xref: /netbsd-src/sys/net/npf/npf_inet.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /*	$NetBSD: npf_inet.c,v 1.37 2017/02/19 20:27:22 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009-2014 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This material is based upon work partially supported by The
8  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Various protocol related helper routines.
34  *
35  * This layer manipulates npf_cache_t structure i.e. caches requested headers
36  * and stores which information was cached in the information bit field.
37  * It is also responsibility of this layer to update or invalidate the cache
38  * on rewrites (e.g. by translation routines).
39  */
40 
41 #ifdef _KERNEL
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.37 2017/02/19 20:27:22 christos Exp $");
44 
45 #include <sys/param.h>
46 #include <sys/types.h>
47 
48 #include <net/pfil.h>
49 #include <net/if.h>
50 #include <net/ethertypes.h>
51 #include <net/if_ether.h>
52 
53 #include <netinet/in_systm.h>
54 #include <netinet/in.h>
55 #include <netinet6/in6_var.h>
56 #include <netinet/ip.h>
57 #include <netinet/ip6.h>
58 #include <netinet/tcp.h>
59 #include <netinet/udp.h>
60 #include <netinet/ip_icmp.h>
61 #endif
62 
63 #include "npf_impl.h"
64 
65 /*
66  * npf_fixup{16,32}_cksum: incremental update of the Internet checksum.
67  */
68 
69 uint16_t
70 npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
71 {
72 	uint32_t sum;
73 
74 	/*
75 	 * RFC 1624:
76 	 *	HC' = ~(~HC + ~m + m')
77 	 *
78 	 * Note: 1's complement sum is endian-independent (RFC 1071, page 2).
79 	 */
80 	sum = ~cksum & 0xffff;
81 	sum += (~odatum & 0xffff) + ndatum;
82 	sum = (sum >> 16) + (sum & 0xffff);
83 	sum += (sum >> 16);
84 
85 	return ~sum & 0xffff;
86 }
87 
88 uint16_t
89 npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
90 {
91 	uint32_t sum;
92 
93 	/*
94 	 * Checksum 32-bit datum as as two 16-bit.  Note, the first
95 	 * 32->16 bit reduction is not necessary.
96 	 */
97 	sum = ~cksum & 0xffff;
98 	sum += (~odatum & 0xffff) + (ndatum & 0xffff);
99 
100 	sum += (~odatum >> 16) + (ndatum >> 16);
101 	sum = (sum >> 16) + (sum & 0xffff);
102 	sum += (sum >> 16);
103 	return ~sum & 0xffff;
104 }
105 
106 /*
107  * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
108  */
109 uint16_t
110 npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
111     const npf_addr_t *naddr)
112 {
113 	const uint32_t *oip32 = (const uint32_t *)oaddr;
114 	const uint32_t *nip32 = (const uint32_t *)naddr;
115 
116 	KASSERT(sz % sizeof(uint32_t) == 0);
117 	do {
118 		cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
119 		sz -= sizeof(uint32_t);
120 	} while (sz);
121 
122 	return cksum;
123 }
124 
125 /*
126  * npf_addr_sum: provide IP addresses as a XORed 32-bit integer.
127  * Note: used for hash function.
128  */
129 uint32_t
130 npf_addr_mix(const int sz, const npf_addr_t *a1, const npf_addr_t *a2)
131 {
132 	uint32_t mix = 0;
133 
134 	KASSERT(sz > 0 && a1 != NULL && a2 != NULL);
135 
136 	for (int i = 0; i < (sz >> 2); i++) {
137 		mix ^= a1->word32[i];
138 		mix ^= a2->word32[i];
139 	}
140 	return mix;
141 }
142 
143 /*
144  * npf_addr_mask: apply the mask to a given address and store the result.
145  */
146 void
147 npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
148     const int alen, npf_addr_t *out)
149 {
150 	const int nwords = alen >> 2;
151 	uint_fast8_t length = mask;
152 
153 	/* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
154 	KASSERT(length <= NPF_MAX_NETMASK);
155 
156 	for (int i = 0; i < nwords; i++) {
157 		uint32_t wordmask;
158 
159 		if (length >= 32) {
160 			wordmask = htonl(0xffffffff);
161 			length -= 32;
162 		} else if (length) {
163 			wordmask = htonl(0xffffffff << (32 - length));
164 			length = 0;
165 		} else {
166 			wordmask = 0;
167 		}
168 		out->word32[i] = addr->word32[i] & wordmask;
169 	}
170 }
171 
172 /*
173  * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
174  *
175  * => Return 0 if equal and negative/positive if less/greater accordingly.
176  * => Ignore the mask, if NPF_NO_NETMASK is specified.
177  */
178 int
179 npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
180     const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
181 {
182 	npf_addr_t realaddr1, realaddr2;
183 
184 	if (mask1 != NPF_NO_NETMASK) {
185 		npf_addr_mask(addr1, mask1, alen, &realaddr1);
186 		addr1 = &realaddr1;
187 	}
188 	if (mask2 != NPF_NO_NETMASK) {
189 		npf_addr_mask(addr2, mask2, alen, &realaddr2);
190 		addr2 = &realaddr2;
191 	}
192 	return memcmp(addr1, addr2, alen);
193 }
194 
195 /*
196  * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
197  *
198  * => Returns all values in host byte-order.
199  */
200 int
201 npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
202 {
203 	const struct tcphdr *th = npc->npc_l4.tcp;
204 	u_int thlen;
205 
206 	KASSERT(npf_iscached(npc, NPC_TCP));
207 
208 	*seq = ntohl(th->th_seq);
209 	*ack = ntohl(th->th_ack);
210 	*win = (uint32_t)ntohs(th->th_win);
211 	thlen = th->th_off << 2;
212 
213 	if (npf_iscached(npc, NPC_IP4)) {
214 		const struct ip *ip = npc->npc_ip.v4;
215 		return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
216 	} else if (npf_iscached(npc, NPC_IP6)) {
217 		const struct ip6_hdr *ip6 = npc->npc_ip.v6;
218 		return ntohs(ip6->ip6_plen) - thlen;
219 	}
220 	return 0;
221 }
222 
223 /*
224  * npf_fetch_tcpopts: parse and return TCP options.
225  */
226 bool
227 npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale)
228 {
229 	nbuf_t *nbuf = npc->npc_nbuf;
230 	const struct tcphdr *th = npc->npc_l4.tcp;
231 	int topts_len, step;
232 	void *nptr;
233 	uint8_t val;
234 	bool ok;
235 
236 	KASSERT(npf_iscached(npc, NPC_IP46));
237 	KASSERT(npf_iscached(npc, NPC_TCP));
238 
239 	/* Determine if there are any TCP options, get their length. */
240 	topts_len = (th->th_off << 2) - sizeof(struct tcphdr);
241 	if (topts_len <= 0) {
242 		/* No options. */
243 		return false;
244 	}
245 	KASSERT(topts_len <= MAX_TCPOPTLEN);
246 
247 	/* First step: IP and TCP header up to options. */
248 	step = npc->npc_hlen + sizeof(struct tcphdr);
249 	nbuf_reset(nbuf);
250 next:
251 	if ((nptr = nbuf_advance(nbuf, step, 1)) == NULL) {
252 		ok = false;
253 		goto done;
254 	}
255 	val = *(uint8_t *)nptr;
256 
257 	switch (val) {
258 	case TCPOPT_EOL:
259 		/* Done. */
260 		ok = true;
261 		goto done;
262 	case TCPOPT_NOP:
263 		topts_len--;
264 		step = 1;
265 		break;
266 	case TCPOPT_MAXSEG:
267 		if ((nptr = nbuf_advance(nbuf, 2, 2)) == NULL) {
268 			ok = false;
269 			goto done;
270 		}
271 		if (mss) {
272 			if (*mss) {
273 				memcpy(nptr, mss, sizeof(uint16_t));
274 			} else {
275 				memcpy(mss, nptr, sizeof(uint16_t));
276 			}
277 		}
278 		topts_len -= TCPOLEN_MAXSEG;
279 		step = 2;
280 		break;
281 	case TCPOPT_WINDOW:
282 		/* TCP Window Scaling (RFC 1323). */
283 		if ((nptr = nbuf_advance(nbuf, 2, 1)) == NULL) {
284 			ok = false;
285 			goto done;
286 		}
287 		val = *(uint8_t *)nptr;
288 		*wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
289 		topts_len -= TCPOLEN_WINDOW;
290 		step = 1;
291 		break;
292 	default:
293 		if ((nptr = nbuf_advance(nbuf, 1, 1)) == NULL) {
294 			ok = false;
295 			goto done;
296 		}
297 		val = *(uint8_t *)nptr;
298 		if (val < 2 || val > topts_len) {
299 			ok = false;
300 			goto done;
301 		}
302 		topts_len -= val;
303 		step = val - 1;
304 	}
305 
306 	/* Any options left? */
307 	if (__predict_true(topts_len > 0)) {
308 		goto next;
309 	}
310 	ok = true;
311 done:
312 	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
313 		npf_recache(npc);
314 	}
315 	return ok;
316 }
317 
318 static int
319 npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
320 {
321 	const void *nptr = nbuf_dataptr(nbuf);
322 	const uint8_t ver = *(const uint8_t *)nptr;
323 	int flags = 0;
324 
325 	switch (ver >> 4) {
326 	case IPVERSION: {
327 		struct ip *ip;
328 
329 		ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
330 		if (ip == NULL) {
331 			return 0;
332 		}
333 
334 		/* Check header length and fragment offset. */
335 		if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
336 			return 0;
337 		}
338 		if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
339 			/* Note fragmentation. */
340 			flags |= NPC_IPFRAG;
341 		}
342 
343 		/* Cache: layer 3 - IPv4. */
344 		npc->npc_alen = sizeof(struct in_addr);
345 		npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src;
346 		npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst;
347 		npc->npc_hlen = ip->ip_hl << 2;
348 		npc->npc_proto = ip->ip_p;
349 
350 		npc->npc_ip.v4 = ip;
351 		flags |= NPC_IP4;
352 		break;
353 	}
354 
355 	case (IPV6_VERSION >> 4): {
356 		struct ip6_hdr *ip6;
357 		struct ip6_ext *ip6e;
358 		struct ip6_frag *ip6f;
359 		size_t off, hlen;
360 
361 		ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
362 		if (ip6 == NULL) {
363 			return 0;
364 		}
365 
366 		/* Set initial next-protocol value. */
367 		hlen = sizeof(struct ip6_hdr);
368 		npc->npc_proto = ip6->ip6_nxt;
369 		npc->npc_hlen = hlen;
370 
371 		/*
372 		 * Advance by the length of the current header.
373 		 */
374 		off = nbuf_offset(nbuf);
375 		while (nbuf_advance(nbuf, hlen, 0) != NULL) {
376 			ip6e = nbuf_ensure_contig(nbuf, sizeof(*ip6e));
377 			if (ip6e == NULL) {
378 				return 0;
379 			}
380 
381 			/*
382 			 * Determine whether we are going to continue.
383 			 */
384 			switch (npc->npc_proto) {
385 			case IPPROTO_HOPOPTS:
386 			case IPPROTO_DSTOPTS:
387 			case IPPROTO_ROUTING:
388 				hlen = (ip6e->ip6e_len + 1) << 3;
389 				break;
390 			case IPPROTO_FRAGMENT:
391 				ip6f = nbuf_ensure_contig(nbuf, sizeof(*ip6f));
392 				if (ip6f == NULL)
393 					return 0;
394 				/*
395 				 * We treat the first fragment as a regular
396 				 * packet and then we pass the rest of the
397 				 * fragments unconditionally. This way if
398 				 * the first packet passes the rest will
399 				 * be able to reassembled, if not they will
400 				 * be ignored. We can do better later.
401 				 */
402 				if (ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK) != 0)
403 					flags |= NPC_IPFRAG;
404 
405 				hlen = sizeof(struct ip6_frag);
406 				break;
407 			case IPPROTO_AH:
408 				hlen = (ip6e->ip6e_len + 2) << 2;
409 				break;
410 			default:
411 				hlen = 0;
412 				break;
413 			}
414 
415 			if (!hlen) {
416 				break;
417 			}
418 			npc->npc_proto = ip6e->ip6e_nxt;
419 			npc->npc_hlen += hlen;
420 		}
421 
422 		/*
423 		 * Re-fetch the header pointers (nbufs might have been
424 		 * reallocated).  Restore the original offset (if any).
425 		 */
426 		nbuf_reset(nbuf);
427 		ip6 = nbuf_dataptr(nbuf);
428 		if (off) {
429 			nbuf_advance(nbuf, off, 0);
430 		}
431 
432 		/* Cache: layer 3 - IPv6. */
433 		npc->npc_alen = sizeof(struct in6_addr);
434 		npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src;
435 		npc->npc_ips[NPF_DST]= (npf_addr_t *)&ip6->ip6_dst;
436 
437 		npc->npc_ip.v6 = ip6;
438 		flags |= NPC_IP6;
439 		break;
440 	}
441 	default:
442 		break;
443 	}
444 	return flags;
445 }
446 
447 /*
448  * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
449  * and TCP, UDP or ICMP headers.
450  *
451  * => nbuf offset shall be set accordingly.
452  */
453 int
454 npf_cache_all(npf_cache_t *npc)
455 {
456 	nbuf_t *nbuf = npc->npc_nbuf;
457 	int flags, l4flags;
458 	u_int hlen;
459 
460 	/*
461 	 * This routine is a main point where the references are cached,
462 	 * therefore clear the flag as we reset.
463 	 */
464 again:
465 	nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
466 
467 	/*
468 	 * First, cache the L3 header (IPv4 or IPv6).  If IP packet is
469 	 * fragmented, then we cannot look into L4.
470 	 */
471 	flags = npf_cache_ip(npc, nbuf);
472 	if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0) {
473 		nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
474 		npc->npc_info |= flags;
475 		return flags;
476 	}
477 	hlen = npc->npc_hlen;
478 
479 	switch (npc->npc_proto) {
480 	case IPPROTO_TCP:
481 		/* Cache: layer 4 - TCP. */
482 		npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
483 		    sizeof(struct tcphdr));
484 		l4flags = NPC_LAYER4 | NPC_TCP;
485 		break;
486 	case IPPROTO_UDP:
487 		/* Cache: layer 4 - UDP. */
488 		npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
489 		    sizeof(struct udphdr));
490 		l4flags = NPC_LAYER4 | NPC_UDP;
491 		break;
492 	case IPPROTO_ICMP:
493 		/* Cache: layer 4 - ICMPv4. */
494 		npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
495 		    offsetof(struct icmp, icmp_void));
496 		l4flags = NPC_LAYER4 | NPC_ICMP;
497 		break;
498 	case IPPROTO_ICMPV6:
499 		/* Cache: layer 4 - ICMPv6. */
500 		npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
501 		    offsetof(struct icmp6_hdr, icmp6_data32));
502 		l4flags = NPC_LAYER4 | NPC_ICMP;
503 		break;
504 	default:
505 		l4flags = 0;
506 		break;
507 	}
508 
509 	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
510 		goto again;
511 	}
512 
513 	/* Add the L4 flags if nbuf_advance() succeeded. */
514 	if (l4flags && npc->npc_l4.hdr) {
515 		flags |= l4flags;
516 	}
517 	npc->npc_info |= flags;
518 	return flags;
519 }
520 
521 void
522 npf_recache(npf_cache_t *npc)
523 {
524 	nbuf_t *nbuf = npc->npc_nbuf;
525 	const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
526 	int flags __diagused;
527 
528 	nbuf_reset(nbuf);
529 	npc->npc_info = 0;
530 	flags = npf_cache_all(npc);
531 
532 	KASSERT((flags & mflags) == mflags);
533 	KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
534 }
535 
536 /*
537  * npf_rwrip: rewrite required IP address.
538  */
539 bool
540 npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr)
541 {
542 	KASSERT(npf_iscached(npc, NPC_IP46));
543 	KASSERT(which == NPF_SRC || which == NPF_DST);
544 
545 	memcpy(npc->npc_ips[which], addr, npc->npc_alen);
546 	return true;
547 }
548 
549 /*
550  * npf_rwrport: rewrite required TCP/UDP port.
551  */
552 bool
553 npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port)
554 {
555 	const int proto = npc->npc_proto;
556 	in_port_t *oport;
557 
558 	KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
559 	KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
560 	KASSERT(which == NPF_SRC || which == NPF_DST);
561 
562 	/* Get the offset and store the port in it. */
563 	if (proto == IPPROTO_TCP) {
564 		struct tcphdr *th = npc->npc_l4.tcp;
565 		oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport;
566 	} else {
567 		struct udphdr *uh = npc->npc_l4.udp;
568 		oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport;
569 	}
570 	memcpy(oport, &port, sizeof(in_port_t));
571 	return true;
572 }
573 
574 /*
575  * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
576  */
577 bool
578 npf_rwrcksum(const npf_cache_t *npc, u_int which,
579     const npf_addr_t *addr, const in_port_t port)
580 {
581 	const npf_addr_t *oaddr = npc->npc_ips[which];
582 	const int proto = npc->npc_proto;
583 	const int alen = npc->npc_alen;
584 	uint16_t *ocksum;
585 	in_port_t oport;
586 
587 	KASSERT(npf_iscached(npc, NPC_LAYER4));
588 	KASSERT(which == NPF_SRC || which == NPF_DST);
589 
590 	if (npf_iscached(npc, NPC_IP4)) {
591 		struct ip *ip = npc->npc_ip.v4;
592 		uint16_t ipsum = ip->ip_sum;
593 
594 		/* Recalculate IPv4 checksum and rewrite. */
595 		ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
596 	} else {
597 		/* No checksum for IPv6. */
598 		KASSERT(npf_iscached(npc, NPC_IP6));
599 	}
600 
601 	/* Nothing else to do for ICMP. */
602 	if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) {
603 		return true;
604 	}
605 	KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
606 
607 	/*
608 	 * Calculate TCP/UDP checksum:
609 	 * - Skip if UDP and the current checksum is zero.
610 	 * - Fixup the IP address change.
611 	 * - Fixup the port change, if required (non-zero).
612 	 */
613 	if (proto == IPPROTO_TCP) {
614 		struct tcphdr *th = npc->npc_l4.tcp;
615 
616 		ocksum = &th->th_sum;
617 		oport = (which == NPF_SRC) ? th->th_sport : th->th_dport;
618 	} else {
619 		struct udphdr *uh = npc->npc_l4.udp;
620 
621 		KASSERT(proto == IPPROTO_UDP);
622 		ocksum = &uh->uh_sum;
623 		if (*ocksum == 0) {
624 			/* No need to update. */
625 			return true;
626 		}
627 		oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport;
628 	}
629 
630 	uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
631 	if (port) {
632 		cksum = npf_fixup16_cksum(cksum, oport, port);
633 	}
634 
635 	/* Rewrite TCP/UDP checksum. */
636 	memcpy(ocksum, &cksum, sizeof(uint16_t));
637 	return true;
638 }
639 
640 /*
641  * npf_napt_rwr: perform address and/or port translation.
642  */
643 int
644 npf_napt_rwr(const npf_cache_t *npc, u_int which,
645     const npf_addr_t *addr, const in_addr_t port)
646 {
647 	const unsigned proto = npc->npc_proto;
648 
649 	/*
650 	 * Rewrite IP and/or TCP/UDP checksums first, since we need the
651 	 * current (old) address/port for the calculations.  Then perform
652 	 * the address translation i.e. rewrite source or destination.
653 	 */
654 	if (!npf_rwrcksum(npc, which, addr, port)) {
655 		return EINVAL;
656 	}
657 	if (!npf_rwrip(npc, which, addr)) {
658 		return EINVAL;
659 	}
660 	if (port == 0) {
661 		/* Done. */
662 		return 0;
663 	}
664 
665 	switch (proto) {
666 	case IPPROTO_TCP:
667 	case IPPROTO_UDP:
668 		/* Rewrite source/destination port. */
669 		if (!npf_rwrport(npc, which, port)) {
670 			return EINVAL;
671 		}
672 		break;
673 	case IPPROTO_ICMP:
674 	case IPPROTO_ICMPV6:
675 		KASSERT(npf_iscached(npc, NPC_ICMP));
676 		/* Nothing. */
677 		break;
678 	default:
679 		return ENOTSUP;
680 	}
681 	return 0;
682 }
683 
684 /*
685  * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296.
686  */
687 
688 int
689 npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref,
690     npf_netmask_t len, uint16_t adj)
691 {
692 	npf_addr_t *addr = npc->npc_ips[which];
693 	unsigned remnant, word, preflen = len >> 4;
694 	uint32_t sum;
695 
696 	KASSERT(which == NPF_SRC || which == NPF_DST);
697 
698 	if (!npf_iscached(npc, NPC_IP6)) {
699 		return EINVAL;
700 	}
701 	if (len <= 48) {
702 		/*
703 		 * The word to adjust.  Cannot translate the 0xffff
704 		 * subnet if /48 or shorter.
705 		 */
706 		word = 3;
707 		if (addr->word16[word] == 0xffff) {
708 			return EINVAL;
709 		}
710 	} else {
711 		/*
712 		 * Also, all 0s or 1s in the host part are disallowed for
713 		 * longer than /48 prefixes.
714 		 */
715 		if ((addr->word32[2] == 0 && addr->word32[3] == 0) ||
716 		    (addr->word32[2] == ~0U && addr->word32[3] == ~0U))
717 			return EINVAL;
718 
719 		/* Determine the 16-bit word to adjust. */
720 		for (word = 4; word < 8; word++)
721 			if (addr->word16[word] != 0xffff)
722 				break;
723 	}
724 
725 	/* Rewrite the prefix. */
726 	for (unsigned i = 0; i < preflen; i++) {
727 		addr->word16[i] = pref->word16[i];
728 	}
729 
730 	/*
731 	 * If prefix length is within a 16-bit word (not dividable by 16),
732 	 * then prepare a mask, determine the word and adjust it.
733 	 */
734 	if ((remnant = len - (preflen << 4)) != 0) {
735 		const uint16_t wordmask = (1U << remnant) - 1;
736 		const unsigned i = preflen;
737 
738 		addr->word16[i] = (pref->word16[i] & wordmask) |
739 		    (addr->word16[i] & ~wordmask);
740 	}
741 
742 	/*
743 	 * Performing 1's complement sum/difference.
744 	 */
745 	sum = addr->word16[word] + adj;
746 	while (sum >> 16) {
747 		sum = (sum >> 16) + (sum & 0xffff);
748 	}
749 	if (sum == 0xffff) {
750 		/* RFC 1071. */
751 		sum = 0x0000;
752 	}
753 	addr->word16[word] = sum;
754 	return 0;
755 }
756 
757 #if defined(DDB) || defined(_NPF_TESTING)
758 
759 const char *
760 npf_addr_dump(const npf_addr_t *addr, int alen)
761 {
762 	if (alen == sizeof(struct in_addr)) {
763 		struct in_addr ip;
764 		memcpy(&ip, addr, alen);
765 		return inet_ntoa(ip);
766 	}
767 	return "[IPv6]";
768 }
769 
770 #endif
771