
702 			return 0;  /* dangling ref could cause disaster */
703 		}
704 	} else {
705 		if (m->rm_mask != tt->rn_mask) {
706 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
707 			goto on1;
708 		}
709 		if (--m->rm_refs >= 0)
710 			goto on1;
711 	}
712 	b = -1 - tt->rn_b;
713 	t = saved_tt->rn_p;
714 	if (b > t->rn_b)
715 		goto on1; /* Wasn't lifted at all */
716 	do {
717 		x = t;
718 		t = t->rn_p;
719 	} while (b <= t->rn_b && x != top);
720 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
721 		if (m == saved_m) {
722 			*mp = m->rm_mklist;
723 			MKFree(m);
724 			break;
725 		}
726 	if (m == 0) {
727 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
728 		if (tt->rn_flags & RNF_NORMAL)
729 			return (0); /* Dangling ref to us */
730 	}
731 on1:
732 	/*
733 	 * Eliminate us from tree
734 	 */
735 	if (tt->rn_flags & RNF_ROOT)
736 		return (0);
737 #ifdef RN_DEBUG
738 	/* Get us out of the creation list */
739 	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
740 	if (t) t->rn_ybro = tt->rn_ybro;
741 #endif
742 	t = tt->rn_p;
743 	dupedkey = saved_tt->rn_dupedkey;
744 	if (dupedkey) {
745 		/*
746 		 * Here, tt is the deletion target, and
747 		 * saved_tt is the head of the dupedkey chain.
748 		 */
749 		if (tt == saved_tt) {
750 			x = dupedkey; x->rn_p = t;
751 			if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
752 		} else {
753 			/* find node in front of tt on the chain */
754 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
755 				p = p->rn_dupedkey;
756 			if (p) {
757 				p->rn_dupedkey = tt->rn_dupedkey;
758 				if (tt->rn_dupedkey)
759 					tt->rn_dupedkey->rn_p = p;
760 			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
761 		}
762 		t = tt + 1;
763 		if  (t->rn_flags & RNF_ACTIVE) {
764 #ifndef RN_DEBUG
765 			*++x = *t; p = t->rn_p;
766 #else
767 			b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
768 #endif
769 			if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
770 			x->rn_l->rn_p = x; x->rn_r->rn_p = x;
771 		}
772 		goto out;
773 	}
774 	if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
775 	p = t->rn_p;
776 	if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
777 	x->rn_p = p;
778 	/*
779 	 * Demote routes attached to us.
780 	 */
781 	if (t->rn_mklist) {
782 		if (x->rn_b >= 0) {
783 			for (mp = &x->rn_mklist; (m = *mp);)
784 				mp = &m->rm_mklist;
785 			*mp = t->rn_mklist;
786 		} else {
787 			/* If there are any key,mask pairs in a sibling
788 			   duped-key chain, some subset will appear sorted
789 			   in the same order attached to our mklist */
790 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
791 				if (m == x->rn_mklist) {
792 					struct radix_mask *mm = m->rm_mklist;
793 					x->rn_mklist = 0;
794 					if (--(m->rm_refs) < 0)
795 						MKFree(m);
796 					m = mm;
797 				}
798 			if (m)
799 				log(LOG_ERR, "%s %p at %p\n",
800 					    "rn_delete: Orphaned Mask", m, x);
801 		}
802 	}
803 	/*
804 	 * We may be holding an active internal node in the tree.
805 	 */
806 	x = tt + 1;
807 	if (t != x) {
808 #ifndef RN_DEBUG
809 		*t = *x;
810 #else
811 		b = t->rn_info; *t = *x; t->rn_info = b;
812 #endif
813 		t->rn_l->rn_p = t; t->rn_r->rn_p = t;
814 		p = x->rn_p;
815 		if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
816 	}
817 out:
818 	tt->rn_flags &= ~RNF_ACTIVE;
819 	tt[1].rn_flags &= ~RNF_ACTIVE;
820 	return (tt);
821 }
822 
823 int
824 rn_walktree(h, f, w)
825 	struct radix_node_head *h;
826 	register int (*f) __P((struct radix_node *, void *));
827 	void *w;
828 {
829 	int error;
830 	struct radix_node *base, *next;
831 	register struct radix_node *rn = h->rnh_treetop;
832 	/*
833 	 * This gets complicated because we may delete the node
834 	 * while applying the function f to it, so we need to calculate
835 	 * the successor node in advance.
836 	 */
837 	/* First time through node, go left */
838 	while (rn->rn_b >= 0)
839 		rn = rn->rn_l;
840 	for (;;) {
841 		base = rn;
842 		/* If at right child go back up, otherwise, go right */
843 		while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
844 			rn = rn->rn_p;
845 		/* Find the next *leaf* since next node might vanish, too */
846 		for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
847 			rn = rn->rn_l;
848 		next = rn;
849 		/* Process leaves */
850 		while ((rn = base) != NULL) {
851 			base = rn->rn_dupedkey;
852 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
853 				return (error);
854 		}
855 		rn = next;
856 		if (rn->rn_flags & RNF_ROOT)
857 			return (0);
858 	}
859 	/* NOTREACHED */
860 }
861 
862 int
863 rn_inithead(head, off)
864 	void **head;
865 	int off;
866 {
867 	register struct radix_node_head *rnh;
868 	register struct radix_node *t, *tt, *ttt;
869 	if (*head)
870 		return (1);
871 	R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
872 	if (rnh == 0)
873 		return (0);
874 	Bzero(rnh, sizeof (*rnh));
875 	*head = rnh;
876 	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
877 	ttt = rnh->rnh_nodes + 2;
878 	t->rn_r = ttt;
879 	t->rn_p = t;
880 	tt = t->rn_l;
881 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
882 	tt->rn_b = -1 - off;
883 	*ttt = *tt;
884 	ttt->rn_key = rn_ones;
885 	rnh->rnh_addaddr = rn_addroute;
886 	rnh->rnh_deladdr = rn_delete;
887 	rnh->rnh_matchaddr = rn_match;
888 	rnh->rnh_lookup = rn_lookup;
889 	rnh->rnh_walktree = rn_walktree;
890 	rnh->rnh_treetop = t;
891 	return (1);
892 }
893 
894 void
895 rn_init()
896 {
897 	char *cp, *cplim;
898 #ifdef _KERNEL
899 	struct domain *dom;
900 
901 	for (dom = domains; dom; dom = dom->dom_next)
902 		if (dom->dom_maxrtkey > max_keylen)
903 			max_keylen = dom->dom_maxrtkey;
904 #endif
905 	if (max_keylen == 0) {
906 		log(LOG_ERR,
907 		    "rn_init: radix functions require max_keylen be set\n");
908 		return;
909 	}
910 	R_Malloc(rn_zeros, char *, 3 * max_keylen);
911 	if (rn_zeros == NULL)
912 		panic("rn_init");
913 	Bzero(rn_zeros, 3 * max_keylen);
914 	rn_ones = cp = rn_zeros + max_keylen;
915 	addmask_key = cplim = rn_ones + max_keylen;
916 	while (cp < cplim)
917 		*cp++ = -1;
918 	if (rn_inithead((void **)&mask_rnhead, 0) == 0)
919 		panic("rn_init 2");
920 }
921