1 /* $NetBSD: radix.c,v 1.48 2018/09/03 16:29:35 riastradh Exp $ */ 2 3 /* 4 * Copyright (c) 1988, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)radix.c 8.6 (Berkeley) 10/17/95 32 */ 33 34 /* 35 * Routines to build and maintain radix trees for routing lookups. 36 */ 37 38 #include <sys/cdefs.h> 39 __KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.48 2018/09/03 16:29:35 riastradh Exp $"); 40 41 #ifndef _NET_RADIX_H_ 42 #include <sys/param.h> 43 #include <sys/queue.h> 44 #include <sys/kmem.h> 45 #ifdef _KERNEL 46 #ifdef _KERNEL_OPT 47 #include "opt_inet.h" 48 #endif 49 50 #include <sys/systm.h> 51 #include <sys/malloc.h> 52 #define M_DONTWAIT M_NOWAIT 53 #include <sys/domain.h> 54 #else 55 #include <stdlib.h> 56 #endif 57 #include <sys/syslog.h> 58 #include <net/radix.h> 59 #endif 60 61 typedef void (*rn_printer_t)(void *, const char *fmt, ...); 62 63 int max_keylen; 64 struct radix_mask *rn_mkfreelist; 65 struct radix_node_head *mask_rnhead; 66 static char *addmask_key; 67 static const char normal_chars[] = 68 {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1}; 69 static char *rn_zeros, *rn_ones; 70 71 #define rn_masktop (mask_rnhead->rnh_treetop) 72 73 static int rn_satisfies_leaf(const char *, struct radix_node *, int); 74 static int rn_lexobetter(const void *, const void *); 75 static struct radix_mask *rn_new_radix_mask(struct radix_node *, 76 struct radix_mask *); 77 static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t, 78 void *); 79 static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t, 80 void *); 81 static void rn_nodeprint(struct radix_node *, rn_printer_t, void *, 82 const char *); 83 84 #define SUBTREE_OPEN "[ " 85 #define SUBTREE_CLOSE " ]" 86 87 #ifdef RN_DEBUG 88 static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *); 89 #endif /* RN_DEBUG */ 90 91 /* 92 * The data structure for the keys is a radix tree with one way 93 * branching removed. The index rn_b at an internal node n represents a bit 94 * position to be tested. The tree is arranged so that all descendants 95 * of a node n have keys whose bits all agree up to position rn_b - 1. 96 * (We say the index of n is rn_b.) 97 * 98 * There is at least one descendant which has a one bit at position rn_b, 99 * and at least one with a zero there. 100 * 101 * A route is determined by a pair of key and mask. We require that the 102 * bit-wise logical and of the key and mask to be the key. 103 * We define the index of a route to associated with the mask to be 104 * the first bit number in the mask where 0 occurs (with bit number 0 105 * representing the highest order bit). 106 * 107 * We say a mask is normal if every bit is 0, past the index of the mask. 108 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b, 109 * and m is a normal mask, then the route applies to every descendant of n. 110 * If the index(m) < rn_b, this implies the trailing last few bits of k 111 * before bit b are all 0, (and hence consequently true of every descendant 112 * of n), so the route applies to all descendants of the node as well. 113 * 114 * Similar logic shows that a non-normal mask m such that 115 * index(m) <= index(n) could potentially apply to many children of n. 116 * Thus, for each non-host route, we attach its mask to a list at an internal 117 * node as high in the tree as we can go. 118 * 119 * The present version of the code makes use of normal routes in short- 120 * circuiting an explicit mask and compare operation when testing whether 121 * a key satisfies a normal route, and also in remembering the unique leaf 122 * that governs a subtree. 123 */ 124 125 struct radix_node * 126 rn_search( 127 const void *v_arg, 128 struct radix_node *head) 129 { 130 const u_char * const v = v_arg; 131 struct radix_node *x; 132 133 for (x = head; x->rn_b >= 0;) { 134 if (x->rn_bmask & v[x->rn_off]) 135 x = x->rn_r; 136 else 137 x = x->rn_l; 138 } 139 return x; 140 } 141 142 struct radix_node * 143 rn_search_m( 144 const void *v_arg, 145 struct radix_node *head, 146 const void *m_arg) 147 { 148 struct radix_node *x; 149 const u_char * const v = v_arg; 150 const u_char * const m = m_arg; 151 152 for (x = head; x->rn_b >= 0;) { 153 if ((x->rn_bmask & m[x->rn_off]) && 154 (x->rn_bmask & v[x->rn_off])) 155 x = x->rn_r; 156 else 157 x = x->rn_l; 158 } 159 return x; 160 } 161 162 int 163 rn_refines( 164 const void *m_arg, 165 const void *n_arg) 166 { 167 const char *m = m_arg; 168 const char *n = n_arg; 169 const char *lim = n + *(const u_char *)n; 170 const char *lim2 = lim; 171 int longer = (*(const u_char *)n++) - (int)(*(const u_char *)m++); 172 int masks_are_equal = 1; 173 174 if (longer > 0) 175 lim -= longer; 176 while (n < lim) { 177 if (*n & ~(*m)) 178 return 0; 179 if (*n++ != *m++) 180 masks_are_equal = 0; 181 } 182 while (n < lim2) 183 if (*n++) 184 return 0; 185 if (masks_are_equal && (longer < 0)) 186 for (lim2 = m - longer; m < lim2; ) 187 if (*m++) 188 return 1; 189 return !masks_are_equal; 190 } 191 192 struct radix_node * 193 rn_lookup( 194 const void *v_arg, 195 const void *m_arg, 196 struct radix_node_head *head) 197 { 198 struct radix_node *x; 199 const char *netmask = NULL; 200 201 if (m_arg) { 202 if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0) 203 return NULL; 204 netmask = x->rn_key; 205 } 206 x = rn_match(v_arg, head); 207 if (x != NULL && netmask != NULL) { 208 while (x != NULL && x->rn_mask != netmask) 209 x = x->rn_dupedkey; 210 } 211 return x; 212 } 213 214 static int 215 rn_satisfies_leaf( 216 const char *trial, 217 struct radix_node *leaf, 218 int skip) 219 { 220 const char *cp = trial; 221 const char *cp2 = leaf->rn_key; 222 const char *cp3 = leaf->rn_mask; 223 const char *cplim; 224 int length = uimin(*(const u_char *)cp, *(const u_char *)cp2); 225 226 if (cp3 == 0) 227 cp3 = rn_ones; 228 else 229 length = uimin(length, *(const u_char *)cp3); 230 cplim = cp + length; cp3 += skip; cp2 += skip; 231 for (cp += skip; cp < cplim; cp++, cp2++, cp3++) 232 if ((*cp ^ *cp2) & *cp3) 233 return 0; 234 return 1; 235 } 236 237 struct radix_node * 238 rn_match( 239 const void *v_arg, 240 struct radix_node_head *head) 241 { 242 const char * const v = v_arg; 243 struct radix_node *t = head->rnh_treetop; 244 struct radix_node *top = t; 245 struct radix_node *x; 246 struct radix_node *saved_t; 247 const char *cp = v; 248 const char *cp2; 249 const char *cplim; 250 int off = t->rn_off; 251 int vlen = *(const u_char *)cp; 252 int matched_off; 253 int test, b, rn_b; 254 255 /* 256 * Open code rn_search(v, top) to avoid overhead of extra 257 * subroutine call. 258 */ 259 for (; t->rn_b >= 0; ) { 260 if (t->rn_bmask & cp[t->rn_off]) 261 t = t->rn_r; 262 else 263 t = t->rn_l; 264 } 265 /* 266 * See if we match exactly as a host destination 267 * or at least learn how many bits match, for normal mask finesse. 268 * 269 * It doesn't hurt us to limit how many bytes to check 270 * to the length of the mask, since if it matches we had a genuine 271 * match and the leaf we have is the most specific one anyway; 272 * if it didn't match with a shorter length it would fail 273 * with a long one. This wins big for class B&C netmasks which 274 * are probably the most common case... 275 */ 276 if (t->rn_mask) 277 vlen = *(const u_char *)t->rn_mask; 278 cp += off; cp2 = t->rn_key + off; cplim = v + vlen; 279 for (; cp < cplim; cp++, cp2++) 280 if (*cp != *cp2) 281 goto on1; 282 /* 283 * This extra grot is in case we are explicitly asked 284 * to look up the default. Ugh! 285 */ 286 if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey) 287 t = t->rn_dupedkey; 288 return t; 289 on1: 290 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ 291 for (b = 7; (test >>= 1) > 0;) 292 b--; 293 matched_off = cp - v; 294 b += matched_off << 3; 295 rn_b = -1 - b; 296 /* 297 * If there is a host route in a duped-key chain, it will be first. 298 */ 299 if ((saved_t = t)->rn_mask == 0) 300 t = t->rn_dupedkey; 301 for (; t; t = t->rn_dupedkey) 302 /* 303 * Even if we don't match exactly as a host, 304 * we may match if the leaf we wound up at is 305 * a route to a net. 306 */ 307 if (t->rn_flags & RNF_NORMAL) { 308 if (rn_b <= t->rn_b) 309 return t; 310 } else if (rn_satisfies_leaf(v, t, matched_off)) 311 return t; 312 t = saved_t; 313 /* start searching up the tree */ 314 do { 315 struct radix_mask *m; 316 t = t->rn_p; 317 m = t->rn_mklist; 318 if (m) { 319 /* 320 * If non-contiguous masks ever become important 321 * we can restore the masking and open coding of 322 * the search and satisfaction test and put the 323 * calculation of "off" back before the "do". 324 */ 325 do { 326 if (m->rm_flags & RNF_NORMAL) { 327 if (rn_b <= m->rm_b) 328 return m->rm_leaf; 329 } else { 330 off = uimin(t->rn_off, matched_off); 331 x = rn_search_m(v, t, m->rm_mask); 332 while (x && x->rn_mask != m->rm_mask) 333 x = x->rn_dupedkey; 334 if (x && rn_satisfies_leaf(v, x, off)) 335 return x; 336 } 337 m = m->rm_mklist; 338 } while (m); 339 } 340 } while (t != top); 341 return NULL; 342 } 343 344 static void 345 rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg, 346 const char *delim) 347 { 348 (*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)", 349 delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p, 350 rn->rn_l, rn->rn_r); 351 } 352 353 #ifdef RN_DEBUG 354 int rn_debug = 1; 355 356 static void 357 rn_dbg_print(void *arg, const char *fmt, ...) 358 { 359 va_list ap; 360 361 va_start(ap, fmt); 362 vlog(LOG_DEBUG, fmt, ap); 363 va_end(ap); 364 } 365 366 static void 367 rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg) 368 { 369 struct radix_node *dup, *rn; 370 const char *delim; 371 372 if (printer == NULL) 373 return; 374 375 rn = rn_walkfirst(h->rnh_treetop, printer, arg); 376 for (;;) { 377 /* Process leaves */ 378 delim = ""; 379 for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) { 380 if ((dup->rn_flags & RNF_ROOT) != 0) 381 continue; 382 rn_nodeprint(dup, printer, arg, delim); 383 delim = ", "; 384 } 385 rn = rn_walknext(rn, printer, arg); 386 if (rn->rn_flags & RNF_ROOT) 387 return; 388 } 389 /* NOTREACHED */ 390 } 391 392 #define traverse(__head, __rn) rn_treeprint((__head), rn_dbg_print, (__rn)) 393 #endif /* RN_DEBUG */ 394 395 struct radix_node * 396 rn_newpair( 397 const void *v, 398 int b, 399 struct radix_node nodes[2]) 400 { 401 struct radix_node *tt = nodes; 402 struct radix_node *t = tt + 1; 403 t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7); 404 t->rn_l = tt; t->rn_off = b >> 3; 405 tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t; 406 tt->rn_flags = t->rn_flags = RNF_ACTIVE; 407 return t; 408 } 409 410 struct radix_node * 411 rn_insert( 412 const void *v_arg, 413 struct radix_node_head *head, 414 int *dupentry, 415 struct radix_node nodes[2]) 416 { 417 struct radix_node *top = head->rnh_treetop; 418 struct radix_node *t = rn_search(v_arg, top); 419 struct radix_node *tt; 420 const char *v = v_arg; 421 int head_off = top->rn_off; 422 int vlen = *((const u_char *)v); 423 const char *cp = v + head_off; 424 int b; 425 /* 426 * Find first bit at which v and t->rn_key differ 427 */ 428 { 429 const char *cp2 = t->rn_key + head_off; 430 const char *cplim = v + vlen; 431 int cmp_res; 432 433 while (cp < cplim) 434 if (*cp2++ != *cp++) 435 goto on1; 436 *dupentry = 1; 437 return t; 438 on1: 439 *dupentry = 0; 440 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; 441 for (b = (cp - v) << 3; cmp_res; b--) 442 cmp_res >>= 1; 443 } 444 { 445 struct radix_node *p, *x = top; 446 cp = v; 447 do { 448 p = x; 449 if (cp[x->rn_off] & x->rn_bmask) 450 x = x->rn_r; 451 else x = x->rn_l; 452 } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */ 453 #ifdef RN_DEBUG 454 if (rn_debug) 455 log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p); 456 #endif 457 t = rn_newpair(v_arg, b, nodes); tt = t->rn_l; 458 if ((cp[p->rn_off] & p->rn_bmask) == 0) 459 p->rn_l = t; 460 else 461 p->rn_r = t; 462 x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */ 463 if ((cp[t->rn_off] & t->rn_bmask) == 0) { 464 t->rn_r = x; 465 } else { 466 t->rn_r = tt; t->rn_l = x; 467 } 468 #ifdef RN_DEBUG 469 if (rn_debug) { 470 log(LOG_DEBUG, "%s: Coming Out:\n", __func__), 471 traverse(head, p); 472 } 473 #endif /* RN_DEBUG */ 474 } 475 return tt; 476 } 477 478 struct radix_node * 479 rn_addmask( 480 const void *n_arg, 481 int search, 482 int skip) 483 { 484 const char *netmask = n_arg; 485 const char *cp; 486 const char *cplim; 487 struct radix_node *x; 488 struct radix_node *saved_x; 489 int b = 0, mlen, j; 490 int maskduplicated, m0, isnormal; 491 static int last_zeroed = 0; 492 493 if ((mlen = *(const u_char *)netmask) > max_keylen) 494 mlen = max_keylen; 495 if (skip == 0) 496 skip = 1; 497 if (mlen <= skip) 498 return mask_rnhead->rnh_nodes; 499 if (skip > 1) 500 memmove(addmask_key + 1, rn_ones + 1, skip - 1); 501 if ((m0 = mlen) > skip) 502 memmove(addmask_key + skip, netmask + skip, mlen - skip); 503 /* 504 * Trim trailing zeroes. 505 */ 506 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) 507 cp--; 508 mlen = cp - addmask_key; 509 if (mlen <= skip) { 510 if (m0 >= last_zeroed) 511 last_zeroed = mlen; 512 return mask_rnhead->rnh_nodes; 513 } 514 if (m0 < last_zeroed) 515 memset(addmask_key + m0, 0, last_zeroed - m0); 516 *addmask_key = last_zeroed = mlen; 517 x = rn_search(addmask_key, rn_masktop); 518 if (memcmp(addmask_key, x->rn_key, mlen) != 0) 519 x = 0; 520 if (x || search) 521 return x; 522 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x)); 523 if ((saved_x = x) == NULL) 524 return NULL; 525 memset(x, 0, max_keylen + 2 * sizeof (*x)); 526 cp = netmask = (void *)(x + 2); 527 memmove(x + 2, addmask_key, mlen); 528 x = rn_insert(cp, mask_rnhead, &maskduplicated, x); 529 if (maskduplicated) { 530 log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n"); 531 Free(saved_x); 532 return x; 533 } 534 /* 535 * Calculate index of mask, and check for normalcy. 536 */ 537 cplim = netmask + mlen; isnormal = 1; 538 for (cp = netmask + skip; (cp < cplim) && *(const u_char *)cp == 0xff;) 539 cp++; 540 if (cp != cplim) { 541 for (j = 0x80; (j & *cp) != 0; j >>= 1) 542 b++; 543 if (*cp != normal_chars[b] || cp != (cplim - 1)) 544 isnormal = 0; 545 } 546 b += (cp - netmask) << 3; 547 x->rn_b = -1 - b; 548 if (isnormal) 549 x->rn_flags |= RNF_NORMAL; 550 return x; 551 } 552 553 static int /* XXX: arbitrary ordering for non-contiguous masks */ 554 rn_lexobetter( 555 const void *m_arg, 556 const void *n_arg) 557 { 558 const u_char *mp = m_arg; 559 const u_char *np = n_arg; 560 const u_char *lim; 561 562 if (*mp > *np) 563 return 1; /* not really, but need to check longer one first */ 564 if (*mp == *np) 565 for (lim = mp + *mp; mp < lim;) 566 if (*mp++ > *np++) 567 return 1; 568 return 0; 569 } 570 571 static struct radix_mask * 572 rn_new_radix_mask( 573 struct radix_node *tt, 574 struct radix_mask *next) 575 { 576 struct radix_mask *m; 577 578 MKGet(m); 579 if (m == NULL) { 580 log(LOG_ERR, "Mask for route not entered\n"); 581 return NULL; 582 } 583 memset(m, 0, sizeof(*m)); 584 m->rm_b = tt->rn_b; 585 m->rm_flags = tt->rn_flags; 586 if (tt->rn_flags & RNF_NORMAL) 587 m->rm_leaf = tt; 588 else 589 m->rm_mask = tt->rn_mask; 590 m->rm_mklist = next; 591 tt->rn_mklist = m; 592 return m; 593 } 594 595 struct radix_node * 596 rn_addroute( 597 const void *v_arg, 598 const void *n_arg, 599 struct radix_node_head *head, 600 struct radix_node treenodes[2]) 601 { 602 const char *v = v_arg, *netmask = n_arg; 603 struct radix_node *t, *x = NULL, *tt; 604 struct radix_node *saved_tt, *top = head->rnh_treetop; 605 short b = 0, b_leaf = 0; 606 int keyduplicated; 607 const char *mmask; 608 struct radix_mask *m, **mp; 609 610 /* 611 * In dealing with non-contiguous masks, there may be 612 * many different routes which have the same mask. 613 * We will find it useful to have a unique pointer to 614 * the mask to speed avoiding duplicate references at 615 * nodes and possibly save time in calculating indices. 616 */ 617 if (netmask != NULL) { 618 if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL) 619 return NULL; 620 b_leaf = x->rn_b; 621 b = -1 - x->rn_b; 622 netmask = x->rn_key; 623 } 624 /* 625 * Deal with duplicated keys: attach node to previous instance 626 */ 627 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); 628 if (keyduplicated) { 629 for (t = tt; tt != NULL; t = tt, tt = tt->rn_dupedkey) { 630 if (tt->rn_mask == netmask) 631 return NULL; 632 if (netmask == NULL || 633 (tt->rn_mask != NULL && 634 (b_leaf < tt->rn_b || /* index(netmask) > node */ 635 rn_refines(netmask, tt->rn_mask) || 636 rn_lexobetter(netmask, tt->rn_mask)))) 637 break; 638 } 639 /* 640 * If the mask is not duplicated, we wouldn't 641 * find it among possible duplicate key entries 642 * anyway, so the above test doesn't hurt. 643 * 644 * We sort the masks for a duplicated key the same way as 645 * in a masklist -- most specific to least specific. 646 * This may require the unfortunate nuisance of relocating 647 * the head of the list. 648 * 649 * We also reverse, or doubly link the list through the 650 * parent pointer. 651 */ 652 if (tt == saved_tt) { 653 struct radix_node *xx = x; 654 /* link in at head of list */ 655 (tt = treenodes)->rn_dupedkey = t; 656 tt->rn_flags = t->rn_flags; 657 tt->rn_p = x = t->rn_p; 658 t->rn_p = tt; 659 if (x->rn_l == t) 660 x->rn_l = tt; 661 else 662 x->rn_r = tt; 663 saved_tt = tt; 664 x = xx; 665 } else { 666 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; 667 t->rn_dupedkey = tt; 668 tt->rn_p = t; 669 if (tt->rn_dupedkey) 670 tt->rn_dupedkey->rn_p = tt; 671 } 672 tt->rn_key = v; 673 tt->rn_b = -1; 674 tt->rn_flags = RNF_ACTIVE; 675 } 676 /* 677 * Put mask in tree. 678 */ 679 if (netmask != NULL) { 680 tt->rn_mask = netmask; 681 tt->rn_b = x->rn_b; 682 tt->rn_flags |= x->rn_flags & RNF_NORMAL; 683 } 684 t = saved_tt->rn_p; 685 if (keyduplicated) 686 goto on2; 687 b_leaf = -1 - t->rn_b; 688 if (t->rn_r == saved_tt) 689 x = t->rn_l; 690 else 691 x = t->rn_r; 692 /* Promote general routes from below */ 693 if (x->rn_b < 0) { 694 for (mp = &t->rn_mklist; x != NULL; x = x->rn_dupedkey) { 695 if (x->rn_mask != NULL && x->rn_b >= b_leaf && 696 x->rn_mklist == NULL) { 697 *mp = m = rn_new_radix_mask(x, NULL); 698 if (m != NULL) 699 mp = &m->rm_mklist; 700 } 701 } 702 } else if (x->rn_mklist != NULL) { 703 /* 704 * Skip over masks whose index is > that of new node 705 */ 706 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) 707 if (m->rm_b >= b_leaf) 708 break; 709 t->rn_mklist = m; 710 *mp = NULL; 711 } 712 on2: 713 /* Add new route to highest possible ancestor's list */ 714 if (netmask == NULL || b > t->rn_b) 715 return tt; /* can't lift at all */ 716 b_leaf = tt->rn_b; 717 do { 718 x = t; 719 t = t->rn_p; 720 } while (b <= t->rn_b && x != top); 721 /* 722 * Search through routes associated with node to 723 * insert new route according to index. 724 * Need same criteria as when sorting dupedkeys to avoid 725 * double loop on deletion. 726 */ 727 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) { 728 if (m->rm_b < b_leaf) 729 continue; 730 if (m->rm_b > b_leaf) 731 break; 732 if (m->rm_flags & RNF_NORMAL) { 733 mmask = m->rm_leaf->rn_mask; 734 if (tt->rn_flags & RNF_NORMAL) { 735 log(LOG_ERR, "Non-unique normal route," 736 " mask not entered\n"); 737 return tt; 738 } 739 } else 740 mmask = m->rm_mask; 741 if (mmask == netmask) { 742 m->rm_refs++; 743 tt->rn_mklist = m; 744 return tt; 745 } 746 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask)) 747 break; 748 } 749 *mp = rn_new_radix_mask(tt, *mp); 750 return tt; 751 } 752 753 struct radix_node * 754 rn_delete1( 755 const void *v_arg, 756 const void *netmask_arg, 757 struct radix_node_head *head, 758 struct radix_node *rn) 759 { 760 struct radix_node *t, *p, *x, *tt; 761 struct radix_mask *m, *saved_m, **mp; 762 struct radix_node *dupedkey, *saved_tt, *top; 763 const char *v, *netmask; 764 int b, head_off, vlen; 765 766 v = v_arg; 767 netmask = netmask_arg; 768 x = head->rnh_treetop; 769 tt = rn_search(v, x); 770 head_off = x->rn_off; 771 vlen = *(const u_char *)v; 772 saved_tt = tt; 773 top = x; 774 if (tt == NULL || 775 memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off) != 0) 776 return NULL; 777 /* 778 * Delete our route from mask lists. 779 */ 780 if (netmask != NULL) { 781 if ((x = rn_addmask(netmask, 1, head_off)) == NULL) 782 return NULL; 783 netmask = x->rn_key; 784 while (tt->rn_mask != netmask) 785 if ((tt = tt->rn_dupedkey) == NULL) 786 return NULL; 787 } 788 if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL) 789 goto on1; 790 if (tt->rn_flags & RNF_NORMAL) { 791 if (m->rm_leaf != tt || m->rm_refs > 0) { 792 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 793 return NULL; /* dangling ref could cause disaster */ 794 } 795 } else { 796 if (m->rm_mask != tt->rn_mask) { 797 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 798 goto on1; 799 } 800 if (--m->rm_refs >= 0) 801 goto on1; 802 } 803 b = -1 - tt->rn_b; 804 t = saved_tt->rn_p; 805 if (b > t->rn_b) 806 goto on1; /* Wasn't lifted at all */ 807 do { 808 x = t; 809 t = t->rn_p; 810 } while (b <= t->rn_b && x != top); 811 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) { 812 if (m == saved_m) { 813 *mp = m->rm_mklist; 814 MKFree(m); 815 break; 816 } 817 } 818 if (m == NULL) { 819 log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); 820 if (tt->rn_flags & RNF_NORMAL) 821 return NULL; /* Dangling ref to us */ 822 } 823 on1: 824 /* 825 * Eliminate us from tree 826 */ 827 if (tt->rn_flags & RNF_ROOT) 828 return NULL; 829 #ifdef RN_DEBUG 830 if (rn_debug) 831 log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt); 832 #endif 833 t = tt->rn_p; 834 dupedkey = saved_tt->rn_dupedkey; 835 if (dupedkey != NULL) { 836 /* 837 * Here, tt is the deletion target, and 838 * saved_tt is the head of the dupedkey chain. 839 */ 840 if (tt == saved_tt) { 841 x = dupedkey; 842 x->rn_p = t; 843 if (t->rn_l == tt) 844 t->rn_l = x; 845 else 846 t->rn_r = x; 847 } else { 848 /* find node in front of tt on the chain */ 849 for (x = p = saved_tt; 850 p != NULL && p->rn_dupedkey != tt;) 851 p = p->rn_dupedkey; 852 if (p != NULL) { 853 p->rn_dupedkey = tt->rn_dupedkey; 854 if (tt->rn_dupedkey != NULL) 855 tt->rn_dupedkey->rn_p = p; 856 } else 857 log(LOG_ERR, "rn_delete: couldn't find us\n"); 858 } 859 t = tt + 1; 860 if (t->rn_flags & RNF_ACTIVE) { 861 *++x = *t; 862 p = t->rn_p; 863 if (p->rn_l == t) 864 p->rn_l = x; 865 else 866 p->rn_r = x; 867 x->rn_l->rn_p = x; 868 x->rn_r->rn_p = x; 869 } 870 goto out; 871 } 872 if (t->rn_l == tt) 873 x = t->rn_r; 874 else 875 x = t->rn_l; 876 p = t->rn_p; 877 if (p->rn_r == t) 878 p->rn_r = x; 879 else 880 p->rn_l = x; 881 x->rn_p = p; 882 /* 883 * Demote routes attached to us. 884 */ 885 if (t->rn_mklist == NULL) 886 ; 887 else if (x->rn_b >= 0) { 888 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) 889 ; 890 *mp = t->rn_mklist; 891 } else { 892 /* If there are any key,mask pairs in a sibling 893 duped-key chain, some subset will appear sorted 894 in the same order attached to our mklist */ 895 for (m = t->rn_mklist; 896 m != NULL && x != NULL; 897 x = x->rn_dupedkey) { 898 if (m == x->rn_mklist) { 899 struct radix_mask *mm = m->rm_mklist; 900 x->rn_mklist = NULL; 901 if (--(m->rm_refs) < 0) 902 MKFree(m); 903 m = mm; 904 } 905 } 906 if (m != NULL) { 907 log(LOG_ERR, "rn_delete: Orphaned Mask %p at %p\n", 908 m, x); 909 } 910 } 911 /* 912 * We may be holding an active internal node in the tree. 913 */ 914 x = tt + 1; 915 if (t != x) { 916 *t = *x; 917 t->rn_l->rn_p = t; 918 t->rn_r->rn_p = t; 919 p = x->rn_p; 920 if (p->rn_l == x) 921 p->rn_l = t; 922 else 923 p->rn_r = t; 924 } 925 out: 926 #ifdef RN_DEBUG 927 if (rn_debug) { 928 log(LOG_DEBUG, "%s: Coming Out:\n", __func__), 929 traverse(head, tt); 930 } 931 #endif /* RN_DEBUG */ 932 tt->rn_flags &= ~RNF_ACTIVE; 933 tt[1].rn_flags &= ~RNF_ACTIVE; 934 return tt; 935 } 936 937 struct radix_node * 938 rn_delete( 939 const void *v_arg, 940 const void *netmask_arg, 941 struct radix_node_head *head) 942 { 943 return rn_delete1(v_arg, netmask_arg, head, NULL); 944 } 945 946 static struct radix_node * 947 rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg) 948 { 949 /* If at right child go back up, otherwise, go right */ 950 while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) { 951 if (printer != NULL) 952 (*printer)(arg, SUBTREE_CLOSE); 953 rn = rn->rn_p; 954 } 955 if (printer) 956 rn_nodeprint(rn->rn_p, printer, arg, ""); 957 /* Find the next *leaf* since next node might vanish, too */ 958 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) { 959 if (printer != NULL) 960 (*printer)(arg, SUBTREE_OPEN); 961 rn = rn->rn_l; 962 } 963 return rn; 964 } 965 966 static struct radix_node * 967 rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg) 968 { 969 /* First time through node, go left */ 970 while (rn->rn_b >= 0) { 971 if (printer != NULL) 972 (*printer)(arg, SUBTREE_OPEN); 973 rn = rn->rn_l; 974 } 975 return rn; 976 } 977 978 int 979 rn_walktree( 980 struct radix_node_head *h, 981 int (*f)(struct radix_node *, void *), 982 void *w) 983 { 984 int error; 985 struct radix_node *base, *next, *rn; 986 /* 987 * This gets complicated because we may delete the node 988 * while applying the function f to it, so we need to calculate 989 * the successor node in advance. 990 */ 991 rn = rn_walkfirst(h->rnh_treetop, NULL, NULL); 992 for (;;) { 993 base = rn; 994 next = rn_walknext(rn, NULL, NULL); 995 /* Process leaves */ 996 while ((rn = base) != NULL) { 997 base = rn->rn_dupedkey; 998 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w))) 999 return error; 1000 } 1001 rn = next; 1002 if (rn->rn_flags & RNF_ROOT) 1003 return 0; 1004 } 1005 /* NOTREACHED */ 1006 } 1007 1008 struct radix_node * 1009 rn_search_matched(struct radix_node_head *h, 1010 int (*matcher)(struct radix_node *, void *), void *w) 1011 { 1012 bool matched; 1013 struct radix_node *base, *next, *rn; 1014 /* 1015 * This gets complicated because we may delete the node 1016 * while applying the function f to it, so we need to calculate 1017 * the successor node in advance. 1018 */ 1019 rn = rn_walkfirst(h->rnh_treetop, NULL, NULL); 1020 for (;;) { 1021 base = rn; 1022 next = rn_walknext(rn, NULL, NULL); 1023 /* Process leaves */ 1024 while ((rn = base) != NULL) { 1025 base = rn->rn_dupedkey; 1026 if (!(rn->rn_flags & RNF_ROOT)) { 1027 matched = (*matcher)(rn, w); 1028 if (matched) 1029 return rn; 1030 } 1031 } 1032 rn = next; 1033 if (rn->rn_flags & RNF_ROOT) 1034 return NULL; 1035 } 1036 /* NOTREACHED */ 1037 } 1038 1039 struct delayinit { 1040 void **head; 1041 int off; 1042 SLIST_ENTRY(delayinit) entries; 1043 }; 1044 static SLIST_HEAD(, delayinit) delayinits = SLIST_HEAD_INITIALIZER(delayheads); 1045 static int radix_initialized; 1046 1047 /* 1048 * Initialize a radix tree once radix is initialized. Only for bootstrap. 1049 * Assume that no concurrency protection is necessary at this stage. 1050 */ 1051 void 1052 rn_delayedinit(void **head, int off) 1053 { 1054 struct delayinit *di; 1055 1056 if (radix_initialized) 1057 return; 1058 1059 di = kmem_alloc(sizeof(*di), KM_SLEEP); 1060 di->head = head; 1061 di->off = off; 1062 SLIST_INSERT_HEAD(&delayinits, di, entries); 1063 } 1064 1065 int 1066 rn_inithead(void **head, int off) 1067 { 1068 struct radix_node_head *rnh; 1069 1070 if (*head != NULL) 1071 return 1; 1072 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh)); 1073 if (rnh == NULL) 1074 return 0; 1075 *head = rnh; 1076 return rn_inithead0(rnh, off); 1077 } 1078 1079 int 1080 rn_inithead0(struct radix_node_head *rnh, int off) 1081 { 1082 struct radix_node *t; 1083 struct radix_node *tt; 1084 struct radix_node *ttt; 1085 1086 memset(rnh, 0, sizeof(*rnh)); 1087 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes); 1088 ttt = rnh->rnh_nodes + 2; 1089 t->rn_r = ttt; 1090 t->rn_p = t; 1091 tt = t->rn_l; 1092 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; 1093 tt->rn_b = -1 - off; 1094 *ttt = *tt; 1095 ttt->rn_key = rn_ones; 1096 rnh->rnh_addaddr = rn_addroute; 1097 rnh->rnh_deladdr = rn_delete; 1098 rnh->rnh_matchaddr = rn_match; 1099 rnh->rnh_lookup = rn_lookup; 1100 rnh->rnh_treetop = t; 1101 return 1; 1102 } 1103 1104 void 1105 rn_init(void) 1106 { 1107 char *cp, *cplim; 1108 struct delayinit *di; 1109 #ifdef _KERNEL 1110 struct domain *dp; 1111 1112 if (radix_initialized) 1113 panic("radix already initialized"); 1114 radix_initialized = 1; 1115 1116 DOMAIN_FOREACH(dp) { 1117 if (dp->dom_maxrtkey > max_keylen) 1118 max_keylen = dp->dom_maxrtkey; 1119 } 1120 #endif 1121 if (max_keylen == 0) { 1122 log(LOG_ERR, 1123 "rn_init: radix functions require max_keylen be set\n"); 1124 return; 1125 } 1126 1127 R_Malloc(rn_zeros, char *, 3 * max_keylen); 1128 if (rn_zeros == NULL) 1129 panic("rn_init"); 1130 memset(rn_zeros, 0, 3 * max_keylen); 1131 rn_ones = cp = rn_zeros + max_keylen; 1132 addmask_key = cplim = rn_ones + max_keylen; 1133 while (cp < cplim) 1134 *cp++ = -1; 1135 if (rn_inithead((void *)&mask_rnhead, 0) == 0) 1136 panic("rn_init 2"); 1137 1138 while ((di = SLIST_FIRST(&delayinits)) != NULL) { 1139 if (!rn_inithead(di->head, di->off)) 1140 panic("delayed rn_inithead failed"); 1141 SLIST_REMOVE_HEAD(&delayinits, entries); 1142 kmem_free(di, sizeof(*di)); 1143 } 1144 } 1145