1 /* $NetBSD: pktqueue.c,v 1.22 2023/05/28 08:09:34 andvar Exp $ */ 2 3 /*- 4 * Copyright (c) 2014 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Mindaugas Rasiukevicius. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * The packet queue (pktqueue) interface is a lockless IP input queue 34 * which also abstracts and handles network ISR scheduling. It provides 35 * a mechanism to enable receiver-side packet steering (RPS). 36 */ 37 38 #include <sys/cdefs.h> 39 __KERNEL_RCSID(0, "$NetBSD: pktqueue.c,v 1.22 2023/05/28 08:09:34 andvar Exp $"); 40 41 #ifdef _KERNEL_OPT 42 #include "opt_net_mpsafe.h" 43 #endif 44 45 #include <sys/param.h> 46 #include <sys/types.h> 47 48 #include <sys/atomic.h> 49 #include <sys/cpu.h> 50 #include <sys/pcq.h> 51 #include <sys/intr.h> 52 #include <sys/mbuf.h> 53 #include <sys/proc.h> 54 #include <sys/percpu.h> 55 #include <sys/xcall.h> 56 #include <sys/once.h> 57 #include <sys/queue.h> 58 #include <sys/rwlock.h> 59 60 #include <net/pktqueue.h> 61 #include <net/rss_config.h> 62 63 #include <netinet/in.h> 64 #include <netinet/ip.h> 65 #include <netinet/ip6.h> 66 67 struct pktqueue { 68 /* 69 * The lock used for a barrier mechanism. The barrier counter, 70 * as well as the drop counter, are managed atomically though. 71 * Ensure this group is in a separate cache line. 72 */ 73 union { 74 struct { 75 kmutex_t pq_lock; 76 volatile u_int pq_barrier; 77 }; 78 uint8_t _pad[COHERENCY_UNIT]; 79 }; 80 81 /* The size of the queue, counters and the interrupt handler. */ 82 u_int pq_maxlen; 83 percpu_t * pq_counters; 84 void * pq_sih; 85 86 /* The per-CPU queues. */ 87 struct percpu * pq_pcq; /* struct pcq * */ 88 89 /* The linkage on the list of all pktqueues. */ 90 LIST_ENTRY(pktqueue) pq_list; 91 }; 92 93 /* The counters of the packet queue. */ 94 #define PQCNT_ENQUEUE 0 95 #define PQCNT_DEQUEUE 1 96 #define PQCNT_DROP 2 97 #define PQCNT_NCOUNTERS 3 98 99 typedef struct { 100 uint64_t count[PQCNT_NCOUNTERS]; 101 } pktq_counters_t; 102 103 /* Special marker value used by pktq_barrier() mechanism. */ 104 #define PKTQ_MARKER ((void *)(~0ULL)) 105 106 /* 107 * This is a list of all pktqueues. This list is used by 108 * pktq_ifdetach() to issue a barrier on every pktqueue. 109 * 110 * The r/w lock is acquired for writing in pktq_create() and 111 * pktq_destroy(), and for reading in pktq_ifdetach(). 112 * 113 * This list is not performance critical, and will seldom be 114 * accessed. 115 */ 116 static LIST_HEAD(, pktqueue) pktqueue_list __read_mostly; 117 static krwlock_t pktqueue_list_lock __read_mostly; 118 static once_t pktqueue_list_init_once __read_mostly; 119 120 static int 121 pktqueue_list_init(void) 122 { 123 LIST_INIT(&pktqueue_list); 124 rw_init(&pktqueue_list_lock); 125 return 0; 126 } 127 128 static void 129 pktq_init_cpu(void *vqp, void *vpq, struct cpu_info *ci) 130 { 131 struct pcq **qp = vqp; 132 struct pktqueue *pq = vpq; 133 134 *qp = pcq_create(pq->pq_maxlen, KM_SLEEP); 135 } 136 137 static void 138 pktq_fini_cpu(void *vqp, void *vpq, struct cpu_info *ci) 139 { 140 struct pcq **qp = vqp, *q = *qp; 141 142 KASSERT(pcq_peek(q) == NULL); 143 pcq_destroy(q); 144 *qp = NULL; /* paranoia */ 145 } 146 147 static struct pcq * 148 pktq_pcq(struct pktqueue *pq, struct cpu_info *ci) 149 { 150 struct pcq **qp, *q; 151 152 /* 153 * As long as preemption is disabled, the xcall to swap percpu 154 * buffers can't complete, so it is safe to read the pointer. 155 */ 156 KASSERT(kpreempt_disabled()); 157 158 qp = percpu_getptr_remote(pq->pq_pcq, ci); 159 q = *qp; 160 161 return q; 162 } 163 164 pktqueue_t * 165 pktq_create(size_t maxlen, void (*intrh)(void *), void *sc) 166 { 167 const u_int sflags = SOFTINT_NET | SOFTINT_MPSAFE | SOFTINT_RCPU; 168 pktqueue_t *pq; 169 percpu_t *pc; 170 void *sih; 171 172 RUN_ONCE(&pktqueue_list_init_once, pktqueue_list_init); 173 174 pc = percpu_alloc(sizeof(pktq_counters_t)); 175 if ((sih = softint_establish(sflags, intrh, sc)) == NULL) { 176 percpu_free(pc, sizeof(pktq_counters_t)); 177 return NULL; 178 } 179 180 pq = kmem_zalloc(sizeof(*pq), KM_SLEEP); 181 mutex_init(&pq->pq_lock, MUTEX_DEFAULT, IPL_NONE); 182 pq->pq_maxlen = maxlen; 183 pq->pq_counters = pc; 184 pq->pq_sih = sih; 185 pq->pq_pcq = percpu_create(sizeof(struct pcq *), 186 pktq_init_cpu, pktq_fini_cpu, pq); 187 188 rw_enter(&pktqueue_list_lock, RW_WRITER); 189 LIST_INSERT_HEAD(&pktqueue_list, pq, pq_list); 190 rw_exit(&pktqueue_list_lock); 191 192 return pq; 193 } 194 195 void 196 pktq_destroy(pktqueue_t *pq) 197 { 198 199 KASSERT(pktqueue_list_init_once.o_status == ONCE_DONE); 200 201 rw_enter(&pktqueue_list_lock, RW_WRITER); 202 LIST_REMOVE(pq, pq_list); 203 rw_exit(&pktqueue_list_lock); 204 205 percpu_free(pq->pq_pcq, sizeof(struct pcq *)); 206 percpu_free(pq->pq_counters, sizeof(pktq_counters_t)); 207 softint_disestablish(pq->pq_sih); 208 mutex_destroy(&pq->pq_lock); 209 kmem_free(pq, sizeof(*pq)); 210 } 211 212 /* 213 * - pktq_inc_counter: increment the counter given an ID. 214 * - pktq_collect_counts: handler to sum up the counts from each CPU. 215 * - pktq_getcount: return the effective count given an ID. 216 */ 217 218 static inline void 219 pktq_inc_count(pktqueue_t *pq, u_int i) 220 { 221 percpu_t *pc = pq->pq_counters; 222 pktq_counters_t *c; 223 224 c = percpu_getref(pc); 225 c->count[i]++; 226 percpu_putref(pc); 227 } 228 229 static void 230 pktq_collect_counts(void *mem, void *arg, struct cpu_info *ci) 231 { 232 const pktq_counters_t *c = mem; 233 pktq_counters_t *sum = arg; 234 235 int s = splnet(); 236 237 for (u_int i = 0; i < PQCNT_NCOUNTERS; i++) { 238 sum->count[i] += c->count[i]; 239 } 240 241 splx(s); 242 } 243 244 static uint64_t 245 pktq_get_count(pktqueue_t *pq, pktq_count_t c) 246 { 247 pktq_counters_t sum; 248 249 if (c != PKTQ_MAXLEN) { 250 memset(&sum, 0, sizeof(sum)); 251 percpu_foreach_xcall(pq->pq_counters, 252 XC_HIGHPRI_IPL(IPL_SOFTNET), pktq_collect_counts, &sum); 253 } 254 switch (c) { 255 case PKTQ_NITEMS: 256 return sum.count[PQCNT_ENQUEUE] - sum.count[PQCNT_DEQUEUE]; 257 case PKTQ_DROPS: 258 return sum.count[PQCNT_DROP]; 259 case PKTQ_MAXLEN: 260 return pq->pq_maxlen; 261 } 262 return 0; 263 } 264 265 uint32_t 266 pktq_rps_hash(const pktq_rps_hash_func_t *funcp, const struct mbuf *m) 267 { 268 pktq_rps_hash_func_t func = atomic_load_relaxed(funcp); 269 270 KASSERT(func != NULL); 271 272 return (*func)(m); 273 } 274 275 static uint32_t 276 pktq_rps_hash_zero(const struct mbuf *m __unused) 277 { 278 279 return 0; 280 } 281 282 static uint32_t 283 pktq_rps_hash_curcpu(const struct mbuf *m __unused) 284 { 285 286 return cpu_index(curcpu()); 287 } 288 289 static uint32_t 290 pktq_rps_hash_toeplitz(const struct mbuf *m) 291 { 292 struct ip *ip; 293 /* 294 * Disable UDP port - IP fragments aren't currently being handled 295 * and so we end up with a mix of 2-tuple and 4-tuple 296 * traffic. 297 */ 298 const u_int flag = RSS_TOEPLITZ_USE_TCP_PORT; 299 300 /* glance IP version */ 301 if ((m->m_flags & M_PKTHDR) == 0) 302 return 0; 303 304 ip = mtod(m, struct ip *); 305 if (ip->ip_v == IPVERSION) { 306 if (__predict_false(m->m_len < sizeof(struct ip))) 307 return 0; 308 return rss_toeplitz_hash_from_mbuf_ipv4(m, flag); 309 } else if (ip->ip_v == 6) { 310 if (__predict_false(m->m_len < sizeof(struct ip6_hdr))) 311 return 0; 312 return rss_toeplitz_hash_from_mbuf_ipv6(m, flag); 313 } 314 315 return 0; 316 } 317 318 /* 319 * toeplitz without curcpu. 320 * Generally, this has better performance than toeplitz. 321 */ 322 static uint32_t 323 pktq_rps_hash_toeplitz_othercpus(const struct mbuf *m) 324 { 325 uint32_t hash; 326 327 if (ncpu == 1) 328 return 0; 329 330 hash = pktq_rps_hash_toeplitz(m); 331 hash %= ncpu - 1; 332 if (hash >= cpu_index(curcpu())) 333 return hash + 1; 334 else 335 return hash; 336 } 337 338 static struct pktq_rps_hash_table { 339 const char* prh_type; 340 pktq_rps_hash_func_t prh_func; 341 } const pktq_rps_hash_tab[] = { 342 { "zero", pktq_rps_hash_zero }, 343 { "curcpu", pktq_rps_hash_curcpu }, 344 { "toeplitz", pktq_rps_hash_toeplitz }, 345 { "toeplitz-othercpus", pktq_rps_hash_toeplitz_othercpus }, 346 }; 347 const pktq_rps_hash_func_t pktq_rps_hash_default = 348 #ifdef NET_MPSAFE 349 pktq_rps_hash_curcpu; 350 #else 351 pktq_rps_hash_zero; 352 #endif 353 354 static const char * 355 pktq_get_rps_hash_type(pktq_rps_hash_func_t func) 356 { 357 358 for (int i = 0; i < __arraycount(pktq_rps_hash_tab); i++) { 359 if (func == pktq_rps_hash_tab[i].prh_func) { 360 return pktq_rps_hash_tab[i].prh_type; 361 } 362 } 363 364 return NULL; 365 } 366 367 static int 368 pktq_set_rps_hash_type(pktq_rps_hash_func_t *func, const char *type) 369 { 370 371 if (strcmp(type, pktq_get_rps_hash_type(*func)) == 0) 372 return 0; 373 374 for (int i = 0; i < __arraycount(pktq_rps_hash_tab); i++) { 375 if (strcmp(type, pktq_rps_hash_tab[i].prh_type) == 0) { 376 atomic_store_relaxed(func, pktq_rps_hash_tab[i].prh_func); 377 return 0; 378 } 379 } 380 381 return ENOENT; 382 } 383 384 int 385 sysctl_pktq_rps_hash_handler(SYSCTLFN_ARGS) 386 { 387 struct sysctlnode node; 388 pktq_rps_hash_func_t *func; 389 int error; 390 char type[PKTQ_RPS_HASH_NAME_LEN]; 391 392 node = *rnode; 393 func = node.sysctl_data; 394 395 strlcpy(type, pktq_get_rps_hash_type(*func), PKTQ_RPS_HASH_NAME_LEN); 396 397 node.sysctl_data = &type; 398 node.sysctl_size = sizeof(type); 399 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 400 if (error || newp == NULL) 401 return error; 402 403 error = pktq_set_rps_hash_type(func, type); 404 405 return error; 406 } 407 408 /* 409 * pktq_enqueue: inject the packet into the end of the queue. 410 * 411 * => Must be called from the interrupt or with the preemption disabled. 412 * => Consumes the packet and returns true on success. 413 * => Returns false on failure; caller is responsible to free the packet. 414 */ 415 bool 416 pktq_enqueue(pktqueue_t *pq, struct mbuf *m, const u_int hash __unused) 417 { 418 #if defined(_RUMPKERNEL) || defined(_RUMP_NATIVE_ABI) 419 struct cpu_info *ci = curcpu(); 420 #else 421 struct cpu_info *ci = cpu_lookup(hash % ncpu); 422 #endif 423 424 KASSERT(kpreempt_disabled()); 425 426 if (__predict_false(!pcq_put(pktq_pcq(pq, ci), m))) { 427 pktq_inc_count(pq, PQCNT_DROP); 428 return false; 429 } 430 softint_schedule_cpu(pq->pq_sih, ci); 431 pktq_inc_count(pq, PQCNT_ENQUEUE); 432 return true; 433 } 434 435 /* 436 * pktq_dequeue: take a packet from the queue. 437 * 438 * => Must be called with preemption disabled. 439 * => Must ensure there are not concurrent dequeue calls. 440 */ 441 struct mbuf * 442 pktq_dequeue(pktqueue_t *pq) 443 { 444 struct cpu_info *ci = curcpu(); 445 struct mbuf *m; 446 447 KASSERT(kpreempt_disabled()); 448 449 m = pcq_get(pktq_pcq(pq, ci)); 450 if (__predict_false(m == PKTQ_MARKER)) { 451 /* Note the marker entry. */ 452 atomic_inc_uint(&pq->pq_barrier); 453 454 /* Get the next queue entry. */ 455 m = pcq_get(pktq_pcq(pq, ci)); 456 457 /* 458 * There can only be one barrier operation pending 459 * on a pktqueue at any given time, so we can assert 460 * that the next item is not a marker. 461 */ 462 KASSERT(m != PKTQ_MARKER); 463 } 464 if (__predict_true(m != NULL)) { 465 pktq_inc_count(pq, PQCNT_DEQUEUE); 466 } 467 return m; 468 } 469 470 /* 471 * pktq_barrier: waits for a grace period when all packets enqueued at 472 * the moment of calling this routine will be processed. This is used 473 * to ensure that e.g. packets referencing some interface were drained. 474 */ 475 void 476 pktq_barrier(pktqueue_t *pq) 477 { 478 CPU_INFO_ITERATOR cii; 479 struct cpu_info *ci; 480 u_int pending = 0; 481 482 mutex_enter(&pq->pq_lock); 483 KASSERT(pq->pq_barrier == 0); 484 485 for (CPU_INFO_FOREACH(cii, ci)) { 486 struct pcq *q; 487 488 kpreempt_disable(); 489 q = pktq_pcq(pq, ci); 490 kpreempt_enable(); 491 492 /* If the queue is empty - nothing to do. */ 493 if (pcq_peek(q) == NULL) { 494 continue; 495 } 496 /* Otherwise, put the marker and entry. */ 497 while (!pcq_put(q, PKTQ_MARKER)) { 498 kpause("pktqsync", false, 1, NULL); 499 } 500 kpreempt_disable(); 501 softint_schedule_cpu(pq->pq_sih, ci); 502 kpreempt_enable(); 503 pending++; 504 } 505 506 /* Wait for each queue to process the markers. */ 507 while (pq->pq_barrier != pending) { 508 kpause("pktqsync", false, 1, NULL); 509 } 510 pq->pq_barrier = 0; 511 mutex_exit(&pq->pq_lock); 512 } 513 514 /* 515 * pktq_ifdetach: issue a barrier on all pktqueues when a network 516 * interface is detached. 517 */ 518 void 519 pktq_ifdetach(void) 520 { 521 pktqueue_t *pq; 522 523 /* Just in case no pktqueues have been created yet... */ 524 RUN_ONCE(&pktqueue_list_init_once, pktqueue_list_init); 525 526 rw_enter(&pktqueue_list_lock, RW_READER); 527 LIST_FOREACH(pq, &pktqueue_list, pq_list) { 528 pktq_barrier(pq); 529 } 530 rw_exit(&pktqueue_list_lock); 531 } 532 533 /* 534 * pktq_flush: free mbufs in all queues. 535 * 536 * => The caller must ensure there are no concurrent writers or flush calls. 537 */ 538 void 539 pktq_flush(pktqueue_t *pq) 540 { 541 CPU_INFO_ITERATOR cii; 542 struct cpu_info *ci; 543 struct mbuf *m, *m0 = NULL; 544 545 ASSERT_SLEEPABLE(); 546 547 /* 548 * Run a dummy softint at IPL_SOFTNET on all CPUs to ensure that any 549 * already running handler for this pktqueue is no longer running. 550 */ 551 xc_barrier(XC_HIGHPRI_IPL(IPL_SOFTNET)); 552 553 /* 554 * Acquire the barrier lock. While the caller ensures that 555 * no explicit pktq_barrier() calls will be issued, this holds 556 * off any implicit pktq_barrier() calls that would happen 557 * as the result of pktq_ifdetach(). 558 */ 559 mutex_enter(&pq->pq_lock); 560 561 for (CPU_INFO_FOREACH(cii, ci)) { 562 struct pcq *q; 563 564 kpreempt_disable(); 565 q = pktq_pcq(pq, ci); 566 kpreempt_enable(); 567 568 /* 569 * Pull the packets off the pcq and chain them into 570 * a list to be freed later. 571 */ 572 while ((m = pcq_get(q)) != NULL) { 573 pktq_inc_count(pq, PQCNT_DEQUEUE); 574 m->m_nextpkt = m0; 575 m0 = m; 576 } 577 } 578 579 mutex_exit(&pq->pq_lock); 580 581 /* Free the packets now that the critical section is over. */ 582 while ((m = m0) != NULL) { 583 m0 = m->m_nextpkt; 584 m_freem(m); 585 } 586 } 587 588 static void 589 pktq_set_maxlen_cpu(void *vpq, void *vqs) 590 { 591 struct pktqueue *pq = vpq; 592 struct pcq **qp, *q, **qs = vqs; 593 unsigned i = cpu_index(curcpu()); 594 int s; 595 596 s = splnet(); 597 qp = percpu_getref(pq->pq_pcq); 598 q = *qp; 599 *qp = qs[i]; 600 qs[i] = q; 601 percpu_putref(pq->pq_pcq); 602 splx(s); 603 } 604 605 /* 606 * pktq_set_maxlen: create per-CPU queues using a new size and replace 607 * the existing queues without losing any packets. 608 * 609 * XXX ncpu must remain stable throughout. 610 */ 611 int 612 pktq_set_maxlen(pktqueue_t *pq, size_t maxlen) 613 { 614 const u_int slotbytes = ncpu * sizeof(pcq_t *); 615 pcq_t **qs; 616 617 if (!maxlen || maxlen > PCQ_MAXLEN) 618 return EINVAL; 619 if (pq->pq_maxlen == maxlen) 620 return 0; 621 622 /* First, allocate the new queues. */ 623 qs = kmem_zalloc(slotbytes, KM_SLEEP); 624 for (u_int i = 0; i < ncpu; i++) { 625 qs[i] = pcq_create(maxlen, KM_SLEEP); 626 } 627 628 /* 629 * Issue an xcall to replace the queue pointers on each CPU. 630 * This implies all the necessary memory barriers. 631 */ 632 mutex_enter(&pq->pq_lock); 633 xc_wait(xc_broadcast(XC_HIGHPRI, pktq_set_maxlen_cpu, pq, qs)); 634 pq->pq_maxlen = maxlen; 635 mutex_exit(&pq->pq_lock); 636 637 /* 638 * At this point, the new packets are flowing into the new 639 * queues. However, the old queues may have some packets 640 * present which are no longer being processed. We are going 641 * to re-enqueue them. This may change the order of packet 642 * arrival, but it is not considered an issue. 643 * 644 * There may be in-flight interrupts calling pktq_dequeue() 645 * which reference the old queues. Issue a barrier to ensure 646 * that we are going to be the only pcq_get() callers on the 647 * old queues. 648 */ 649 pktq_barrier(pq); 650 651 for (u_int i = 0; i < ncpu; i++) { 652 struct pcq *q; 653 struct mbuf *m; 654 655 kpreempt_disable(); 656 q = pktq_pcq(pq, cpu_lookup(i)); 657 kpreempt_enable(); 658 659 while ((m = pcq_get(qs[i])) != NULL) { 660 while (!pcq_put(q, m)) { 661 kpause("pktqrenq", false, 1, NULL); 662 } 663 } 664 pcq_destroy(qs[i]); 665 } 666 667 /* Well, that was fun. */ 668 kmem_free(qs, slotbytes); 669 return 0; 670 } 671 672 static int 673 sysctl_pktq_maxlen(SYSCTLFN_ARGS) 674 { 675 struct sysctlnode node = *rnode; 676 pktqueue_t * const pq = node.sysctl_data; 677 u_int nmaxlen = pktq_get_count(pq, PKTQ_MAXLEN); 678 int error; 679 680 node.sysctl_data = &nmaxlen; 681 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 682 if (error || newp == NULL) 683 return error; 684 return pktq_set_maxlen(pq, nmaxlen); 685 } 686 687 static int 688 sysctl_pktq_count(SYSCTLFN_ARGS, u_int count_id) 689 { 690 struct sysctlnode node = *rnode; 691 pktqueue_t * const pq = node.sysctl_data; 692 uint64_t count = pktq_get_count(pq, count_id); 693 694 node.sysctl_data = &count; 695 return sysctl_lookup(SYSCTLFN_CALL(&node)); 696 } 697 698 static int 699 sysctl_pktq_nitems(SYSCTLFN_ARGS) 700 { 701 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), PKTQ_NITEMS); 702 } 703 704 static int 705 sysctl_pktq_drops(SYSCTLFN_ARGS) 706 { 707 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), PKTQ_DROPS); 708 } 709 710 /* 711 * pktqueue_sysctl_setup: set up the sysctl nodes for a pktqueue 712 * using standardized names at the specified parent node and 713 * node ID (or CTL_CREATE). 714 */ 715 void 716 pktq_sysctl_setup(pktqueue_t * const pq, struct sysctllog ** const clog, 717 const struct sysctlnode * const parent_node, const int qid) 718 { 719 const struct sysctlnode *rnode = parent_node, *cnode; 720 721 KASSERT(pq != NULL); 722 KASSERT(parent_node != NULL); 723 KASSERT(qid == CTL_CREATE || qid >= 0); 724 725 /* Create the "ifq" node below the parent node. */ 726 sysctl_createv(clog, 0, &rnode, &cnode, 727 CTLFLAG_PERMANENT, 728 CTLTYPE_NODE, "ifq", 729 SYSCTL_DESCR("Protocol input queue controls"), 730 NULL, 0, NULL, 0, 731 qid, CTL_EOL); 732 733 /* Now create the standard child nodes below "ifq". */ 734 rnode = cnode; 735 736 sysctl_createv(clog, 0, &rnode, &cnode, 737 CTLFLAG_PERMANENT, 738 CTLTYPE_QUAD, "len", 739 SYSCTL_DESCR("Current input queue length"), 740 sysctl_pktq_nitems, 0, (void *)pq, 0, 741 IFQCTL_LEN, CTL_EOL); 742 sysctl_createv(clog, 0, &rnode, &cnode, 743 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 744 CTLTYPE_INT, "maxlen", 745 SYSCTL_DESCR("Maximum allowed input queue length"), 746 sysctl_pktq_maxlen, 0, (void *)pq, 0, 747 IFQCTL_MAXLEN, CTL_EOL); 748 sysctl_createv(clog, 0, &rnode, &cnode, 749 CTLFLAG_PERMANENT, 750 CTLTYPE_QUAD, "drops", 751 SYSCTL_DESCR("Packets dropped due to full input queue"), 752 sysctl_pktq_drops, 0, (void *)pq, 0, 753 IFQCTL_DROPS, CTL_EOL); 754 } 755