xref: /netbsd-src/sys/net/npf/npf_ruleset.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: npf_ruleset.c,v 1.33 2014/06/25 00:20:06 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009-2013 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This material is based upon work partially supported by The
8  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * NPF ruleset module.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: npf_ruleset.c,v 1.33 2014/06/25 00:20:06 rmind Exp $");
38 
39 #include <sys/param.h>
40 #include <sys/types.h>
41 
42 #include <sys/atomic.h>
43 #include <sys/kmem.h>
44 #include <sys/queue.h>
45 #include <sys/mbuf.h>
46 #include <sys/types.h>
47 
48 #include <net/bpf.h>
49 #include <net/bpfjit.h>
50 #include <net/pfil.h>
51 #include <net/if.h>
52 
53 #include "npf_impl.h"
54 
55 struct npf_ruleset {
56 	/*
57 	 * - List of all rules.
58 	 * - Dynamic (i.e. named) rules.
59 	 * - G/C list for convenience.
60 	 */
61 	LIST_HEAD(, npf_rule)	rs_all;
62 	LIST_HEAD(, npf_rule)	rs_dynamic;
63 	LIST_HEAD(, npf_rule)	rs_gc;
64 
65 	/* Unique ID counter. */
66 	uint64_t		rs_idcnt;
67 
68 	/* Number of array slots and active rules. */
69 	u_int			rs_slots;
70 	u_int			rs_nitems;
71 
72 	/* Array of ordered rules. */
73 	npf_rule_t *		rs_rules[];
74 };
75 
76 struct npf_rule {
77 	/* Attributes, interface and skip slot. */
78 	uint32_t		r_attr;
79 	u_int			r_ifid;
80 	u_int			r_skip_to;
81 
82 	/* Code to process, if any. */
83 	int			r_type;
84 	bpfjit_func_t		r_jcode;
85 	void *			r_code;
86 	size_t			r_clen;
87 
88 	/* NAT policy (optional), rule procedure and subset. */
89 	npf_natpolicy_t *	r_natp;
90 	npf_rproc_t *		r_rproc;
91 
92 	/* Rule priority: (highest) 1, 2 ... n (lowest). */
93 	pri_t			r_priority;
94 
95 	/*
96 	 * Dynamic group: subset queue and a dynamic group list entry.
97 	 * Dynamic rule: entry and the parent rule (the group).
98 	 */
99 	union {
100 		TAILQ_HEAD(npf_ruleq, npf_rule) r_subset;
101 		TAILQ_ENTRY(npf_rule)	r_entry;
102 	} /* C11 */;
103 	union {
104 		LIST_ENTRY(npf_rule)	r_dentry;
105 		npf_rule_t *		r_parent;
106 	} /* C11 */;
107 
108 	/* Rule ID and the original dictionary. */
109 	uint64_t		r_id;
110 	prop_dictionary_t	r_dict;
111 
112 	/* Rule name and all-list entry. */
113 	char			r_name[NPF_RULE_MAXNAMELEN];
114 	LIST_ENTRY(npf_rule)	r_aentry;
115 
116 	/* Key (optional). */
117 	uint8_t			r_key[NPF_RULE_MAXKEYLEN];
118 };
119 
120 /*
121  * Private attributes - must be in the NPF_RULE_PRIVMASK range.
122  */
123 #define	NPF_RULE_KEEPNAT	(0x01000000 & NPF_RULE_PRIVMASK)
124 
125 #define	NPF_DYNAMIC_GROUP_P(attr) \
126     (((attr) & NPF_DYNAMIC_GROUP) == NPF_DYNAMIC_GROUP)
127 
128 #define	NPF_DYNAMIC_RULE_P(attr) \
129     (((attr) & NPF_DYNAMIC_GROUP) == NPF_RULE_DYNAMIC)
130 
131 npf_ruleset_t *
132 npf_ruleset_create(size_t slots)
133 {
134 	size_t len = offsetof(npf_ruleset_t, rs_rules[slots]);
135 	npf_ruleset_t *rlset;
136 
137 	rlset = kmem_zalloc(len, KM_SLEEP);
138 	LIST_INIT(&rlset->rs_dynamic);
139 	LIST_INIT(&rlset->rs_all);
140 	LIST_INIT(&rlset->rs_gc);
141 	rlset->rs_slots = slots;
142 
143 	return rlset;
144 }
145 
146 static void
147 npf_ruleset_unlink(npf_ruleset_t *rlset, npf_rule_t *rl)
148 {
149 	if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
150 		LIST_REMOVE(rl, r_dentry);
151 	}
152 	if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
153 		npf_rule_t *rg = rl->r_parent;
154 		TAILQ_REMOVE(&rg->r_subset, rl, r_entry);
155 	}
156 	LIST_REMOVE(rl, r_aentry);
157 }
158 
159 void
160 npf_ruleset_destroy(npf_ruleset_t *rlset)
161 {
162 	size_t len = offsetof(npf_ruleset_t, rs_rules[rlset->rs_slots]);
163 	npf_rule_t *rl;
164 
165 	while ((rl = LIST_FIRST(&rlset->rs_all)) != NULL) {
166 		npf_ruleset_unlink(rlset, rl);
167 		npf_rule_free(rl);
168 	}
169 	KASSERT(LIST_EMPTY(&rlset->rs_dynamic));
170 	KASSERT(LIST_EMPTY(&rlset->rs_gc));
171 	kmem_free(rlset, len);
172 }
173 
174 /*
175  * npf_ruleset_insert: insert the rule into the specified ruleset.
176  */
177 void
178 npf_ruleset_insert(npf_ruleset_t *rlset, npf_rule_t *rl)
179 {
180 	u_int n = rlset->rs_nitems;
181 
182 	KASSERT(n < rlset->rs_slots);
183 
184 	LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
185 	if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
186 		LIST_INSERT_HEAD(&rlset->rs_dynamic, rl, r_dentry);
187 	} else {
188 		KASSERTMSG(rl->r_parent == NULL, "cannot be dynamic rule");
189 		rl->r_attr &= ~NPF_RULE_DYNAMIC;
190 	}
191 
192 	rlset->rs_rules[n] = rl;
193 	rlset->rs_nitems++;
194 
195 	if (rl->r_skip_to < ++n) {
196 		rl->r_skip_to = n;
197 	}
198 }
199 
200 static npf_rule_t *
201 npf_ruleset_lookup(npf_ruleset_t *rlset, const char *name)
202 {
203 	npf_rule_t *rl;
204 
205 	KASSERT(npf_config_locked_p());
206 
207 	LIST_FOREACH(rl, &rlset->rs_dynamic, r_dentry) {
208 		KASSERT(NPF_DYNAMIC_GROUP_P(rl->r_attr));
209 		if (strncmp(rl->r_name, name, NPF_RULE_MAXNAMELEN) == 0)
210 			break;
211 	}
212 	return rl;
213 }
214 
215 int
216 npf_ruleset_add(npf_ruleset_t *rlset, const char *rname, npf_rule_t *rl)
217 {
218 	npf_rule_t *rg, *it;
219 	pri_t priocmd;
220 
221 	rg = npf_ruleset_lookup(rlset, rname);
222 	if (rg == NULL) {
223 		return ESRCH;
224 	}
225 	if (!NPF_DYNAMIC_RULE_P(rl->r_attr)) {
226 		return EINVAL;
227 	}
228 
229 	/* Dynamic rule - assign a unique ID and save the parent. */
230 	rl->r_id = ++rlset->rs_idcnt;
231 	rl->r_parent = rg;
232 
233 	/*
234 	 * Rule priority: (highest) 1, 2 ... n (lowest).
235 	 * Negative priority indicates an operation and is reset to zero.
236 	 */
237 	if ((priocmd = rl->r_priority) < 0) {
238 		rl->r_priority = 0;
239 	}
240 
241 	switch (priocmd) {
242 	case NPF_PRI_FIRST:
243 		TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
244 			if (rl->r_priority <= it->r_priority)
245 				break;
246 		}
247 		if (it) {
248 			TAILQ_INSERT_BEFORE(it, rl, r_entry);
249 		} else {
250 			TAILQ_INSERT_HEAD(&rg->r_subset, rl, r_entry);
251 		}
252 		break;
253 	case NPF_PRI_LAST:
254 	default:
255 		TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
256 			if (rl->r_priority < it->r_priority)
257 				break;
258 		}
259 		if (it) {
260 			TAILQ_INSERT_BEFORE(it, rl, r_entry);
261 		} else {
262 			TAILQ_INSERT_TAIL(&rg->r_subset, rl, r_entry);
263 		}
264 		break;
265 	}
266 
267 	/* Finally, add into the all-list. */
268 	LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
269 	return 0;
270 }
271 
272 int
273 npf_ruleset_remove(npf_ruleset_t *rlset, const char *rname, uint64_t id)
274 {
275 	npf_rule_t *rg, *rl;
276 
277 	if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
278 		return ESRCH;
279 	}
280 	TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
281 		KASSERT(rl->r_parent == rg);
282 
283 		/* Compare ID.  On match, remove and return. */
284 		if (rl->r_id == id) {
285 			npf_ruleset_unlink(rlset, rl);
286 			LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
287 			return 0;
288 		}
289 	}
290 	return ENOENT;
291 }
292 
293 int
294 npf_ruleset_remkey(npf_ruleset_t *rlset, const char *rname,
295     const void *key, size_t len)
296 {
297 	npf_rule_t *rg, *rl;
298 
299 	KASSERT(len && len <= NPF_RULE_MAXKEYLEN);
300 
301 	if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
302 		return ESRCH;
303 	}
304 
305 	/* Find the last in the list. */
306 	TAILQ_FOREACH_REVERSE(rl, &rg->r_subset, npf_ruleq, r_entry) {
307 		KASSERT(rl->r_parent == rg);
308 
309 		/* Compare the key.  On match, remove and return. */
310 		if (memcmp(rl->r_key, key, len) == 0) {
311 			npf_ruleset_unlink(rlset, rl);
312 			LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
313 			return 0;
314 		}
315 	}
316 	return ENOENT;
317 }
318 
319 prop_dictionary_t
320 npf_ruleset_list(npf_ruleset_t *rlset, const char *rname)
321 {
322 	prop_dictionary_t rldict;
323 	prop_array_t rules;
324 	npf_rule_t *rg, *rl;
325 
326 	if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
327 		return NULL;
328 	}
329 	if ((rldict = prop_dictionary_create()) == NULL) {
330 		return NULL;
331 	}
332 	if ((rules = prop_array_create()) == NULL) {
333 		prop_object_release(rldict);
334 		return NULL;
335 	}
336 
337 	TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
338 		KASSERT(rl->r_parent == rg);
339 		if (rl->r_dict && !prop_array_add(rules, rl->r_dict)) {
340 			prop_object_release(rldict);
341 			prop_object_release(rules);
342 			return NULL;
343 		}
344 	}
345 
346 	if (!prop_dictionary_set(rldict, "rules", rules)) {
347 		prop_object_release(rldict);
348 		rldict = NULL;
349 	}
350 	prop_object_release(rules);
351 	return rldict;
352 }
353 
354 int
355 npf_ruleset_flush(npf_ruleset_t *rlset, const char *rname)
356 {
357 	npf_rule_t *rg, *rl;
358 
359 	if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
360 		return ESRCH;
361 	}
362 	while ((rl = TAILQ_FIRST(&rg->r_subset)) != NULL) {
363 		KASSERT(rl->r_parent == rg);
364 		npf_ruleset_unlink(rlset, rl);
365 		LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
366 	}
367 	return 0;
368 }
369 
370 void
371 npf_ruleset_gc(npf_ruleset_t *rlset)
372 {
373 	npf_rule_t *rl;
374 
375 	while ((rl = LIST_FIRST(&rlset->rs_gc)) != NULL) {
376 		LIST_REMOVE(rl, r_aentry);
377 		npf_rule_free(rl);
378 	}
379 }
380 
381 /*
382  * npf_ruleset_reload: prepare the new ruleset by scanning the active
383  * ruleset and 1) sharing the dynamic rules 2) sharing NAT policies.
384  *
385  * => The active (old) ruleset should be exclusively locked.
386  */
387 void
388 npf_ruleset_reload(npf_ruleset_t *newset, npf_ruleset_t *oldset)
389 {
390 	npf_rule_t *rg, *rl;
391 
392 	KASSERT(npf_config_locked_p());
393 
394 	/*
395 	 * Scan the dynamic rules and share (migrate) if needed.
396 	 */
397 	LIST_FOREACH(rg, &newset->rs_dynamic, r_dentry) {
398 		npf_rule_t *actrg;
399 
400 		/* Look for a dynamic ruleset group with such name. */
401 		actrg = npf_ruleset_lookup(oldset, rg->r_name);
402 		if (actrg == NULL) {
403 			continue;
404 		}
405 
406 		/*
407 		 * Copy the list-head structure.  This is necessary because
408 		 * the rules are still active and therefore accessible for
409 		 * inspection via the old ruleset.
410 		 */
411 		memcpy(&rg->r_subset, &actrg->r_subset, sizeof(rg->r_subset));
412 		TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
413 			/*
414 			 * We can safely migrate to the new all-rule list
415 			 * and re-set the parent rule, though.
416 			 */
417 			LIST_REMOVE(rl, r_aentry);
418 			LIST_INSERT_HEAD(&newset->rs_all, rl, r_aentry);
419 			rl->r_parent = rg;
420 		}
421 	}
422 
423 	/*
424 	 * Scan all rules in the new ruleset and share NAT policies.
425 	 */
426 	LIST_FOREACH(rl, &newset->rs_all, r_aentry) {
427 		npf_natpolicy_t *np;
428 		npf_rule_t *actrl;
429 
430 		/* Does the rule have a NAT policy associated? */
431 		if ((np = rl->r_natp) == NULL) {
432 			continue;
433 		}
434 		/* Does it match with any policy in the active ruleset? */
435 		if ((actrl = npf_ruleset_matchnat(oldset, np)) == NULL) {
436 			continue;
437 		}
438 
439 		/*
440 		 * Inherit the matching NAT policy and check other ones
441 		 * in the new ruleset for sharing the portmap.
442 		 */
443 		rl->r_natp = actrl->r_natp;
444 		npf_ruleset_sharepm(newset, rl->r_natp);
445 
446 		/*
447 		 * Finally, mark the active rule to not destroy its NAT
448 		 * policy later as we inherited it (but the rule must be
449 		 * kept active for now).  Destroy the new/unused policy.
450 		 */
451 		actrl->r_attr |= NPF_RULE_KEEPNAT;
452 		npf_nat_freepolicy(np);
453 	}
454 
455 	/* Inherit the ID counter. */
456 	newset->rs_idcnt = oldset->rs_idcnt;
457 }
458 
459 /*
460  * npf_ruleset_matchnat: find a matching NAT policy in the ruleset.
461  */
462 npf_rule_t *
463 npf_ruleset_matchnat(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
464 {
465 	npf_rule_t *rl;
466 
467 	/* Find a matching NAT policy in the old ruleset. */
468 	LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
469 		if (rl->r_natp && npf_nat_matchpolicy(rl->r_natp, mnp))
470 			break;
471 	}
472 	return rl;
473 }
474 
475 npf_rule_t *
476 npf_ruleset_sharepm(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
477 {
478 	npf_natpolicy_t *np;
479 	npf_rule_t *rl;
480 
481 	/* Find a matching NAT policy in the old ruleset. */
482 	LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
483 		/*
484 		 * NAT policy might not yet be set during the creation of
485 		 * the ruleset (in such case, rule is for our policy), or
486 		 * policies might be equal due to rule exchange on reload.
487 		 */
488 		np = rl->r_natp;
489 		if (np == NULL || np == mnp)
490 			continue;
491 		if (npf_nat_sharepm(np, mnp))
492 			break;
493 	}
494 	return rl;
495 }
496 
497 /*
498  * npf_ruleset_freealg: inspect the ruleset and disassociate specified
499  * ALG from all NAT entries using it.
500  */
501 void
502 npf_ruleset_freealg(npf_ruleset_t *rlset, npf_alg_t *alg)
503 {
504 	npf_rule_t *rl;
505 	npf_natpolicy_t *np;
506 
507 	LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
508 		if ((np = rl->r_natp) != NULL) {
509 			npf_nat_freealg(np, alg);
510 		}
511 	}
512 }
513 
514 /*
515  * npf_rule_alloc: allocate a rule and initialise it.
516  */
517 npf_rule_t *
518 npf_rule_alloc(prop_dictionary_t rldict)
519 {
520 	npf_rule_t *rl;
521 	const char *rname;
522 
523 	/* Allocate a rule structure. */
524 	rl = kmem_zalloc(sizeof(npf_rule_t), KM_SLEEP);
525 	TAILQ_INIT(&rl->r_subset);
526 	rl->r_natp = NULL;
527 
528 	/* Name (optional) */
529 	if (prop_dictionary_get_cstring_nocopy(rldict, "name", &rname)) {
530 		strlcpy(rl->r_name, rname, NPF_RULE_MAXNAMELEN);
531 	} else {
532 		rl->r_name[0] = '\0';
533 	}
534 
535 	/* Attributes, priority and interface ID (optional). */
536 	prop_dictionary_get_uint32(rldict, "attributes", &rl->r_attr);
537 	prop_dictionary_get_int32(rldict, "priority", &rl->r_priority);
538 	rl->r_attr &= ~NPF_RULE_PRIVMASK;
539 
540 	if (prop_dictionary_get_cstring_nocopy(rldict, "interface", &rname)) {
541 		if ((rl->r_ifid = npf_ifmap_register(rname)) == 0) {
542 			kmem_free(rl, sizeof(npf_rule_t));
543 			return NULL;
544 		}
545 	} else {
546 		rl->r_ifid = 0;
547 	}
548 
549 	/* Get the skip-to index.  No need to validate it. */
550 	prop_dictionary_get_uint32(rldict, "skip-to", &rl->r_skip_to);
551 
552 	/* Key (optional). */
553 	prop_object_t obj = prop_dictionary_get(rldict, "key");
554 	const void *key = prop_data_data_nocopy(obj);
555 
556 	if (key) {
557 		size_t len = prop_data_size(obj);
558 		if (len > NPF_RULE_MAXKEYLEN) {
559 			kmem_free(rl, sizeof(npf_rule_t));
560 			return NULL;
561 		}
562 		memcpy(rl->r_key, key, len);
563 	}
564 
565 	if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
566 		rl->r_dict = prop_dictionary_copy(rldict);
567 	}
568 
569 	return rl;
570 }
571 
572 /*
573  * npf_rule_setcode: assign filter code to the rule.
574  *
575  * => The code must be validated by the caller.
576  * => JIT compilation may be performed here.
577  */
578 void
579 npf_rule_setcode(npf_rule_t *rl, const int type, void *code, size_t size)
580 {
581 	KASSERT(type == NPF_CODE_BPF);
582 
583 	if ((rl->r_jcode = npf_bpf_compile(code, size)) == NULL) {
584 		rl->r_code = code;
585 		rl->r_clen = size;
586 	} else {
587 		rl->r_code = NULL;
588 	}
589 	rl->r_type = type;
590 }
591 
592 /*
593  * npf_rule_setrproc: assign a rule procedure and hold a reference on it.
594  */
595 void
596 npf_rule_setrproc(npf_rule_t *rl, npf_rproc_t *rp)
597 {
598 	npf_rproc_acquire(rp);
599 	rl->r_rproc = rp;
600 }
601 
602 /*
603  * npf_rule_free: free the specified rule.
604  */
605 void
606 npf_rule_free(npf_rule_t *rl)
607 {
608 	npf_natpolicy_t *np = rl->r_natp;
609 	npf_rproc_t *rp = rl->r_rproc;
610 
611 	if (np && (rl->r_attr & NPF_RULE_KEEPNAT) == 0) {
612 		/* Free NAT policy. */
613 		npf_nat_freepolicy(np);
614 	}
615 	if (rp) {
616 		/* Release rule procedure. */
617 		npf_rproc_release(rp);
618 	}
619 	if (rl->r_code) {
620 		/* Free byte-code. */
621 		kmem_free(rl->r_code, rl->r_clen);
622 	}
623 	if (rl->r_jcode) {
624 		/* Free JIT code. */
625 		bpf_jit_freecode(rl->r_jcode);
626 	}
627 	if (rl->r_dict) {
628 		/* Destroy the dictionary. */
629 		prop_object_release(rl->r_dict);
630 	}
631 	kmem_free(rl, sizeof(npf_rule_t));
632 }
633 
634 /*
635  * npf_rule_getid: return the unique ID of a rule.
636  * npf_rule_getrproc: acquire a reference and return rule procedure, if any.
637  * npf_rule_getnat: get NAT policy assigned to the rule.
638  */
639 
640 uint64_t
641 npf_rule_getid(const npf_rule_t *rl)
642 {
643 	KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
644 	return rl->r_id;
645 }
646 
647 npf_rproc_t *
648 npf_rule_getrproc(const npf_rule_t *rl)
649 {
650 	npf_rproc_t *rp = rl->r_rproc;
651 
652 	if (rp) {
653 		npf_rproc_acquire(rp);
654 	}
655 	return rp;
656 }
657 
658 npf_natpolicy_t *
659 npf_rule_getnat(const npf_rule_t *rl)
660 {
661 	return rl->r_natp;
662 }
663 
664 /*
665  * npf_rule_setnat: assign NAT policy to the rule and insert into the
666  * NAT policy list in the ruleset.
667  */
668 void
669 npf_rule_setnat(npf_rule_t *rl, npf_natpolicy_t *np)
670 {
671 	KASSERT(rl->r_natp == NULL);
672 	rl->r_natp = np;
673 }
674 
675 /*
676  * npf_rule_inspect: match the interface, direction and run the filter code.
677  * Returns true if rule matches and false otherwise.
678  */
679 static inline bool
680 npf_rule_inspect(const npf_rule_t *rl, bpf_args_t *bc_args,
681     const int di_mask, const u_int ifid)
682 {
683 	/* Match the interface. */
684 	if (rl->r_ifid && rl->r_ifid != ifid) {
685 		return false;
686 	}
687 
688 	/* Match the direction. */
689 	if ((rl->r_attr & NPF_RULE_DIMASK) != NPF_RULE_DIMASK) {
690 		if ((rl->r_attr & di_mask) == 0)
691 			return false;
692 	}
693 
694 	/* Any code? */
695 	if (rl->r_jcode == rl->r_code) {
696 		KASSERT(rl->r_jcode == NULL);
697 		KASSERT(rl->r_code == NULL);
698 		return true;
699 	}
700 	KASSERT(rl->r_type == NPF_CODE_BPF);
701 	return npf_bpf_filter(bc_args, rl->r_code, rl->r_jcode) != 0;
702 }
703 
704 /*
705  * npf_rule_reinspect: re-inspect the dynamic rule by iterating its list.
706  * This is only for the dynamic rules.  Subrules cannot have nested rules.
707  */
708 static npf_rule_t *
709 npf_rule_reinspect(const npf_rule_t *drl, bpf_args_t *bc_args,
710     const int di_mask, const u_int ifid)
711 {
712 	npf_rule_t *final_rl = NULL, *rl;
713 
714 	KASSERT(NPF_DYNAMIC_GROUP_P(drl->r_attr));
715 
716 	TAILQ_FOREACH(rl, &drl->r_subset, r_entry) {
717 		if (!npf_rule_inspect(rl, bc_args, di_mask, ifid)) {
718 			continue;
719 		}
720 		if (rl->r_attr & NPF_RULE_FINAL) {
721 			return rl;
722 		}
723 		final_rl = rl;
724 	}
725 	return final_rl;
726 }
727 
728 /*
729  * npf_ruleset_inspect: inspect the packet against the given ruleset.
730  *
731  * Loop through the rules in the set and run the byte-code of each rule
732  * against the packet (nbuf chain).  If sub-ruleset is found, inspect it.
733  *
734  * => Caller is responsible for nbuf chain protection.
735  */
736 npf_rule_t *
737 npf_ruleset_inspect(npf_cache_t *npc, nbuf_t *nbuf,
738     const npf_ruleset_t *rlset, const int di, const int layer)
739 {
740 	const int di_mask = (di & PFIL_IN) ? NPF_RULE_IN : NPF_RULE_OUT;
741 	const u_int nitems = rlset->rs_nitems;
742 	const u_int ifid = nbuf->nb_ifid;
743 	npf_rule_t *final_rl = NULL;
744 	bpf_args_t bc_args;
745 	u_int n = 0;
746 
747 	KASSERT(((di & PFIL_IN) != 0) ^ ((di & PFIL_OUT) != 0));
748 
749 	/*
750 	 * Prepare the external memory store and the arguments for
751 	 * the BPF programs to be executed.
752 	 */
753 	uint32_t bc_words[NPF_BPF_NWORDS];
754 	npf_bpf_prepare(npc, nbuf, &bc_args, bc_words);
755 
756 	while (n < nitems) {
757 		npf_rule_t *rl = rlset->rs_rules[n];
758 		const u_int skip_to = rl->r_skip_to;
759 		const uint32_t attr = rl->r_attr;
760 
761 		KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
762 		KASSERT(!final_rl || rl->r_priority >= final_rl->r_priority);
763 		KASSERT(n < skip_to);
764 
765 		/* Group is a barrier: return a matching if found any. */
766 		if ((attr & NPF_RULE_GROUP) != 0 && final_rl) {
767 			break;
768 		}
769 
770 		/* Main inspection of the rule. */
771 		if (!npf_rule_inspect(rl, &bc_args, di_mask, ifid)) {
772 			n = skip_to;
773 			continue;
774 		}
775 
776 		if (NPF_DYNAMIC_GROUP_P(attr)) {
777 			/*
778 			 * If this is a dynamic rule, re-inspect the subrules.
779 			 * If it has any matching rule, then it is final.
780 			 */
781 			rl = npf_rule_reinspect(rl, &bc_args, di_mask, ifid);
782 			if (rl != NULL) {
783 				final_rl = rl;
784 				break;
785 			}
786 		} else if ((attr & NPF_RULE_GROUP) == 0) {
787 			/*
788 			 * Groups themselves are not matching.
789 			 */
790 			final_rl = rl;
791 		}
792 
793 		/* Set the matching rule and check for "final". */
794 		if (attr & NPF_RULE_FINAL) {
795 			break;
796 		}
797 		n++;
798 	}
799 
800 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
801 	return final_rl;
802 }
803 
804 /*
805  * npf_rule_conclude: return decision and the flags for conclusion.
806  *
807  * => Returns ENETUNREACH if "block" and 0 if "pass".
808  */
809 int
810 npf_rule_conclude(const npf_rule_t *rl, int *retfl)
811 {
812 	/* If not passing - drop the packet. */
813 	*retfl = rl->r_attr;
814 	return (rl->r_attr & NPF_RULE_PASS) ? 0 : ENETUNREACH;
815 }
816