xref: /netbsd-src/sys/net/npf/npf_ruleset.c (revision 80d9064ac03cbb6a4174695f0d5b237c8766d3d0)
1 /*	$NetBSD: npf_ruleset.c,v 1.37 2014/08/11 01:54:12 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009-2013 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This material is based upon work partially supported by The
8  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * NPF ruleset module.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: npf_ruleset.c,v 1.37 2014/08/11 01:54:12 rmind Exp $");
38 
39 #include <sys/param.h>
40 #include <sys/types.h>
41 
42 #include <sys/atomic.h>
43 #include <sys/kmem.h>
44 #include <sys/queue.h>
45 #include <sys/mbuf.h>
46 #include <sys/types.h>
47 
48 #include <net/bpf.h>
49 #include <net/bpfjit.h>
50 #include <net/pfil.h>
51 #include <net/if.h>
52 
53 #include "npf_impl.h"
54 
55 struct npf_ruleset {
56 	/*
57 	 * - List of all rules.
58 	 * - Dynamic (i.e. named) rules.
59 	 * - G/C list for convenience.
60 	 */
61 	LIST_HEAD(, npf_rule)	rs_all;
62 	LIST_HEAD(, npf_rule)	rs_dynamic;
63 	LIST_HEAD(, npf_rule)	rs_gc;
64 
65 	/* Unique ID counter. */
66 	uint64_t		rs_idcnt;
67 
68 	/* Number of array slots and active rules. */
69 	u_int			rs_slots;
70 	u_int			rs_nitems;
71 
72 	/* Array of ordered rules. */
73 	npf_rule_t *		rs_rules[];
74 };
75 
76 struct npf_rule {
77 	/* Attributes, interface and skip slot. */
78 	uint32_t		r_attr;
79 	u_int			r_ifid;
80 	u_int			r_skip_to;
81 
82 	/* Code to process, if any. */
83 	int			r_type;
84 	bpfjit_func_t		r_jcode;
85 	void *			r_code;
86 	u_int			r_clen;
87 
88 	/* NAT policy (optional), rule procedure and subset. */
89 	npf_natpolicy_t *	r_natp;
90 	npf_rproc_t *		r_rproc;
91 
92 	/* Rule priority: (highest) 1, 2 ... n (lowest). */
93 	pri_t			r_priority;
94 
95 	/*
96 	 * Dynamic group: subset queue and a dynamic group list entry.
97 	 * Dynamic rule: entry and the parent rule (the group).
98 	 */
99 	union {
100 		TAILQ_HEAD(npf_ruleq, npf_rule) r_subset;
101 		TAILQ_ENTRY(npf_rule)	r_entry;
102 	} /* C11 */;
103 	union {
104 		LIST_ENTRY(npf_rule)	r_dentry;
105 		npf_rule_t *		r_parent;
106 	} /* C11 */;
107 
108 	/* Rule ID, name and the optional key. */
109 	uint64_t		r_id;
110 	char			r_name[NPF_RULE_MAXNAMELEN];
111 	uint8_t			r_key[NPF_RULE_MAXKEYLEN];
112 
113 	/* All-list entry and the auxiliary info. */
114 	LIST_ENTRY(npf_rule)	r_aentry;
115 	prop_data_t		r_info;
116 };
117 
118 #define	SKIPTO_ADJ_FLAG		(1U << 31)
119 #define	SKIPTO_MASK		(SKIPTO_ADJ_FLAG - 1)
120 
121 static int	npf_rule_export(const npf_ruleset_t *,
122     const npf_rule_t *, prop_dictionary_t);
123 
124 /*
125  * Private attributes - must be in the NPF_RULE_PRIVMASK range.
126  */
127 #define	NPF_RULE_KEEPNAT	(0x01000000 & NPF_RULE_PRIVMASK)
128 
129 #define	NPF_DYNAMIC_GROUP_P(attr) \
130     (((attr) & NPF_DYNAMIC_GROUP) == NPF_DYNAMIC_GROUP)
131 
132 #define	NPF_DYNAMIC_RULE_P(attr) \
133     (((attr) & NPF_DYNAMIC_GROUP) == NPF_RULE_DYNAMIC)
134 
135 npf_ruleset_t *
136 npf_ruleset_create(size_t slots)
137 {
138 	size_t len = offsetof(npf_ruleset_t, rs_rules[slots]);
139 	npf_ruleset_t *rlset;
140 
141 	rlset = kmem_zalloc(len, KM_SLEEP);
142 	LIST_INIT(&rlset->rs_dynamic);
143 	LIST_INIT(&rlset->rs_all);
144 	LIST_INIT(&rlset->rs_gc);
145 	rlset->rs_slots = slots;
146 
147 	return rlset;
148 }
149 
150 static void
151 npf_ruleset_unlink(npf_ruleset_t *rlset, npf_rule_t *rl)
152 {
153 	if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
154 		LIST_REMOVE(rl, r_dentry);
155 	}
156 	if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
157 		npf_rule_t *rg = rl->r_parent;
158 		TAILQ_REMOVE(&rg->r_subset, rl, r_entry);
159 	}
160 	LIST_REMOVE(rl, r_aentry);
161 }
162 
163 void
164 npf_ruleset_destroy(npf_ruleset_t *rlset)
165 {
166 	size_t len = offsetof(npf_ruleset_t, rs_rules[rlset->rs_slots]);
167 	npf_rule_t *rl;
168 
169 	while ((rl = LIST_FIRST(&rlset->rs_all)) != NULL) {
170 		npf_ruleset_unlink(rlset, rl);
171 		npf_rule_free(rl);
172 	}
173 	KASSERT(LIST_EMPTY(&rlset->rs_dynamic));
174 	KASSERT(LIST_EMPTY(&rlset->rs_gc));
175 	kmem_free(rlset, len);
176 }
177 
178 /*
179  * npf_ruleset_insert: insert the rule into the specified ruleset.
180  */
181 void
182 npf_ruleset_insert(npf_ruleset_t *rlset, npf_rule_t *rl)
183 {
184 	u_int n = rlset->rs_nitems;
185 
186 	KASSERT(n < rlset->rs_slots);
187 
188 	LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
189 	if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
190 		LIST_INSERT_HEAD(&rlset->rs_dynamic, rl, r_dentry);
191 	} else {
192 		KASSERTMSG(rl->r_parent == NULL, "cannot be dynamic rule");
193 		rl->r_attr &= ~NPF_RULE_DYNAMIC;
194 	}
195 
196 	rlset->rs_rules[n] = rl;
197 	rlset->rs_nitems++;
198 
199 	if (rl->r_skip_to < ++n) {
200 		rl->r_skip_to = SKIPTO_ADJ_FLAG | n;
201 	}
202 }
203 
204 static npf_rule_t *
205 npf_ruleset_lookup(npf_ruleset_t *rlset, const char *name)
206 {
207 	npf_rule_t *rl;
208 
209 	KASSERT(npf_config_locked_p());
210 
211 	LIST_FOREACH(rl, &rlset->rs_dynamic, r_dentry) {
212 		KASSERT(NPF_DYNAMIC_GROUP_P(rl->r_attr));
213 		if (strncmp(rl->r_name, name, NPF_RULE_MAXNAMELEN) == 0)
214 			break;
215 	}
216 	return rl;
217 }
218 
219 int
220 npf_ruleset_add(npf_ruleset_t *rlset, const char *rname, npf_rule_t *rl)
221 {
222 	npf_rule_t *rg, *it;
223 	pri_t priocmd;
224 
225 	rg = npf_ruleset_lookup(rlset, rname);
226 	if (rg == NULL) {
227 		return ESRCH;
228 	}
229 	if (!NPF_DYNAMIC_RULE_P(rl->r_attr)) {
230 		return EINVAL;
231 	}
232 
233 	/* Dynamic rule - assign a unique ID and save the parent. */
234 	rl->r_id = ++rlset->rs_idcnt;
235 	rl->r_parent = rg;
236 
237 	/*
238 	 * Rule priority: (highest) 1, 2 ... n (lowest).
239 	 * Negative priority indicates an operation and is reset to zero.
240 	 */
241 	if ((priocmd = rl->r_priority) < 0) {
242 		rl->r_priority = 0;
243 	}
244 
245 	switch (priocmd) {
246 	case NPF_PRI_FIRST:
247 		TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
248 			if (rl->r_priority <= it->r_priority)
249 				break;
250 		}
251 		if (it) {
252 			TAILQ_INSERT_BEFORE(it, rl, r_entry);
253 		} else {
254 			TAILQ_INSERT_HEAD(&rg->r_subset, rl, r_entry);
255 		}
256 		break;
257 	case NPF_PRI_LAST:
258 	default:
259 		TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
260 			if (rl->r_priority < it->r_priority)
261 				break;
262 		}
263 		if (it) {
264 			TAILQ_INSERT_BEFORE(it, rl, r_entry);
265 		} else {
266 			TAILQ_INSERT_TAIL(&rg->r_subset, rl, r_entry);
267 		}
268 		break;
269 	}
270 
271 	/* Finally, add into the all-list. */
272 	LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
273 	return 0;
274 }
275 
276 int
277 npf_ruleset_remove(npf_ruleset_t *rlset, const char *rname, uint64_t id)
278 {
279 	npf_rule_t *rg, *rl;
280 
281 	if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
282 		return ESRCH;
283 	}
284 	TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
285 		KASSERT(rl->r_parent == rg);
286 
287 		/* Compare ID.  On match, remove and return. */
288 		if (rl->r_id == id) {
289 			npf_ruleset_unlink(rlset, rl);
290 			LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
291 			return 0;
292 		}
293 	}
294 	return ENOENT;
295 }
296 
297 int
298 npf_ruleset_remkey(npf_ruleset_t *rlset, const char *rname,
299     const void *key, size_t len)
300 {
301 	npf_rule_t *rg, *rl;
302 
303 	KASSERT(len && len <= NPF_RULE_MAXKEYLEN);
304 
305 	if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
306 		return ESRCH;
307 	}
308 
309 	/* Find the last in the list. */
310 	TAILQ_FOREACH_REVERSE(rl, &rg->r_subset, npf_ruleq, r_entry) {
311 		KASSERT(rl->r_parent == rg);
312 
313 		/* Compare the key.  On match, remove and return. */
314 		if (memcmp(rl->r_key, key, len) == 0) {
315 			npf_ruleset_unlink(rlset, rl);
316 			LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
317 			return 0;
318 		}
319 	}
320 	return ENOENT;
321 }
322 
323 prop_dictionary_t
324 npf_ruleset_list(npf_ruleset_t *rlset, const char *rname)
325 {
326 	prop_dictionary_t rgdict;
327 	prop_array_t rules;
328 	npf_rule_t *rg, *rl;
329 
330 	KASSERT(npf_config_locked_p());
331 
332 	if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
333 		return NULL;
334 	}
335 	if ((rgdict = prop_dictionary_create()) == NULL) {
336 		return NULL;
337 	}
338 	if ((rules = prop_array_create()) == NULL) {
339 		prop_object_release(rgdict);
340 		return NULL;
341 	}
342 
343 	TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
344 		prop_dictionary_t rldict;
345 
346 		rldict = prop_dictionary_create();
347 		KASSERT(rl->r_parent == rg);
348 
349 		if (npf_rule_export(rlset, rl, rldict)) {
350 			prop_object_release(rldict);
351 			prop_object_release(rules);
352 			return NULL;
353 		}
354 		prop_array_add(rules, rldict);
355 		prop_object_release(rldict);
356 	}
357 
358 	if (!prop_dictionary_set(rgdict, "rules", rules)) {
359 		prop_object_release(rgdict);
360 		rgdict = NULL;
361 	}
362 	prop_object_release(rules);
363 	return rgdict;
364 }
365 
366 int
367 npf_ruleset_flush(npf_ruleset_t *rlset, const char *rname)
368 {
369 	npf_rule_t *rg, *rl;
370 
371 	if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
372 		return ESRCH;
373 	}
374 	while ((rl = TAILQ_FIRST(&rg->r_subset)) != NULL) {
375 		KASSERT(rl->r_parent == rg);
376 		npf_ruleset_unlink(rlset, rl);
377 		LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
378 	}
379 	return 0;
380 }
381 
382 int
383 npf_ruleset_export(const npf_ruleset_t *rlset, prop_array_t rules)
384 {
385 	const u_int nitems = rlset->rs_nitems;
386 	int error = 0;
387 	u_int n = 0;
388 
389 	KASSERT(npf_config_locked_p());
390 
391 	while (n < nitems) {
392 		const npf_rule_t *rl = rlset->rs_rules[n];
393 		const npf_natpolicy_t *natp = rl->r_natp;
394 		prop_dictionary_t rldict;
395 
396 		rldict = prop_dictionary_create();
397 		if ((error = npf_rule_export(rlset, rl, rldict)) != 0) {
398 			prop_object_release(rldict);
399 			break;
400 		}
401 		if (natp && (error = npf_nat_policyexport(natp, rldict)) != 0) {
402 			prop_object_release(rldict);
403 			break;
404 		}
405 		prop_array_add(rules, rldict);
406 		prop_object_release(rldict);
407 		n++;
408 	}
409 	return error;
410 }
411 
412 void
413 npf_ruleset_gc(npf_ruleset_t *rlset)
414 {
415 	npf_rule_t *rl;
416 
417 	while ((rl = LIST_FIRST(&rlset->rs_gc)) != NULL) {
418 		LIST_REMOVE(rl, r_aentry);
419 		npf_rule_free(rl);
420 	}
421 }
422 
423 /*
424  * npf_ruleset_cmpnat: find a matching NAT policy in the ruleset.
425  */
426 static inline npf_rule_t *
427 npf_ruleset_cmpnat(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
428 {
429 	npf_rule_t *rl;
430 
431 	/* Find a matching NAT policy in the old ruleset. */
432 	LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
433 		if (rl->r_natp && npf_nat_cmppolicy(rl->r_natp, mnp))
434 			break;
435 	}
436 	return rl;
437 }
438 
439 /*
440  * npf_ruleset_reload: prepare the new ruleset by scanning the active
441  * ruleset and 1) sharing the dynamic rules 2) sharing NAT policies.
442  *
443  * => The active (old) ruleset should be exclusively locked.
444  */
445 void
446 npf_ruleset_reload(npf_ruleset_t *newset, npf_ruleset_t *oldset)
447 {
448 	npf_rule_t *rg, *rl;
449 	uint64_t nid = 0;
450 
451 	KASSERT(npf_config_locked_p());
452 
453 	/*
454 	 * Scan the dynamic rules and share (migrate) if needed.
455 	 */
456 	LIST_FOREACH(rg, &newset->rs_dynamic, r_dentry) {
457 		npf_rule_t *actrg;
458 
459 		/* Look for a dynamic ruleset group with such name. */
460 		actrg = npf_ruleset_lookup(oldset, rg->r_name);
461 		if (actrg == NULL) {
462 			continue;
463 		}
464 
465 		/*
466 		 * Copy the list-head structure.  This is necessary because
467 		 * the rules are still active and therefore accessible for
468 		 * inspection via the old ruleset.
469 		 */
470 		memcpy(&rg->r_subset, &actrg->r_subset, sizeof(rg->r_subset));
471 		TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
472 			/*
473 			 * We can safely migrate to the new all-rule list
474 			 * and re-set the parent rule, though.
475 			 */
476 			LIST_REMOVE(rl, r_aentry);
477 			LIST_INSERT_HEAD(&newset->rs_all, rl, r_aentry);
478 			rl->r_parent = rg;
479 		}
480 	}
481 
482 	/*
483 	 * Scan all rules in the new ruleset and share NAT policies.
484 	 * Also, assign a unique ID for each policy here.
485 	 */
486 	LIST_FOREACH(rl, &newset->rs_all, r_aentry) {
487 		npf_natpolicy_t *np;
488 		npf_rule_t *actrl;
489 
490 		/* Does the rule have a NAT policy associated? */
491 		if ((np = rl->r_natp) == NULL) {
492 			continue;
493 		}
494 
495 		/* Does it match with any policy in the active ruleset? */
496 		if ((actrl = npf_ruleset_cmpnat(oldset, np)) == NULL) {
497 			npf_nat_setid(np, ++nid);
498 			continue;
499 		}
500 
501 		/*
502 		 * Inherit the matching NAT policy and check other ones
503 		 * in the new ruleset for sharing the portmap.
504 		 */
505 		rl->r_natp = actrl->r_natp;
506 		npf_ruleset_sharepm(newset, rl->r_natp);
507 		npf_nat_setid(rl->r_natp, ++nid);
508 
509 		/*
510 		 * Finally, mark the active rule to not destroy its NAT
511 		 * policy later as we inherited it (but the rule must be
512 		 * kept active for now).  Destroy the new/unused policy.
513 		 */
514 		actrl->r_attr |= NPF_RULE_KEEPNAT;
515 		npf_nat_freepolicy(np);
516 	}
517 
518 	/* Inherit the ID counter. */
519 	newset->rs_idcnt = oldset->rs_idcnt;
520 }
521 
522 npf_rule_t *
523 npf_ruleset_sharepm(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
524 {
525 	npf_natpolicy_t *np;
526 	npf_rule_t *rl;
527 
528 	/* Find a matching NAT policy in the old ruleset. */
529 	LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
530 		/*
531 		 * NAT policy might not yet be set during the creation of
532 		 * the ruleset (in such case, rule is for our policy), or
533 		 * policies might be equal due to rule exchange on reload.
534 		 */
535 		np = rl->r_natp;
536 		if (np == NULL || np == mnp)
537 			continue;
538 		if (npf_nat_sharepm(np, mnp))
539 			break;
540 	}
541 	return rl;
542 }
543 
544 npf_natpolicy_t *
545 npf_ruleset_findnat(npf_ruleset_t *rlset, uint64_t id)
546 {
547 	npf_rule_t *rl;
548 
549 	LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
550 		npf_natpolicy_t *np = rl->r_natp;
551 		if (np && npf_nat_getid(np) == id) {
552 			return np;
553 		}
554 	}
555 	return NULL;
556 }
557 
558 /*
559  * npf_ruleset_freealg: inspect the ruleset and disassociate specified
560  * ALG from all NAT entries using it.
561  */
562 void
563 npf_ruleset_freealg(npf_ruleset_t *rlset, npf_alg_t *alg)
564 {
565 	npf_rule_t *rl;
566 	npf_natpolicy_t *np;
567 
568 	LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
569 		if ((np = rl->r_natp) != NULL) {
570 			npf_nat_freealg(np, alg);
571 		}
572 	}
573 }
574 
575 /*
576  * npf_rule_alloc: allocate a rule and initialise it.
577  */
578 npf_rule_t *
579 npf_rule_alloc(prop_dictionary_t rldict)
580 {
581 	npf_rule_t *rl;
582 	const char *rname;
583 	prop_data_t d;
584 
585 	/* Allocate a rule structure. */
586 	rl = kmem_zalloc(sizeof(npf_rule_t), KM_SLEEP);
587 	TAILQ_INIT(&rl->r_subset);
588 	rl->r_natp = NULL;
589 
590 	/* Name (optional) */
591 	if (prop_dictionary_get_cstring_nocopy(rldict, "name", &rname)) {
592 		strlcpy(rl->r_name, rname, NPF_RULE_MAXNAMELEN);
593 	} else {
594 		rl->r_name[0] = '\0';
595 	}
596 
597 	/* Attributes, priority and interface ID (optional). */
598 	prop_dictionary_get_uint32(rldict, "attr", &rl->r_attr);
599 	prop_dictionary_get_int32(rldict, "prio", &rl->r_priority);
600 	rl->r_attr &= ~NPF_RULE_PRIVMASK;
601 
602 	if (prop_dictionary_get_cstring_nocopy(rldict, "ifname", &rname)) {
603 		if ((rl->r_ifid = npf_ifmap_register(rname)) == 0) {
604 			kmem_free(rl, sizeof(npf_rule_t));
605 			return NULL;
606 		}
607 	} else {
608 		rl->r_ifid = 0;
609 	}
610 
611 	/* Get the skip-to index.  No need to validate it. */
612 	prop_dictionary_get_uint32(rldict, "skip-to", &rl->r_skip_to);
613 
614 	/* Key (optional). */
615 	prop_object_t obj = prop_dictionary_get(rldict, "key");
616 	const void *key = prop_data_data_nocopy(obj);
617 
618 	if (key) {
619 		size_t len = prop_data_size(obj);
620 		if (len > NPF_RULE_MAXKEYLEN) {
621 			kmem_free(rl, sizeof(npf_rule_t));
622 			return NULL;
623 		}
624 		memcpy(rl->r_key, key, len);
625 	}
626 
627 	if ((d = prop_dictionary_get(rldict, "info")) != NULL) {
628 		rl->r_info = prop_data_copy(d);
629 	}
630 	return rl;
631 }
632 
633 static int
634 npf_rule_export(const npf_ruleset_t *rlset, const npf_rule_t *rl,
635     prop_dictionary_t rldict)
636 {
637 	u_int skip_to = 0;
638 	prop_data_t d;
639 
640 	prop_dictionary_set_uint32(rldict, "attr", rl->r_attr);
641 	prop_dictionary_set_int32(rldict, "prio", rl->r_priority);
642 	if ((rl->r_skip_to & SKIPTO_ADJ_FLAG) == 0) {
643 		skip_to = rl->r_skip_to & SKIPTO_MASK;
644 	}
645 	prop_dictionary_set_uint32(rldict, "skip-to", skip_to);
646 	prop_dictionary_set_int32(rldict, "code-type", rl->r_type);
647 	if (rl->r_code) {
648 		d = prop_data_create_data(rl->r_code, rl->r_clen);
649 		prop_dictionary_set_and_rel(rldict, "code", d);
650 	}
651 
652 	if (rl->r_ifid) {
653 		const char *ifname = npf_ifmap_getname(rl->r_ifid);
654 		prop_dictionary_set_cstring(rldict, "ifname", ifname);
655 	}
656 	prop_dictionary_set_uint64(rldict, "id", rl->r_id);
657 
658 	if (rl->r_name[0]) {
659 		prop_dictionary_set_cstring(rldict, "name", rl->r_name);
660 	}
661 	if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
662 		d = prop_data_create_data(rl->r_key, NPF_RULE_MAXKEYLEN);
663 		prop_dictionary_set_and_rel(rldict, "key", d);
664 	}
665 	if (rl->r_info) {
666 		prop_dictionary_set(rldict, "info", rl->r_info);
667 	}
668 	return 0;
669 }
670 
671 /*
672  * npf_rule_setcode: assign filter code to the rule.
673  *
674  * => The code must be validated by the caller.
675  * => JIT compilation may be performed here.
676  */
677 void
678 npf_rule_setcode(npf_rule_t *rl, const int type, void *code, size_t size)
679 {
680 	KASSERT(type == NPF_CODE_BPF);
681 
682 	rl->r_type = type;
683 	rl->r_code = code;
684 	rl->r_clen = size;
685 	rl->r_jcode = npf_bpf_compile(code, size);
686 }
687 
688 /*
689  * npf_rule_setrproc: assign a rule procedure and hold a reference on it.
690  */
691 void
692 npf_rule_setrproc(npf_rule_t *rl, npf_rproc_t *rp)
693 {
694 	npf_rproc_acquire(rp);
695 	rl->r_rproc = rp;
696 }
697 
698 /*
699  * npf_rule_free: free the specified rule.
700  */
701 void
702 npf_rule_free(npf_rule_t *rl)
703 {
704 	npf_natpolicy_t *np = rl->r_natp;
705 	npf_rproc_t *rp = rl->r_rproc;
706 
707 	if (np && (rl->r_attr & NPF_RULE_KEEPNAT) == 0) {
708 		/* Free NAT policy. */
709 		npf_nat_freepolicy(np);
710 	}
711 	if (rp) {
712 		/* Release rule procedure. */
713 		npf_rproc_release(rp);
714 	}
715 	if (rl->r_code) {
716 		/* Free byte-code. */
717 		kmem_free(rl->r_code, rl->r_clen);
718 	}
719 	if (rl->r_jcode) {
720 		/* Free JIT code. */
721 		bpf_jit_freecode(rl->r_jcode);
722 	}
723 	if (rl->r_info) {
724 		prop_object_release(rl->r_info);
725 	}
726 	kmem_free(rl, sizeof(npf_rule_t));
727 }
728 
729 /*
730  * npf_rule_getid: return the unique ID of a rule.
731  * npf_rule_getrproc: acquire a reference and return rule procedure, if any.
732  * npf_rule_getnat: get NAT policy assigned to the rule.
733  */
734 
735 uint64_t
736 npf_rule_getid(const npf_rule_t *rl)
737 {
738 	KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
739 	return rl->r_id;
740 }
741 
742 npf_rproc_t *
743 npf_rule_getrproc(const npf_rule_t *rl)
744 {
745 	npf_rproc_t *rp = rl->r_rproc;
746 
747 	if (rp) {
748 		npf_rproc_acquire(rp);
749 	}
750 	return rp;
751 }
752 
753 npf_natpolicy_t *
754 npf_rule_getnat(const npf_rule_t *rl)
755 {
756 	return rl->r_natp;
757 }
758 
759 /*
760  * npf_rule_setnat: assign NAT policy to the rule and insert into the
761  * NAT policy list in the ruleset.
762  */
763 void
764 npf_rule_setnat(npf_rule_t *rl, npf_natpolicy_t *np)
765 {
766 	KASSERT(rl->r_natp == NULL);
767 	rl->r_natp = np;
768 }
769 
770 /*
771  * npf_rule_inspect: match the interface, direction and run the filter code.
772  * Returns true if rule matches and false otherwise.
773  */
774 static inline bool
775 npf_rule_inspect(const npf_rule_t *rl, bpf_args_t *bc_args,
776     const int di_mask, const u_int ifid)
777 {
778 	/* Match the interface. */
779 	if (rl->r_ifid && rl->r_ifid != ifid) {
780 		return false;
781 	}
782 
783 	/* Match the direction. */
784 	if ((rl->r_attr & NPF_RULE_DIMASK) != NPF_RULE_DIMASK) {
785 		if ((rl->r_attr & di_mask) == 0)
786 			return false;
787 	}
788 
789 	/* Any code? */
790 	if (!rl->r_code) {
791 		KASSERT(rl->r_jcode == NULL);
792 		return true;
793 	}
794 	KASSERT(rl->r_type == NPF_CODE_BPF);
795 	return npf_bpf_filter(bc_args, rl->r_code, rl->r_jcode) != 0;
796 }
797 
798 /*
799  * npf_rule_reinspect: re-inspect the dynamic rule by iterating its list.
800  * This is only for the dynamic rules.  Subrules cannot have nested rules.
801  */
802 static npf_rule_t *
803 npf_rule_reinspect(const npf_rule_t *drl, bpf_args_t *bc_args,
804     const int di_mask, const u_int ifid)
805 {
806 	npf_rule_t *final_rl = NULL, *rl;
807 
808 	KASSERT(NPF_DYNAMIC_GROUP_P(drl->r_attr));
809 
810 	TAILQ_FOREACH(rl, &drl->r_subset, r_entry) {
811 		if (!npf_rule_inspect(rl, bc_args, di_mask, ifid)) {
812 			continue;
813 		}
814 		if (rl->r_attr & NPF_RULE_FINAL) {
815 			return rl;
816 		}
817 		final_rl = rl;
818 	}
819 	return final_rl;
820 }
821 
822 /*
823  * npf_ruleset_inspect: inspect the packet against the given ruleset.
824  *
825  * Loop through the rules in the set and run the byte-code of each rule
826  * against the packet (nbuf chain).  If sub-ruleset is found, inspect it.
827  */
828 npf_rule_t *
829 npf_ruleset_inspect(npf_cache_t *npc, const npf_ruleset_t *rlset,
830     const int di, const int layer)
831 {
832 	nbuf_t *nbuf = npc->npc_nbuf;
833 	const int di_mask = (di & PFIL_IN) ? NPF_RULE_IN : NPF_RULE_OUT;
834 	const u_int nitems = rlset->rs_nitems;
835 	const u_int ifid = nbuf->nb_ifid;
836 	npf_rule_t *final_rl = NULL;
837 	bpf_args_t bc_args;
838 	u_int n = 0;
839 
840 	KASSERT(((di & PFIL_IN) != 0) ^ ((di & PFIL_OUT) != 0));
841 
842 	/*
843 	 * Prepare the external memory store and the arguments for
844 	 * the BPF programs to be executed.
845 	 */
846 	uint32_t bc_words[NPF_BPF_NWORDS];
847 	npf_bpf_prepare(npc, &bc_args, bc_words);
848 
849 	while (n < nitems) {
850 		npf_rule_t *rl = rlset->rs_rules[n];
851 		const u_int skip_to = rl->r_skip_to & SKIPTO_MASK;
852 		const uint32_t attr = rl->r_attr;
853 
854 		KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
855 		KASSERT(!final_rl || rl->r_priority >= final_rl->r_priority);
856 		KASSERT(n < skip_to);
857 
858 		/* Group is a barrier: return a matching if found any. */
859 		if ((attr & NPF_RULE_GROUP) != 0 && final_rl) {
860 			break;
861 		}
862 
863 		/* Main inspection of the rule. */
864 		if (!npf_rule_inspect(rl, &bc_args, di_mask, ifid)) {
865 			n = skip_to;
866 			continue;
867 		}
868 
869 		if (NPF_DYNAMIC_GROUP_P(attr)) {
870 			/*
871 			 * If this is a dynamic rule, re-inspect the subrules.
872 			 * If it has any matching rule, then it is final.
873 			 */
874 			rl = npf_rule_reinspect(rl, &bc_args, di_mask, ifid);
875 			if (rl != NULL) {
876 				final_rl = rl;
877 				break;
878 			}
879 		} else if ((attr & NPF_RULE_GROUP) == 0) {
880 			/*
881 			 * Groups themselves are not matching.
882 			 */
883 			final_rl = rl;
884 		}
885 
886 		/* Set the matching rule and check for "final". */
887 		if (attr & NPF_RULE_FINAL) {
888 			break;
889 		}
890 		n++;
891 	}
892 
893 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
894 	return final_rl;
895 }
896 
897 /*
898  * npf_rule_conclude: return decision and the flags for conclusion.
899  *
900  * => Returns ENETUNREACH if "block" and 0 if "pass".
901  */
902 int
903 npf_rule_conclude(const npf_rule_t *rl, int *retfl)
904 {
905 	/* If not passing - drop the packet. */
906 	*retfl = rl->r_attr;
907 	return (rl->r_attr & NPF_RULE_PASS) ? 0 : ENETUNREACH;
908 }
909