xref: /netbsd-src/sys/net/npf/npf_inet.c (revision f89f6560d453f5e37386cc7938c072d2f528b9fa)
1 /*	$NetBSD: npf_inet.c,v 1.32 2014/07/20 00:37:41 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009-2014 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This material is based upon work partially supported by The
8  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Various protocol related helper routines.
34  *
35  * This layer manipulates npf_cache_t structure i.e. caches requested headers
36  * and stores which information was cached in the information bit field.
37  * It is also responsibility of this layer to update or invalidate the cache
38  * on rewrites (e.g. by translation routines).
39  */
40 
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.32 2014/07/20 00:37:41 rmind Exp $");
43 
44 #include <sys/param.h>
45 #include <sys/types.h>
46 
47 #include <net/pfil.h>
48 #include <net/if.h>
49 #include <net/ethertypes.h>
50 #include <net/if_ether.h>
51 
52 #include <netinet/in_systm.h>
53 #include <netinet/in.h>
54 #include <netinet/ip.h>
55 #include <netinet/ip6.h>
56 #include <netinet/tcp.h>
57 #include <netinet/udp.h>
58 #include <netinet/ip_icmp.h>
59 
60 #include "npf_impl.h"
61 
62 /*
63  * npf_fixup{16,32}_cksum: incremental update of the Internet checksum.
64  */
65 
66 uint16_t
67 npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
68 {
69 	uint32_t sum;
70 
71 	/*
72 	 * RFC 1624:
73 	 *	HC' = ~(~HC + ~m + m')
74 	 *
75 	 * Note: 1's complement sum is endian-independent (RFC 1071, page 2).
76 	 */
77 	sum = ~cksum & 0xffff;
78 	sum += (~odatum & 0xffff) + ndatum;
79 	sum = (sum >> 16) + (sum & 0xffff);
80 	sum += (sum >> 16);
81 
82 	return ~sum & 0xffff;
83 }
84 
85 uint16_t
86 npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
87 {
88 	uint32_t sum;
89 
90 	/*
91 	 * Checksum 32-bit datum as as two 16-bit.  Note, the first
92 	 * 32->16 bit reduction is not necessary.
93 	 */
94 	sum = ~cksum & 0xffff;
95 	sum += (~odatum & 0xffff) + (ndatum & 0xffff);
96 
97 	sum += (~odatum >> 16) + (ndatum >> 16);
98 	sum = (sum >> 16) + (sum & 0xffff);
99 	sum += (sum >> 16);
100 	return ~sum & 0xffff;
101 }
102 
103 /*
104  * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
105  */
106 uint16_t
107 npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
108     const npf_addr_t *naddr)
109 {
110 	const uint32_t *oip32 = (const uint32_t *)oaddr;
111 	const uint32_t *nip32 = (const uint32_t *)naddr;
112 
113 	KASSERT(sz % sizeof(uint32_t) == 0);
114 	do {
115 		cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
116 		sz -= sizeof(uint32_t);
117 	} while (sz);
118 
119 	return cksum;
120 }
121 
122 /*
123  * npf_addr_sum: provide IP addresses as a XORed 32-bit integer.
124  * Note: used for hash function.
125  */
126 uint32_t
127 npf_addr_mix(const int sz, const npf_addr_t *a1, const npf_addr_t *a2)
128 {
129 	uint32_t mix = 0;
130 
131 	KASSERT(sz > 0 && a1 != NULL && a2 != NULL);
132 
133 	for (int i = 0; i < (sz >> 2); i++) {
134 		mix ^= a1->s6_addr32[i];
135 		mix ^= a2->s6_addr32[i];
136 	}
137 	return mix;
138 }
139 
140 /*
141  * npf_addr_mask: apply the mask to a given address and store the result.
142  */
143 void
144 npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
145     const int alen, npf_addr_t *out)
146 {
147 	const int nwords = alen >> 2;
148 	uint_fast8_t length = mask;
149 
150 	/* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
151 	KASSERT(length <= NPF_MAX_NETMASK);
152 
153 	for (int i = 0; i < nwords; i++) {
154 		uint32_t wordmask;
155 
156 		if (length >= 32) {
157 			wordmask = htonl(0xffffffff);
158 			length -= 32;
159 		} else if (length) {
160 			wordmask = htonl(0xffffffff << (32 - length));
161 			length = 0;
162 		} else {
163 			wordmask = 0;
164 		}
165 		out->s6_addr32[i] = addr->s6_addr32[i] & wordmask;
166 	}
167 }
168 
169 /*
170  * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
171  *
172  * => Return 0 if equal and negative/positive if less/greater accordingly.
173  * => Ignore the mask, if NPF_NO_NETMASK is specified.
174  */
175 int
176 npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
177     const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
178 {
179 	npf_addr_t realaddr1, realaddr2;
180 
181 	if (mask1 != NPF_NO_NETMASK) {
182 		npf_addr_mask(addr1, mask1, alen, &realaddr1);
183 		addr1 = &realaddr1;
184 	}
185 	if (mask2 != NPF_NO_NETMASK) {
186 		npf_addr_mask(addr2, mask2, alen, &realaddr2);
187 		addr2 = &realaddr2;
188 	}
189 	return memcmp(addr1, addr2, alen);
190 }
191 
192 /*
193  * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
194  *
195  * => Returns all values in host byte-order.
196  */
197 int
198 npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
199 {
200 	const struct tcphdr *th = npc->npc_l4.tcp;
201 	u_int thlen;
202 
203 	KASSERT(npf_iscached(npc, NPC_TCP));
204 
205 	*seq = ntohl(th->th_seq);
206 	*ack = ntohl(th->th_ack);
207 	*win = (uint32_t)ntohs(th->th_win);
208 	thlen = th->th_off << 2;
209 
210 	if (npf_iscached(npc, NPC_IP4)) {
211 		const struct ip *ip = npc->npc_ip.v4;
212 		return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
213 	} else if (npf_iscached(npc, NPC_IP6)) {
214 		const struct ip6_hdr *ip6 = npc->npc_ip.v6;
215 		return ntohs(ip6->ip6_plen) - thlen;
216 	}
217 	return 0;
218 }
219 
220 /*
221  * npf_fetch_tcpopts: parse and return TCP options.
222  */
223 bool
224 npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale)
225 {
226 	nbuf_t *nbuf = npc->npc_nbuf;
227 	const struct tcphdr *th = npc->npc_l4.tcp;
228 	int topts_len, step;
229 	void *nptr;
230 	uint8_t val;
231 	bool ok;
232 
233 	KASSERT(npf_iscached(npc, NPC_IP46));
234 	KASSERT(npf_iscached(npc, NPC_TCP));
235 
236 	/* Determine if there are any TCP options, get their length. */
237 	topts_len = (th->th_off << 2) - sizeof(struct tcphdr);
238 	if (topts_len <= 0) {
239 		/* No options. */
240 		return false;
241 	}
242 	KASSERT(topts_len <= MAX_TCPOPTLEN);
243 
244 	/* First step: IP and TCP header up to options. */
245 	step = npc->npc_hlen + sizeof(struct tcphdr);
246 	nbuf_reset(nbuf);
247 next:
248 	if ((nptr = nbuf_advance(nbuf, step, 1)) == NULL) {
249 		ok = false;
250 		goto done;
251 	}
252 	val = *(uint8_t *)nptr;
253 
254 	switch (val) {
255 	case TCPOPT_EOL:
256 		/* Done. */
257 		ok = true;
258 		goto done;
259 	case TCPOPT_NOP:
260 		topts_len--;
261 		step = 1;
262 		break;
263 	case TCPOPT_MAXSEG:
264 		if ((nptr = nbuf_advance(nbuf, 2, 2)) == NULL) {
265 			ok = false;
266 			goto done;
267 		}
268 		if (mss) {
269 			if (*mss) {
270 				memcpy(nptr, mss, sizeof(uint16_t));
271 			} else {
272 				memcpy(mss, nptr, sizeof(uint16_t));
273 			}
274 		}
275 		topts_len -= TCPOLEN_MAXSEG;
276 		step = 2;
277 		break;
278 	case TCPOPT_WINDOW:
279 		/* TCP Window Scaling (RFC 1323). */
280 		if ((nptr = nbuf_advance(nbuf, 2, 1)) == NULL) {
281 			ok = false;
282 			goto done;
283 		}
284 		val = *(uint8_t *)nptr;
285 		*wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
286 		topts_len -= TCPOLEN_WINDOW;
287 		step = 1;
288 		break;
289 	default:
290 		if ((nptr = nbuf_advance(nbuf, 1, 1)) == NULL) {
291 			ok = false;
292 			goto done;
293 		}
294 		val = *(uint8_t *)nptr;
295 		if (val < 2 || val > topts_len) {
296 			ok = false;
297 			goto done;
298 		}
299 		topts_len -= val;
300 		step = val - 1;
301 	}
302 
303 	/* Any options left? */
304 	if (__predict_true(topts_len > 0)) {
305 		goto next;
306 	}
307 	ok = true;
308 done:
309 	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
310 		npf_recache(npc);
311 	}
312 	return ok;
313 }
314 
315 static int
316 npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
317 {
318 	const void *nptr = nbuf_dataptr(nbuf);
319 	const uint8_t ver = *(const uint8_t *)nptr;
320 	int flags = 0;
321 
322 	switch (ver >> 4) {
323 	case IPVERSION: {
324 		struct ip *ip;
325 
326 		ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
327 		if (ip == NULL) {
328 			return 0;
329 		}
330 
331 		/* Check header length and fragment offset. */
332 		if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
333 			return 0;
334 		}
335 		if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
336 			/* Note fragmentation. */
337 			flags |= NPC_IPFRAG;
338 		}
339 
340 		/* Cache: layer 3 - IPv4. */
341 		npc->npc_alen = sizeof(struct in_addr);
342 		npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src;
343 		npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst;
344 		npc->npc_hlen = ip->ip_hl << 2;
345 		npc->npc_proto = ip->ip_p;
346 
347 		npc->npc_ip.v4 = ip;
348 		flags |= NPC_IP4;
349 		break;
350 	}
351 
352 	case (IPV6_VERSION >> 4): {
353 		struct ip6_hdr *ip6;
354 		struct ip6_ext *ip6e;
355 		size_t off, hlen;
356 
357 		ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
358 		if (ip6 == NULL) {
359 			return 0;
360 		}
361 
362 		/* Set initial next-protocol value. */
363 		hlen = sizeof(struct ip6_hdr);
364 		npc->npc_proto = ip6->ip6_nxt;
365 		npc->npc_hlen = hlen;
366 
367 		/*
368 		 * Advance by the length of the current header.
369 		 */
370 		off = nbuf_offset(nbuf);
371 		while (nbuf_advance(nbuf, hlen, 0) != NULL) {
372 			ip6e = nbuf_ensure_contig(nbuf, sizeof(*ip6e));
373 			if (ip6e == NULL) {
374 				return 0;
375 			}
376 
377 			/*
378 			 * Determine whether we are going to continue.
379 			 */
380 			switch (npc->npc_proto) {
381 			case IPPROTO_HOPOPTS:
382 			case IPPROTO_DSTOPTS:
383 			case IPPROTO_ROUTING:
384 				hlen = (ip6e->ip6e_len + 1) << 3;
385 				break;
386 			case IPPROTO_FRAGMENT:
387 				hlen = sizeof(struct ip6_frag);
388 				flags |= NPC_IPFRAG;
389 				break;
390 			case IPPROTO_AH:
391 				hlen = (ip6e->ip6e_len + 2) << 2;
392 				break;
393 			default:
394 				hlen = 0;
395 				break;
396 			}
397 
398 			if (!hlen) {
399 				break;
400 			}
401 			npc->npc_proto = ip6e->ip6e_nxt;
402 			npc->npc_hlen += hlen;
403 		}
404 
405 		/*
406 		 * Re-fetch the header pointers (nbufs might have been
407 		 * reallocated).  Restore the original offset (if any).
408 		 */
409 		nbuf_reset(nbuf);
410 		ip6 = nbuf_dataptr(nbuf);
411 		if (off) {
412 			nbuf_advance(nbuf, off, 0);
413 		}
414 
415 		/* Cache: layer 3 - IPv6. */
416 		npc->npc_alen = sizeof(struct in6_addr);
417 		npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src;
418 		npc->npc_ips[NPF_DST]= (npf_addr_t *)&ip6->ip6_dst;
419 
420 		npc->npc_ip.v6 = ip6;
421 		flags |= NPC_IP6;
422 		break;
423 	}
424 	default:
425 		break;
426 	}
427 	return flags;
428 }
429 
430 /*
431  * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
432  * and TCP, UDP or ICMP headers.
433  *
434  * => nbuf offset shall be set accordingly.
435  */
436 int
437 npf_cache_all(npf_cache_t *npc)
438 {
439 	nbuf_t *nbuf = npc->npc_nbuf;
440 	int flags, l4flags;
441 	u_int hlen;
442 
443 	/*
444 	 * This routine is a main point where the references are cached,
445 	 * therefore clear the flag as we reset.
446 	 */
447 again:
448 	nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
449 
450 	/*
451 	 * First, cache the L3 header (IPv4 or IPv6).  If IP packet is
452 	 * fragmented, then we cannot look into L4.
453 	 */
454 	flags = npf_cache_ip(npc, nbuf);
455 	if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0) {
456 		nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
457 		npc->npc_info |= flags;
458 		return flags;
459 	}
460 	hlen = npc->npc_hlen;
461 
462 	switch (npc->npc_proto) {
463 	case IPPROTO_TCP:
464 		/* Cache: layer 4 - TCP. */
465 		npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
466 		    sizeof(struct tcphdr));
467 		l4flags = NPC_LAYER4 | NPC_TCP;
468 		break;
469 	case IPPROTO_UDP:
470 		/* Cache: layer 4 - UDP. */
471 		npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
472 		    sizeof(struct udphdr));
473 		l4flags = NPC_LAYER4 | NPC_UDP;
474 		break;
475 	case IPPROTO_ICMP:
476 		/* Cache: layer 4 - ICMPv4. */
477 		npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
478 		    offsetof(struct icmp, icmp_void));
479 		l4flags = NPC_LAYER4 | NPC_ICMP;
480 		break;
481 	case IPPROTO_ICMPV6:
482 		/* Cache: layer 4 - ICMPv6. */
483 		npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
484 		    offsetof(struct icmp6_hdr, icmp6_data32));
485 		l4flags = NPC_LAYER4 | NPC_ICMP;
486 		break;
487 	default:
488 		l4flags = 0;
489 		break;
490 	}
491 
492 	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
493 		goto again;
494 	}
495 
496 	/* Add the L4 flags if nbuf_advance() succeeded. */
497 	if (l4flags && npc->npc_l4.hdr) {
498 		flags |= l4flags;
499 	}
500 	npc->npc_info |= flags;
501 	return flags;
502 }
503 
504 void
505 npf_recache(npf_cache_t *npc)
506 {
507 	nbuf_t *nbuf = npc->npc_nbuf;
508 	const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
509 	int flags __diagused;
510 
511 	nbuf_reset(nbuf);
512 	npc->npc_info = 0;
513 	flags = npf_cache_all(npc);
514 
515 	KASSERT((flags & mflags) == mflags);
516 	KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
517 }
518 
519 /*
520  * npf_rwrip: rewrite required IP address.
521  */
522 bool
523 npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr)
524 {
525 	KASSERT(npf_iscached(npc, NPC_IP46));
526 	KASSERT(which == NPF_SRC || which == NPF_DST);
527 
528 	memcpy(npc->npc_ips[which], addr, npc->npc_alen);
529 	return true;
530 }
531 
532 /*
533  * npf_rwrport: rewrite required TCP/UDP port.
534  */
535 bool
536 npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port)
537 {
538 	const int proto = npc->npc_proto;
539 	in_port_t *oport;
540 
541 	KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
542 	KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
543 	KASSERT(which == NPF_SRC || which == NPF_DST);
544 
545 	/* Get the offset and store the port in it. */
546 	if (proto == IPPROTO_TCP) {
547 		struct tcphdr *th = npc->npc_l4.tcp;
548 		oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport;
549 	} else {
550 		struct udphdr *uh = npc->npc_l4.udp;
551 		oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport;
552 	}
553 	memcpy(oport, &port, sizeof(in_port_t));
554 	return true;
555 }
556 
557 /*
558  * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
559  */
560 bool
561 npf_rwrcksum(const npf_cache_t *npc, u_int which,
562     const npf_addr_t *addr, const in_port_t port)
563 {
564 	const npf_addr_t *oaddr = npc->npc_ips[which];
565 	const int proto = npc->npc_proto;
566 	const int alen = npc->npc_alen;
567 	uint16_t *ocksum;
568 	in_port_t oport;
569 
570 	KASSERT(npf_iscached(npc, NPC_LAYER4));
571 	KASSERT(which == NPF_SRC || which == NPF_DST);
572 
573 	if (npf_iscached(npc, NPC_IP4)) {
574 		struct ip *ip = npc->npc_ip.v4;
575 		uint16_t ipsum = ip->ip_sum;
576 
577 		/* Recalculate IPv4 checksum and rewrite. */
578 		ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
579 	} else {
580 		/* No checksum for IPv6. */
581 		KASSERT(npf_iscached(npc, NPC_IP6));
582 	}
583 
584 	/* Nothing else to do for ICMP. */
585 	if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) {
586 		return true;
587 	}
588 	KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
589 
590 	/*
591 	 * Calculate TCP/UDP checksum:
592 	 * - Skip if UDP and the current checksum is zero.
593 	 * - Fixup the IP address change.
594 	 * - Fixup the port change, if required (non-zero).
595 	 */
596 	if (proto == IPPROTO_TCP) {
597 		struct tcphdr *th = npc->npc_l4.tcp;
598 
599 		ocksum = &th->th_sum;
600 		oport = (which == NPF_SRC) ? th->th_sport : th->th_dport;
601 	} else {
602 		struct udphdr *uh = npc->npc_l4.udp;
603 
604 		KASSERT(proto == IPPROTO_UDP);
605 		ocksum = &uh->uh_sum;
606 		if (*ocksum == 0) {
607 			/* No need to update. */
608 			return true;
609 		}
610 		oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport;
611 	}
612 
613 	uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
614 	if (port) {
615 		cksum = npf_fixup16_cksum(cksum, oport, port);
616 	}
617 
618 	/* Rewrite TCP/UDP checksum. */
619 	memcpy(ocksum, &cksum, sizeof(uint16_t));
620 	return true;
621 }
622 
623 /*
624  * npf_napt_rwr: perform address and/or port translation.
625  */
626 int
627 npf_napt_rwr(const npf_cache_t *npc, u_int which,
628     const npf_addr_t *addr, const in_addr_t port)
629 {
630 	const unsigned proto = npc->npc_proto;
631 
632 	/*
633 	 * Rewrite IP and/or TCP/UDP checksums first, since we need the
634 	 * current (old) address/port for the calculations.  Then perform
635 	 * the address translation i.e. rewrite source or destination.
636 	 */
637 	if (!npf_rwrcksum(npc, which, addr, port)) {
638 		return EINVAL;
639 	}
640 	if (!npf_rwrip(npc, which, addr)) {
641 		return EINVAL;
642 	}
643 	if (port == 0) {
644 		/* Done. */
645 		return 0;
646 	}
647 
648 	switch (proto) {
649 	case IPPROTO_TCP:
650 	case IPPROTO_UDP:
651 		/* Rewrite source/destination port. */
652 		if (!npf_rwrport(npc, which, port)) {
653 			return EINVAL;
654 		}
655 		break;
656 	case IPPROTO_ICMP:
657 	case IPPROTO_ICMPV6:
658 		KASSERT(npf_iscached(npc, NPC_ICMP));
659 		/* Nothing. */
660 		break;
661 	default:
662 		return ENOTSUP;
663 	}
664 	return 0;
665 }
666 
667 /*
668  * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296.
669  */
670 
671 int
672 npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref,
673     npf_netmask_t len, uint16_t adj)
674 {
675 	npf_addr_t *addr = npc->npc_ips[which];
676 	unsigned remnant, word, preflen = len >> 4;
677 	uint32_t sum;
678 
679 	KASSERT(which == NPF_SRC || which == NPF_DST);
680 
681 	if (!npf_iscached(npc, NPC_IP6)) {
682 		return EINVAL;
683 	}
684 	if (len <= 48) {
685 		/*
686 		 * The word to adjust.  Cannot translate the 0xffff
687 		 * subnet if /48 or shorter.
688 		 */
689 		word = 3;
690 		if (addr->s6_addr16[word] == 0xffff) {
691 			return EINVAL;
692 		}
693 	} else {
694 		/*
695 		 * Also, all 0s or 1s in the host part are disallowed for
696 		 * longer than /48 prefixes.
697 		 */
698 		if ((addr->s6_addr32[2] == 0 && addr->s6_addr32[3] == 0) ||
699 		    (addr->s6_addr32[2] == ~0U && addr->s6_addr32[3] == ~0U))
700 			return EINVAL;
701 
702 		/* Determine the 16-bit word to adjust. */
703 		for (word = 4; word < 8; word++)
704 			if (addr->s6_addr16[word] != 0xffff)
705 				break;
706 	}
707 
708 	/* Rewrite the prefix. */
709 	for (unsigned i = 0; i < preflen; i++) {
710 		addr->s6_addr16[i] = pref->s6_addr16[i];
711 	}
712 
713 	/*
714 	 * If prefix length is within a 16-bit word (not dividable by 16),
715 	 * then prepare a mask, determine the word and adjust it.
716 	 */
717 	if ((remnant = len - (preflen << 4)) != 0) {
718 		const uint16_t wordmask = (1U << remnant) - 1;
719 		const unsigned i = preflen;
720 
721 		addr->s6_addr16[i] = (pref->s6_addr16[i] & wordmask) |
722 		    (addr->s6_addr16[i] & ~wordmask);
723 	}
724 
725 	/*
726 	 * Performing 1's complement sum/difference.
727 	 */
728 	sum = addr->s6_addr16[word] + adj;
729 	while (sum >> 16) {
730 		sum = (sum >> 16) + (sum & 0xffff);
731 	}
732 	if (sum == 0xffff) {
733 		/* RFC 1071. */
734 		sum = 0x0000;
735 	}
736 	addr->s6_addr16[word] = sum;
737 	return 0;
738 }
739 
740 #if defined(DDB) || defined(_NPF_TESTING)
741 
742 const char *
743 npf_addr_dump(const npf_addr_t *addr, int alen)
744 {
745 	if (alen == sizeof(struct in_addr)) {
746 		struct in_addr ip;
747 		memcpy(&ip, addr, alen);
748 		return inet_ntoa(ip);
749 	}
750 	return "[IPv6]"; // XXX
751 }
752 
753 #endif
754