xref: /netbsd-src/sys/net/npf/npf_conn.c (revision c38e7cc395b1472a774ff828e46123de44c628e9)
1 /*	$NetBSD: npf_conn.c,v 1.24 2017/12/10 00:07:36 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2014-2015 Mindaugas Rasiukevicius <rmind at netbsd org>
5  * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This material is based upon work partially supported by The
9  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * NPF connection tracking for stateful filtering and translation.
35  *
36  * Overview
37  *
38  *	Connection direction is identified by the direction of its first
39  *	packet.  Packets can be incoming or outgoing with respect to an
40  *	interface.  To describe the packet in the context of connection
41  *	direction we will use the terms "forwards stream" and "backwards
42  *	stream".  All connections have two keys and thus two entries:
43  *
44  *		npf_conn_t::c_forw_entry for the forwards stream and
45  *		npf_conn_t::c_back_entry for the backwards stream.
46  *
47  *	The keys are formed from the 5-tuple (source/destination address,
48  *	source/destination port and the protocol).  Additional matching
49  *	is performed for the interface (a common behaviour is equivalent
50  *	to the 6-tuple lookup including the interface ID).  Note that the
51  *	key may be formed using translated values in a case of NAT.
52  *
53  *	Connections can serve two purposes: for the implicit passing or
54  *	to accommodate the dynamic NAT.  Connections for the former purpose
55  *	are created by the rules with "stateful" attribute and are used for
56  *	stateful filtering.  Such connections indicate that the packet of
57  *	the backwards stream should be passed without inspection of the
58  *	ruleset.  The other purpose is to associate a dynamic NAT mechanism
59  *	with a connection.  Such connections are created by the NAT policies
60  *	and they have a relationship with NAT translation structure via
61  *	npf_conn_t::c_nat.  A single connection can serve both purposes,
62  *	which is a common case.
63  *
64  * Connection life-cycle
65  *
66  *	Connections are established when a packet matches said rule or
67  *	NAT policy.  Both keys of the established connection are inserted
68  *	into the connection database.  A garbage collection thread
69  *	periodically scans all connections and depending on connection
70  *	properties (e.g. last activity time, protocol) removes connection
71  *	entries and expires the actual connections.
72  *
73  *	Each connection has a reference count.  The reference is acquired
74  *	on lookup and should be released by the caller.  It guarantees that
75  *	the connection will not be destroyed, although it may be expired.
76  *
77  * Synchronisation
78  *
79  *	Connection database is accessed in a lock-less manner by the main
80  *	routines: npf_conn_inspect() and npf_conn_establish().  Since they
81  *	are always called from a software interrupt, the database is
82  *	protected using passive serialisation.  The main place which can
83  *	destroy a connection is npf_conn_worker().  The database itself
84  *	can be replaced and destroyed in npf_conn_reload().
85  *
86  * ALG support
87  *
88  *	Application-level gateways (ALGs) can override generic connection
89  *	inspection (npf_alg_conn() call in npf_conn_inspect() function) by
90  *	performing their own lookup using different key.  Recursive call
91  *	to npf_conn_inspect() is not allowed.  The ALGs ought to use the
92  *	npf_conn_lookup() function for this purpose.
93  *
94  * Lock order
95  *
96  *	npf_config_lock ->
97  *		conn_lock ->
98  *			npf_conn_t::c_lock
99  */
100 
101 #ifdef _KERNEL
102 #include <sys/cdefs.h>
103 __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.24 2017/12/10 00:07:36 rmind Exp $");
104 
105 #include <sys/param.h>
106 #include <sys/types.h>
107 
108 #include <netinet/in.h>
109 #include <netinet/tcp.h>
110 
111 #include <sys/atomic.h>
112 #include <sys/condvar.h>
113 #include <sys/kmem.h>
114 #include <sys/kthread.h>
115 #include <sys/mutex.h>
116 #include <net/pfil.h>
117 #include <sys/pool.h>
118 #include <sys/queue.h>
119 #include <sys/systm.h>
120 #endif
121 
122 #define __NPF_CONN_PRIVATE
123 #include "npf_conn.h"
124 #include "npf_impl.h"
125 
126 /*
127  * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
128  */
129 CTASSERT(PFIL_ALL == (0x001 | 0x002));
130 #define	CONN_ACTIVE	0x004	/* visible on inspection */
131 #define	CONN_PASS	0x008	/* perform implicit passing */
132 #define	CONN_EXPIRE	0x010	/* explicitly expire */
133 #define	CONN_REMOVED	0x020	/* "forw/back" entries removed */
134 
135 enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
136 
137 static void	npf_conn_destroy(npf_t *, npf_conn_t *);
138 
139 /*
140  * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
141  */
142 
143 void
144 npf_conn_init(npf_t *npf, int flags)
145 {
146 	npf->conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit,
147 	    0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL);
148 	mutex_init(&npf->conn_lock, MUTEX_DEFAULT, IPL_NONE);
149 	npf->conn_tracking = CONN_TRACKING_OFF;
150 	npf->conn_db = npf_conndb_create();
151 
152 	if ((flags & NPF_NO_GC) == 0) {
153 		npf_worker_register(npf, npf_conn_worker);
154 	}
155 }
156 
157 void
158 npf_conn_fini(npf_t *npf)
159 {
160 	/* Note: the caller should have flushed the connections. */
161 	KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
162 	npf_worker_unregister(npf, npf_conn_worker);
163 
164 	npf_conndb_destroy(npf->conn_db);
165 	pool_cache_destroy(npf->conn_cache);
166 	mutex_destroy(&npf->conn_lock);
167 }
168 
169 /*
170  * npf_conn_load: perform the load by flushing the current connection
171  * database and replacing it with the new one or just destroying.
172  *
173  * => The caller must disable the connection tracking and ensure that
174  *    there are no connection database lookups or references in-flight.
175  */
176 void
177 npf_conn_load(npf_t *npf, npf_conndb_t *ndb, bool track)
178 {
179 	npf_conndb_t *odb = NULL;
180 
181 	KASSERT(npf_config_locked_p(npf));
182 
183 	/*
184 	 * The connection database is in the quiescent state.
185 	 * Prevent G/C thread from running and install a new database.
186 	 */
187 	mutex_enter(&npf->conn_lock);
188 	if (ndb) {
189 		KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
190 		odb = npf->conn_db;
191 		npf->conn_db = ndb;
192 		membar_sync();
193 	}
194 	if (track) {
195 		/* After this point lookups start flying in. */
196 		npf->conn_tracking = CONN_TRACKING_ON;
197 	}
198 	mutex_exit(&npf->conn_lock);
199 
200 	if (odb) {
201 		/*
202 		 * Flush all, no sync since the caller did it for us.
203 		 * Also, release the pool cache memory.
204 		 */
205 		npf_conn_gc(npf, odb, true, false);
206 		npf_conndb_destroy(odb);
207 		pool_cache_invalidate(npf->conn_cache);
208 	}
209 }
210 
211 /*
212  * npf_conn_tracking: enable/disable connection tracking.
213  */
214 void
215 npf_conn_tracking(npf_t *npf, bool track)
216 {
217 	KASSERT(npf_config_locked_p(npf));
218 	npf->conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
219 }
220 
221 static inline bool
222 npf_conn_trackable_p(const npf_cache_t *npc)
223 {
224 	const npf_t *npf = npc->npc_ctx;
225 
226 	/*
227 	 * Check if connection tracking is on.  Also, if layer 3 and 4 are
228 	 * not cached - protocol is not supported or packet is invalid.
229 	 */
230 	if (npf->conn_tracking != CONN_TRACKING_ON) {
231 		return false;
232 	}
233 	if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
234 		return false;
235 	}
236 	return true;
237 }
238 
239 static uint32_t
240 connkey_setkey(npf_connkey_t *key, uint16_t proto, const void *ipv,
241     const uint16_t *id, unsigned alen, bool forw)
242 {
243 	uint32_t isrc, idst, *k = key->ck_key;
244 	const npf_addr_t * const *ips = ipv;
245 
246 	if (__predict_true(forw)) {
247 		isrc = NPF_SRC, idst = NPF_DST;
248 	} else {
249 		isrc = NPF_DST, idst = NPF_SRC;
250 	}
251 
252 	/*
253 	 * Construct a key formed out of 32-bit integers.  The key layout:
254 	 *
255 	 * Field: | proto  |  alen  | src-id | dst-id | src-addr | dst-addr |
256 	 *        +--------+--------+--------+--------+----------+----------+
257 	 * Bits:  |   16   |   16   |   16   |   16   |  32-128  |  32-128  |
258 	 *
259 	 * The source and destination are inverted if they key is for the
260 	 * backwards stream (forw == false).  The address length depends
261 	 * on the 'alen' field; it is a length in bytes, either 4 or 16.
262 	 */
263 
264 	k[0] = ((uint32_t)proto << 16) | (alen & 0xffff);
265 	k[1] = ((uint32_t)id[isrc] << 16) | id[idst];
266 
267 	if (__predict_true(alen == sizeof(in_addr_t))) {
268 		k[2] = ips[isrc]->word32[0];
269 		k[3] = ips[idst]->word32[0];
270 		return 4 * sizeof(uint32_t);
271 	} else {
272 		const u_int nwords = alen >> 2;
273 		memcpy(&k[2], ips[isrc], alen);
274 		memcpy(&k[2 + nwords], ips[idst], alen);
275 		return (2 + (nwords * 2)) * sizeof(uint32_t);
276 	}
277 }
278 
279 static void
280 connkey_getkey(const npf_connkey_t *key, uint16_t *proto, npf_addr_t *ips,
281     uint16_t *id, uint16_t *alen)
282 {
283 	const uint32_t *k = key->ck_key;
284 
285 	*proto = k[0] >> 16;
286 	*alen = k[0] & 0xffff;
287 	id[NPF_SRC] = k[1] >> 16;
288 	id[NPF_DST] = k[1] & 0xffff;
289 
290 	switch (*alen) {
291 	case sizeof(struct in6_addr):
292 	case sizeof(struct in_addr):
293 		memcpy(&ips[NPF_SRC], &k[2], *alen);
294 		memcpy(&ips[NPF_DST], &k[2 + ((unsigned)*alen >> 2)], *alen);
295 		return;
296 	default:
297 		KASSERT(0);
298 	}
299 }
300 
301 /*
302  * npf_conn_conkey: construct a key for the connection lookup.
303  *
304  * => Returns the key length in bytes or zero on failure.
305  */
306 unsigned
307 npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw)
308 {
309 	const u_int proto = npc->npc_proto;
310 	const u_int alen = npc->npc_alen;
311 	const struct tcphdr *th;
312 	const struct udphdr *uh;
313 	uint16_t id[2];
314 
315 	switch (proto) {
316 	case IPPROTO_TCP:
317 		KASSERT(npf_iscached(npc, NPC_TCP));
318 		th = npc->npc_l4.tcp;
319 		id[NPF_SRC] = th->th_sport;
320 		id[NPF_DST] = th->th_dport;
321 		break;
322 	case IPPROTO_UDP:
323 		KASSERT(npf_iscached(npc, NPC_UDP));
324 		uh = npc->npc_l4.udp;
325 		id[NPF_SRC] = uh->uh_sport;
326 		id[NPF_DST] = uh->uh_dport;
327 		break;
328 	case IPPROTO_ICMP:
329 		if (npf_iscached(npc, NPC_ICMP_ID)) {
330 			const struct icmp *ic = npc->npc_l4.icmp;
331 			id[NPF_SRC] = ic->icmp_id;
332 			id[NPF_DST] = ic->icmp_id;
333 			break;
334 		}
335 		return 0;
336 	case IPPROTO_ICMPV6:
337 		if (npf_iscached(npc, NPC_ICMP_ID)) {
338 			const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
339 			id[NPF_SRC] = ic6->icmp6_id;
340 			id[NPF_DST] = ic6->icmp6_id;
341 			break;
342 		}
343 		return 0;
344 	default:
345 		/* Unsupported protocol. */
346 		return 0;
347 	}
348 	return connkey_setkey(key, proto, npc->npc_ips, id, alen, forw);
349 }
350 
351 static __inline void
352 connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di)
353 {
354 	const u_int alen = key->ck_key[0] & 0xffff;
355 	uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)];
356 
357 	KASSERT(alen > 0);
358 	memcpy(addr, naddr, alen);
359 }
360 
361 static __inline void
362 connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di)
363 {
364 	const uint32_t oid = key->ck_key[1];
365 	const u_int shift = 16 * !di;
366 	const uint32_t mask = 0xffff0000 >> shift;
367 
368 	key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask);
369 }
370 
371 static inline void
372 conn_update_atime(npf_conn_t *con)
373 {
374 	struct timespec tsnow;
375 
376 	getnanouptime(&tsnow);
377 	con->c_atime = tsnow.tv_sec;
378 }
379 
380 /*
381  * npf_conn_ok: check if the connection is active, and has the right direction.
382  */
383 static bool
384 npf_conn_ok(const npf_conn_t *con, const int di, bool forw)
385 {
386 	const uint32_t flags = con->c_flags;
387 
388 	/* Check if connection is active and not expired. */
389 	bool ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
390 	if (__predict_false(!ok)) {
391 		return false;
392 	}
393 
394 	/* Check if the direction is consistent */
395 	bool pforw = (flags & PFIL_ALL) == (unsigned)di;
396 	if (__predict_false(forw != pforw)) {
397 		return false;
398 	}
399 	return true;
400 }
401 
402 /*
403  * npf_conn_lookup: lookup if there is an established connection.
404  *
405  * => If found, we will hold a reference for the caller.
406  */
407 npf_conn_t *
408 npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
409 {
410 	npf_t *npf = npc->npc_ctx;
411 	const nbuf_t *nbuf = npc->npc_nbuf;
412 	npf_conn_t *con;
413 	npf_connkey_t key;
414 	u_int cifid;
415 
416 	/* Construct a key and lookup for a connection in the store. */
417 	if (!npf_conn_conkey(npc, &key, true)) {
418 		return NULL;
419 	}
420 	con = npf_conndb_lookup(npf->conn_db, &key, forw);
421 	if (con == NULL) {
422 		return NULL;
423 	}
424 	KASSERT(npc->npc_proto == con->c_proto);
425 
426 	/* Check if connection is active and not expired. */
427 	if (!npf_conn_ok(con, di, *forw)) {
428 		atomic_dec_uint(&con->c_refcnt);
429 		return NULL;
430 	}
431 
432 	/*
433 	 * Match the interface and the direction of the connection entry
434 	 * and the packet.
435 	 */
436 	cifid = con->c_ifid;
437 	if (__predict_false(cifid && cifid != nbuf->nb_ifid)) {
438 		atomic_dec_uint(&con->c_refcnt);
439 		return NULL;
440 	}
441 
442 	/* Update the last activity time. */
443 	conn_update_atime(con);
444 	return con;
445 }
446 
447 /*
448  * npf_conn_inspect: lookup a connection and inspecting the protocol data.
449  *
450  * => If found, we will hold a reference for the caller.
451  */
452 npf_conn_t *
453 npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
454 {
455 	nbuf_t *nbuf = npc->npc_nbuf;
456 	npf_conn_t *con;
457 	bool forw, ok;
458 
459 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
460 	if (!npf_conn_trackable_p(npc)) {
461 		return NULL;
462 	}
463 
464 	/* Query ALG which may lookup connection for us. */
465 	if ((con = npf_alg_conn(npc, di)) != NULL) {
466 		/* Note: reference is held. */
467 		return con;
468 	}
469 	if (nbuf_head_mbuf(nbuf) == NULL) {
470 		*error = ENOMEM;
471 		return NULL;
472 	}
473 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
474 
475 	/* Main lookup of the connection. */
476 	if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
477 		return NULL;
478 	}
479 
480 	/* Inspect the protocol data and handle state changes. */
481 	mutex_enter(&con->c_lock);
482 	ok = npf_state_inspect(npc, &con->c_state, forw);
483 	mutex_exit(&con->c_lock);
484 
485 	/* If invalid state: let the rules deal with it. */
486 	if (__predict_false(!ok)) {
487 		npf_conn_release(con);
488 		npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE);
489 		return NULL;
490 	}
491 
492 	/*
493 	 * If this is multi-end state, then specially tag the packet
494 	 * so it will be just passed-through on other interfaces.
495 	 */
496 	if (con->c_ifid == 0 && nbuf_add_tag(nbuf, NPF_NTAG_PASS) != 0) {
497 		npf_conn_release(con);
498 		*error = ENOMEM;
499 		return NULL;
500 	}
501 	return con;
502 }
503 
504 /*
505  * npf_conn_establish: create a new connection, insert into the global list.
506  *
507  * => Connection is created with the reference held for the caller.
508  * => Connection will be activated on the first reference release.
509  */
510 npf_conn_t *
511 npf_conn_establish(npf_cache_t *npc, int di, bool per_if)
512 {
513 	npf_t *npf = npc->npc_ctx;
514 	const nbuf_t *nbuf = npc->npc_nbuf;
515 	npf_conn_t *con;
516 	int error = 0;
517 
518 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
519 
520 	if (!npf_conn_trackable_p(npc)) {
521 		return NULL;
522 	}
523 
524 	/* Allocate and initialise the new connection. */
525 	con = pool_cache_get(npf->conn_cache, PR_NOWAIT);
526 	if (__predict_false(!con)) {
527 		npf_worker_signal(npf);
528 		return NULL;
529 	}
530 	NPF_PRINTF(("NPF: create conn %p\n", con));
531 	npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
532 
533 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
534 	con->c_flags = (di & PFIL_ALL);
535 	con->c_refcnt = 0;
536 	con->c_rproc = NULL;
537 	con->c_nat = NULL;
538 
539 	/* Initialize the protocol state. */
540 	if (!npf_state_init(npc, &con->c_state)) {
541 		npf_conn_destroy(npf, con);
542 		return NULL;
543 	}
544 
545 	KASSERT(npf_iscached(npc, NPC_IP46));
546 	npf_connkey_t *fw = &con->c_forw_entry;
547 	npf_connkey_t *bk = &con->c_back_entry;
548 
549 	/*
550 	 * Construct "forwards" and "backwards" keys.  Also, set the
551 	 * interface ID for this connection (unless it is global).
552 	 */
553 	if (!npf_conn_conkey(npc, fw, true) ||
554 	    !npf_conn_conkey(npc, bk, false)) {
555 		npf_conn_destroy(npf, con);
556 		return NULL;
557 	}
558 	fw->ck_backptr = bk->ck_backptr = con;
559 	con->c_ifid = per_if ? nbuf->nb_ifid : 0;
560 	con->c_proto = npc->npc_proto;
561 
562 	/*
563 	 * Set last activity time for a new connection and acquire
564 	 * a reference for the caller before we make it visible.
565 	 */
566 	conn_update_atime(con);
567 	con->c_refcnt = 1;
568 
569 	/*
570 	 * Insert both keys (entries representing directions) of the
571 	 * connection.  At this point it becomes visible, but we activate
572 	 * the connection later.
573 	 */
574 	mutex_enter(&con->c_lock);
575 	if (!npf_conndb_insert(npf->conn_db, fw, con)) {
576 		error = EISCONN;
577 		goto err;
578 	}
579 	if (!npf_conndb_insert(npf->conn_db, bk, con)) {
580 		npf_conn_t *ret __diagused;
581 		ret = npf_conndb_remove(npf->conn_db, fw);
582 		KASSERT(ret == con);
583 		error = EISCONN;
584 		goto err;
585 	}
586 err:
587 	/*
588 	 * If we have hit the duplicate: mark the connection as expired
589 	 * and let the G/C thread to take care of it.  We cannot do it
590 	 * here since there might be references acquired already.
591 	 */
592 	if (error) {
593 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
594 		atomic_dec_uint(&con->c_refcnt);
595 		npf_stats_inc(npf, NPF_STAT_RACE_CONN);
596 	} else {
597 		NPF_PRINTF(("NPF: establish conn %p\n", con));
598 	}
599 
600 	/* Finally, insert into the connection list. */
601 	npf_conndb_enqueue(npf->conn_db, con);
602 	mutex_exit(&con->c_lock);
603 
604 	return error ? NULL : con;
605 }
606 
607 static void
608 npf_conn_destroy(npf_t *npf, npf_conn_t *con)
609 {
610 	KASSERT(con->c_refcnt == 0);
611 
612 	if (con->c_nat) {
613 		/* Release any NAT structures. */
614 		npf_nat_destroy(con->c_nat);
615 	}
616 	if (con->c_rproc) {
617 		/* Release the rule procedure. */
618 		npf_rproc_release(con->c_rproc);
619 	}
620 
621 	/* Destroy the state. */
622 	npf_state_destroy(&con->c_state);
623 	mutex_destroy(&con->c_lock);
624 
625 	/* Free the structure, increase the counter. */
626 	pool_cache_put(npf->conn_cache, con);
627 	npf_stats_inc(npf, NPF_STAT_CONN_DESTROY);
628 	NPF_PRINTF(("NPF: conn %p destroyed\n", con));
629 }
630 
631 /*
632  * npf_conn_setnat: associate NAT entry with the connection, update and
633  * re-insert connection entry using the translation values.
634  *
635  * => The caller must be holding a reference.
636  */
637 int
638 npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
639     npf_nat_t *nt, u_int ntype)
640 {
641 	static const u_int nat_type_dimap[] = {
642 		[NPF_NATOUT] = NPF_DST,
643 		[NPF_NATIN] = NPF_SRC,
644 	};
645 	npf_t *npf = npc->npc_ctx;
646 	npf_connkey_t key, *bk;
647 	npf_conn_t *ret __diagused;
648 	npf_addr_t *taddr;
649 	in_port_t tport;
650 	u_int tidx;
651 
652 	KASSERT(con->c_refcnt > 0);
653 
654 	npf_nat_gettrans(nt, &taddr, &tport);
655 	KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
656 	tidx = nat_type_dimap[ntype];
657 
658 	/* Construct a "backwards" key. */
659 	if (!npf_conn_conkey(npc, &key, false)) {
660 		return EINVAL;
661 	}
662 
663 	/* Acquire the lock and check for the races. */
664 	mutex_enter(&con->c_lock);
665 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
666 		/* The connection got expired. */
667 		mutex_exit(&con->c_lock);
668 		return EINVAL;
669 	}
670 	KASSERT((con->c_flags & CONN_REMOVED) == 0);
671 
672 	if (__predict_false(con->c_nat != NULL)) {
673 		/* Race with a duplicate packet. */
674 		mutex_exit(&con->c_lock);
675 		npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
676 		return EISCONN;
677 	}
678 
679 	/* Remove the "backwards" entry. */
680 	ret = npf_conndb_remove(npf->conn_db, &con->c_back_entry);
681 	KASSERT(ret == con);
682 
683 	/* Set the source/destination IDs to the translation values. */
684 	bk = &con->c_back_entry;
685 	connkey_set_addr(bk, taddr, tidx);
686 	if (tport) {
687 		connkey_set_id(bk, tport, tidx);
688 	}
689 
690 	/* Finally, re-insert the "backwards" entry. */
691 	if (!npf_conndb_insert(npf->conn_db, bk, con)) {
692 		/*
693 		 * Race: we have hit the duplicate, remove the "forwards"
694 		 * entry and expire our connection; it is no longer valid.
695 		 */
696 		ret = npf_conndb_remove(npf->conn_db, &con->c_forw_entry);
697 		KASSERT(ret == con);
698 
699 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
700 		mutex_exit(&con->c_lock);
701 
702 		npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
703 		return EISCONN;
704 	}
705 
706 	/* Associate the NAT entry and release the lock. */
707 	con->c_nat = nt;
708 	mutex_exit(&con->c_lock);
709 	return 0;
710 }
711 
712 /*
713  * npf_conn_expire: explicitly mark connection as expired.
714  */
715 void
716 npf_conn_expire(npf_conn_t *con)
717 {
718 	/* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
719 	atomic_or_uint(&con->c_flags, CONN_EXPIRE);
720 }
721 
722 /*
723  * npf_conn_pass: return true if connection is "pass" one, otherwise false.
724  */
725 bool
726 npf_conn_pass(const npf_conn_t *con, npf_match_info_t *mi, npf_rproc_t **rp)
727 {
728 	KASSERT(con->c_refcnt > 0);
729 	if (__predict_true(con->c_flags & CONN_PASS)) {
730 		mi->mi_rid = con->c_rid;
731 		mi->mi_retfl = con->c_retfl;
732 		*rp = con->c_rproc;
733 		return true;
734 	}
735 	return false;
736 }
737 
738 /*
739  * npf_conn_setpass: mark connection as a "pass" one and associate the
740  * rule procedure with it.
741  */
742 void
743 npf_conn_setpass(npf_conn_t *con, const npf_match_info_t *mi, npf_rproc_t *rp)
744 {
745 	KASSERT((con->c_flags & CONN_ACTIVE) == 0);
746 	KASSERT(con->c_refcnt > 0);
747 	KASSERT(con->c_rproc == NULL);
748 
749 	/*
750 	 * No need for atomic since the connection is not yet active.
751 	 * If rproc is set, the caller transfers its reference to us,
752 	 * which will be released on npf_conn_destroy().
753 	 */
754 	atomic_or_uint(&con->c_flags, CONN_PASS);
755 	con->c_rproc = rp;
756 	if (rp) {
757 		con->c_rid = mi->mi_rid;
758 		con->c_retfl = mi->mi_retfl;
759 	}
760 }
761 
762 /*
763  * npf_conn_release: release a reference, which might allow G/C thread
764  * to destroy this connection.
765  */
766 void
767 npf_conn_release(npf_conn_t *con)
768 {
769 	if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
770 		/* Activate: after this, connection is globally visible. */
771 		atomic_or_uint(&con->c_flags, CONN_ACTIVE);
772 	}
773 	KASSERT(con->c_refcnt > 0);
774 	atomic_dec_uint(&con->c_refcnt);
775 }
776 
777 /*
778  * npf_conn_getnat: return associated NAT data entry and indicate
779  * whether it is a "forwards" or "backwards" stream.
780  */
781 npf_nat_t *
782 npf_conn_getnat(npf_conn_t *con, const int di, bool *forw)
783 {
784 	KASSERT(con->c_refcnt > 0);
785 	*forw = (con->c_flags & PFIL_ALL) == (u_int)di;
786 	return con->c_nat;
787 }
788 
789 /*
790  * npf_conn_expired: criterion to check if connection is expired.
791  */
792 static inline bool
793 npf_conn_expired(const npf_conn_t *con, uint64_t tsnow)
794 {
795 	const int etime = npf_state_etime(&con->c_state, con->c_proto);
796 	int elapsed;
797 
798 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
799 		/* Explicitly marked to be expired. */
800 		return true;
801 	}
802 
803 	/*
804 	 * Note: another thread may update 'atime' and it might
805 	 * become greater than 'now'.
806 	 */
807 	elapsed = (int64_t)tsnow - con->c_atime;
808 	return elapsed > etime;
809 }
810 
811 /*
812  * npf_conn_gc: garbage collect the expired connections.
813  *
814  * => Must run in a single-threaded manner.
815  * => If it is a flush request, then destroy all connections.
816  * => If 'sync' is true, then perform passive serialisation.
817  */
818 void
819 npf_conn_gc(npf_t *npf, npf_conndb_t *cd, bool flush, bool sync)
820 {
821 	npf_conn_t *con, *prev, *gclist = NULL;
822 	struct timespec tsnow;
823 
824 	getnanouptime(&tsnow);
825 
826 	/*
827 	 * Scan all connections and check them for expiration.
828 	 */
829 	prev = NULL;
830 	con = npf_conndb_getlist(cd);
831 	while (con) {
832 		npf_conn_t *next = con->c_next;
833 
834 		/* Expired?  Flushing all? */
835 		if (!npf_conn_expired(con, tsnow.tv_sec) && !flush) {
836 			prev = con;
837 			con = next;
838 			continue;
839 		}
840 
841 		/* Remove both entries of the connection. */
842 		mutex_enter(&con->c_lock);
843 		if ((con->c_flags & CONN_REMOVED) == 0) {
844 			npf_conn_t *ret __diagused;
845 
846 			ret = npf_conndb_remove(cd, &con->c_forw_entry);
847 			KASSERT(ret == con);
848 			ret = npf_conndb_remove(cd, &con->c_back_entry);
849 			KASSERT(ret == con);
850 		}
851 
852 		/* Flag the removal and expiration. */
853 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
854 		mutex_exit(&con->c_lock);
855 
856 		/* Move to the G/C list. */
857 		npf_conndb_dequeue(cd, con, prev);
858 		con->c_next = gclist;
859 		gclist = con;
860 
861 		/* Next.. */
862 		con = next;
863 	}
864 	npf_conndb_settail(cd, prev);
865 
866 	/*
867 	 * Ensure it is safe to destroy the connections.
868 	 * Note: drop the conn_lock (see the lock order).
869 	 */
870 	if (sync) {
871 		mutex_exit(&npf->conn_lock);
872 		if (gclist) {
873 			npf_config_enter(npf);
874 			npf_config_sync(npf);
875 			npf_config_exit(npf);
876 		}
877 	}
878 
879 	/*
880 	 * Garbage collect all expired connections.
881 	 * May need to wait for the references to drain.
882 	 */
883 	con = gclist;
884 	while (con) {
885 		npf_conn_t *next = con->c_next;
886 
887 		/*
888 		 * Destroy only if removed and no references.
889 		 * Otherwise, wait for a tiny moment.
890 		 */
891 		if (__predict_false(con->c_refcnt)) {
892 			kpause("npfcongc", false, 1, NULL);
893 			continue;
894 		}
895 		npf_conn_destroy(npf, con);
896 		con = next;
897 	}
898 }
899 
900 /*
901  * npf_conn_worker: G/C to run from a worker thread.
902  */
903 void
904 npf_conn_worker(npf_t *npf)
905 {
906 	mutex_enter(&npf->conn_lock);
907 	/* Note: the conn_lock will be released (sync == true). */
908 	npf_conn_gc(npf, npf->conn_db, false, true);
909 }
910 
911 /*
912  * npf_conndb_export: construct a list of connections prepared for saving.
913  * Note: this is expected to be an expensive operation.
914  */
915 int
916 npf_conndb_export(npf_t *npf, prop_array_t conlist)
917 {
918 	npf_conn_t *con, *prev;
919 
920 	/*
921 	 * Note: acquire conn_lock to prevent from the database
922 	 * destruction and G/C thread.
923 	 */
924 	mutex_enter(&npf->conn_lock);
925 	if (npf->conn_tracking != CONN_TRACKING_ON) {
926 		mutex_exit(&npf->conn_lock);
927 		return 0;
928 	}
929 	prev = NULL;
930 	con = npf_conndb_getlist(npf->conn_db);
931 	while (con) {
932 		npf_conn_t *next = con->c_next;
933 		prop_dictionary_t cdict;
934 
935 		if ((cdict = npf_conn_export(npf, con)) != NULL) {
936 			prop_array_add(conlist, cdict);
937 			prop_object_release(cdict);
938 		}
939 		prev = con;
940 		con = next;
941 	}
942 	npf_conndb_settail(npf->conn_db, prev);
943 	mutex_exit(&npf->conn_lock);
944 	return 0;
945 }
946 
947 static prop_dictionary_t
948 npf_connkey_export(const npf_connkey_t *key)
949 {
950 	uint16_t id[2], alen, proto;
951 	prop_dictionary_t kdict;
952 	npf_addr_t ips[2];
953 	prop_data_t d;
954 
955 	kdict = prop_dictionary_create();
956 	connkey_getkey(key, &proto, ips, id, &alen);
957 
958 	prop_dictionary_set_uint16(kdict, "proto", proto);
959 
960 	prop_dictionary_set_uint16(kdict, "sport", id[NPF_SRC]);
961 	prop_dictionary_set_uint16(kdict, "dport", id[NPF_DST]);
962 
963 	d = prop_data_create_data(&ips[NPF_SRC], alen);
964 	prop_dictionary_set_and_rel(kdict, "saddr", d);
965 
966 	d = prop_data_create_data(&ips[NPF_DST], alen);
967 	prop_dictionary_set_and_rel(kdict, "daddr", d);
968 
969 	return kdict;
970 }
971 
972 /*
973  * npf_conn_export: serialise a single connection.
974  */
975 prop_dictionary_t
976 npf_conn_export(npf_t *npf, const npf_conn_t *con)
977 {
978 	prop_dictionary_t cdict, kdict;
979 	prop_data_t d;
980 
981 	if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
982 		return NULL;
983 	}
984 	cdict = prop_dictionary_create();
985 	prop_dictionary_set_uint32(cdict, "flags", con->c_flags);
986 	prop_dictionary_set_uint32(cdict, "proto", con->c_proto);
987 	if (con->c_ifid) {
988 		const char *ifname = npf_ifmap_getname(npf, con->c_ifid);
989 		prop_dictionary_set_cstring(cdict, "ifname", ifname);
990 	}
991 
992 	d = prop_data_create_data(&con->c_state, sizeof(npf_state_t));
993 	prop_dictionary_set_and_rel(cdict, "state", d);
994 
995 	kdict = npf_connkey_export(&con->c_forw_entry);
996 	prop_dictionary_set_and_rel(cdict, "forw-key", kdict);
997 
998 	kdict = npf_connkey_export(&con->c_back_entry);
999 	prop_dictionary_set_and_rel(cdict, "back-key", kdict);
1000 
1001 	if (con->c_nat) {
1002 		npf_nat_export(cdict, con->c_nat);
1003 	}
1004 	return cdict;
1005 }
1006 
1007 static uint32_t
1008 npf_connkey_import(prop_dictionary_t kdict, npf_connkey_t *key)
1009 {
1010 	prop_object_t sobj, dobj;
1011 	npf_addr_t const * ips[2];
1012 	uint16_t alen, proto, id[2];
1013 
1014 	if (!prop_dictionary_get_uint16(kdict, "proto", &proto))
1015 		return 0;
1016 
1017 	if (!prop_dictionary_get_uint16(kdict, "sport", &id[NPF_SRC]))
1018 		return 0;
1019 
1020 	if (!prop_dictionary_get_uint16(kdict, "dport", &id[NPF_DST]))
1021 		return 0;
1022 
1023 	sobj = prop_dictionary_get(kdict, "saddr");
1024 	if ((ips[NPF_SRC] = prop_data_data_nocopy(sobj)) == NULL)
1025 		return 0;
1026 
1027 	dobj = prop_dictionary_get(kdict, "daddr");
1028 	if ((ips[NPF_DST] = prop_data_data_nocopy(dobj)) == NULL)
1029 		return 0;
1030 
1031 	alen = prop_data_size(sobj);
1032 	if (alen != prop_data_size(dobj))
1033 		return 0;
1034 
1035 	return connkey_setkey(key, proto, ips, id, alen, true);
1036 }
1037 
1038 /*
1039  * npf_conn_import: fully reconstruct a single connection from a
1040  * directory and insert into the given database.
1041  */
1042 int
1043 npf_conn_import(npf_t *npf, npf_conndb_t *cd, prop_dictionary_t cdict,
1044     npf_ruleset_t *natlist)
1045 {
1046 	npf_conn_t *con;
1047 	npf_connkey_t *fw, *bk;
1048 	prop_object_t obj;
1049 	const char *ifname;
1050 	const void *d;
1051 
1052 	/* Allocate a connection and initialise it (clear first). */
1053 	con = pool_cache_get(npf->conn_cache, PR_WAITOK);
1054 	memset(con, 0, sizeof(npf_conn_t));
1055 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
1056 	npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
1057 
1058 	prop_dictionary_get_uint32(cdict, "proto", &con->c_proto);
1059 	prop_dictionary_get_uint32(cdict, "flags", &con->c_flags);
1060 	con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
1061 	conn_update_atime(con);
1062 
1063 	if (prop_dictionary_get_cstring_nocopy(cdict, "ifname", &ifname) &&
1064 	    (con->c_ifid = npf_ifmap_register(npf, ifname)) == 0) {
1065 		goto err;
1066 	}
1067 
1068 	obj = prop_dictionary_get(cdict, "state");
1069 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
1070 	    prop_data_size(obj) != sizeof(npf_state_t)) {
1071 		goto err;
1072 	}
1073 	memcpy(&con->c_state, d, sizeof(npf_state_t));
1074 
1075 	/* Reconstruct NAT association, if any. */
1076 	if ((obj = prop_dictionary_get(cdict, "nat")) != NULL &&
1077 	    (con->c_nat = npf_nat_import(npf, obj, natlist, con)) == NULL) {
1078 		goto err;
1079 	}
1080 
1081 	/*
1082 	 * Fetch and copy the keys for each direction.
1083 	 */
1084 	obj = prop_dictionary_get(cdict, "forw-key");
1085 	fw = &con->c_forw_entry;
1086 	if (obj == NULL || !npf_connkey_import(obj, fw)) {
1087 		goto err;
1088 	}
1089 
1090 	obj = prop_dictionary_get(cdict, "back-key");
1091 	bk = &con->c_back_entry;
1092 	if (obj == NULL || !npf_connkey_import(obj, bk)) {
1093 		goto err;
1094 	}
1095 
1096 	fw->ck_backptr = bk->ck_backptr = con;
1097 
1098 	/* Insert the entries and the connection itself. */
1099 	if (!npf_conndb_insert(cd, fw, con)) {
1100 		goto err;
1101 	}
1102 	if (!npf_conndb_insert(cd, bk, con)) {
1103 		npf_conndb_remove(cd, fw);
1104 		goto err;
1105 	}
1106 
1107 	NPF_PRINTF(("NPF: imported conn %p\n", con));
1108 	npf_conndb_enqueue(cd, con);
1109 	return 0;
1110 err:
1111 	npf_conn_destroy(npf, con);
1112 	return EINVAL;
1113 }
1114 
1115 int
1116 npf_conn_find(npf_t *npf, prop_dictionary_t idict, prop_dictionary_t *odict)
1117 {
1118 	prop_dictionary_t kdict;
1119 	npf_connkey_t key;
1120 	npf_conn_t *con;
1121 	uint16_t dir;
1122 	bool forw;
1123 
1124 	if ((kdict = prop_dictionary_get(idict, "key")) == NULL)
1125 		return EINVAL;
1126 
1127 	if (!npf_connkey_import(kdict, &key))
1128 		return EINVAL;
1129 
1130 	if (!prop_dictionary_get_uint16(idict, "direction", &dir))
1131 		return EINVAL;
1132 
1133 	con = npf_conndb_lookup(npf->conn_db, &key, &forw);
1134 	if (con == NULL) {
1135 		return ESRCH;
1136 	}
1137 
1138 	if (!npf_conn_ok(con, dir, true)) {
1139 		atomic_dec_uint(&con->c_refcnt);
1140 		return ESRCH;
1141 	}
1142 
1143 	*odict = npf_conn_export(npf, con);
1144 	if (*odict == NULL) {
1145 		atomic_dec_uint(&con->c_refcnt);
1146 		return ENOSPC;
1147 	}
1148 	atomic_dec_uint(&con->c_refcnt);
1149 
1150 	return 0;
1151 }
1152 
1153 #if defined(DDB) || defined(_NPF_TESTING)
1154 
1155 void
1156 npf_conn_print(const npf_conn_t *con)
1157 {
1158 	const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry);
1159 	const uint32_t *fkey = con->c_forw_entry.ck_key;
1160 	const uint32_t *bkey = con->c_back_entry.ck_key;
1161 	const u_int proto = con->c_proto;
1162 	struct timespec tspnow;
1163 	const void *src, *dst;
1164 	int etime;
1165 
1166 	getnanouptime(&tspnow);
1167 	etime = npf_state_etime(&con->c_state, proto);
1168 
1169 	printf("%p:\n\tproto %d flags 0x%x tsdiff %ld etime %d\n", con,
1170 	    proto, con->c_flags, (long)(tspnow.tv_sec - con->c_atime), etime);
1171 
1172 	src = &fkey[2], dst = &fkey[2 + (alen >> 2)];
1173 	printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16));
1174 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff));
1175 
1176 	src = &bkey[2], dst = &bkey[2 + (alen >> 2)];
1177 	printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16));
1178 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff));
1179 
1180 	npf_state_dump(&con->c_state);
1181 	if (con->c_nat) {
1182 		npf_nat_dump(con->c_nat);
1183 	}
1184 }
1185 
1186 #endif
1187