1 /* $NetBSD: npf_ruleset.c,v 1.37 2014/08/11 01:54:12 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2009-2013 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This material is based upon work partially supported by The 8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * NPF ruleset module. 34 */ 35 36 #include <sys/cdefs.h> 37 __KERNEL_RCSID(0, "$NetBSD: npf_ruleset.c,v 1.37 2014/08/11 01:54:12 rmind Exp $"); 38 39 #include <sys/param.h> 40 #include <sys/types.h> 41 42 #include <sys/atomic.h> 43 #include <sys/kmem.h> 44 #include <sys/queue.h> 45 #include <sys/mbuf.h> 46 #include <sys/types.h> 47 48 #include <net/bpf.h> 49 #include <net/bpfjit.h> 50 #include <net/pfil.h> 51 #include <net/if.h> 52 53 #include "npf_impl.h" 54 55 struct npf_ruleset { 56 /* 57 * - List of all rules. 58 * - Dynamic (i.e. named) rules. 59 * - G/C list for convenience. 60 */ 61 LIST_HEAD(, npf_rule) rs_all; 62 LIST_HEAD(, npf_rule) rs_dynamic; 63 LIST_HEAD(, npf_rule) rs_gc; 64 65 /* Unique ID counter. */ 66 uint64_t rs_idcnt; 67 68 /* Number of array slots and active rules. */ 69 u_int rs_slots; 70 u_int rs_nitems; 71 72 /* Array of ordered rules. */ 73 npf_rule_t * rs_rules[]; 74 }; 75 76 struct npf_rule { 77 /* Attributes, interface and skip slot. */ 78 uint32_t r_attr; 79 u_int r_ifid; 80 u_int r_skip_to; 81 82 /* Code to process, if any. */ 83 int r_type; 84 bpfjit_func_t r_jcode; 85 void * r_code; 86 u_int r_clen; 87 88 /* NAT policy (optional), rule procedure and subset. */ 89 npf_natpolicy_t * r_natp; 90 npf_rproc_t * r_rproc; 91 92 /* Rule priority: (highest) 1, 2 ... n (lowest). */ 93 pri_t r_priority; 94 95 /* 96 * Dynamic group: subset queue and a dynamic group list entry. 97 * Dynamic rule: entry and the parent rule (the group). 98 */ 99 union { 100 TAILQ_HEAD(npf_ruleq, npf_rule) r_subset; 101 TAILQ_ENTRY(npf_rule) r_entry; 102 } /* C11 */; 103 union { 104 LIST_ENTRY(npf_rule) r_dentry; 105 npf_rule_t * r_parent; 106 } /* C11 */; 107 108 /* Rule ID, name and the optional key. */ 109 uint64_t r_id; 110 char r_name[NPF_RULE_MAXNAMELEN]; 111 uint8_t r_key[NPF_RULE_MAXKEYLEN]; 112 113 /* All-list entry and the auxiliary info. */ 114 LIST_ENTRY(npf_rule) r_aentry; 115 prop_data_t r_info; 116 }; 117 118 #define SKIPTO_ADJ_FLAG (1U << 31) 119 #define SKIPTO_MASK (SKIPTO_ADJ_FLAG - 1) 120 121 static int npf_rule_export(const npf_ruleset_t *, 122 const npf_rule_t *, prop_dictionary_t); 123 124 /* 125 * Private attributes - must be in the NPF_RULE_PRIVMASK range. 126 */ 127 #define NPF_RULE_KEEPNAT (0x01000000 & NPF_RULE_PRIVMASK) 128 129 #define NPF_DYNAMIC_GROUP_P(attr) \ 130 (((attr) & NPF_DYNAMIC_GROUP) == NPF_DYNAMIC_GROUP) 131 132 #define NPF_DYNAMIC_RULE_P(attr) \ 133 (((attr) & NPF_DYNAMIC_GROUP) == NPF_RULE_DYNAMIC) 134 135 npf_ruleset_t * 136 npf_ruleset_create(size_t slots) 137 { 138 size_t len = offsetof(npf_ruleset_t, rs_rules[slots]); 139 npf_ruleset_t *rlset; 140 141 rlset = kmem_zalloc(len, KM_SLEEP); 142 LIST_INIT(&rlset->rs_dynamic); 143 LIST_INIT(&rlset->rs_all); 144 LIST_INIT(&rlset->rs_gc); 145 rlset->rs_slots = slots; 146 147 return rlset; 148 } 149 150 static void 151 npf_ruleset_unlink(npf_ruleset_t *rlset, npf_rule_t *rl) 152 { 153 if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) { 154 LIST_REMOVE(rl, r_dentry); 155 } 156 if (NPF_DYNAMIC_RULE_P(rl->r_attr)) { 157 npf_rule_t *rg = rl->r_parent; 158 TAILQ_REMOVE(&rg->r_subset, rl, r_entry); 159 } 160 LIST_REMOVE(rl, r_aentry); 161 } 162 163 void 164 npf_ruleset_destroy(npf_ruleset_t *rlset) 165 { 166 size_t len = offsetof(npf_ruleset_t, rs_rules[rlset->rs_slots]); 167 npf_rule_t *rl; 168 169 while ((rl = LIST_FIRST(&rlset->rs_all)) != NULL) { 170 npf_ruleset_unlink(rlset, rl); 171 npf_rule_free(rl); 172 } 173 KASSERT(LIST_EMPTY(&rlset->rs_dynamic)); 174 KASSERT(LIST_EMPTY(&rlset->rs_gc)); 175 kmem_free(rlset, len); 176 } 177 178 /* 179 * npf_ruleset_insert: insert the rule into the specified ruleset. 180 */ 181 void 182 npf_ruleset_insert(npf_ruleset_t *rlset, npf_rule_t *rl) 183 { 184 u_int n = rlset->rs_nitems; 185 186 KASSERT(n < rlset->rs_slots); 187 188 LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry); 189 if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) { 190 LIST_INSERT_HEAD(&rlset->rs_dynamic, rl, r_dentry); 191 } else { 192 KASSERTMSG(rl->r_parent == NULL, "cannot be dynamic rule"); 193 rl->r_attr &= ~NPF_RULE_DYNAMIC; 194 } 195 196 rlset->rs_rules[n] = rl; 197 rlset->rs_nitems++; 198 199 if (rl->r_skip_to < ++n) { 200 rl->r_skip_to = SKIPTO_ADJ_FLAG | n; 201 } 202 } 203 204 static npf_rule_t * 205 npf_ruleset_lookup(npf_ruleset_t *rlset, const char *name) 206 { 207 npf_rule_t *rl; 208 209 KASSERT(npf_config_locked_p()); 210 211 LIST_FOREACH(rl, &rlset->rs_dynamic, r_dentry) { 212 KASSERT(NPF_DYNAMIC_GROUP_P(rl->r_attr)); 213 if (strncmp(rl->r_name, name, NPF_RULE_MAXNAMELEN) == 0) 214 break; 215 } 216 return rl; 217 } 218 219 int 220 npf_ruleset_add(npf_ruleset_t *rlset, const char *rname, npf_rule_t *rl) 221 { 222 npf_rule_t *rg, *it; 223 pri_t priocmd; 224 225 rg = npf_ruleset_lookup(rlset, rname); 226 if (rg == NULL) { 227 return ESRCH; 228 } 229 if (!NPF_DYNAMIC_RULE_P(rl->r_attr)) { 230 return EINVAL; 231 } 232 233 /* Dynamic rule - assign a unique ID and save the parent. */ 234 rl->r_id = ++rlset->rs_idcnt; 235 rl->r_parent = rg; 236 237 /* 238 * Rule priority: (highest) 1, 2 ... n (lowest). 239 * Negative priority indicates an operation and is reset to zero. 240 */ 241 if ((priocmd = rl->r_priority) < 0) { 242 rl->r_priority = 0; 243 } 244 245 switch (priocmd) { 246 case NPF_PRI_FIRST: 247 TAILQ_FOREACH(it, &rg->r_subset, r_entry) { 248 if (rl->r_priority <= it->r_priority) 249 break; 250 } 251 if (it) { 252 TAILQ_INSERT_BEFORE(it, rl, r_entry); 253 } else { 254 TAILQ_INSERT_HEAD(&rg->r_subset, rl, r_entry); 255 } 256 break; 257 case NPF_PRI_LAST: 258 default: 259 TAILQ_FOREACH(it, &rg->r_subset, r_entry) { 260 if (rl->r_priority < it->r_priority) 261 break; 262 } 263 if (it) { 264 TAILQ_INSERT_BEFORE(it, rl, r_entry); 265 } else { 266 TAILQ_INSERT_TAIL(&rg->r_subset, rl, r_entry); 267 } 268 break; 269 } 270 271 /* Finally, add into the all-list. */ 272 LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry); 273 return 0; 274 } 275 276 int 277 npf_ruleset_remove(npf_ruleset_t *rlset, const char *rname, uint64_t id) 278 { 279 npf_rule_t *rg, *rl; 280 281 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) { 282 return ESRCH; 283 } 284 TAILQ_FOREACH(rl, &rg->r_subset, r_entry) { 285 KASSERT(rl->r_parent == rg); 286 287 /* Compare ID. On match, remove and return. */ 288 if (rl->r_id == id) { 289 npf_ruleset_unlink(rlset, rl); 290 LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry); 291 return 0; 292 } 293 } 294 return ENOENT; 295 } 296 297 int 298 npf_ruleset_remkey(npf_ruleset_t *rlset, const char *rname, 299 const void *key, size_t len) 300 { 301 npf_rule_t *rg, *rl; 302 303 KASSERT(len && len <= NPF_RULE_MAXKEYLEN); 304 305 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) { 306 return ESRCH; 307 } 308 309 /* Find the last in the list. */ 310 TAILQ_FOREACH_REVERSE(rl, &rg->r_subset, npf_ruleq, r_entry) { 311 KASSERT(rl->r_parent == rg); 312 313 /* Compare the key. On match, remove and return. */ 314 if (memcmp(rl->r_key, key, len) == 0) { 315 npf_ruleset_unlink(rlset, rl); 316 LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry); 317 return 0; 318 } 319 } 320 return ENOENT; 321 } 322 323 prop_dictionary_t 324 npf_ruleset_list(npf_ruleset_t *rlset, const char *rname) 325 { 326 prop_dictionary_t rgdict; 327 prop_array_t rules; 328 npf_rule_t *rg, *rl; 329 330 KASSERT(npf_config_locked_p()); 331 332 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) { 333 return NULL; 334 } 335 if ((rgdict = prop_dictionary_create()) == NULL) { 336 return NULL; 337 } 338 if ((rules = prop_array_create()) == NULL) { 339 prop_object_release(rgdict); 340 return NULL; 341 } 342 343 TAILQ_FOREACH(rl, &rg->r_subset, r_entry) { 344 prop_dictionary_t rldict; 345 346 rldict = prop_dictionary_create(); 347 KASSERT(rl->r_parent == rg); 348 349 if (npf_rule_export(rlset, rl, rldict)) { 350 prop_object_release(rldict); 351 prop_object_release(rules); 352 return NULL; 353 } 354 prop_array_add(rules, rldict); 355 prop_object_release(rldict); 356 } 357 358 if (!prop_dictionary_set(rgdict, "rules", rules)) { 359 prop_object_release(rgdict); 360 rgdict = NULL; 361 } 362 prop_object_release(rules); 363 return rgdict; 364 } 365 366 int 367 npf_ruleset_flush(npf_ruleset_t *rlset, const char *rname) 368 { 369 npf_rule_t *rg, *rl; 370 371 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) { 372 return ESRCH; 373 } 374 while ((rl = TAILQ_FIRST(&rg->r_subset)) != NULL) { 375 KASSERT(rl->r_parent == rg); 376 npf_ruleset_unlink(rlset, rl); 377 LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry); 378 } 379 return 0; 380 } 381 382 int 383 npf_ruleset_export(const npf_ruleset_t *rlset, prop_array_t rules) 384 { 385 const u_int nitems = rlset->rs_nitems; 386 int error = 0; 387 u_int n = 0; 388 389 KASSERT(npf_config_locked_p()); 390 391 while (n < nitems) { 392 const npf_rule_t *rl = rlset->rs_rules[n]; 393 const npf_natpolicy_t *natp = rl->r_natp; 394 prop_dictionary_t rldict; 395 396 rldict = prop_dictionary_create(); 397 if ((error = npf_rule_export(rlset, rl, rldict)) != 0) { 398 prop_object_release(rldict); 399 break; 400 } 401 if (natp && (error = npf_nat_policyexport(natp, rldict)) != 0) { 402 prop_object_release(rldict); 403 break; 404 } 405 prop_array_add(rules, rldict); 406 prop_object_release(rldict); 407 n++; 408 } 409 return error; 410 } 411 412 void 413 npf_ruleset_gc(npf_ruleset_t *rlset) 414 { 415 npf_rule_t *rl; 416 417 while ((rl = LIST_FIRST(&rlset->rs_gc)) != NULL) { 418 LIST_REMOVE(rl, r_aentry); 419 npf_rule_free(rl); 420 } 421 } 422 423 /* 424 * npf_ruleset_cmpnat: find a matching NAT policy in the ruleset. 425 */ 426 static inline npf_rule_t * 427 npf_ruleset_cmpnat(npf_ruleset_t *rlset, npf_natpolicy_t *mnp) 428 { 429 npf_rule_t *rl; 430 431 /* Find a matching NAT policy in the old ruleset. */ 432 LIST_FOREACH(rl, &rlset->rs_all, r_aentry) { 433 if (rl->r_natp && npf_nat_cmppolicy(rl->r_natp, mnp)) 434 break; 435 } 436 return rl; 437 } 438 439 /* 440 * npf_ruleset_reload: prepare the new ruleset by scanning the active 441 * ruleset and 1) sharing the dynamic rules 2) sharing NAT policies. 442 * 443 * => The active (old) ruleset should be exclusively locked. 444 */ 445 void 446 npf_ruleset_reload(npf_ruleset_t *newset, npf_ruleset_t *oldset) 447 { 448 npf_rule_t *rg, *rl; 449 uint64_t nid = 0; 450 451 KASSERT(npf_config_locked_p()); 452 453 /* 454 * Scan the dynamic rules and share (migrate) if needed. 455 */ 456 LIST_FOREACH(rg, &newset->rs_dynamic, r_dentry) { 457 npf_rule_t *actrg; 458 459 /* Look for a dynamic ruleset group with such name. */ 460 actrg = npf_ruleset_lookup(oldset, rg->r_name); 461 if (actrg == NULL) { 462 continue; 463 } 464 465 /* 466 * Copy the list-head structure. This is necessary because 467 * the rules are still active and therefore accessible for 468 * inspection via the old ruleset. 469 */ 470 memcpy(&rg->r_subset, &actrg->r_subset, sizeof(rg->r_subset)); 471 TAILQ_FOREACH(rl, &rg->r_subset, r_entry) { 472 /* 473 * We can safely migrate to the new all-rule list 474 * and re-set the parent rule, though. 475 */ 476 LIST_REMOVE(rl, r_aentry); 477 LIST_INSERT_HEAD(&newset->rs_all, rl, r_aentry); 478 rl->r_parent = rg; 479 } 480 } 481 482 /* 483 * Scan all rules in the new ruleset and share NAT policies. 484 * Also, assign a unique ID for each policy here. 485 */ 486 LIST_FOREACH(rl, &newset->rs_all, r_aentry) { 487 npf_natpolicy_t *np; 488 npf_rule_t *actrl; 489 490 /* Does the rule have a NAT policy associated? */ 491 if ((np = rl->r_natp) == NULL) { 492 continue; 493 } 494 495 /* Does it match with any policy in the active ruleset? */ 496 if ((actrl = npf_ruleset_cmpnat(oldset, np)) == NULL) { 497 npf_nat_setid(np, ++nid); 498 continue; 499 } 500 501 /* 502 * Inherit the matching NAT policy and check other ones 503 * in the new ruleset for sharing the portmap. 504 */ 505 rl->r_natp = actrl->r_natp; 506 npf_ruleset_sharepm(newset, rl->r_natp); 507 npf_nat_setid(rl->r_natp, ++nid); 508 509 /* 510 * Finally, mark the active rule to not destroy its NAT 511 * policy later as we inherited it (but the rule must be 512 * kept active for now). Destroy the new/unused policy. 513 */ 514 actrl->r_attr |= NPF_RULE_KEEPNAT; 515 npf_nat_freepolicy(np); 516 } 517 518 /* Inherit the ID counter. */ 519 newset->rs_idcnt = oldset->rs_idcnt; 520 } 521 522 npf_rule_t * 523 npf_ruleset_sharepm(npf_ruleset_t *rlset, npf_natpolicy_t *mnp) 524 { 525 npf_natpolicy_t *np; 526 npf_rule_t *rl; 527 528 /* Find a matching NAT policy in the old ruleset. */ 529 LIST_FOREACH(rl, &rlset->rs_all, r_aentry) { 530 /* 531 * NAT policy might not yet be set during the creation of 532 * the ruleset (in such case, rule is for our policy), or 533 * policies might be equal due to rule exchange on reload. 534 */ 535 np = rl->r_natp; 536 if (np == NULL || np == mnp) 537 continue; 538 if (npf_nat_sharepm(np, mnp)) 539 break; 540 } 541 return rl; 542 } 543 544 npf_natpolicy_t * 545 npf_ruleset_findnat(npf_ruleset_t *rlset, uint64_t id) 546 { 547 npf_rule_t *rl; 548 549 LIST_FOREACH(rl, &rlset->rs_all, r_aentry) { 550 npf_natpolicy_t *np = rl->r_natp; 551 if (np && npf_nat_getid(np) == id) { 552 return np; 553 } 554 } 555 return NULL; 556 } 557 558 /* 559 * npf_ruleset_freealg: inspect the ruleset and disassociate specified 560 * ALG from all NAT entries using it. 561 */ 562 void 563 npf_ruleset_freealg(npf_ruleset_t *rlset, npf_alg_t *alg) 564 { 565 npf_rule_t *rl; 566 npf_natpolicy_t *np; 567 568 LIST_FOREACH(rl, &rlset->rs_all, r_aentry) { 569 if ((np = rl->r_natp) != NULL) { 570 npf_nat_freealg(np, alg); 571 } 572 } 573 } 574 575 /* 576 * npf_rule_alloc: allocate a rule and initialise it. 577 */ 578 npf_rule_t * 579 npf_rule_alloc(prop_dictionary_t rldict) 580 { 581 npf_rule_t *rl; 582 const char *rname; 583 prop_data_t d; 584 585 /* Allocate a rule structure. */ 586 rl = kmem_zalloc(sizeof(npf_rule_t), KM_SLEEP); 587 TAILQ_INIT(&rl->r_subset); 588 rl->r_natp = NULL; 589 590 /* Name (optional) */ 591 if (prop_dictionary_get_cstring_nocopy(rldict, "name", &rname)) { 592 strlcpy(rl->r_name, rname, NPF_RULE_MAXNAMELEN); 593 } else { 594 rl->r_name[0] = '\0'; 595 } 596 597 /* Attributes, priority and interface ID (optional). */ 598 prop_dictionary_get_uint32(rldict, "attr", &rl->r_attr); 599 prop_dictionary_get_int32(rldict, "prio", &rl->r_priority); 600 rl->r_attr &= ~NPF_RULE_PRIVMASK; 601 602 if (prop_dictionary_get_cstring_nocopy(rldict, "ifname", &rname)) { 603 if ((rl->r_ifid = npf_ifmap_register(rname)) == 0) { 604 kmem_free(rl, sizeof(npf_rule_t)); 605 return NULL; 606 } 607 } else { 608 rl->r_ifid = 0; 609 } 610 611 /* Get the skip-to index. No need to validate it. */ 612 prop_dictionary_get_uint32(rldict, "skip-to", &rl->r_skip_to); 613 614 /* Key (optional). */ 615 prop_object_t obj = prop_dictionary_get(rldict, "key"); 616 const void *key = prop_data_data_nocopy(obj); 617 618 if (key) { 619 size_t len = prop_data_size(obj); 620 if (len > NPF_RULE_MAXKEYLEN) { 621 kmem_free(rl, sizeof(npf_rule_t)); 622 return NULL; 623 } 624 memcpy(rl->r_key, key, len); 625 } 626 627 if ((d = prop_dictionary_get(rldict, "info")) != NULL) { 628 rl->r_info = prop_data_copy(d); 629 } 630 return rl; 631 } 632 633 static int 634 npf_rule_export(const npf_ruleset_t *rlset, const npf_rule_t *rl, 635 prop_dictionary_t rldict) 636 { 637 u_int skip_to = 0; 638 prop_data_t d; 639 640 prop_dictionary_set_uint32(rldict, "attr", rl->r_attr); 641 prop_dictionary_set_int32(rldict, "prio", rl->r_priority); 642 if ((rl->r_skip_to & SKIPTO_ADJ_FLAG) == 0) { 643 skip_to = rl->r_skip_to & SKIPTO_MASK; 644 } 645 prop_dictionary_set_uint32(rldict, "skip-to", skip_to); 646 prop_dictionary_set_int32(rldict, "code-type", rl->r_type); 647 if (rl->r_code) { 648 d = prop_data_create_data(rl->r_code, rl->r_clen); 649 prop_dictionary_set_and_rel(rldict, "code", d); 650 } 651 652 if (rl->r_ifid) { 653 const char *ifname = npf_ifmap_getname(rl->r_ifid); 654 prop_dictionary_set_cstring(rldict, "ifname", ifname); 655 } 656 prop_dictionary_set_uint64(rldict, "id", rl->r_id); 657 658 if (rl->r_name[0]) { 659 prop_dictionary_set_cstring(rldict, "name", rl->r_name); 660 } 661 if (NPF_DYNAMIC_RULE_P(rl->r_attr)) { 662 d = prop_data_create_data(rl->r_key, NPF_RULE_MAXKEYLEN); 663 prop_dictionary_set_and_rel(rldict, "key", d); 664 } 665 if (rl->r_info) { 666 prop_dictionary_set(rldict, "info", rl->r_info); 667 } 668 return 0; 669 } 670 671 /* 672 * npf_rule_setcode: assign filter code to the rule. 673 * 674 * => The code must be validated by the caller. 675 * => JIT compilation may be performed here. 676 */ 677 void 678 npf_rule_setcode(npf_rule_t *rl, const int type, void *code, size_t size) 679 { 680 KASSERT(type == NPF_CODE_BPF); 681 682 rl->r_type = type; 683 rl->r_code = code; 684 rl->r_clen = size; 685 rl->r_jcode = npf_bpf_compile(code, size); 686 } 687 688 /* 689 * npf_rule_setrproc: assign a rule procedure and hold a reference on it. 690 */ 691 void 692 npf_rule_setrproc(npf_rule_t *rl, npf_rproc_t *rp) 693 { 694 npf_rproc_acquire(rp); 695 rl->r_rproc = rp; 696 } 697 698 /* 699 * npf_rule_free: free the specified rule. 700 */ 701 void 702 npf_rule_free(npf_rule_t *rl) 703 { 704 npf_natpolicy_t *np = rl->r_natp; 705 npf_rproc_t *rp = rl->r_rproc; 706 707 if (np && (rl->r_attr & NPF_RULE_KEEPNAT) == 0) { 708 /* Free NAT policy. */ 709 npf_nat_freepolicy(np); 710 } 711 if (rp) { 712 /* Release rule procedure. */ 713 npf_rproc_release(rp); 714 } 715 if (rl->r_code) { 716 /* Free byte-code. */ 717 kmem_free(rl->r_code, rl->r_clen); 718 } 719 if (rl->r_jcode) { 720 /* Free JIT code. */ 721 bpf_jit_freecode(rl->r_jcode); 722 } 723 if (rl->r_info) { 724 prop_object_release(rl->r_info); 725 } 726 kmem_free(rl, sizeof(npf_rule_t)); 727 } 728 729 /* 730 * npf_rule_getid: return the unique ID of a rule. 731 * npf_rule_getrproc: acquire a reference and return rule procedure, if any. 732 * npf_rule_getnat: get NAT policy assigned to the rule. 733 */ 734 735 uint64_t 736 npf_rule_getid(const npf_rule_t *rl) 737 { 738 KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr)); 739 return rl->r_id; 740 } 741 742 npf_rproc_t * 743 npf_rule_getrproc(const npf_rule_t *rl) 744 { 745 npf_rproc_t *rp = rl->r_rproc; 746 747 if (rp) { 748 npf_rproc_acquire(rp); 749 } 750 return rp; 751 } 752 753 npf_natpolicy_t * 754 npf_rule_getnat(const npf_rule_t *rl) 755 { 756 return rl->r_natp; 757 } 758 759 /* 760 * npf_rule_setnat: assign NAT policy to the rule and insert into the 761 * NAT policy list in the ruleset. 762 */ 763 void 764 npf_rule_setnat(npf_rule_t *rl, npf_natpolicy_t *np) 765 { 766 KASSERT(rl->r_natp == NULL); 767 rl->r_natp = np; 768 } 769 770 /* 771 * npf_rule_inspect: match the interface, direction and run the filter code. 772 * Returns true if rule matches and false otherwise. 773 */ 774 static inline bool 775 npf_rule_inspect(const npf_rule_t *rl, bpf_args_t *bc_args, 776 const int di_mask, const u_int ifid) 777 { 778 /* Match the interface. */ 779 if (rl->r_ifid && rl->r_ifid != ifid) { 780 return false; 781 } 782 783 /* Match the direction. */ 784 if ((rl->r_attr & NPF_RULE_DIMASK) != NPF_RULE_DIMASK) { 785 if ((rl->r_attr & di_mask) == 0) 786 return false; 787 } 788 789 /* Any code? */ 790 if (!rl->r_code) { 791 KASSERT(rl->r_jcode == NULL); 792 return true; 793 } 794 KASSERT(rl->r_type == NPF_CODE_BPF); 795 return npf_bpf_filter(bc_args, rl->r_code, rl->r_jcode) != 0; 796 } 797 798 /* 799 * npf_rule_reinspect: re-inspect the dynamic rule by iterating its list. 800 * This is only for the dynamic rules. Subrules cannot have nested rules. 801 */ 802 static npf_rule_t * 803 npf_rule_reinspect(const npf_rule_t *drl, bpf_args_t *bc_args, 804 const int di_mask, const u_int ifid) 805 { 806 npf_rule_t *final_rl = NULL, *rl; 807 808 KASSERT(NPF_DYNAMIC_GROUP_P(drl->r_attr)); 809 810 TAILQ_FOREACH(rl, &drl->r_subset, r_entry) { 811 if (!npf_rule_inspect(rl, bc_args, di_mask, ifid)) { 812 continue; 813 } 814 if (rl->r_attr & NPF_RULE_FINAL) { 815 return rl; 816 } 817 final_rl = rl; 818 } 819 return final_rl; 820 } 821 822 /* 823 * npf_ruleset_inspect: inspect the packet against the given ruleset. 824 * 825 * Loop through the rules in the set and run the byte-code of each rule 826 * against the packet (nbuf chain). If sub-ruleset is found, inspect it. 827 */ 828 npf_rule_t * 829 npf_ruleset_inspect(npf_cache_t *npc, const npf_ruleset_t *rlset, 830 const int di, const int layer) 831 { 832 nbuf_t *nbuf = npc->npc_nbuf; 833 const int di_mask = (di & PFIL_IN) ? NPF_RULE_IN : NPF_RULE_OUT; 834 const u_int nitems = rlset->rs_nitems; 835 const u_int ifid = nbuf->nb_ifid; 836 npf_rule_t *final_rl = NULL; 837 bpf_args_t bc_args; 838 u_int n = 0; 839 840 KASSERT(((di & PFIL_IN) != 0) ^ ((di & PFIL_OUT) != 0)); 841 842 /* 843 * Prepare the external memory store and the arguments for 844 * the BPF programs to be executed. 845 */ 846 uint32_t bc_words[NPF_BPF_NWORDS]; 847 npf_bpf_prepare(npc, &bc_args, bc_words); 848 849 while (n < nitems) { 850 npf_rule_t *rl = rlset->rs_rules[n]; 851 const u_int skip_to = rl->r_skip_to & SKIPTO_MASK; 852 const uint32_t attr = rl->r_attr; 853 854 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)); 855 KASSERT(!final_rl || rl->r_priority >= final_rl->r_priority); 856 KASSERT(n < skip_to); 857 858 /* Group is a barrier: return a matching if found any. */ 859 if ((attr & NPF_RULE_GROUP) != 0 && final_rl) { 860 break; 861 } 862 863 /* Main inspection of the rule. */ 864 if (!npf_rule_inspect(rl, &bc_args, di_mask, ifid)) { 865 n = skip_to; 866 continue; 867 } 868 869 if (NPF_DYNAMIC_GROUP_P(attr)) { 870 /* 871 * If this is a dynamic rule, re-inspect the subrules. 872 * If it has any matching rule, then it is final. 873 */ 874 rl = npf_rule_reinspect(rl, &bc_args, di_mask, ifid); 875 if (rl != NULL) { 876 final_rl = rl; 877 break; 878 } 879 } else if ((attr & NPF_RULE_GROUP) == 0) { 880 /* 881 * Groups themselves are not matching. 882 */ 883 final_rl = rl; 884 } 885 886 /* Set the matching rule and check for "final". */ 887 if (attr & NPF_RULE_FINAL) { 888 break; 889 } 890 n++; 891 } 892 893 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)); 894 return final_rl; 895 } 896 897 /* 898 * npf_rule_conclude: return decision and the flags for conclusion. 899 * 900 * => Returns ENETUNREACH if "block" and 0 if "pass". 901 */ 902 int 903 npf_rule_conclude(const npf_rule_t *rl, int *retfl) 904 { 905 /* If not passing - drop the packet. */ 906 *retfl = rl->r_attr; 907 return (rl->r_attr & NPF_RULE_PASS) ? 0 : ENETUNREACH; 908 } 909