1 /* $NetBSD: npf_conn.c,v 1.16 2015/02/05 22:04:03 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2014-2015 Mindaugas Rasiukevicius <rmind at netbsd org> 5 * Copyright (c) 2010-2014 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This material is based upon work partially supported by The 9 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * NPF connection tracking for stateful filtering and translation. 35 * 36 * Overview 37 * 38 * Connection direction is identified by the direction of its first 39 * packet. Packets can be incoming or outgoing with respect to an 40 * interface. To describe the packet in the context of connection 41 * direction we will use the terms "forwards stream" and "backwards 42 * stream". All connections have two keys and thus two entries: 43 * 44 * npf_conn_t::c_forw_entry for the forwards stream and 45 * npf_conn_t::c_back_entry for the backwards stream. 46 * 47 * The keys are formed from the 5-tuple (source/destination address, 48 * source/destination port and the protocol). Additional matching 49 * is performed for the interface (a common behaviour is equivalent 50 * to the 6-tuple lookup including the interface ID). Note that the 51 * key may be formed using translated values in a case of NAT. 52 * 53 * Connections can serve two purposes: for the implicit passing or 54 * to accommodate the dynamic NAT. Connections for the former purpose 55 * are created by the rules with "stateful" attribute and are used for 56 * stateful filtering. Such connections indicate that the packet of 57 * the backwards stream should be passed without inspection of the 58 * ruleset. The other purpose is to associate a dynamic NAT mechanism 59 * with a connection. Such connections are created by the NAT policies 60 * and they have a relationship with NAT translation structure via 61 * npf_conn_t::c_nat. A single connection can serve both purposes, 62 * which is a common case. 63 * 64 * Connection life-cycle 65 * 66 * Connections are established when a packet matches said rule or 67 * NAT policy. Both keys of the established connection are inserted 68 * into the connection database. A garbage collection thread 69 * periodically scans all connections and depending on connection 70 * properties (e.g. last activity time, protocol) removes connection 71 * entries and expires the actual connections. 72 * 73 * Each connection has a reference count. The reference is acquired 74 * on lookup and should be released by the caller. It guarantees that 75 * the connection will not be destroyed, although it may be expired. 76 * 77 * Synchronisation 78 * 79 * Connection database is accessed in a lock-less manner by the main 80 * routines: npf_conn_inspect() and npf_conn_establish(). Since they 81 * are always called from a software interrupt, the database is 82 * protected using passive serialisation. The main place which can 83 * destroy a connection is npf_conn_worker(). The database itself 84 * can be replaced and destroyed in npf_conn_reload(). 85 * 86 * ALG support 87 * 88 * Application-level gateways (ALGs) can override generic connection 89 * inspection (npf_alg_conn() call in npf_conn_inspect() function) by 90 * performing their own lookup using different key. Recursive call 91 * to npf_conn_inspect() is not allowed. The ALGs ought to use the 92 * npf_conn_lookup() function for this purpose. 93 * 94 * Lock order 95 * 96 * npf_config_lock -> 97 * conn_lock -> 98 * npf_conn_t::c_lock 99 */ 100 101 #include <sys/cdefs.h> 102 __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.16 2015/02/05 22:04:03 rmind Exp $"); 103 104 #include <sys/param.h> 105 #include <sys/types.h> 106 107 #include <netinet/in.h> 108 #include <netinet/tcp.h> 109 110 #include <sys/atomic.h> 111 #include <sys/condvar.h> 112 #include <sys/kmem.h> 113 #include <sys/kthread.h> 114 #include <sys/mutex.h> 115 #include <net/pfil.h> 116 #include <sys/pool.h> 117 #include <sys/queue.h> 118 #include <sys/systm.h> 119 120 #define __NPF_CONN_PRIVATE 121 #include "npf_conn.h" 122 #include "npf_impl.h" 123 124 /* 125 * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction. 126 */ 127 CTASSERT(PFIL_ALL == (0x001 | 0x002)); 128 #define CONN_ACTIVE 0x004 /* visible on inspection */ 129 #define CONN_PASS 0x008 /* perform implicit passing */ 130 #define CONN_EXPIRE 0x010 /* explicitly expire */ 131 #define CONN_REMOVED 0x020 /* "forw/back" entries removed */ 132 133 /* 134 * Connection tracking state: disabled (off) or enabled (on). 135 */ 136 enum { CONN_TRACKING_OFF, CONN_TRACKING_ON }; 137 static volatile int conn_tracking __cacheline_aligned; 138 139 /* Connection tracking database, connection cache and the lock. */ 140 static npf_conndb_t * conn_db __read_mostly; 141 static pool_cache_t conn_cache __read_mostly; 142 static kmutex_t conn_lock __cacheline_aligned; 143 144 static void npf_conn_worker(void); 145 static void npf_conn_destroy(npf_conn_t *); 146 147 /* 148 * npf_conn_sys{init,fini}: initialise/destroy connection tracking. 149 */ 150 151 void 152 npf_conn_sysinit(void) 153 { 154 conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit, 155 0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL); 156 mutex_init(&conn_lock, MUTEX_DEFAULT, IPL_NONE); 157 conn_tracking = CONN_TRACKING_OFF; 158 conn_db = npf_conndb_create(); 159 160 npf_worker_register(npf_conn_worker); 161 } 162 163 void 164 npf_conn_sysfini(void) 165 { 166 /* Note: the caller should have flushed the connections. */ 167 KASSERT(conn_tracking == CONN_TRACKING_OFF); 168 npf_worker_unregister(npf_conn_worker); 169 170 npf_conndb_destroy(conn_db); 171 pool_cache_destroy(conn_cache); 172 mutex_destroy(&conn_lock); 173 } 174 175 /* 176 * npf_conn_load: perform the load by flushing the current connection 177 * database and replacing it with the new one or just destroying. 178 * 179 * => The caller must disable the connection tracking and ensure that 180 * there are no connection database lookups or references in-flight. 181 */ 182 void 183 npf_conn_load(npf_conndb_t *ndb, bool track) 184 { 185 npf_conndb_t *odb = NULL; 186 187 KASSERT(npf_config_locked_p()); 188 189 /* 190 * The connection database is in the quiescent state. 191 * Prevent G/C thread from running and install a new database. 192 */ 193 mutex_enter(&conn_lock); 194 if (ndb) { 195 KASSERT(conn_tracking == CONN_TRACKING_OFF); 196 odb = conn_db; 197 conn_db = ndb; 198 membar_sync(); 199 } 200 if (track) { 201 /* After this point lookups start flying in. */ 202 conn_tracking = CONN_TRACKING_ON; 203 } 204 mutex_exit(&conn_lock); 205 206 if (odb) { 207 /* 208 * Flush all, no sync since the caller did it for us. 209 * Also, release the pool cache memory. 210 */ 211 npf_conn_gc(odb, true, false); 212 npf_conndb_destroy(odb); 213 pool_cache_invalidate(conn_cache); 214 } 215 } 216 217 /* 218 * npf_conn_tracking: enable/disable connection tracking. 219 */ 220 void 221 npf_conn_tracking(bool track) 222 { 223 KASSERT(npf_config_locked_p()); 224 conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF; 225 } 226 227 static inline bool 228 npf_conn_trackable_p(const npf_cache_t *npc) 229 { 230 /* 231 * Check if connection tracking is on. Also, if layer 3 and 4 are 232 * not cached - protocol is not supported or packet is invalid. 233 */ 234 if (conn_tracking != CONN_TRACKING_ON) { 235 return false; 236 } 237 if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) { 238 return false; 239 } 240 return true; 241 } 242 243 /* 244 * npf_conn_conkey: construct a key for the connection lookup. 245 * 246 * => Returns the key length in bytes or zero on failure. 247 */ 248 unsigned 249 npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw) 250 { 251 const u_int alen = npc->npc_alen; 252 const struct tcphdr *th; 253 const struct udphdr *uh; 254 u_int keylen, isrc, idst; 255 uint16_t id[2]; 256 257 switch (npc->npc_proto) { 258 case IPPROTO_TCP: 259 KASSERT(npf_iscached(npc, NPC_TCP)); 260 th = npc->npc_l4.tcp; 261 id[NPF_SRC] = th->th_sport; 262 id[NPF_DST] = th->th_dport; 263 break; 264 case IPPROTO_UDP: 265 KASSERT(npf_iscached(npc, NPC_UDP)); 266 uh = npc->npc_l4.udp; 267 id[NPF_SRC] = uh->uh_sport; 268 id[NPF_DST] = uh->uh_dport; 269 break; 270 case IPPROTO_ICMP: 271 if (npf_iscached(npc, NPC_ICMP_ID)) { 272 const struct icmp *ic = npc->npc_l4.icmp; 273 id[NPF_SRC] = ic->icmp_id; 274 id[NPF_DST] = ic->icmp_id; 275 break; 276 } 277 return 0; 278 case IPPROTO_ICMPV6: 279 if (npf_iscached(npc, NPC_ICMP_ID)) { 280 const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6; 281 id[NPF_SRC] = ic6->icmp6_id; 282 id[NPF_DST] = ic6->icmp6_id; 283 break; 284 } 285 return 0; 286 default: 287 /* Unsupported protocol. */ 288 return 0; 289 } 290 291 if (__predict_true(forw)) { 292 isrc = NPF_SRC, idst = NPF_DST; 293 } else { 294 isrc = NPF_DST, idst = NPF_SRC; 295 } 296 297 /* 298 * Construct a key formed out of 32-bit integers. The key layout: 299 * 300 * Field: | proto | alen | src-id | dst-id | src-addr | dst-addr | 301 * +--------+--------+--------+--------+----------+----------+ 302 * Bits: | 16 | 16 | 16 | 16 | 32-128 | 32-128 | 303 * 304 * The source and destination are inverted if they key is for the 305 * backwards stream (forw == false). The address length depends 306 * on the 'alen' field; it is a length in bytes, either 4 or 16. 307 */ 308 309 key->ck_key[0] = ((uint32_t)npc->npc_proto << 16) | (alen & 0xffff); 310 key->ck_key[1] = ((uint32_t)id[isrc] << 16) | id[idst]; 311 312 if (__predict_true(alen == sizeof(in_addr_t))) { 313 key->ck_key[2] = npc->npc_ips[isrc]->s6_addr32[0]; 314 key->ck_key[3] = npc->npc_ips[idst]->s6_addr32[0]; 315 keylen = 4 * sizeof(uint32_t); 316 } else { 317 const u_int nwords = alen >> 2; 318 memcpy(&key->ck_key[2], npc->npc_ips[isrc], alen); 319 memcpy(&key->ck_key[2 + nwords], npc->npc_ips[idst], alen); 320 keylen = (2 + (nwords * 2)) * sizeof(uint32_t); 321 } 322 return keylen; 323 } 324 325 static __inline void 326 connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di) 327 { 328 const u_int alen = key->ck_key[0] & 0xffff; 329 uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)]; 330 331 KASSERT(alen > 0); 332 memcpy(addr, naddr, alen); 333 } 334 335 static __inline void 336 connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di) 337 { 338 const uint32_t oid = key->ck_key[1]; 339 const u_int shift = 16 * !di; 340 const uint32_t mask = 0xffff0000 >> shift; 341 342 key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask); 343 } 344 345 /* 346 * npf_conn_lookup: lookup if there is an established connection. 347 * 348 * => If found, we will hold a reference for the caller. 349 */ 350 npf_conn_t * 351 npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw) 352 { 353 const nbuf_t *nbuf = npc->npc_nbuf; 354 npf_conn_t *con; 355 npf_connkey_t key; 356 u_int flags, cifid; 357 bool ok, pforw; 358 359 /* Construct a key and lookup for a connection in the store. */ 360 if (!npf_conn_conkey(npc, &key, true)) { 361 return NULL; 362 } 363 con = npf_conndb_lookup(conn_db, &key, forw); 364 if (con == NULL) { 365 return NULL; 366 } 367 KASSERT(npc->npc_proto == con->c_proto); 368 369 /* Check if connection is active and not expired. */ 370 flags = con->c_flags; 371 ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE; 372 if (__predict_false(!ok)) { 373 atomic_dec_uint(&con->c_refcnt); 374 return NULL; 375 } 376 377 /* 378 * Match the interface and the direction of the connection entry 379 * and the packet. 380 */ 381 cifid = con->c_ifid; 382 if (__predict_false(cifid && cifid != nbuf->nb_ifid)) { 383 atomic_dec_uint(&con->c_refcnt); 384 return NULL; 385 } 386 pforw = (flags & PFIL_ALL) == di; 387 if (__predict_false(*forw != pforw)) { 388 atomic_dec_uint(&con->c_refcnt); 389 return NULL; 390 } 391 392 /* Update the last activity time. */ 393 getnanouptime(&con->c_atime); 394 return con; 395 } 396 397 /* 398 * npf_conn_inspect: lookup a connection and inspecting the protocol data. 399 * 400 * => If found, we will hold a reference for the caller. 401 */ 402 npf_conn_t * 403 npf_conn_inspect(npf_cache_t *npc, const int di, int *error) 404 { 405 nbuf_t *nbuf = npc->npc_nbuf; 406 npf_conn_t *con; 407 bool forw, ok; 408 409 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)); 410 if (!npf_conn_trackable_p(npc)) { 411 return NULL; 412 } 413 414 /* Query ALG which may lookup connection for us. */ 415 if ((con = npf_alg_conn(npc, di)) != NULL) { 416 /* Note: reference is held. */ 417 return con; 418 } 419 if (nbuf_head_mbuf(nbuf) == NULL) { 420 *error = ENOMEM; 421 return NULL; 422 } 423 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)); 424 425 /* Main lookup of the connection. */ 426 if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) { 427 return NULL; 428 } 429 430 /* Inspect the protocol data and handle state changes. */ 431 mutex_enter(&con->c_lock); 432 ok = npf_state_inspect(npc, &con->c_state, forw); 433 mutex_exit(&con->c_lock); 434 435 if (__predict_false(!ok)) { 436 /* Invalid: let the rules deal with it. */ 437 npf_conn_release(con); 438 npf_stats_inc(NPF_STAT_INVALID_STATE); 439 con = NULL; 440 } 441 return con; 442 } 443 444 /* 445 * npf_conn_establish: create a new connection, insert into the global list. 446 * 447 * => Connection is created with the reference held for the caller. 448 * => Connection will be activated on the first reference release. 449 */ 450 npf_conn_t * 451 npf_conn_establish(npf_cache_t *npc, int di, bool per_if) 452 { 453 const nbuf_t *nbuf = npc->npc_nbuf; 454 npf_conn_t *con; 455 int error = 0; 456 457 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)); 458 459 if (!npf_conn_trackable_p(npc)) { 460 return NULL; 461 } 462 463 /* Allocate and initialise the new connection. */ 464 con = pool_cache_get(conn_cache, PR_NOWAIT); 465 if (__predict_false(!con)) { 466 return NULL; 467 } 468 NPF_PRINTF(("NPF: create conn %p\n", con)); 469 npf_stats_inc(NPF_STAT_CONN_CREATE); 470 471 mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET); 472 con->c_flags = (di & PFIL_ALL); 473 con->c_refcnt = 0; 474 con->c_rproc = NULL; 475 con->c_nat = NULL; 476 477 /* Initialize the protocol state. */ 478 if (!npf_state_init(npc, &con->c_state)) { 479 npf_conn_destroy(con); 480 return NULL; 481 } 482 483 KASSERT(npf_iscached(npc, NPC_IP46)); 484 npf_connkey_t *fw = &con->c_forw_entry; 485 npf_connkey_t *bk = &con->c_back_entry; 486 487 /* 488 * Construct "forwards" and "backwards" keys. Also, set the 489 * interface ID for this connection (unless it is global). 490 */ 491 if (!npf_conn_conkey(npc, fw, true) || 492 !npf_conn_conkey(npc, bk, false)) { 493 npf_conn_destroy(con); 494 return NULL; 495 } 496 fw->ck_backptr = bk->ck_backptr = con; 497 con->c_ifid = per_if ? nbuf->nb_ifid : 0; 498 con->c_proto = npc->npc_proto; 499 500 /* 501 * Set last activity time for a new connection and acquire 502 * a reference for the caller before we make it visible. 503 */ 504 getnanouptime(&con->c_atime); 505 con->c_refcnt = 1; 506 507 /* 508 * Insert both keys (entries representing directions) of the 509 * connection. At this point it becomes visible, but we activate 510 * the connection later. 511 */ 512 mutex_enter(&con->c_lock); 513 if (!npf_conndb_insert(conn_db, fw, con)) { 514 error = EISCONN; 515 goto err; 516 } 517 if (!npf_conndb_insert(conn_db, bk, con)) { 518 npf_conn_t *ret __diagused; 519 ret = npf_conndb_remove(conn_db, fw); 520 KASSERT(ret == con); 521 error = EISCONN; 522 goto err; 523 } 524 err: 525 /* 526 * If we have hit the duplicate: mark the connection as expired 527 * and let the G/C thread to take care of it. We cannot do it 528 * here since there might be references acquired already. 529 */ 530 if (error) { 531 atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE); 532 atomic_dec_uint(&con->c_refcnt); 533 npf_stats_inc(NPF_STAT_RACE_CONN); 534 } else { 535 NPF_PRINTF(("NPF: establish conn %p\n", con)); 536 } 537 538 /* Finally, insert into the connection list. */ 539 npf_conndb_enqueue(conn_db, con); 540 mutex_exit(&con->c_lock); 541 542 return error ? NULL : con; 543 } 544 545 static void 546 npf_conn_destroy(npf_conn_t *con) 547 { 548 KASSERT(con->c_refcnt == 0); 549 550 if (con->c_nat) { 551 /* Release any NAT structures. */ 552 npf_nat_destroy(con->c_nat); 553 } 554 if (con->c_rproc) { 555 /* Release the rule procedure. */ 556 npf_rproc_release(con->c_rproc); 557 } 558 559 /* Destroy the state. */ 560 npf_state_destroy(&con->c_state); 561 mutex_destroy(&con->c_lock); 562 563 /* Free the structure, increase the counter. */ 564 pool_cache_put(conn_cache, con); 565 npf_stats_inc(NPF_STAT_CONN_DESTROY); 566 NPF_PRINTF(("NPF: conn %p destroyed\n", con)); 567 } 568 569 /* 570 * npf_conn_setnat: associate NAT entry with the connection, update and 571 * re-insert connection entry using the translation values. 572 * 573 * => The caller must be holding a reference. 574 */ 575 int 576 npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con, 577 npf_nat_t *nt, u_int ntype) 578 { 579 static const u_int nat_type_dimap[] = { 580 [NPF_NATOUT] = NPF_DST, 581 [NPF_NATIN] = NPF_SRC, 582 }; 583 npf_connkey_t key, *bk; 584 npf_conn_t *ret __diagused; 585 npf_addr_t *taddr; 586 in_port_t tport; 587 u_int tidx; 588 589 KASSERT(con->c_refcnt > 0); 590 591 npf_nat_gettrans(nt, &taddr, &tport); 592 KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN); 593 tidx = nat_type_dimap[ntype]; 594 595 /* Construct a "backwards" key. */ 596 if (!npf_conn_conkey(npc, &key, false)) { 597 return EINVAL; 598 } 599 600 /* Acquire the lock and check for the races. */ 601 mutex_enter(&con->c_lock); 602 if (__predict_false(con->c_flags & CONN_EXPIRE)) { 603 /* The connection got expired. */ 604 mutex_exit(&con->c_lock); 605 return EINVAL; 606 } 607 KASSERT((con->c_flags & CONN_REMOVED) == 0); 608 609 if (__predict_false(con->c_nat != NULL)) { 610 /* Race with a duplicate packet. */ 611 mutex_exit(&con->c_lock); 612 npf_stats_inc(NPF_STAT_RACE_NAT); 613 return EISCONN; 614 } 615 616 /* Remove the "backwards" entry. */ 617 ret = npf_conndb_remove(conn_db, &con->c_back_entry); 618 KASSERT(ret == con); 619 620 /* Set the source/destination IDs to the translation values. */ 621 bk = &con->c_back_entry; 622 connkey_set_addr(bk, taddr, tidx); 623 if (tport) { 624 connkey_set_id(bk, tport, tidx); 625 } 626 627 /* Finally, re-insert the "backwards" entry. */ 628 if (!npf_conndb_insert(conn_db, bk, con)) { 629 /* 630 * Race: we have hit the duplicate, remove the "forwards" 631 * entry and expire our connection; it is no longer valid. 632 */ 633 ret = npf_conndb_remove(conn_db, &con->c_forw_entry); 634 KASSERT(ret == con); 635 636 atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE); 637 mutex_exit(&con->c_lock); 638 639 npf_stats_inc(NPF_STAT_RACE_NAT); 640 return EISCONN; 641 } 642 643 /* Associate the NAT entry and release the lock. */ 644 con->c_nat = nt; 645 mutex_exit(&con->c_lock); 646 return 0; 647 } 648 649 /* 650 * npf_conn_expire: explicitly mark connection as expired. 651 */ 652 void 653 npf_conn_expire(npf_conn_t *con) 654 { 655 /* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */ 656 atomic_or_uint(&con->c_flags, CONN_EXPIRE); 657 } 658 659 /* 660 * npf_conn_pass: return true if connection is "pass" one, otherwise false. 661 */ 662 bool 663 npf_conn_pass(const npf_conn_t *con, npf_rproc_t **rp) 664 { 665 KASSERT(con->c_refcnt > 0); 666 if (__predict_true(con->c_flags & CONN_PASS)) { 667 *rp = con->c_rproc; 668 return true; 669 } 670 return false; 671 } 672 673 /* 674 * npf_conn_setpass: mark connection as a "pass" one and associate the 675 * rule procedure with it. 676 */ 677 void 678 npf_conn_setpass(npf_conn_t *con, npf_rproc_t *rp) 679 { 680 KASSERT((con->c_flags & CONN_ACTIVE) == 0); 681 KASSERT(con->c_refcnt > 0); 682 KASSERT(con->c_rproc == NULL); 683 684 /* 685 * No need for atomic since the connection is not yet active. 686 * If rproc is set, the caller transfers its reference to us, 687 * which will be released on npf_conn_destroy(). 688 */ 689 atomic_or_uint(&con->c_flags, CONN_PASS); 690 con->c_rproc = rp; 691 } 692 693 /* 694 * npf_conn_release: release a reference, which might allow G/C thread 695 * to destroy this connection. 696 */ 697 void 698 npf_conn_release(npf_conn_t *con) 699 { 700 if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) { 701 /* Activate: after this, connection is globally visible. */ 702 atomic_or_uint(&con->c_flags, CONN_ACTIVE); 703 } 704 KASSERT(con->c_refcnt > 0); 705 atomic_dec_uint(&con->c_refcnt); 706 } 707 708 /* 709 * npf_conn_getnat: return associated NAT data entry and indicate 710 * whether it is a "forwards" or "backwards" stream. 711 */ 712 npf_nat_t * 713 npf_conn_getnat(npf_conn_t *con, const int di, bool *forw) 714 { 715 KASSERT(con->c_refcnt > 0); 716 *forw = (con->c_flags & PFIL_ALL) == di; 717 return con->c_nat; 718 } 719 720 /* 721 * npf_conn_expired: criterion to check if connection is expired. 722 */ 723 static inline bool 724 npf_conn_expired(const npf_conn_t *con, const struct timespec *tsnow) 725 { 726 const int etime = npf_state_etime(&con->c_state, con->c_proto); 727 struct timespec tsdiff; 728 729 if (__predict_false(con->c_flags & CONN_EXPIRE)) { 730 /* Explicitly marked to be expired. */ 731 return true; 732 } 733 timespecsub(tsnow, &con->c_atime, &tsdiff); 734 return tsdiff.tv_sec > etime; 735 } 736 737 /* 738 * npf_conn_gc: garbage collect the expired connections. 739 * 740 * => Must run in a single-threaded manner. 741 * => If it is a flush request, then destroy all connections. 742 * => If 'sync' is true, then perform passive serialisation. 743 */ 744 void 745 npf_conn_gc(npf_conndb_t *cd, bool flush, bool sync) 746 { 747 npf_conn_t *con, *prev, *gclist = NULL; 748 struct timespec tsnow; 749 750 getnanouptime(&tsnow); 751 752 /* 753 * Scan all connections and check them for expiration. 754 */ 755 prev = NULL; 756 con = npf_conndb_getlist(cd); 757 while (con) { 758 npf_conn_t *next = con->c_next; 759 760 /* Expired? Flushing all? */ 761 if (!npf_conn_expired(con, &tsnow) && !flush) { 762 prev = con; 763 con = next; 764 continue; 765 } 766 767 /* Remove both entries of the connection. */ 768 mutex_enter(&con->c_lock); 769 if ((con->c_flags & CONN_REMOVED) == 0) { 770 npf_conn_t *ret __diagused; 771 772 ret = npf_conndb_remove(cd, &con->c_forw_entry); 773 KASSERT(ret == con); 774 ret = npf_conndb_remove(cd, &con->c_back_entry); 775 KASSERT(ret == con); 776 } 777 778 /* Flag the removal and expiration. */ 779 atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE); 780 mutex_exit(&con->c_lock); 781 782 /* Move to the G/C list. */ 783 npf_conndb_dequeue(cd, con, prev); 784 con->c_next = gclist; 785 gclist = con; 786 787 /* Next.. */ 788 con = next; 789 } 790 npf_conndb_settail(cd, prev); 791 792 /* 793 * Ensure it is safe to destroy the connections. 794 * Note: drop the conn_lock (see the lock order). 795 */ 796 if (sync) { 797 mutex_exit(&conn_lock); 798 if (gclist) { 799 npf_config_enter(); 800 npf_config_sync(); 801 npf_config_exit(); 802 } 803 } 804 805 /* 806 * Garbage collect all expired connections. 807 * May need to wait for the references to drain. 808 */ 809 con = gclist; 810 while (con) { 811 npf_conn_t *next = con->c_next; 812 813 /* 814 * Destroy only if removed and no references. 815 * Otherwise, wait for a tiny moment. 816 */ 817 if (__predict_false(con->c_refcnt)) { 818 kpause("npfcongc", false, 1, NULL); 819 continue; 820 } 821 npf_conn_destroy(con); 822 con = next; 823 } 824 } 825 826 /* 827 * npf_conn_worker: G/C to run from a worker thread. 828 */ 829 static void 830 npf_conn_worker(void) 831 { 832 mutex_enter(&conn_lock); 833 /* Note: the conn_lock will be released (sync == true). */ 834 npf_conn_gc(conn_db, false, true); 835 } 836 837 /* 838 * npf_conndb_export: construct a list of connections prepared for saving. 839 * Note: this is expected to be an expensive operation. 840 */ 841 int 842 npf_conndb_export(prop_array_t conlist) 843 { 844 npf_conn_t *con, *prev; 845 846 /* 847 * Note: acquire conn_lock to prevent from the database 848 * destruction and G/C thread. 849 */ 850 mutex_enter(&conn_lock); 851 if (conn_tracking != CONN_TRACKING_ON) { 852 mutex_exit(&conn_lock); 853 return 0; 854 } 855 prev = NULL; 856 con = npf_conndb_getlist(conn_db); 857 while (con) { 858 npf_conn_t *next = con->c_next; 859 prop_dictionary_t cdict; 860 861 if ((cdict = npf_conn_export(con)) != NULL) { 862 prop_array_add(conlist, cdict); 863 prop_object_release(cdict); 864 } 865 prev = con; 866 con = next; 867 } 868 npf_conndb_settail(conn_db, prev); 869 mutex_exit(&conn_lock); 870 return 0; 871 } 872 873 /* 874 * npf_conn_export: serialise a single connection. 875 */ 876 prop_dictionary_t 877 npf_conn_export(const npf_conn_t *con) 878 { 879 prop_dictionary_t cdict; 880 prop_data_t d; 881 882 if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) { 883 return NULL; 884 } 885 cdict = prop_dictionary_create(); 886 prop_dictionary_set_uint32(cdict, "flags", con->c_flags); 887 prop_dictionary_set_uint32(cdict, "proto", con->c_proto); 888 if (con->c_ifid) { 889 const char *ifname = npf_ifmap_getname(con->c_ifid); 890 prop_dictionary_set_cstring(cdict, "ifname", ifname); 891 } 892 893 d = prop_data_create_data(&con->c_state, sizeof(npf_state_t)); 894 prop_dictionary_set_and_rel(cdict, "state", d); 895 896 const uint32_t *fkey = con->c_forw_entry.ck_key; 897 d = prop_data_create_data(fkey, NPF_CONN_MAXKEYLEN); 898 prop_dictionary_set_and_rel(cdict, "forw-key", d); 899 900 const uint32_t *bkey = con->c_back_entry.ck_key; 901 d = prop_data_create_data(bkey, NPF_CONN_MAXKEYLEN); 902 prop_dictionary_set_and_rel(cdict, "back-key", d); 903 904 if (con->c_nat) { 905 npf_nat_export(cdict, con->c_nat); 906 } 907 return cdict; 908 } 909 910 /* 911 * npf_conn_import: fully reconstruct a single connection from a 912 * directory and insert into the given database. 913 */ 914 int 915 npf_conn_import(npf_conndb_t *cd, prop_dictionary_t cdict, 916 npf_ruleset_t *natlist) 917 { 918 npf_conn_t *con; 919 npf_connkey_t *fw, *bk; 920 prop_object_t obj; 921 const char *ifname; 922 const void *d; 923 924 /* Allocate a connection and initialise it (clear first). */ 925 con = pool_cache_get(conn_cache, PR_WAITOK); 926 memset(con, 0, sizeof(npf_conn_t)); 927 mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET); 928 npf_stats_inc(NPF_STAT_CONN_CREATE); 929 930 prop_dictionary_get_uint32(cdict, "proto", &con->c_proto); 931 prop_dictionary_get_uint32(cdict, "flags", &con->c_flags); 932 con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS; 933 getnanouptime(&con->c_atime); 934 935 if (prop_dictionary_get_cstring_nocopy(cdict, "ifname", &ifname) && 936 (con->c_ifid = npf_ifmap_register(ifname)) == 0) { 937 goto err; 938 } 939 940 obj = prop_dictionary_get(cdict, "state"); 941 if ((d = prop_data_data_nocopy(obj)) == NULL || 942 prop_data_size(obj) != sizeof(npf_state_t)) { 943 goto err; 944 } 945 memcpy(&con->c_state, d, sizeof(npf_state_t)); 946 947 /* Reconstruct NAT association, if any. */ 948 if ((obj = prop_dictionary_get(cdict, "nat")) != NULL && 949 (con->c_nat = npf_nat_import(obj, natlist, con)) == NULL) { 950 goto err; 951 } 952 953 /* 954 * Fetch and copy the keys for each direction. 955 */ 956 obj = prop_dictionary_get(cdict, "forw-key"); 957 if ((d = prop_data_data_nocopy(obj)) == NULL || 958 prop_data_size(obj) != NPF_CONN_MAXKEYLEN) { 959 goto err; 960 } 961 fw = &con->c_forw_entry; 962 memcpy(&fw->ck_key, d, NPF_CONN_MAXKEYLEN); 963 964 obj = prop_dictionary_get(cdict, "back-key"); 965 if ((d = prop_data_data_nocopy(obj)) == NULL || 966 prop_data_size(obj) != NPF_CONN_MAXKEYLEN) { 967 goto err; 968 } 969 bk = &con->c_back_entry; 970 memcpy(&bk->ck_key, d, NPF_CONN_MAXKEYLEN); 971 972 fw->ck_backptr = bk->ck_backptr = con; 973 974 /* Insert the entries and the connection itself. */ 975 if (!npf_conndb_insert(cd, fw, con)) { 976 goto err; 977 } 978 if (!npf_conndb_insert(cd, bk, con)) { 979 npf_conndb_remove(cd, fw); 980 goto err; 981 } 982 983 NPF_PRINTF(("NPF: imported conn %p\n", con)); 984 npf_conndb_enqueue(cd, con); 985 return 0; 986 err: 987 npf_conn_destroy(con); 988 return EINVAL; 989 } 990 991 #if defined(DDB) || defined(_NPF_TESTING) 992 993 void 994 npf_conn_print(const npf_conn_t *con) 995 { 996 const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry); 997 const uint32_t *fkey = con->c_forw_entry.ck_key; 998 const uint32_t *bkey = con->c_back_entry.ck_key; 999 const u_int proto = con->c_proto; 1000 struct timespec tsnow, tsdiff; 1001 const void *src, *dst; 1002 int etime; 1003 1004 getnanouptime(&tsnow); 1005 timespecsub(&tsnow, &con->c_atime, &tsdiff); 1006 etime = npf_state_etime(&con->c_state, proto); 1007 1008 printf("%p:\n\tproto %d flags 0x%x tsdiff %d etime %d\n", 1009 con, proto, con->c_flags, (int)tsdiff.tv_sec, etime); 1010 1011 src = &fkey[2], dst = &fkey[2 + (alen >> 2)]; 1012 printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16)); 1013 printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff)); 1014 1015 src = &bkey[2], dst = &bkey[2 + (alen >> 2)]; 1016 printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16)); 1017 printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff)); 1018 1019 npf_state_dump(&con->c_state); 1020 if (con->c_nat) { 1021 npf_nat_dump(con->c_nat); 1022 } 1023 } 1024 1025 #endif 1026