xref: /netbsd-src/sys/net/npf/npf_ruleset.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: npf_ruleset.c,v 1.30 2013/12/04 01:38:49 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009-2013 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This material is based upon work partially supported by The
8  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * NPF ruleset module.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: npf_ruleset.c,v 1.30 2013/12/04 01:38:49 rmind Exp $");
38 
39 #include <sys/param.h>
40 #include <sys/types.h>
41 
42 #include <sys/atomic.h>
43 #include <sys/kmem.h>
44 #include <sys/queue.h>
45 #include <sys/mbuf.h>
46 #include <sys/types.h>
47 
48 #include <net/bpf.h>
49 #include <net/bpfjit.h>
50 #include <net/pfil.h>
51 #include <net/if.h>
52 
53 #include "npf_impl.h"
54 
55 struct npf_ruleset {
56 	/*
57 	 * - List of all rules.
58 	 * - Dynamic (i.e. named) rules.
59 	 * - G/C list for convenience.
60 	 */
61 	LIST_HEAD(, npf_rule)	rs_all;
62 	LIST_HEAD(, npf_rule)	rs_dynamic;
63 	LIST_HEAD(, npf_rule)	rs_gc;
64 
65 	/* Unique ID counter. */
66 	uint64_t		rs_idcnt;
67 
68 	/* Number of array slots and active rules. */
69 	u_int			rs_slots;
70 	u_int			rs_nitems;
71 
72 	/* Array of ordered rules. */
73 	npf_rule_t *		rs_rules[];
74 };
75 
76 struct npf_rule {
77 	/* Attributes, interface and skip slot. */
78 	uint32_t		r_attr;
79 	u_int			r_ifid;
80 	u_int			r_skip_to;
81 
82 	/* Code to process, if any. */
83 	int			r_type;
84 	bpfjit_func_t		r_jcode;
85 	void *			r_code;
86 	size_t			r_clen;
87 
88 	/* NAT policy (optional), rule procedure and subset. */
89 	npf_natpolicy_t *	r_natp;
90 	npf_rproc_t *		r_rproc;
91 
92 	/* Rule priority: (highest) 1, 2 ... n (lowest). */
93 	pri_t			r_priority;
94 
95 	/*
96 	 * Dynamic group: subset queue and a dynamic group list entry.
97 	 * Dynamic rule: entry and the parent rule (the group).
98 	 */
99 	union {
100 		TAILQ_HEAD(npf_ruleq, npf_rule) r_subset;
101 		TAILQ_ENTRY(npf_rule)	r_entry;
102 	} /* C11 */;
103 	union {
104 		LIST_ENTRY(npf_rule)	r_dentry;
105 		npf_rule_t *		r_parent;
106 	} /* C11 */;
107 
108 	/* Rule ID and the original dictionary. */
109 	uint64_t		r_id;
110 	prop_dictionary_t	r_dict;
111 
112 	/* Rule name and all-list entry. */
113 	char			r_name[NPF_RULE_MAXNAMELEN];
114 	LIST_ENTRY(npf_rule)	r_aentry;
115 
116 	/* Key (optional). */
117 	uint8_t			r_key[NPF_RULE_MAXKEYLEN];
118 };
119 
120 #define	NPF_DYNAMIC_GROUP_P(attr) \
121     (((attr) & NPF_DYNAMIC_GROUP) == NPF_DYNAMIC_GROUP)
122 
123 #define	NPF_DYNAMIC_RULE_P(attr) \
124     (((attr) & NPF_DYNAMIC_GROUP) == NPF_RULE_DYNAMIC)
125 
126 npf_ruleset_t *
127 npf_ruleset_create(size_t slots)
128 {
129 	size_t len = offsetof(npf_ruleset_t, rs_rules[slots]);
130 	npf_ruleset_t *rlset;
131 
132 	rlset = kmem_zalloc(len, KM_SLEEP);
133 	LIST_INIT(&rlset->rs_dynamic);
134 	LIST_INIT(&rlset->rs_all);
135 	LIST_INIT(&rlset->rs_gc);
136 	rlset->rs_slots = slots;
137 
138 	return rlset;
139 }
140 
141 static void
142 npf_ruleset_unlink(npf_ruleset_t *rlset, npf_rule_t *rl)
143 {
144 	if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
145 		LIST_REMOVE(rl, r_dentry);
146 	}
147 	if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
148 		npf_rule_t *rg = rl->r_parent;
149 		TAILQ_REMOVE(&rg->r_subset, rl, r_entry);
150 	}
151 	LIST_REMOVE(rl, r_aentry);
152 }
153 
154 void
155 npf_ruleset_destroy(npf_ruleset_t *rlset)
156 {
157 	size_t len = offsetof(npf_ruleset_t, rs_rules[rlset->rs_slots]);
158 	npf_rule_t *rl;
159 
160 	while ((rl = LIST_FIRST(&rlset->rs_all)) != NULL) {
161 		npf_ruleset_unlink(rlset, rl);
162 		npf_rule_free(rl);
163 	}
164 	KASSERT(LIST_EMPTY(&rlset->rs_dynamic));
165 	KASSERT(LIST_EMPTY(&rlset->rs_gc));
166 	kmem_free(rlset, len);
167 }
168 
169 /*
170  * npf_ruleset_insert: insert the rule into the specified ruleset.
171  */
172 void
173 npf_ruleset_insert(npf_ruleset_t *rlset, npf_rule_t *rl)
174 {
175 	u_int n = rlset->rs_nitems;
176 
177 	KASSERT(n < rlset->rs_slots);
178 
179 	LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
180 	if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
181 		LIST_INSERT_HEAD(&rlset->rs_dynamic, rl, r_dentry);
182 	} else {
183 		KASSERTMSG(rl->r_parent == NULL, "cannot be dynamic rule");
184 		rl->r_attr &= ~NPF_RULE_DYNAMIC;
185 	}
186 
187 	rlset->rs_rules[n] = rl;
188 	rlset->rs_nitems++;
189 
190 	if (rl->r_skip_to < ++n) {
191 		rl->r_skip_to = n;
192 	}
193 }
194 
195 static npf_rule_t *
196 npf_ruleset_lookup(npf_ruleset_t *rlset, const char *name)
197 {
198 	npf_rule_t *rl;
199 
200 	KASSERT(npf_config_locked_p());
201 
202 	LIST_FOREACH(rl, &rlset->rs_dynamic, r_dentry) {
203 		KASSERT(NPF_DYNAMIC_GROUP_P(rl->r_attr));
204 		if (strncmp(rl->r_name, name, NPF_RULE_MAXNAMELEN) == 0)
205 			break;
206 	}
207 	return rl;
208 }
209 
210 int
211 npf_ruleset_add(npf_ruleset_t *rlset, const char *rname, npf_rule_t *rl)
212 {
213 	npf_rule_t *rg, *it;
214 	pri_t priocmd;
215 
216 	rg = npf_ruleset_lookup(rlset, rname);
217 	if (rg == NULL) {
218 		return ESRCH;
219 	}
220 	if (!NPF_DYNAMIC_RULE_P(rl->r_attr)) {
221 		return EINVAL;
222 	}
223 
224 	/* Dynamic rule - assign a unique ID and save the parent. */
225 	rl->r_id = ++rlset->rs_idcnt;
226 	rl->r_parent = rg;
227 
228 	/*
229 	 * Rule priority: (highest) 1, 2 ... n (lowest).
230 	 * Negative priority indicates an operation and is reset to zero.
231 	 */
232 	if ((priocmd = rl->r_priority) < 0) {
233 		rl->r_priority = 0;
234 	}
235 
236 	switch (priocmd) {
237 	case NPF_PRI_FIRST:
238 		TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
239 			if (rl->r_priority <= it->r_priority)
240 				break;
241 		}
242 		if (it) {
243 			TAILQ_INSERT_BEFORE(it, rl, r_entry);
244 		} else {
245 			TAILQ_INSERT_HEAD(&rg->r_subset, rl, r_entry);
246 		}
247 		break;
248 	case NPF_PRI_LAST:
249 	default:
250 		TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
251 			if (rl->r_priority < it->r_priority)
252 				break;
253 		}
254 		if (it) {
255 			TAILQ_INSERT_BEFORE(it, rl, r_entry);
256 		} else {
257 			TAILQ_INSERT_TAIL(&rg->r_subset, rl, r_entry);
258 		}
259 		break;
260 	}
261 
262 	/* Finally, add into the all-list. */
263 	LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
264 	return 0;
265 }
266 
267 int
268 npf_ruleset_remove(npf_ruleset_t *rlset, const char *rname, uint64_t id)
269 {
270 	npf_rule_t *rg, *rl;
271 
272 	if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
273 		return ESRCH;
274 	}
275 	TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
276 		KASSERT(rl->r_parent == rg);
277 
278 		/* Compare ID.  On match, remove and return. */
279 		if (rl->r_id == id) {
280 			npf_ruleset_unlink(rlset, rl);
281 			LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
282 			return 0;
283 		}
284 	}
285 	return ENOENT;
286 }
287 
288 int
289 npf_ruleset_remkey(npf_ruleset_t *rlset, const char *rname,
290     const void *key, size_t len)
291 {
292 	npf_rule_t *rg, *rl;
293 
294 	KASSERT(len && len <= NPF_RULE_MAXKEYLEN);
295 
296 	if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
297 		return ESRCH;
298 	}
299 
300 	/* Find the last in the list. */
301 	TAILQ_FOREACH_REVERSE(rl, &rg->r_subset, npf_ruleq, r_entry) {
302 		KASSERT(rl->r_parent == rg);
303 
304 		/* Compare the key.  On match, remove and return. */
305 		if (memcmp(rl->r_key, key, len) == 0) {
306 			npf_ruleset_unlink(rlset, rl);
307 			LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
308 			return 0;
309 		}
310 	}
311 	return ENOENT;
312 }
313 
314 prop_dictionary_t
315 npf_ruleset_list(npf_ruleset_t *rlset, const char *rname)
316 {
317 	prop_dictionary_t rldict;
318 	prop_array_t rules;
319 	npf_rule_t *rg, *rl;
320 
321 	if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
322 		return NULL;
323 	}
324 	if ((rldict = prop_dictionary_create()) == NULL) {
325 		return NULL;
326 	}
327 	if ((rules = prop_array_create()) == NULL) {
328 		prop_object_release(rldict);
329 		return NULL;
330 	}
331 
332 	TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
333 		KASSERT(rl->r_parent == rg);
334 		if (rl->r_dict && !prop_array_add(rules, rl->r_dict)) {
335 			prop_object_release(rldict);
336 			prop_object_release(rules);
337 			return NULL;
338 		}
339 	}
340 
341 	if (!prop_dictionary_set(rldict, "rules", rules)) {
342 		prop_object_release(rldict);
343 		rldict = NULL;
344 	}
345 	prop_object_release(rules);
346 	return rldict;
347 }
348 
349 int
350 npf_ruleset_flush(npf_ruleset_t *rlset, const char *rname)
351 {
352 	npf_rule_t *rg, *rl;
353 
354 	if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
355 		return ESRCH;
356 	}
357 	while ((rl = TAILQ_FIRST(&rg->r_subset)) != NULL) {
358 		KASSERT(rl->r_parent == rg);
359 		npf_ruleset_unlink(rlset, rl);
360 		LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
361 	}
362 	return 0;
363 }
364 
365 void
366 npf_ruleset_gc(npf_ruleset_t *rlset)
367 {
368 	npf_rule_t *rl;
369 
370 	while ((rl = LIST_FIRST(&rlset->rs_gc)) != NULL) {
371 		LIST_REMOVE(rl, r_aentry);
372 		npf_rule_free(rl);
373 	}
374 }
375 
376 /*
377  * npf_ruleset_reload: share the dynamic rules.
378  *
379  * => Active ruleset should be exclusively locked.
380  */
381 void
382 npf_ruleset_reload(npf_ruleset_t *rlset, npf_ruleset_t *arlset)
383 {
384 	npf_rule_t *rg;
385 
386 	KASSERT(npf_config_locked_p());
387 
388 	LIST_FOREACH(rg, &rlset->rs_dynamic, r_dentry) {
389 		npf_rule_t *arg, *rl;
390 
391 		if ((arg = npf_ruleset_lookup(arlset, rg->r_name)) == NULL) {
392 			continue;
393 		}
394 
395 		/*
396 		 * Copy the list-head structure.  This is necessary because
397 		 * the rules are still active and therefore accessible for
398 		 * inspection via the old ruleset.
399 		 */
400 		memcpy(&rg->r_subset, &arg->r_subset, sizeof(rg->r_subset));
401 		TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
402 			/*
403 			 * We can safely migrate to the new all-rule list
404 			 * and re-set the parent rule, though.
405 			 */
406 			LIST_REMOVE(rl, r_aentry);
407 			LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
408 			rl->r_parent = rg;
409 		}
410 	}
411 
412 	/* Inherit the ID counter. */
413 	rlset->rs_idcnt = arlset->rs_idcnt;
414 }
415 
416 /*
417  * npf_ruleset_matchnat: find a matching NAT policy in the ruleset.
418  */
419 npf_rule_t *
420 npf_ruleset_matchnat(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
421 {
422 	npf_rule_t *rl;
423 
424 	/* Find a matching NAT policy in the old ruleset. */
425 	LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
426 		if (npf_nat_matchpolicy(rl->r_natp, mnp))
427 			break;
428 	}
429 	return rl;
430 }
431 
432 npf_rule_t *
433 npf_ruleset_sharepm(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
434 {
435 	npf_natpolicy_t *np;
436 	npf_rule_t *rl;
437 
438 	/* Find a matching NAT policy in the old ruleset. */
439 	LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
440 		/*
441 		 * NAT policy might not yet be set during the creation of
442 		 * the ruleset (in such case, rule is for our policy), or
443 		 * policies might be equal due to rule exchange on reload.
444 		 */
445 		np = rl->r_natp;
446 		if (np == NULL || np == mnp)
447 			continue;
448 		if (npf_nat_sharepm(np, mnp))
449 			break;
450 	}
451 	return rl;
452 }
453 
454 /*
455  * npf_ruleset_freealg: inspect the ruleset and disassociate specified
456  * ALG from all NAT entries using it.
457  */
458 void
459 npf_ruleset_freealg(npf_ruleset_t *rlset, npf_alg_t *alg)
460 {
461 	npf_rule_t *rl;
462 	npf_natpolicy_t *np;
463 
464 	LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
465 		if ((np = rl->r_natp) != NULL) {
466 			npf_nat_freealg(np, alg);
467 		}
468 	}
469 }
470 
471 /*
472  * npf_ruleset_natreload: minimum reload of NAT policies by matching
473  * two (active and new) NAT rulesets.
474  */
475 void
476 npf_ruleset_natreload(npf_ruleset_t *nrlset, npf_ruleset_t *arlset)
477 {
478 	npf_natpolicy_t *np, *anp;
479 	npf_rule_t *rl, *arl;
480 
481 	KASSERT(npf_config_locked_p());
482 
483 	/* Scan a new NAT ruleset against NAT policies in old ruleset. */
484 	LIST_FOREACH(rl, &nrlset->rs_all, r_aentry) {
485 		np = rl->r_natp;
486 		arl = npf_ruleset_matchnat(arlset, np);
487 		if (arl == NULL) {
488 			continue;
489 		}
490 		/* On match - we exchange NAT policies. */
491 		anp = arl->r_natp;
492 		rl->r_natp = anp;
493 		arl->r_natp = np;
494 		/* Update other NAT policies to share portmap. */
495 		(void)npf_ruleset_sharepm(nrlset, anp);
496 	}
497 }
498 
499 /*
500  * npf_rule_alloc: allocate a rule and initialise it.
501  */
502 npf_rule_t *
503 npf_rule_alloc(prop_dictionary_t rldict)
504 {
505 	npf_rule_t *rl;
506 	const char *rname;
507 
508 	/* Allocate a rule structure. */
509 	rl = kmem_zalloc(sizeof(npf_rule_t), KM_SLEEP);
510 	TAILQ_INIT(&rl->r_subset);
511 	rl->r_natp = NULL;
512 
513 	/* Name (optional) */
514 	if (prop_dictionary_get_cstring_nocopy(rldict, "name", &rname)) {
515 		strlcpy(rl->r_name, rname, NPF_RULE_MAXNAMELEN);
516 	} else {
517 		rl->r_name[0] = '\0';
518 	}
519 
520 	/* Attributes, priority and interface ID (optional). */
521 	prop_dictionary_get_uint32(rldict, "attributes", &rl->r_attr);
522 	prop_dictionary_get_int32(rldict, "priority", &rl->r_priority);
523 
524 	if (prop_dictionary_get_cstring_nocopy(rldict, "interface", &rname)) {
525 		if ((rl->r_ifid = npf_ifmap_register(rname)) == 0) {
526 			kmem_free(rl, sizeof(npf_rule_t));
527 			return NULL;
528 		}
529 	} else {
530 		rl->r_ifid = 0;
531 	}
532 
533 	/* Get the skip-to index.  No need to validate it. */
534 	prop_dictionary_get_uint32(rldict, "skip-to", &rl->r_skip_to);
535 
536 	/* Key (optional). */
537 	prop_object_t obj = prop_dictionary_get(rldict, "key");
538 	const void *key = prop_data_data_nocopy(obj);
539 
540 	if (key) {
541 		size_t len = prop_data_size(obj);
542 		if (len > NPF_RULE_MAXKEYLEN) {
543 			kmem_free(rl, sizeof(npf_rule_t));
544 			return NULL;
545 		}
546 		memcpy(rl->r_key, key, len);
547 	}
548 
549 	if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
550 		rl->r_dict = prop_dictionary_copy(rldict);
551 	}
552 
553 	return rl;
554 }
555 
556 /*
557  * npf_rule_setcode: assign filter code to the rule.
558  *
559  * => The code must be validated by the caller.
560  * => JIT compilation may be performed here.
561  */
562 void
563 npf_rule_setcode(npf_rule_t *rl, const int type, void *code, size_t size)
564 {
565 	KASSERT(type == NPF_CODE_BPF);
566 
567 	if ((rl->r_jcode = npf_bpf_compile(code, size)) == NULL) {
568 		rl->r_code = code;
569 		rl->r_clen = size;
570 	} else {
571 		rl->r_code = NULL;
572 	}
573 	rl->r_type = type;
574 }
575 
576 /*
577  * npf_rule_setrproc: assign a rule procedure and hold a reference on it.
578  */
579 void
580 npf_rule_setrproc(npf_rule_t *rl, npf_rproc_t *rp)
581 {
582 	npf_rproc_acquire(rp);
583 	rl->r_rproc = rp;
584 }
585 
586 /*
587  * npf_rule_free: free the specified rule.
588  */
589 void
590 npf_rule_free(npf_rule_t *rl)
591 {
592 	npf_natpolicy_t *np = rl->r_natp;
593 	npf_rproc_t *rp = rl->r_rproc;
594 
595 	if (np) {
596 		/* Free NAT policy. */
597 		npf_nat_freepolicy(np);
598 	}
599 	if (rp) {
600 		/* Release rule procedure. */
601 		npf_rproc_release(rp);
602 	}
603 	if (rl->r_code) {
604 		/* Free byte-code. */
605 		kmem_free(rl->r_code, rl->r_clen);
606 	}
607 	if (rl->r_jcode) {
608 		/* Free JIT code. */
609 		bpf_jit_freecode(rl->r_jcode);
610 	}
611 	if (rl->r_dict) {
612 		/* Destroy the dictionary. */
613 		prop_object_release(rl->r_dict);
614 	}
615 	kmem_free(rl, sizeof(npf_rule_t));
616 }
617 
618 /*
619  * npf_rule_getid: return the unique ID of a rule.
620  * npf_rule_getrproc: acquire a reference and return rule procedure, if any.
621  * npf_rule_getnat: get NAT policy assigned to the rule.
622  */
623 
624 uint64_t
625 npf_rule_getid(const npf_rule_t *rl)
626 {
627 	KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
628 	return rl->r_id;
629 }
630 
631 npf_rproc_t *
632 npf_rule_getrproc(const npf_rule_t *rl)
633 {
634 	npf_rproc_t *rp = rl->r_rproc;
635 
636 	if (rp) {
637 		npf_rproc_acquire(rp);
638 	}
639 	return rp;
640 }
641 
642 npf_natpolicy_t *
643 npf_rule_getnat(const npf_rule_t *rl)
644 {
645 	return rl->r_natp;
646 }
647 
648 /*
649  * npf_rule_setnat: assign NAT policy to the rule and insert into the
650  * NAT policy list in the ruleset.
651  */
652 void
653 npf_rule_setnat(npf_rule_t *rl, npf_natpolicy_t *np)
654 {
655 
656 	KASSERT(rl->r_natp == NULL);
657 	rl->r_natp = np;
658 }
659 
660 /*
661  * npf_rule_inspect: match the interface, direction and run the filter code.
662  * Returns true if rule matches and false otherwise.
663  */
664 static inline bool
665 npf_rule_inspect(const npf_rule_t *rl, bpf_args_t *bc_args,
666     const int di_mask, const u_int ifid)
667 {
668 	/* Match the interface. */
669 	if (rl->r_ifid && rl->r_ifid != ifid) {
670 		return false;
671 	}
672 
673 	/* Match the direction. */
674 	if ((rl->r_attr & NPF_RULE_DIMASK) != NPF_RULE_DIMASK) {
675 		if ((rl->r_attr & di_mask) == 0)
676 			return false;
677 	}
678 
679 	/* Any code? */
680 	if (rl->r_jcode == rl->r_code) {
681 		KASSERT(rl->r_jcode == NULL);
682 		KASSERT(rl->r_code == NULL);
683 		return true;
684 	}
685 	KASSERT(rl->r_type == NPF_CODE_BPF);
686 	return npf_bpf_filter(bc_args, rl->r_code, rl->r_jcode) != 0;
687 }
688 
689 /*
690  * npf_rule_reinspect: re-inspect the dynamic rule by iterating its list.
691  * This is only for the dynamic rules.  Subrules cannot have nested rules.
692  */
693 static npf_rule_t *
694 npf_rule_reinspect(const npf_rule_t *drl, bpf_args_t *bc_args,
695     const int di_mask, const u_int ifid)
696 {
697 	npf_rule_t *final_rl = NULL, *rl;
698 
699 	KASSERT(NPF_DYNAMIC_GROUP_P(drl->r_attr));
700 
701 	TAILQ_FOREACH(rl, &drl->r_subset, r_entry) {
702 		if (!npf_rule_inspect(rl, bc_args, di_mask, ifid)) {
703 			continue;
704 		}
705 		if (rl->r_attr & NPF_RULE_FINAL) {
706 			return rl;
707 		}
708 		final_rl = rl;
709 	}
710 	return final_rl;
711 }
712 
713 /*
714  * npf_ruleset_inspect: inspect the packet against the given ruleset.
715  *
716  * Loop through the rules in the set and run the byte-code of each rule
717  * against the packet (nbuf chain).  If sub-ruleset is found, inspect it.
718  *
719  * => Caller is responsible for nbuf chain protection.
720  */
721 npf_rule_t *
722 npf_ruleset_inspect(npf_cache_t *npc, nbuf_t *nbuf,
723     const npf_ruleset_t *rlset, const int di, const int layer)
724 {
725 	const int di_mask = (di & PFIL_IN) ? NPF_RULE_IN : NPF_RULE_OUT;
726 	const u_int nitems = rlset->rs_nitems;
727 	const u_int ifid = nbuf->nb_ifid;
728 	npf_rule_t *final_rl = NULL;
729 	bpf_args_t bc_args;
730 	u_int n = 0;
731 
732 	memset(&bc_args, 0, sizeof(bpf_args_t));
733 	bc_args.pkt = nbuf_head_mbuf(nbuf);
734 	bc_args.wirelen = m_length(bc_args.pkt);
735 	bc_args.arg = npc;
736 
737 	KASSERT(((di & PFIL_IN) != 0) ^ ((di & PFIL_OUT) != 0));
738 
739 	while (n < nitems) {
740 		npf_rule_t *rl = rlset->rs_rules[n];
741 		const u_int skip_to = rl->r_skip_to;
742 		const uint32_t attr = rl->r_attr;
743 
744 		KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
745 		KASSERT(!final_rl || rl->r_priority >= final_rl->r_priority);
746 		KASSERT(n < skip_to);
747 
748 		/* Group is a barrier: return a matching if found any. */
749 		if ((attr & NPF_RULE_GROUP) != 0 && final_rl) {
750 			break;
751 		}
752 
753 		/* Main inspection of the rule. */
754 		if (!npf_rule_inspect(rl, &bc_args, di_mask, ifid)) {
755 			n = skip_to;
756 			continue;
757 		}
758 
759 		if (NPF_DYNAMIC_GROUP_P(attr)) {
760 			/*
761 			 * If this is a dynamic rule, re-inspect the subrules.
762 			 * If it has any matching rule, then it is final.
763 			 */
764 			rl = npf_rule_reinspect(rl, &bc_args, di_mask, ifid);
765 			if (rl != NULL) {
766 				final_rl = rl;
767 				break;
768 			}
769 		} else if ((attr & NPF_RULE_GROUP) == 0) {
770 			/*
771 			 * Groups themselves are not matching.
772 			 */
773 			final_rl = rl;
774 		}
775 
776 		/* Set the matching rule and check for "final". */
777 		if (attr & NPF_RULE_FINAL) {
778 			break;
779 		}
780 		n++;
781 	}
782 
783 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
784 	return final_rl;
785 }
786 
787 /*
788  * npf_rule_conclude: return decision and the flags for conclusion.
789  *
790  * => Returns ENETUNREACH if "block" and 0 if "pass".
791  */
792 int
793 npf_rule_conclude(const npf_rule_t *rl, int *retfl)
794 {
795 	/* If not passing - drop the packet. */
796 	*retfl = rl->r_attr;
797 	return (rl->r_attr & NPF_RULE_PASS) ? 0 : ENETUNREACH;
798 }
799