1 /* $NetBSD: npf_inet.c,v 1.30 2014/02/19 03:51:31 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2009-2014 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This material is based upon work partially supported by The 8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Various protocol related helper routines. 34 * 35 * This layer manipulates npf_cache_t structure i.e. caches requested headers 36 * and stores which information was cached in the information bit field. 37 * It is also responsibility of this layer to update or invalidate the cache 38 * on rewrites (e.g. by translation routines). 39 */ 40 41 #include <sys/cdefs.h> 42 __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.30 2014/02/19 03:51:31 rmind Exp $"); 43 44 #include <sys/param.h> 45 #include <sys/types.h> 46 47 #include <net/pfil.h> 48 #include <net/if.h> 49 #include <net/ethertypes.h> 50 #include <net/if_ether.h> 51 52 #include <netinet/in_systm.h> 53 #include <netinet/in.h> 54 #include <netinet/ip.h> 55 #include <netinet/ip6.h> 56 #include <netinet/tcp.h> 57 #include <netinet/udp.h> 58 #include <netinet/ip_icmp.h> 59 60 #include "npf_impl.h" 61 62 /* 63 * npf_fixup{16,32}_cksum: incremental update of the Internet checksum. 64 */ 65 66 uint16_t 67 npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum) 68 { 69 uint32_t sum; 70 71 /* 72 * RFC 1624: 73 * HC' = ~(~HC + ~m + m') 74 * 75 * Note: 1's complement sum is endian-independent (RFC 1071, page 2). 76 */ 77 sum = ~cksum & 0xffff; 78 sum += (~odatum & 0xffff) + ndatum; 79 sum = (sum >> 16) + (sum & 0xffff); 80 sum += (sum >> 16); 81 82 return ~sum & 0xffff; 83 } 84 85 uint16_t 86 npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum) 87 { 88 uint32_t sum; 89 90 /* 91 * Checksum 32-bit datum as as two 16-bit. Note, the first 92 * 32->16 bit reduction is not necessary. 93 */ 94 sum = ~cksum & 0xffff; 95 sum += (~odatum & 0xffff) + (ndatum & 0xffff); 96 97 sum += (~odatum >> 16) + (ndatum >> 16); 98 sum = (sum >> 16) + (sum & 0xffff); 99 sum += (sum >> 16); 100 return ~sum & 0xffff; 101 } 102 103 /* 104 * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6. 105 */ 106 uint16_t 107 npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr, 108 const npf_addr_t *naddr) 109 { 110 const uint32_t *oip32 = (const uint32_t *)oaddr; 111 const uint32_t *nip32 = (const uint32_t *)naddr; 112 113 KASSERT(sz % sizeof(uint32_t) == 0); 114 do { 115 cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++); 116 sz -= sizeof(uint32_t); 117 } while (sz); 118 119 return cksum; 120 } 121 122 /* 123 * npf_addr_sum: provide IP addresses as a XORed 32-bit integer. 124 * Note: used for hash function. 125 */ 126 uint32_t 127 npf_addr_mix(const int sz, const npf_addr_t *a1, const npf_addr_t *a2) 128 { 129 uint32_t mix = 0; 130 131 KASSERT(sz > 0 && a1 != NULL && a2 != NULL); 132 133 for (int i = 0; i < (sz >> 2); i++) { 134 mix ^= a1->s6_addr32[i]; 135 mix ^= a2->s6_addr32[i]; 136 } 137 return mix; 138 } 139 140 /* 141 * npf_addr_mask: apply the mask to a given address and store the result. 142 */ 143 void 144 npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask, 145 const int alen, npf_addr_t *out) 146 { 147 const int nwords = alen >> 2; 148 uint_fast8_t length = mask; 149 150 /* Note: maximum length is 32 for IPv4 and 128 for IPv6. */ 151 KASSERT(length <= NPF_MAX_NETMASK); 152 153 for (int i = 0; i < nwords; i++) { 154 uint32_t wordmask; 155 156 if (length >= 32) { 157 wordmask = htonl(0xffffffff); 158 length -= 32; 159 } else if (length) { 160 wordmask = htonl(0xffffffff << (32 - length)); 161 length = 0; 162 } else { 163 wordmask = 0; 164 } 165 out->s6_addr32[i] = addr->s6_addr32[i] & wordmask; 166 } 167 } 168 169 /* 170 * npf_addr_cmp: compare two addresses, either IPv4 or IPv6. 171 * 172 * => Return 0 if equal and negative/positive if less/greater accordingly. 173 * => Ignore the mask, if NPF_NO_NETMASK is specified. 174 */ 175 int 176 npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1, 177 const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen) 178 { 179 npf_addr_t realaddr1, realaddr2; 180 181 if (mask1 != NPF_NO_NETMASK) { 182 npf_addr_mask(addr1, mask1, alen, &realaddr1); 183 addr1 = &realaddr1; 184 } 185 if (mask2 != NPF_NO_NETMASK) { 186 npf_addr_mask(addr2, mask2, alen, &realaddr2); 187 addr2 = &realaddr2; 188 } 189 return memcmp(addr1, addr2, alen); 190 } 191 192 /* 193 * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length. 194 * 195 * => Returns all values in host byte-order. 196 */ 197 int 198 npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win) 199 { 200 const struct tcphdr *th = npc->npc_l4.tcp; 201 u_int thlen; 202 203 KASSERT(npf_iscached(npc, NPC_TCP)); 204 205 *seq = ntohl(th->th_seq); 206 *ack = ntohl(th->th_ack); 207 *win = (uint32_t)ntohs(th->th_win); 208 thlen = th->th_off << 2; 209 210 if (npf_iscached(npc, NPC_IP4)) { 211 const struct ip *ip = npc->npc_ip.v4; 212 return ntohs(ip->ip_len) - npc->npc_hlen - thlen; 213 } else if (npf_iscached(npc, NPC_IP6)) { 214 const struct ip6_hdr *ip6 = npc->npc_ip.v6; 215 return ntohs(ip6->ip6_plen) - thlen; 216 } 217 return 0; 218 } 219 220 /* 221 * npf_fetch_tcpopts: parse and return TCP options. 222 */ 223 bool 224 npf_fetch_tcpopts(npf_cache_t *npc, nbuf_t *nbuf, uint16_t *mss, int *wscale) 225 { 226 const struct tcphdr *th = npc->npc_l4.tcp; 227 int topts_len, step; 228 void *nptr; 229 uint8_t val; 230 bool ok; 231 232 KASSERT(npf_iscached(npc, NPC_IP46)); 233 KASSERT(npf_iscached(npc, NPC_TCP)); 234 235 /* Determine if there are any TCP options, get their length. */ 236 topts_len = (th->th_off << 2) - sizeof(struct tcphdr); 237 if (topts_len <= 0) { 238 /* No options. */ 239 return false; 240 } 241 KASSERT(topts_len <= MAX_TCPOPTLEN); 242 243 /* First step: IP and TCP header up to options. */ 244 step = npc->npc_hlen + sizeof(struct tcphdr); 245 nbuf_reset(nbuf); 246 next: 247 if ((nptr = nbuf_advance(nbuf, step, 1)) == NULL) { 248 ok = false; 249 goto done; 250 } 251 val = *(uint8_t *)nptr; 252 253 switch (val) { 254 case TCPOPT_EOL: 255 /* Done. */ 256 ok = true; 257 goto done; 258 case TCPOPT_NOP: 259 topts_len--; 260 step = 1; 261 break; 262 case TCPOPT_MAXSEG: 263 if ((nptr = nbuf_advance(nbuf, 2, 2)) == NULL) { 264 ok = false; 265 goto done; 266 } 267 if (mss) { 268 if (*mss) { 269 memcpy(nptr, mss, sizeof(uint16_t)); 270 } else { 271 memcpy(mss, nptr, sizeof(uint16_t)); 272 } 273 } 274 topts_len -= TCPOLEN_MAXSEG; 275 step = 2; 276 break; 277 case TCPOPT_WINDOW: 278 /* TCP Window Scaling (RFC 1323). */ 279 if ((nptr = nbuf_advance(nbuf, 2, 1)) == NULL) { 280 ok = false; 281 goto done; 282 } 283 val = *(uint8_t *)nptr; 284 *wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val; 285 topts_len -= TCPOLEN_WINDOW; 286 step = 1; 287 break; 288 default: 289 if ((nptr = nbuf_advance(nbuf, 1, 1)) == NULL) { 290 ok = false; 291 goto done; 292 } 293 val = *(uint8_t *)nptr; 294 if (val < 2 || val > topts_len) { 295 ok = false; 296 goto done; 297 } 298 topts_len -= val; 299 step = val - 1; 300 } 301 302 /* Any options left? */ 303 if (__predict_true(topts_len > 0)) { 304 goto next; 305 } 306 ok = true; 307 done: 308 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) { 309 npf_recache(npc, nbuf); 310 } 311 return ok; 312 } 313 314 static int 315 npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf) 316 { 317 const void *nptr = nbuf_dataptr(nbuf); 318 const uint8_t ver = *(const uint8_t *)nptr; 319 int flags = 0; 320 321 switch (ver >> 4) { 322 case IPVERSION: { 323 struct ip *ip; 324 325 ip = nbuf_ensure_contig(nbuf, sizeof(struct ip)); 326 if (ip == NULL) { 327 return 0; 328 } 329 330 /* Check header length and fragment offset. */ 331 if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) { 332 return 0; 333 } 334 if (ip->ip_off & ~htons(IP_DF | IP_RF)) { 335 /* Note fragmentation. */ 336 flags |= NPC_IPFRAG; 337 } 338 339 /* Cache: layer 3 - IPv4. */ 340 npc->npc_alen = sizeof(struct in_addr); 341 npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src; 342 npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst; 343 npc->npc_hlen = ip->ip_hl << 2; 344 npc->npc_proto = ip->ip_p; 345 346 npc->npc_ip.v4 = ip; 347 flags |= NPC_IP4; 348 break; 349 } 350 351 case (IPV6_VERSION >> 4): { 352 struct ip6_hdr *ip6; 353 struct ip6_ext *ip6e; 354 size_t off, hlen; 355 356 ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr)); 357 if (ip6 == NULL) { 358 return 0; 359 } 360 361 /* Set initial next-protocol value. */ 362 hlen = sizeof(struct ip6_hdr); 363 npc->npc_proto = ip6->ip6_nxt; 364 npc->npc_hlen = hlen; 365 366 /* 367 * Advance by the length of the current header. 368 */ 369 off = nbuf_offset(nbuf); 370 while (nbuf_advance(nbuf, hlen, 0) != NULL) { 371 ip6e = nbuf_ensure_contig(nbuf, sizeof(*ip6e)); 372 if (ip6e == NULL) { 373 return 0; 374 } 375 376 /* 377 * Determine whether we are going to continue. 378 */ 379 switch (npc->npc_proto) { 380 case IPPROTO_HOPOPTS: 381 case IPPROTO_DSTOPTS: 382 case IPPROTO_ROUTING: 383 hlen = (ip6e->ip6e_len + 1) << 3; 384 break; 385 case IPPROTO_FRAGMENT: 386 hlen = sizeof(struct ip6_frag); 387 flags |= NPC_IPFRAG; 388 break; 389 case IPPROTO_AH: 390 hlen = (ip6e->ip6e_len + 2) << 2; 391 break; 392 default: 393 hlen = 0; 394 break; 395 } 396 397 if (!hlen) { 398 break; 399 } 400 npc->npc_proto = ip6e->ip6e_nxt; 401 npc->npc_hlen += hlen; 402 } 403 404 /* 405 * Re-fetch the header pointers (nbufs might have been 406 * reallocated). Restore the original offset (if any). 407 */ 408 nbuf_reset(nbuf); 409 ip6 = nbuf_dataptr(nbuf); 410 if (off) { 411 nbuf_advance(nbuf, off, 0); 412 } 413 414 /* Cache: layer 3 - IPv6. */ 415 npc->npc_alen = sizeof(struct in6_addr); 416 npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src; 417 npc->npc_ips[NPF_DST]= (npf_addr_t *)&ip6->ip6_dst; 418 419 npc->npc_ip.v6 = ip6; 420 flags |= NPC_IP6; 421 break; 422 } 423 default: 424 break; 425 } 426 return flags; 427 } 428 429 /* 430 * npf_cache_all: general routine to cache all relevant IP (v4 or v6) 431 * and TCP, UDP or ICMP headers. 432 * 433 * => nbuf offset shall be set accordingly. 434 */ 435 int 436 npf_cache_all(npf_cache_t *npc, nbuf_t *nbuf) 437 { 438 int flags, l4flags; 439 u_int hlen; 440 441 /* 442 * This routine is a main point where the references are cached, 443 * therefore clear the flag as we reset. 444 */ 445 again: 446 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET); 447 448 /* 449 * First, cache the L3 header (IPv4 or IPv6). If IP packet is 450 * fragmented, then we cannot look into L4. 451 */ 452 flags = npf_cache_ip(npc, nbuf); 453 if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0) { 454 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET); 455 npc->npc_info |= flags; 456 return flags; 457 } 458 hlen = npc->npc_hlen; 459 460 switch (npc->npc_proto) { 461 case IPPROTO_TCP: 462 /* Cache: layer 4 - TCP. */ 463 npc->npc_l4.tcp = nbuf_advance(nbuf, hlen, 464 sizeof(struct tcphdr)); 465 l4flags = NPC_LAYER4 | NPC_TCP; 466 break; 467 case IPPROTO_UDP: 468 /* Cache: layer 4 - UDP. */ 469 npc->npc_l4.udp = nbuf_advance(nbuf, hlen, 470 sizeof(struct udphdr)); 471 l4flags = NPC_LAYER4 | NPC_UDP; 472 break; 473 case IPPROTO_ICMP: 474 /* Cache: layer 4 - ICMPv4. */ 475 npc->npc_l4.icmp = nbuf_advance(nbuf, hlen, 476 offsetof(struct icmp, icmp_void)); 477 l4flags = NPC_LAYER4 | NPC_ICMP; 478 break; 479 case IPPROTO_ICMPV6: 480 /* Cache: layer 4 - ICMPv6. */ 481 npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen, 482 offsetof(struct icmp6_hdr, icmp6_data32)); 483 l4flags = NPC_LAYER4 | NPC_ICMP; 484 break; 485 default: 486 l4flags = 0; 487 break; 488 } 489 490 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) { 491 goto again; 492 } 493 494 /* Add the L4 flags if nbuf_advance() succeeded. */ 495 if (l4flags && npc->npc_l4.hdr) { 496 flags |= l4flags; 497 } 498 npc->npc_info |= flags; 499 return flags; 500 } 501 502 void 503 npf_recache(npf_cache_t *npc, nbuf_t *nbuf) 504 { 505 const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4); 506 int flags __diagused; 507 508 nbuf_reset(nbuf); 509 npc->npc_info = 0; 510 flags = npf_cache_all(npc, nbuf); 511 KASSERT((flags & mflags) == mflags); 512 KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0); 513 } 514 515 /* 516 * npf_rwrip: rewrite required IP address. 517 */ 518 bool 519 npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr) 520 { 521 KASSERT(npf_iscached(npc, NPC_IP46)); 522 KASSERT(which == NPF_SRC || which == NPF_DST); 523 524 memcpy(npc->npc_ips[which], addr, npc->npc_alen); 525 return true; 526 } 527 528 /* 529 * npf_rwrport: rewrite required TCP/UDP port. 530 */ 531 bool 532 npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port) 533 { 534 const int proto = npc->npc_proto; 535 in_port_t *oport; 536 537 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP)); 538 KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP); 539 KASSERT(which == NPF_SRC || which == NPF_DST); 540 541 /* Get the offset and store the port in it. */ 542 if (proto == IPPROTO_TCP) { 543 struct tcphdr *th = npc->npc_l4.tcp; 544 oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport; 545 } else { 546 struct udphdr *uh = npc->npc_l4.udp; 547 oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport; 548 } 549 memcpy(oport, &port, sizeof(in_port_t)); 550 return true; 551 } 552 553 /* 554 * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum. 555 */ 556 bool 557 npf_rwrcksum(const npf_cache_t *npc, u_int which, 558 const npf_addr_t *addr, const in_port_t port) 559 { 560 const npf_addr_t *oaddr = npc->npc_ips[which]; 561 const int proto = npc->npc_proto; 562 const int alen = npc->npc_alen; 563 uint16_t *ocksum; 564 in_port_t oport; 565 566 KASSERT(npf_iscached(npc, NPC_LAYER4)); 567 KASSERT(which == NPF_SRC || which == NPF_DST); 568 569 if (npf_iscached(npc, NPC_IP4)) { 570 struct ip *ip = npc->npc_ip.v4; 571 uint16_t ipsum = ip->ip_sum; 572 573 /* Recalculate IPv4 checksum and rewrite. */ 574 ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr); 575 } else { 576 /* No checksum for IPv6. */ 577 KASSERT(npf_iscached(npc, NPC_IP6)); 578 } 579 580 /* Nothing else to do for ICMP. */ 581 if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) { 582 return true; 583 } 584 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP)); 585 586 /* 587 * Calculate TCP/UDP checksum: 588 * - Skip if UDP and the current checksum is zero. 589 * - Fixup the IP address change. 590 * - Fixup the port change, if required (non-zero). 591 */ 592 if (proto == IPPROTO_TCP) { 593 struct tcphdr *th = npc->npc_l4.tcp; 594 595 ocksum = &th->th_sum; 596 oport = (which == NPF_SRC) ? th->th_sport : th->th_dport; 597 } else { 598 struct udphdr *uh = npc->npc_l4.udp; 599 600 KASSERT(proto == IPPROTO_UDP); 601 ocksum = &uh->uh_sum; 602 if (*ocksum == 0) { 603 /* No need to update. */ 604 return true; 605 } 606 oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport; 607 } 608 609 uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr); 610 if (port) { 611 cksum = npf_fixup16_cksum(cksum, oport, port); 612 } 613 614 /* Rewrite TCP/UDP checksum. */ 615 memcpy(ocksum, &cksum, sizeof(uint16_t)); 616 return true; 617 } 618 619 /* 620 * npf_napt_rwr: perform address and/or port translation. 621 */ 622 int 623 npf_napt_rwr(const npf_cache_t *npc, u_int which, 624 const npf_addr_t *addr, const in_addr_t port) 625 { 626 const unsigned proto = npc->npc_proto; 627 628 /* 629 * Rewrite IP and/or TCP/UDP checksums first, since we need the 630 * current (old) address/port for the calculations. Then perform 631 * the address translation i.e. rewrite source or destination. 632 */ 633 if (!npf_rwrcksum(npc, which, addr, port)) { 634 return EINVAL; 635 } 636 if (!npf_rwrip(npc, which, addr)) { 637 return EINVAL; 638 } 639 if (port == 0) { 640 /* Done. */ 641 return 0; 642 } 643 644 switch (proto) { 645 case IPPROTO_TCP: 646 case IPPROTO_UDP: 647 /* Rewrite source/destination port. */ 648 if (!npf_rwrport(npc, which, port)) { 649 return EINVAL; 650 } 651 break; 652 case IPPROTO_ICMP: 653 case IPPROTO_ICMPV6: 654 KASSERT(npf_iscached(npc, NPC_ICMP)); 655 /* Nothing. */ 656 break; 657 default: 658 return ENOTSUP; 659 } 660 return 0; 661 } 662 663 /* 664 * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296. 665 */ 666 667 int 668 npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref, 669 npf_netmask_t len, uint16_t adj) 670 { 671 npf_addr_t *addr = npc->npc_ips[which]; 672 unsigned remnant, word, preflen = len >> 4; 673 uint32_t sum; 674 675 KASSERT(which == NPF_SRC || which == NPF_DST); 676 677 if (!npf_iscached(npc, NPC_IP6)) { 678 return EINVAL; 679 } 680 if (len <= 48) { 681 /* 682 * The word to adjust. Cannot translate the 0xffff 683 * subnet if /48 or shorter. 684 */ 685 word = 3; 686 if (addr->s6_addr16[word] == 0xffff) { 687 return EINVAL; 688 } 689 } else { 690 /* 691 * Also, all 0s or 1s in the host part are disallowed for 692 * longer than /48 prefixes. 693 */ 694 if ((addr->s6_addr32[2] == 0 && addr->s6_addr32[3] == 0) || 695 (addr->s6_addr32[2] == ~0U && addr->s6_addr32[3] == ~0U)) 696 return EINVAL; 697 698 /* Determine the 16-bit word to adjust. */ 699 for (word = 4; word < 8; word++) 700 if (addr->s6_addr16[word] != 0xffff) 701 break; 702 } 703 704 /* Rewrite the prefix. */ 705 for (unsigned i = 0; i < preflen; i++) { 706 addr->s6_addr16[i] = pref->s6_addr16[i]; 707 } 708 709 /* 710 * If prefix length is within a 16-bit word (not dividable by 16), 711 * then prepare a mask, determine the word and adjust it. 712 */ 713 if ((remnant = len - (preflen << 4)) != 0) { 714 const uint16_t wordmask = (1U << remnant) - 1; 715 const unsigned i = preflen; 716 717 addr->s6_addr16[i] = (pref->s6_addr16[i] & wordmask) | 718 (addr->s6_addr16[i] & ~wordmask); 719 } 720 721 /* 722 * Performing 1's complement sum/difference. 723 */ 724 sum = addr->s6_addr16[word] + adj; 725 while (sum >> 16) { 726 sum = (sum >> 16) + (sum & 0xffff); 727 } 728 if (sum == 0xffff) { 729 /* RFC 1071. */ 730 sum = 0x0000; 731 } 732 addr->s6_addr16[word] = sum; 733 return 0; 734 } 735 736 #if defined(DDB) || defined(_NPF_TESTING) 737 738 void 739 npf_addr_dump(const npf_addr_t *addr) 740 { 741 printf("IP[%x:%x:%x:%x]\n", 742 addr->s6_addr32[0], addr->s6_addr32[1], 743 addr->s6_addr32[2], addr->s6_addr32[3]); 744 } 745 746 #endif 747