1 /* $NetBSD: npf_inet.c,v 1.37 2017/02/19 20:27:22 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2009-2014 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This material is based upon work partially supported by The 8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Various protocol related helper routines. 34 * 35 * This layer manipulates npf_cache_t structure i.e. caches requested headers 36 * and stores which information was cached in the information bit field. 37 * It is also responsibility of this layer to update or invalidate the cache 38 * on rewrites (e.g. by translation routines). 39 */ 40 41 #ifdef _KERNEL 42 #include <sys/cdefs.h> 43 __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.37 2017/02/19 20:27:22 christos Exp $"); 44 45 #include <sys/param.h> 46 #include <sys/types.h> 47 48 #include <net/pfil.h> 49 #include <net/if.h> 50 #include <net/ethertypes.h> 51 #include <net/if_ether.h> 52 53 #include <netinet/in_systm.h> 54 #include <netinet/in.h> 55 #include <netinet6/in6_var.h> 56 #include <netinet/ip.h> 57 #include <netinet/ip6.h> 58 #include <netinet/tcp.h> 59 #include <netinet/udp.h> 60 #include <netinet/ip_icmp.h> 61 #endif 62 63 #include "npf_impl.h" 64 65 /* 66 * npf_fixup{16,32}_cksum: incremental update of the Internet checksum. 67 */ 68 69 uint16_t 70 npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum) 71 { 72 uint32_t sum; 73 74 /* 75 * RFC 1624: 76 * HC' = ~(~HC + ~m + m') 77 * 78 * Note: 1's complement sum is endian-independent (RFC 1071, page 2). 79 */ 80 sum = ~cksum & 0xffff; 81 sum += (~odatum & 0xffff) + ndatum; 82 sum = (sum >> 16) + (sum & 0xffff); 83 sum += (sum >> 16); 84 85 return ~sum & 0xffff; 86 } 87 88 uint16_t 89 npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum) 90 { 91 uint32_t sum; 92 93 /* 94 * Checksum 32-bit datum as as two 16-bit. Note, the first 95 * 32->16 bit reduction is not necessary. 96 */ 97 sum = ~cksum & 0xffff; 98 sum += (~odatum & 0xffff) + (ndatum & 0xffff); 99 100 sum += (~odatum >> 16) + (ndatum >> 16); 101 sum = (sum >> 16) + (sum & 0xffff); 102 sum += (sum >> 16); 103 return ~sum & 0xffff; 104 } 105 106 /* 107 * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6. 108 */ 109 uint16_t 110 npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr, 111 const npf_addr_t *naddr) 112 { 113 const uint32_t *oip32 = (const uint32_t *)oaddr; 114 const uint32_t *nip32 = (const uint32_t *)naddr; 115 116 KASSERT(sz % sizeof(uint32_t) == 0); 117 do { 118 cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++); 119 sz -= sizeof(uint32_t); 120 } while (sz); 121 122 return cksum; 123 } 124 125 /* 126 * npf_addr_sum: provide IP addresses as a XORed 32-bit integer. 127 * Note: used for hash function. 128 */ 129 uint32_t 130 npf_addr_mix(const int sz, const npf_addr_t *a1, const npf_addr_t *a2) 131 { 132 uint32_t mix = 0; 133 134 KASSERT(sz > 0 && a1 != NULL && a2 != NULL); 135 136 for (int i = 0; i < (sz >> 2); i++) { 137 mix ^= a1->word32[i]; 138 mix ^= a2->word32[i]; 139 } 140 return mix; 141 } 142 143 /* 144 * npf_addr_mask: apply the mask to a given address and store the result. 145 */ 146 void 147 npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask, 148 const int alen, npf_addr_t *out) 149 { 150 const int nwords = alen >> 2; 151 uint_fast8_t length = mask; 152 153 /* Note: maximum length is 32 for IPv4 and 128 for IPv6. */ 154 KASSERT(length <= NPF_MAX_NETMASK); 155 156 for (int i = 0; i < nwords; i++) { 157 uint32_t wordmask; 158 159 if (length >= 32) { 160 wordmask = htonl(0xffffffff); 161 length -= 32; 162 } else if (length) { 163 wordmask = htonl(0xffffffff << (32 - length)); 164 length = 0; 165 } else { 166 wordmask = 0; 167 } 168 out->word32[i] = addr->word32[i] & wordmask; 169 } 170 } 171 172 /* 173 * npf_addr_cmp: compare two addresses, either IPv4 or IPv6. 174 * 175 * => Return 0 if equal and negative/positive if less/greater accordingly. 176 * => Ignore the mask, if NPF_NO_NETMASK is specified. 177 */ 178 int 179 npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1, 180 const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen) 181 { 182 npf_addr_t realaddr1, realaddr2; 183 184 if (mask1 != NPF_NO_NETMASK) { 185 npf_addr_mask(addr1, mask1, alen, &realaddr1); 186 addr1 = &realaddr1; 187 } 188 if (mask2 != NPF_NO_NETMASK) { 189 npf_addr_mask(addr2, mask2, alen, &realaddr2); 190 addr2 = &realaddr2; 191 } 192 return memcmp(addr1, addr2, alen); 193 } 194 195 /* 196 * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length. 197 * 198 * => Returns all values in host byte-order. 199 */ 200 int 201 npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win) 202 { 203 const struct tcphdr *th = npc->npc_l4.tcp; 204 u_int thlen; 205 206 KASSERT(npf_iscached(npc, NPC_TCP)); 207 208 *seq = ntohl(th->th_seq); 209 *ack = ntohl(th->th_ack); 210 *win = (uint32_t)ntohs(th->th_win); 211 thlen = th->th_off << 2; 212 213 if (npf_iscached(npc, NPC_IP4)) { 214 const struct ip *ip = npc->npc_ip.v4; 215 return ntohs(ip->ip_len) - npc->npc_hlen - thlen; 216 } else if (npf_iscached(npc, NPC_IP6)) { 217 const struct ip6_hdr *ip6 = npc->npc_ip.v6; 218 return ntohs(ip6->ip6_plen) - thlen; 219 } 220 return 0; 221 } 222 223 /* 224 * npf_fetch_tcpopts: parse and return TCP options. 225 */ 226 bool 227 npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale) 228 { 229 nbuf_t *nbuf = npc->npc_nbuf; 230 const struct tcphdr *th = npc->npc_l4.tcp; 231 int topts_len, step; 232 void *nptr; 233 uint8_t val; 234 bool ok; 235 236 KASSERT(npf_iscached(npc, NPC_IP46)); 237 KASSERT(npf_iscached(npc, NPC_TCP)); 238 239 /* Determine if there are any TCP options, get their length. */ 240 topts_len = (th->th_off << 2) - sizeof(struct tcphdr); 241 if (topts_len <= 0) { 242 /* No options. */ 243 return false; 244 } 245 KASSERT(topts_len <= MAX_TCPOPTLEN); 246 247 /* First step: IP and TCP header up to options. */ 248 step = npc->npc_hlen + sizeof(struct tcphdr); 249 nbuf_reset(nbuf); 250 next: 251 if ((nptr = nbuf_advance(nbuf, step, 1)) == NULL) { 252 ok = false; 253 goto done; 254 } 255 val = *(uint8_t *)nptr; 256 257 switch (val) { 258 case TCPOPT_EOL: 259 /* Done. */ 260 ok = true; 261 goto done; 262 case TCPOPT_NOP: 263 topts_len--; 264 step = 1; 265 break; 266 case TCPOPT_MAXSEG: 267 if ((nptr = nbuf_advance(nbuf, 2, 2)) == NULL) { 268 ok = false; 269 goto done; 270 } 271 if (mss) { 272 if (*mss) { 273 memcpy(nptr, mss, sizeof(uint16_t)); 274 } else { 275 memcpy(mss, nptr, sizeof(uint16_t)); 276 } 277 } 278 topts_len -= TCPOLEN_MAXSEG; 279 step = 2; 280 break; 281 case TCPOPT_WINDOW: 282 /* TCP Window Scaling (RFC 1323). */ 283 if ((nptr = nbuf_advance(nbuf, 2, 1)) == NULL) { 284 ok = false; 285 goto done; 286 } 287 val = *(uint8_t *)nptr; 288 *wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val; 289 topts_len -= TCPOLEN_WINDOW; 290 step = 1; 291 break; 292 default: 293 if ((nptr = nbuf_advance(nbuf, 1, 1)) == NULL) { 294 ok = false; 295 goto done; 296 } 297 val = *(uint8_t *)nptr; 298 if (val < 2 || val > topts_len) { 299 ok = false; 300 goto done; 301 } 302 topts_len -= val; 303 step = val - 1; 304 } 305 306 /* Any options left? */ 307 if (__predict_true(topts_len > 0)) { 308 goto next; 309 } 310 ok = true; 311 done: 312 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) { 313 npf_recache(npc); 314 } 315 return ok; 316 } 317 318 static int 319 npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf) 320 { 321 const void *nptr = nbuf_dataptr(nbuf); 322 const uint8_t ver = *(const uint8_t *)nptr; 323 int flags = 0; 324 325 switch (ver >> 4) { 326 case IPVERSION: { 327 struct ip *ip; 328 329 ip = nbuf_ensure_contig(nbuf, sizeof(struct ip)); 330 if (ip == NULL) { 331 return 0; 332 } 333 334 /* Check header length and fragment offset. */ 335 if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) { 336 return 0; 337 } 338 if (ip->ip_off & ~htons(IP_DF | IP_RF)) { 339 /* Note fragmentation. */ 340 flags |= NPC_IPFRAG; 341 } 342 343 /* Cache: layer 3 - IPv4. */ 344 npc->npc_alen = sizeof(struct in_addr); 345 npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src; 346 npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst; 347 npc->npc_hlen = ip->ip_hl << 2; 348 npc->npc_proto = ip->ip_p; 349 350 npc->npc_ip.v4 = ip; 351 flags |= NPC_IP4; 352 break; 353 } 354 355 case (IPV6_VERSION >> 4): { 356 struct ip6_hdr *ip6; 357 struct ip6_ext *ip6e; 358 struct ip6_frag *ip6f; 359 size_t off, hlen; 360 361 ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr)); 362 if (ip6 == NULL) { 363 return 0; 364 } 365 366 /* Set initial next-protocol value. */ 367 hlen = sizeof(struct ip6_hdr); 368 npc->npc_proto = ip6->ip6_nxt; 369 npc->npc_hlen = hlen; 370 371 /* 372 * Advance by the length of the current header. 373 */ 374 off = nbuf_offset(nbuf); 375 while (nbuf_advance(nbuf, hlen, 0) != NULL) { 376 ip6e = nbuf_ensure_contig(nbuf, sizeof(*ip6e)); 377 if (ip6e == NULL) { 378 return 0; 379 } 380 381 /* 382 * Determine whether we are going to continue. 383 */ 384 switch (npc->npc_proto) { 385 case IPPROTO_HOPOPTS: 386 case IPPROTO_DSTOPTS: 387 case IPPROTO_ROUTING: 388 hlen = (ip6e->ip6e_len + 1) << 3; 389 break; 390 case IPPROTO_FRAGMENT: 391 ip6f = nbuf_ensure_contig(nbuf, sizeof(*ip6f)); 392 if (ip6f == NULL) 393 return 0; 394 /* 395 * We treat the first fragment as a regular 396 * packet and then we pass the rest of the 397 * fragments unconditionally. This way if 398 * the first packet passes the rest will 399 * be able to reassembled, if not they will 400 * be ignored. We can do better later. 401 */ 402 if (ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK) != 0) 403 flags |= NPC_IPFRAG; 404 405 hlen = sizeof(struct ip6_frag); 406 break; 407 case IPPROTO_AH: 408 hlen = (ip6e->ip6e_len + 2) << 2; 409 break; 410 default: 411 hlen = 0; 412 break; 413 } 414 415 if (!hlen) { 416 break; 417 } 418 npc->npc_proto = ip6e->ip6e_nxt; 419 npc->npc_hlen += hlen; 420 } 421 422 /* 423 * Re-fetch the header pointers (nbufs might have been 424 * reallocated). Restore the original offset (if any). 425 */ 426 nbuf_reset(nbuf); 427 ip6 = nbuf_dataptr(nbuf); 428 if (off) { 429 nbuf_advance(nbuf, off, 0); 430 } 431 432 /* Cache: layer 3 - IPv6. */ 433 npc->npc_alen = sizeof(struct in6_addr); 434 npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src; 435 npc->npc_ips[NPF_DST]= (npf_addr_t *)&ip6->ip6_dst; 436 437 npc->npc_ip.v6 = ip6; 438 flags |= NPC_IP6; 439 break; 440 } 441 default: 442 break; 443 } 444 return flags; 445 } 446 447 /* 448 * npf_cache_all: general routine to cache all relevant IP (v4 or v6) 449 * and TCP, UDP or ICMP headers. 450 * 451 * => nbuf offset shall be set accordingly. 452 */ 453 int 454 npf_cache_all(npf_cache_t *npc) 455 { 456 nbuf_t *nbuf = npc->npc_nbuf; 457 int flags, l4flags; 458 u_int hlen; 459 460 /* 461 * This routine is a main point where the references are cached, 462 * therefore clear the flag as we reset. 463 */ 464 again: 465 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET); 466 467 /* 468 * First, cache the L3 header (IPv4 or IPv6). If IP packet is 469 * fragmented, then we cannot look into L4. 470 */ 471 flags = npf_cache_ip(npc, nbuf); 472 if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0) { 473 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET); 474 npc->npc_info |= flags; 475 return flags; 476 } 477 hlen = npc->npc_hlen; 478 479 switch (npc->npc_proto) { 480 case IPPROTO_TCP: 481 /* Cache: layer 4 - TCP. */ 482 npc->npc_l4.tcp = nbuf_advance(nbuf, hlen, 483 sizeof(struct tcphdr)); 484 l4flags = NPC_LAYER4 | NPC_TCP; 485 break; 486 case IPPROTO_UDP: 487 /* Cache: layer 4 - UDP. */ 488 npc->npc_l4.udp = nbuf_advance(nbuf, hlen, 489 sizeof(struct udphdr)); 490 l4flags = NPC_LAYER4 | NPC_UDP; 491 break; 492 case IPPROTO_ICMP: 493 /* Cache: layer 4 - ICMPv4. */ 494 npc->npc_l4.icmp = nbuf_advance(nbuf, hlen, 495 offsetof(struct icmp, icmp_void)); 496 l4flags = NPC_LAYER4 | NPC_ICMP; 497 break; 498 case IPPROTO_ICMPV6: 499 /* Cache: layer 4 - ICMPv6. */ 500 npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen, 501 offsetof(struct icmp6_hdr, icmp6_data32)); 502 l4flags = NPC_LAYER4 | NPC_ICMP; 503 break; 504 default: 505 l4flags = 0; 506 break; 507 } 508 509 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) { 510 goto again; 511 } 512 513 /* Add the L4 flags if nbuf_advance() succeeded. */ 514 if (l4flags && npc->npc_l4.hdr) { 515 flags |= l4flags; 516 } 517 npc->npc_info |= flags; 518 return flags; 519 } 520 521 void 522 npf_recache(npf_cache_t *npc) 523 { 524 nbuf_t *nbuf = npc->npc_nbuf; 525 const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4); 526 int flags __diagused; 527 528 nbuf_reset(nbuf); 529 npc->npc_info = 0; 530 flags = npf_cache_all(npc); 531 532 KASSERT((flags & mflags) == mflags); 533 KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0); 534 } 535 536 /* 537 * npf_rwrip: rewrite required IP address. 538 */ 539 bool 540 npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr) 541 { 542 KASSERT(npf_iscached(npc, NPC_IP46)); 543 KASSERT(which == NPF_SRC || which == NPF_DST); 544 545 memcpy(npc->npc_ips[which], addr, npc->npc_alen); 546 return true; 547 } 548 549 /* 550 * npf_rwrport: rewrite required TCP/UDP port. 551 */ 552 bool 553 npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port) 554 { 555 const int proto = npc->npc_proto; 556 in_port_t *oport; 557 558 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP)); 559 KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP); 560 KASSERT(which == NPF_SRC || which == NPF_DST); 561 562 /* Get the offset and store the port in it. */ 563 if (proto == IPPROTO_TCP) { 564 struct tcphdr *th = npc->npc_l4.tcp; 565 oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport; 566 } else { 567 struct udphdr *uh = npc->npc_l4.udp; 568 oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport; 569 } 570 memcpy(oport, &port, sizeof(in_port_t)); 571 return true; 572 } 573 574 /* 575 * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum. 576 */ 577 bool 578 npf_rwrcksum(const npf_cache_t *npc, u_int which, 579 const npf_addr_t *addr, const in_port_t port) 580 { 581 const npf_addr_t *oaddr = npc->npc_ips[which]; 582 const int proto = npc->npc_proto; 583 const int alen = npc->npc_alen; 584 uint16_t *ocksum; 585 in_port_t oport; 586 587 KASSERT(npf_iscached(npc, NPC_LAYER4)); 588 KASSERT(which == NPF_SRC || which == NPF_DST); 589 590 if (npf_iscached(npc, NPC_IP4)) { 591 struct ip *ip = npc->npc_ip.v4; 592 uint16_t ipsum = ip->ip_sum; 593 594 /* Recalculate IPv4 checksum and rewrite. */ 595 ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr); 596 } else { 597 /* No checksum for IPv6. */ 598 KASSERT(npf_iscached(npc, NPC_IP6)); 599 } 600 601 /* Nothing else to do for ICMP. */ 602 if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) { 603 return true; 604 } 605 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP)); 606 607 /* 608 * Calculate TCP/UDP checksum: 609 * - Skip if UDP and the current checksum is zero. 610 * - Fixup the IP address change. 611 * - Fixup the port change, if required (non-zero). 612 */ 613 if (proto == IPPROTO_TCP) { 614 struct tcphdr *th = npc->npc_l4.tcp; 615 616 ocksum = &th->th_sum; 617 oport = (which == NPF_SRC) ? th->th_sport : th->th_dport; 618 } else { 619 struct udphdr *uh = npc->npc_l4.udp; 620 621 KASSERT(proto == IPPROTO_UDP); 622 ocksum = &uh->uh_sum; 623 if (*ocksum == 0) { 624 /* No need to update. */ 625 return true; 626 } 627 oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport; 628 } 629 630 uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr); 631 if (port) { 632 cksum = npf_fixup16_cksum(cksum, oport, port); 633 } 634 635 /* Rewrite TCP/UDP checksum. */ 636 memcpy(ocksum, &cksum, sizeof(uint16_t)); 637 return true; 638 } 639 640 /* 641 * npf_napt_rwr: perform address and/or port translation. 642 */ 643 int 644 npf_napt_rwr(const npf_cache_t *npc, u_int which, 645 const npf_addr_t *addr, const in_addr_t port) 646 { 647 const unsigned proto = npc->npc_proto; 648 649 /* 650 * Rewrite IP and/or TCP/UDP checksums first, since we need the 651 * current (old) address/port for the calculations. Then perform 652 * the address translation i.e. rewrite source or destination. 653 */ 654 if (!npf_rwrcksum(npc, which, addr, port)) { 655 return EINVAL; 656 } 657 if (!npf_rwrip(npc, which, addr)) { 658 return EINVAL; 659 } 660 if (port == 0) { 661 /* Done. */ 662 return 0; 663 } 664 665 switch (proto) { 666 case IPPROTO_TCP: 667 case IPPROTO_UDP: 668 /* Rewrite source/destination port. */ 669 if (!npf_rwrport(npc, which, port)) { 670 return EINVAL; 671 } 672 break; 673 case IPPROTO_ICMP: 674 case IPPROTO_ICMPV6: 675 KASSERT(npf_iscached(npc, NPC_ICMP)); 676 /* Nothing. */ 677 break; 678 default: 679 return ENOTSUP; 680 } 681 return 0; 682 } 683 684 /* 685 * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296. 686 */ 687 688 int 689 npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref, 690 npf_netmask_t len, uint16_t adj) 691 { 692 npf_addr_t *addr = npc->npc_ips[which]; 693 unsigned remnant, word, preflen = len >> 4; 694 uint32_t sum; 695 696 KASSERT(which == NPF_SRC || which == NPF_DST); 697 698 if (!npf_iscached(npc, NPC_IP6)) { 699 return EINVAL; 700 } 701 if (len <= 48) { 702 /* 703 * The word to adjust. Cannot translate the 0xffff 704 * subnet if /48 or shorter. 705 */ 706 word = 3; 707 if (addr->word16[word] == 0xffff) { 708 return EINVAL; 709 } 710 } else { 711 /* 712 * Also, all 0s or 1s in the host part are disallowed for 713 * longer than /48 prefixes. 714 */ 715 if ((addr->word32[2] == 0 && addr->word32[3] == 0) || 716 (addr->word32[2] == ~0U && addr->word32[3] == ~0U)) 717 return EINVAL; 718 719 /* Determine the 16-bit word to adjust. */ 720 for (word = 4; word < 8; word++) 721 if (addr->word16[word] != 0xffff) 722 break; 723 } 724 725 /* Rewrite the prefix. */ 726 for (unsigned i = 0; i < preflen; i++) { 727 addr->word16[i] = pref->word16[i]; 728 } 729 730 /* 731 * If prefix length is within a 16-bit word (not dividable by 16), 732 * then prepare a mask, determine the word and adjust it. 733 */ 734 if ((remnant = len - (preflen << 4)) != 0) { 735 const uint16_t wordmask = (1U << remnant) - 1; 736 const unsigned i = preflen; 737 738 addr->word16[i] = (pref->word16[i] & wordmask) | 739 (addr->word16[i] & ~wordmask); 740 } 741 742 /* 743 * Performing 1's complement sum/difference. 744 */ 745 sum = addr->word16[word] + adj; 746 while (sum >> 16) { 747 sum = (sum >> 16) + (sum & 0xffff); 748 } 749 if (sum == 0xffff) { 750 /* RFC 1071. */ 751 sum = 0x0000; 752 } 753 addr->word16[word] = sum; 754 return 0; 755 } 756 757 #if defined(DDB) || defined(_NPF_TESTING) 758 759 const char * 760 npf_addr_dump(const npf_addr_t *addr, int alen) 761 { 762 if (alen == sizeof(struct in_addr)) { 763 struct in_addr ip; 764 memcpy(&ip, addr, alen); 765 return inet_ntoa(ip); 766 } 767 return "[IPv6]"; 768 } 769 770 #endif 771