1 /* $NetBSD: npf_conn.c,v 1.12 2014/08/24 20:36:30 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2014 Mindaugas Rasiukevicius <rmind at netbsd org> 5 * Copyright (c) 2010-2014 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This material is based upon work partially supported by The 9 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * NPF connection tracking for stateful filtering and translation. 35 * 36 * Overview 37 * 38 * Connection direction is identified by the direction of its first 39 * packet. Packets can be incoming or outgoing with respect to an 40 * interface. To describe the packet in the context of connection 41 * direction we will use the terms "forwards stream" and "backwards 42 * stream". All connections have two keys and thus two entries: 43 * 44 * npf_conn_t::c_forw_entry for the forwards stream and 45 * npf_conn_t::c_back_entry for the backwards stream. 46 * 47 * The keys are formed from the 5-tuple (source/destination address, 48 * source/destination port and the protocol). Additional matching 49 * is performed for the interface (a common behaviour is equivalent 50 * to the 6-tuple lookup including the interface ID). Note that the 51 * key may be formed using translated values in a case of NAT. 52 * 53 * Connections can serve two purposes: for the implicit passing or 54 * to accommodate the dynamic NAT. Connections for the former purpose 55 * are created by the rules with "stateful" attribute and are used for 56 * stateful filtering. Such connections indicate that the packet of 57 * the backwards stream should be passed without inspection of the 58 * ruleset. The other purpose is to associate a dynamic NAT mechanism 59 * with a connection. Such connections are created by the NAT policies 60 * and they have a relationship with NAT translation structure via 61 * npf_conn_t::c_nat. A single connection can serve both purposes, 62 * which is a common case. 63 * 64 * Connection life-cycle 65 * 66 * Connections are established when a packet matches said rule or 67 * NAT policy. Both keys of the established connection are inserted 68 * into the connection database. A garbage collection thread 69 * periodically scans all connections and depending on connection 70 * properties (e.g. last activity time, protocol) removes connection 71 * entries and expires the actual connections. 72 * 73 * Each connection has a reference count. The reference is acquired 74 * on lookup and should be released by the caller. It guarantees that 75 * the connection will not be destroyed, although it may be expired. 76 * 77 * Synchronisation 78 * 79 * Connection database is accessed in a lock-less manner by the main 80 * routines: npf_conn_inspect() and npf_conn_establish(). Since they 81 * are always called from a software interrupt, the database is 82 * protected using passive serialisation. The main place which can 83 * destroy a connection is npf_conn_worker(). The database itself 84 * can be replaced and destroyed in npf_conn_reload(). 85 * 86 * ALG support 87 * 88 * Application-level gateways (ALGs) can override generic connection 89 * inspection (npf_alg_conn() call in npf_conn_inspect() function) by 90 * performing their own lookup using different key. Recursive call 91 * to npf_conn_inspect() is not allowed. The ALGs ought to use the 92 * npf_conn_lookup() function for this purpose. 93 * 94 * Lock order 95 * 96 * npf_config_lock -> 97 * conn_lock -> 98 * npf_conn_t::c_lock 99 */ 100 101 #include <sys/cdefs.h> 102 __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.12 2014/08/24 20:36:30 rmind Exp $"); 103 104 #include <sys/param.h> 105 #include <sys/types.h> 106 107 #include <netinet/in.h> 108 #include <netinet/tcp.h> 109 110 #include <sys/atomic.h> 111 #include <sys/condvar.h> 112 #include <sys/kmem.h> 113 #include <sys/kthread.h> 114 #include <sys/mutex.h> 115 #include <net/pfil.h> 116 #include <sys/pool.h> 117 #include <sys/queue.h> 118 #include <sys/systm.h> 119 120 #define __NPF_CONN_PRIVATE 121 #include "npf_conn.h" 122 #include "npf_impl.h" 123 124 /* 125 * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction. 126 */ 127 CTASSERT(PFIL_ALL == (0x001 | 0x002)); 128 #define CONN_ACTIVE 0x004 /* visible on inspection */ 129 #define CONN_PASS 0x008 /* perform implicit passing */ 130 #define CONN_EXPIRE 0x010 /* explicitly expire */ 131 #define CONN_REMOVED 0x020 /* "forw/back" entries removed */ 132 133 /* 134 * Connection tracking state: disabled (off) or enabled (on). 135 */ 136 enum { CONN_TRACKING_OFF, CONN_TRACKING_ON }; 137 static volatile int conn_tracking __cacheline_aligned; 138 139 /* Connection tracking database, connection cache and the lock. */ 140 static npf_conndb_t * conn_db __read_mostly; 141 static pool_cache_t conn_cache __read_mostly; 142 static kmutex_t conn_lock __cacheline_aligned; 143 144 static void npf_conn_worker(void); 145 static void npf_conn_destroy(npf_conn_t *); 146 147 /* 148 * npf_conn_sys{init,fini}: initialise/destroy connection tracking. 149 */ 150 151 void 152 npf_conn_sysinit(void) 153 { 154 conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit, 155 0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL); 156 mutex_init(&conn_lock, MUTEX_DEFAULT, IPL_NONE); 157 conn_tracking = CONN_TRACKING_OFF; 158 conn_db = npf_conndb_create(); 159 160 npf_worker_register(npf_conn_worker); 161 } 162 163 void 164 npf_conn_sysfini(void) 165 { 166 /* Note: the caller should have flushed the connections. */ 167 KASSERT(conn_tracking == CONN_TRACKING_OFF); 168 npf_worker_unregister(npf_conn_worker); 169 170 npf_conndb_destroy(conn_db); 171 pool_cache_destroy(conn_cache); 172 mutex_destroy(&conn_lock); 173 } 174 175 /* 176 * npf_conn_load: perform the load by flushing the current connection 177 * database and replacing it with the new one or just destroying. 178 * 179 * => The caller must disable the connection tracking and ensure that 180 * there are no connection database lookups or references in-flight. 181 */ 182 void 183 npf_conn_load(npf_conndb_t *ndb, bool track) 184 { 185 npf_conndb_t *odb = NULL; 186 187 KASSERT(npf_config_locked_p()); 188 189 /* 190 * The connection database is in the quiescent state. 191 * Prevent G/C thread from running and install a new database. 192 */ 193 mutex_enter(&conn_lock); 194 if (ndb) { 195 KASSERT(conn_tracking == CONN_TRACKING_OFF); 196 odb = conn_db; 197 conn_db = ndb; 198 membar_sync(); 199 } 200 if (track) { 201 /* After this point lookups start flying in. */ 202 conn_tracking = CONN_TRACKING_ON; 203 } 204 mutex_exit(&conn_lock); 205 206 if (odb) { 207 /* 208 * Flush all, no sync since the caller did it for us. 209 * Also, release the pool cache memory. 210 */ 211 npf_conn_gc(odb, true, false); 212 npf_conndb_destroy(odb); 213 pool_cache_invalidate(conn_cache); 214 } 215 } 216 217 /* 218 * npf_conn_tracking: enable/disable connection tracking. 219 */ 220 void 221 npf_conn_tracking(bool track) 222 { 223 KASSERT(npf_config_locked_p()); 224 conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF; 225 } 226 227 static inline bool 228 npf_conn_trackable_p(const npf_cache_t *npc) 229 { 230 /* 231 * Check if connection tracking is on. Also, if layer 3 and 4 are 232 * not cached - protocol is not supported or packet is invalid. 233 */ 234 if (conn_tracking != CONN_TRACKING_ON) { 235 return false; 236 } 237 if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) { 238 return false; 239 } 240 return true; 241 } 242 243 /* 244 * npf_conn_conkey: construct a key for the connection lookup. 245 * 246 * => Returns the key length in bytes or zero on failure. 247 */ 248 unsigned 249 npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw) 250 { 251 const u_int alen = npc->npc_alen; 252 const struct tcphdr *th; 253 const struct udphdr *uh; 254 u_int keylen, isrc, idst; 255 uint16_t id[2]; 256 257 switch (npc->npc_proto) { 258 case IPPROTO_TCP: 259 KASSERT(npf_iscached(npc, NPC_TCP)); 260 th = npc->npc_l4.tcp; 261 id[NPF_SRC] = th->th_sport; 262 id[NPF_DST] = th->th_dport; 263 break; 264 case IPPROTO_UDP: 265 KASSERT(npf_iscached(npc, NPC_UDP)); 266 uh = npc->npc_l4.udp; 267 id[NPF_SRC] = uh->uh_sport; 268 id[NPF_DST] = uh->uh_dport; 269 break; 270 case IPPROTO_ICMP: 271 if (npf_iscached(npc, NPC_ICMP_ID)) { 272 const struct icmp *ic = npc->npc_l4.icmp; 273 id[NPF_SRC] = ic->icmp_id; 274 id[NPF_DST] = ic->icmp_id; 275 break; 276 } 277 return 0; 278 case IPPROTO_ICMPV6: 279 if (npf_iscached(npc, NPC_ICMP_ID)) { 280 const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6; 281 id[NPF_SRC] = ic6->icmp6_id; 282 id[NPF_DST] = ic6->icmp6_id; 283 break; 284 } 285 return 0; 286 default: 287 /* Unsupported protocol. */ 288 return 0; 289 } 290 291 if (__predict_true(forw)) { 292 isrc = NPF_SRC, idst = NPF_DST; 293 } else { 294 isrc = NPF_DST, idst = NPF_SRC; 295 } 296 297 /* 298 * Construct a key formed out of 32-bit integers. The key layout: 299 * 300 * Field: | proto | alen | src-id | dst-id | src-addr | dst-addr | 301 * +--------+--------+--------+--------+----------+----------+ 302 * Bits: | 16 | 16 | 16 | 16 | 32-128 | 32-128 | 303 * 304 * The source and destination are inverted if they key is for the 305 * backwards stream (forw == false). The address length depends 306 * on the 'alen' field; it is a length in bytes, either 4 or 16. 307 */ 308 309 key->ck_key[0] = ((uint32_t)npc->npc_proto << 16) | (alen & 0xffff); 310 key->ck_key[1] = ((uint32_t)id[isrc] << 16) | id[idst]; 311 312 if (__predict_true(alen == sizeof(in_addr_t))) { 313 key->ck_key[2] = npc->npc_ips[isrc]->s6_addr32[0]; 314 key->ck_key[3] = npc->npc_ips[idst]->s6_addr32[0]; 315 keylen = 4 * sizeof(uint32_t); 316 } else { 317 const u_int nwords = alen >> 2; 318 memcpy(&key->ck_key[2], npc->npc_ips[isrc], alen); 319 memcpy(&key->ck_key[2 + nwords], npc->npc_ips[idst], alen); 320 keylen = (2 + (nwords * 2)) * sizeof(uint32_t); 321 } 322 return keylen; 323 } 324 325 static __inline void 326 connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di) 327 { 328 const u_int alen = key->ck_key[0] & 0xffff; 329 uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)]; 330 331 KASSERT(alen > 0); 332 memcpy(addr, naddr, alen); 333 } 334 335 static __inline void 336 connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di) 337 { 338 const uint32_t oid = key->ck_key[1]; 339 const u_int shift = 16 * !di; 340 const uint32_t mask = 0xffff0000 >> shift; 341 342 key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask); 343 } 344 345 /* 346 * npf_conn_lookup: lookup if there is an established connection. 347 * 348 * => If found, we will hold a reference for the caller. 349 */ 350 npf_conn_t * 351 npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw) 352 { 353 const nbuf_t *nbuf = npc->npc_nbuf; 354 npf_conn_t *con; 355 npf_connkey_t key; 356 u_int flags, cifid; 357 bool ok, pforw; 358 359 /* Construct a key and lookup for a connection in the store. */ 360 if (!npf_conn_conkey(npc, &key, true)) { 361 return NULL; 362 } 363 con = npf_conndb_lookup(conn_db, &key, forw); 364 if (con == NULL) { 365 return NULL; 366 } 367 KASSERT(npc->npc_proto == con->c_proto); 368 369 /* Check if connection is active and not expired. */ 370 flags = con->c_flags; 371 ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE; 372 373 if (__predict_false(!ok)) { 374 atomic_dec_uint(&con->c_refcnt); 375 return NULL; 376 } 377 378 /* 379 * Match the interface and the direction of the connection entry 380 * and the packet. 381 */ 382 cifid = con->c_ifid; 383 if (__predict_false(cifid && cifid != nbuf->nb_ifid)) { 384 atomic_dec_uint(&con->c_refcnt); 385 return NULL; 386 } 387 pforw = (flags & PFIL_ALL) == di; 388 if (__predict_false(*forw != pforw)) { 389 atomic_dec_uint(&con->c_refcnt); 390 return NULL; 391 } 392 393 /* Update the last activity time. */ 394 getnanouptime(&con->c_atime); 395 return con; 396 } 397 398 /* 399 * npf_conn_inspect: lookup a connection and inspecting the protocol data. 400 * 401 * => If found, we will hold a reference for the caller. 402 */ 403 npf_conn_t * 404 npf_conn_inspect(npf_cache_t *npc, const int di, int *error) 405 { 406 nbuf_t *nbuf = npc->npc_nbuf; 407 npf_conn_t *con; 408 bool forw, ok; 409 410 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)); 411 if (!npf_conn_trackable_p(npc)) { 412 return NULL; 413 } 414 415 /* Query ALG which may lookup connection for us. */ 416 if ((con = npf_alg_conn(npc, di)) != NULL) { 417 /* Note: reference is held. */ 418 return con; 419 } 420 if (nbuf_head_mbuf(nbuf) == NULL) { 421 *error = ENOMEM; 422 return NULL; 423 } 424 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)); 425 426 /* Main lookup of the connection. */ 427 if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) { 428 return NULL; 429 } 430 431 /* Inspect the protocol data and handle state changes. */ 432 mutex_enter(&con->c_lock); 433 ok = npf_state_inspect(npc, &con->c_state, forw); 434 mutex_exit(&con->c_lock); 435 436 if (__predict_false(!ok)) { 437 /* Invalid: let the rules deal with it. */ 438 npf_conn_release(con); 439 npf_stats_inc(NPF_STAT_INVALID_STATE); 440 con = NULL; 441 } 442 return con; 443 } 444 445 /* 446 * npf_conn_establish: create a new connection, insert into the global list. 447 * 448 * => Connection is created with the reference held for the caller. 449 * => Connection will be activated on the first reference release. 450 */ 451 npf_conn_t * 452 npf_conn_establish(npf_cache_t *npc, int di, bool per_if) 453 { 454 const nbuf_t *nbuf = npc->npc_nbuf; 455 npf_conn_t *con; 456 457 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)); 458 459 if (!npf_conn_trackable_p(npc)) { 460 return NULL; 461 } 462 463 /* Allocate and initialise the new connection. */ 464 con = pool_cache_get(conn_cache, PR_NOWAIT); 465 if (__predict_false(!con)) { 466 return NULL; 467 } 468 NPF_PRINTF(("NPF: create conn %p\n", con)); 469 npf_stats_inc(NPF_STAT_CONN_CREATE); 470 471 /* Reference count and flags (indicate direction). */ 472 mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET); 473 con->c_flags = (di & PFIL_ALL); 474 con->c_refcnt = 1; 475 con->c_rproc = NULL; 476 con->c_nat = NULL; 477 478 /* Initialize protocol state. */ 479 if (!npf_state_init(npc, &con->c_state)) { 480 goto err; 481 } 482 483 KASSERT(npf_iscached(npc, NPC_IP46)); 484 npf_connkey_t *fw = &con->c_forw_entry; 485 npf_connkey_t *bk = &con->c_back_entry; 486 487 /* 488 * Construct "forwards" and "backwards" keys. Also, set the 489 * interface ID for this connection (unless it is global). 490 */ 491 if (!npf_conn_conkey(npc, fw, true)) { 492 goto err; 493 } 494 if (!npf_conn_conkey(npc, bk, false)) { 495 goto err; 496 } 497 fw->ck_backptr = bk->ck_backptr = con; 498 con->c_ifid = per_if ? nbuf->nb_ifid : 0; 499 con->c_proto = npc->npc_proto; 500 501 /* Set last activity time for a new connection. */ 502 getnanouptime(&con->c_atime); 503 504 /* 505 * Insert both keys (entries representing directions) of the 506 * connection. At this point, it becomes visible. 507 */ 508 if (!npf_conndb_insert(conn_db, fw, con)) { 509 goto err; 510 } 511 if (!npf_conndb_insert(conn_db, bk, con)) { 512 /* We have hit the duplicate. */ 513 npf_conndb_remove(conn_db, fw); 514 npf_stats_inc(NPF_STAT_RACE_CONN); 515 goto err; 516 } 517 518 /* Finally, insert into the connection list. */ 519 NPF_PRINTF(("NPF: establish conn %p\n", con)); 520 npf_conndb_enqueue(conn_db, con); 521 return con; 522 err: 523 npf_conn_destroy(con); 524 return NULL; 525 } 526 527 static void 528 npf_conn_destroy(npf_conn_t *con) 529 { 530 if (con->c_nat) { 531 /* Release any NAT structures. */ 532 npf_nat_destroy(con->c_nat); 533 } 534 if (con->c_rproc) { 535 /* Release the rule procedure. */ 536 npf_rproc_release(con->c_rproc); 537 } 538 539 /* Destroy the state. */ 540 npf_state_destroy(&con->c_state); 541 mutex_destroy(&con->c_lock); 542 543 /* Free the structure, increase the counter. */ 544 pool_cache_put(conn_cache, con); 545 npf_stats_inc(NPF_STAT_CONN_DESTROY); 546 NPF_PRINTF(("NPF: conn %p destroyed\n", con)); 547 } 548 549 /* 550 * npf_conn_setnat: associate NAT entry with the connection, update and 551 * re-insert connection entry using the translation values. 552 */ 553 int 554 npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con, 555 npf_nat_t *nt, u_int ntype) 556 { 557 static const u_int nat_type_dimap[] = { 558 [NPF_NATOUT] = NPF_DST, 559 [NPF_NATIN] = NPF_SRC, 560 }; 561 npf_connkey_t key, *bk; 562 npf_conn_t *ret __diagused; 563 npf_addr_t *taddr; 564 in_port_t tport; 565 u_int tidx; 566 567 KASSERT(con->c_refcnt > 0); 568 569 npf_nat_gettrans(nt, &taddr, &tport); 570 KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN); 571 tidx = nat_type_dimap[ntype]; 572 573 /* Construct a "backwards" key. */ 574 if (!npf_conn_conkey(npc, &key, false)) { 575 return EINVAL; 576 } 577 578 /* Acquire the lock and check for the races. */ 579 mutex_enter(&con->c_lock); 580 if (__predict_false(con->c_flags & CONN_EXPIRE)) { 581 /* The connection got expired. */ 582 mutex_exit(&con->c_lock); 583 return EINVAL; 584 } 585 if (__predict_false(con->c_nat != NULL)) { 586 /* Race with a duplicate packet. */ 587 mutex_exit(&con->c_lock); 588 npf_stats_inc(NPF_STAT_RACE_NAT); 589 return EISCONN; 590 } 591 592 /* Remove the "backwards" entry. */ 593 ret = npf_conndb_remove(conn_db, &key); 594 KASSERT(ret == con); 595 596 /* Set the source/destination IDs to the translation values. */ 597 bk = &con->c_back_entry; 598 connkey_set_addr(bk, taddr, tidx); 599 if (tport) { 600 connkey_set_id(bk, tport, tidx); 601 } 602 603 /* Finally, re-insert the "backwards" entry. */ 604 if (!npf_conndb_insert(conn_db, bk, con)) { 605 /* 606 * Race: we have hit the duplicate, remove the "forwards" 607 * entry and expire our connection; it is no longer valid. 608 */ 609 (void)npf_conndb_remove(conn_db, &con->c_forw_entry); 610 atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE); 611 mutex_exit(&con->c_lock); 612 613 npf_stats_inc(NPF_STAT_RACE_NAT); 614 return EISCONN; 615 } 616 617 /* Associate the NAT entry and release the lock. */ 618 con->c_nat = nt; 619 mutex_exit(&con->c_lock); 620 return 0; 621 } 622 623 /* 624 * npf_conn_expire: explicitly mark connection as expired. 625 */ 626 void 627 npf_conn_expire(npf_conn_t *con) 628 { 629 /* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */ 630 atomic_or_uint(&con->c_flags, CONN_EXPIRE); 631 } 632 633 /* 634 * npf_conn_pass: return true if connection is "pass" one, otherwise false. 635 */ 636 bool 637 npf_conn_pass(const npf_conn_t *con, npf_rproc_t **rp) 638 { 639 KASSERT(con->c_refcnt > 0); 640 if (__predict_true(con->c_flags & CONN_PASS)) { 641 *rp = con->c_rproc; 642 return true; 643 } 644 return false; 645 } 646 647 /* 648 * npf_conn_setpass: mark connection as a "pass" one and associate the 649 * rule procedure with it. 650 */ 651 void 652 npf_conn_setpass(npf_conn_t *con, npf_rproc_t *rp) 653 { 654 KASSERT((con->c_flags & CONN_ACTIVE) == 0); 655 KASSERT(con->c_refcnt > 0); 656 KASSERT(con->c_rproc == NULL); 657 658 /* 659 * No need for atomic since the connection is not yet active. 660 * If rproc is set, the caller transfers its reference to us, 661 * which will be released on npf_conn_destroy(). 662 */ 663 con->c_flags |= CONN_PASS; 664 con->c_rproc = rp; 665 } 666 667 /* 668 * npf_conn_release: release a reference, which might allow G/C thread 669 * to destroy this connection. 670 */ 671 void 672 npf_conn_release(npf_conn_t *con) 673 { 674 if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) { 675 /* Activate: after this, connection is globally visible. */ 676 con->c_flags |= CONN_ACTIVE; 677 } 678 KASSERT(con->c_refcnt > 0); 679 atomic_dec_uint(&con->c_refcnt); 680 } 681 682 /* 683 * npf_conn_retnat: return associated NAT data entry and indicate 684 * whether it is a "forwards" or "backwards" stream. 685 */ 686 npf_nat_t * 687 npf_conn_retnat(npf_conn_t *con, const int di, bool *forw) 688 { 689 KASSERT(con->c_refcnt > 0); 690 *forw = (con->c_flags & PFIL_ALL) == di; 691 return con->c_nat; 692 } 693 694 /* 695 * npf_conn_expired: criterion to check if connection is expired. 696 */ 697 static inline bool 698 npf_conn_expired(const npf_conn_t *con, const struct timespec *tsnow) 699 { 700 const int etime = npf_state_etime(&con->c_state, con->c_proto); 701 struct timespec tsdiff; 702 703 if (__predict_false(con->c_flags & CONN_EXPIRE)) { 704 /* Explicitly marked to be expired. */ 705 return true; 706 } 707 timespecsub(tsnow, &con->c_atime, &tsdiff); 708 return tsdiff.tv_sec > etime; 709 } 710 711 /* 712 * npf_conn_gc: garbage collect the expired connections. 713 * 714 * => Must run in a single-threaded manner. 715 * => If it is a flush request, then destroy all connections. 716 * => If 'sync' is true, then perform passive serialisation. 717 */ 718 void 719 npf_conn_gc(npf_conndb_t *cd, bool flush, bool sync) 720 { 721 npf_conn_t *con, *prev, *gclist = NULL; 722 struct timespec tsnow; 723 724 getnanouptime(&tsnow); 725 726 /* 727 * Scan all connections and check them for expiration. 728 */ 729 prev = NULL; 730 con = npf_conndb_getlist(cd); 731 while (con) { 732 npf_conn_t *next = con->c_next; 733 734 /* Expired? Flushing all? */ 735 if (!npf_conn_expired(con, &tsnow) && !flush) { 736 prev = con; 737 con = next; 738 continue; 739 } 740 741 /* Remove both entries of the connection. */ 742 mutex_enter(&con->c_lock); 743 if ((con->c_flags & CONN_REMOVED) == 0) { 744 npf_conn_t *ret __diagused; 745 746 ret = npf_conndb_remove(cd, &con->c_forw_entry); 747 KASSERT(ret == con); 748 ret = npf_conndb_remove(cd, &con->c_back_entry); 749 KASSERT(ret == con); 750 } 751 752 /* Flag the removal and expiration. */ 753 atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE); 754 mutex_exit(&con->c_lock); 755 756 /* Move to the G/C list. */ 757 npf_conndb_dequeue(cd, con, prev); 758 con->c_next = gclist; 759 gclist = con; 760 761 /* Next.. */ 762 con = next; 763 } 764 npf_conndb_settail(cd, prev); 765 766 /* 767 * Ensure it is safe to destroy the connections. 768 * Note: drop the conn_lock (see the lock order). 769 */ 770 if (sync) { 771 mutex_exit(&conn_lock); 772 if (gclist) { 773 npf_config_enter(); 774 npf_config_sync(); 775 npf_config_exit(); 776 } 777 } 778 779 /* 780 * Garbage collect all expired connections. 781 * May need to wait for the references to drain. 782 */ 783 con = gclist; 784 while (con) { 785 npf_conn_t *next = con->c_next; 786 787 /* 788 * Destroy only if removed and no references. 789 * Otherwise, wait for a tiny moment. 790 */ 791 if (__predict_false(con->c_refcnt)) { 792 kpause("npfcongc", false, 1, NULL); 793 continue; 794 } 795 npf_conn_destroy(con); 796 con = next; 797 } 798 } 799 800 /* 801 * npf_conn_worker: G/C to run from a worker thread. 802 */ 803 static void 804 npf_conn_worker(void) 805 { 806 mutex_enter(&conn_lock); 807 /* Note: the conn_lock will be released (sync == true). */ 808 npf_conn_gc(conn_db, false, true); 809 } 810 811 /* 812 * npf_conndb_export: construct a list of connections prepared for saving. 813 * Note: this is expected to be an expensive operation. 814 */ 815 int 816 npf_conndb_export(prop_array_t conlist) 817 { 818 npf_conn_t *con, *prev; 819 820 /* 821 * Note: acquire conn_lock to prevent from the database 822 * destruction and G/C thread. 823 */ 824 mutex_enter(&conn_lock); 825 if (conn_tracking != CONN_TRACKING_ON) { 826 mutex_exit(&conn_lock); 827 return 0; 828 } 829 prev = NULL; 830 con = npf_conndb_getlist(conn_db); 831 while (con) { 832 npf_conn_t *next = con->c_next; 833 prop_dictionary_t cdict; 834 835 if ((cdict = npf_conn_export(con)) != NULL) { 836 prop_array_add(conlist, cdict); 837 prop_object_release(cdict); 838 } 839 prev = con; 840 con = next; 841 } 842 npf_conndb_settail(conn_db, prev); 843 mutex_exit(&conn_lock); 844 return 0; 845 } 846 847 /* 848 * npf_conn_export: serialise a single connection. 849 */ 850 prop_dictionary_t 851 npf_conn_export(const npf_conn_t *con) 852 { 853 prop_dictionary_t cdict; 854 prop_data_t d; 855 856 if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) { 857 return NULL; 858 } 859 cdict = prop_dictionary_create(); 860 prop_dictionary_set_uint32(cdict, "flags", con->c_flags); 861 prop_dictionary_set_uint32(cdict, "proto", con->c_proto); 862 if (con->c_ifid) { 863 const char *ifname = npf_ifmap_getname(con->c_ifid); 864 prop_dictionary_set_cstring(cdict, "ifname", ifname); 865 } 866 867 d = prop_data_create_data(&con->c_state, sizeof(npf_state_t)); 868 prop_dictionary_set_and_rel(cdict, "state", d); 869 870 const uint32_t *fkey = con->c_forw_entry.ck_key; 871 d = prop_data_create_data(fkey, NPF_CONN_MAXKEYLEN); 872 prop_dictionary_set_and_rel(cdict, "forw-key", d); 873 874 const uint32_t *bkey = con->c_back_entry.ck_key; 875 d = prop_data_create_data(bkey, NPF_CONN_MAXKEYLEN); 876 prop_dictionary_set_and_rel(cdict, "back-key", d); 877 878 if (con->c_nat) { 879 npf_nat_export(cdict, con->c_nat); 880 } 881 return cdict; 882 } 883 884 /* 885 * npf_conn_import: fully reconstruct a single connection from a 886 * directory and insert into the given database. 887 */ 888 int 889 npf_conn_import(npf_conndb_t *cd, prop_dictionary_t cdict, 890 npf_ruleset_t *natlist) 891 { 892 npf_conn_t *con; 893 npf_connkey_t *fw, *bk; 894 prop_object_t obj; 895 const char *ifname; 896 const void *d; 897 898 /* Allocate a connection and initialise it (clear first). */ 899 con = pool_cache_get(conn_cache, PR_WAITOK); 900 memset(con, 0, sizeof(npf_conn_t)); 901 mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET); 902 npf_stats_inc(NPF_STAT_CONN_CREATE); 903 904 prop_dictionary_get_uint32(cdict, "proto", &con->c_proto); 905 prop_dictionary_get_uint32(cdict, "flags", &con->c_flags); 906 con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS; 907 getnanouptime(&con->c_atime); 908 909 if (prop_dictionary_get_cstring_nocopy(cdict, "ifname", &ifname) && 910 (con->c_ifid = npf_ifmap_register(ifname)) == 0) { 911 goto err; 912 } 913 914 obj = prop_dictionary_get(cdict, "state"); 915 if ((d = prop_data_data_nocopy(obj)) == NULL || 916 prop_data_size(obj) != sizeof(npf_state_t)) { 917 goto err; 918 } 919 memcpy(&con->c_state, d, sizeof(npf_state_t)); 920 921 /* Reconstruct NAT association, if any. */ 922 if ((obj = prop_dictionary_get(cdict, "nat")) != NULL && 923 (con->c_nat = npf_nat_import(obj, natlist, con)) == NULL) { 924 goto err; 925 } 926 927 /* 928 * Fetch and copy the keys for each direction. 929 */ 930 obj = prop_dictionary_get(cdict, "forw-key"); 931 if ((d = prop_data_data_nocopy(obj)) == NULL || 932 prop_data_size(obj) != NPF_CONN_MAXKEYLEN) { 933 goto err; 934 } 935 fw = &con->c_forw_entry; 936 memcpy(&fw->ck_key, d, NPF_CONN_MAXKEYLEN); 937 938 obj = prop_dictionary_get(cdict, "back-key"); 939 if ((d = prop_data_data_nocopy(obj)) == NULL || 940 prop_data_size(obj) != NPF_CONN_MAXKEYLEN) { 941 goto err; 942 } 943 bk = &con->c_back_entry; 944 memcpy(&bk->ck_key, d, NPF_CONN_MAXKEYLEN); 945 946 fw->ck_backptr = bk->ck_backptr = con; 947 948 /* Insert the entries and the connection itself. */ 949 if (!npf_conndb_insert(cd, fw, con)) { 950 goto err; 951 } 952 if (!npf_conndb_insert(cd, bk, con)) { 953 npf_conndb_remove(cd, fw); 954 goto err; 955 } 956 957 NPF_PRINTF(("NPF: imported conn %p\n", con)); 958 npf_conndb_enqueue(cd, con); 959 return 0; 960 err: 961 npf_conn_destroy(con); 962 return EINVAL; 963 } 964 965 #if defined(DDB) || defined(_NPF_TESTING) 966 967 void 968 npf_conn_print(const npf_conn_t *con) 969 { 970 const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry); 971 const uint32_t *fkey = con->c_forw_entry.ck_key; 972 const uint32_t *bkey = con->c_back_entry.ck_key; 973 const u_int proto = con->c_proto; 974 struct timespec tsnow, tsdiff; 975 const void *src, *dst; 976 int etime; 977 978 getnanouptime(&tsnow); 979 timespecsub(&tsnow, &con->c_atime, &tsdiff); 980 etime = npf_state_etime(&con->c_state, proto); 981 982 printf("%p:\n\tproto %d flags 0x%x tsdiff %d etime %d\n", 983 con, proto, con->c_flags, (int)tsdiff.tv_sec, etime); 984 985 src = &fkey[2], dst = &fkey[2 + (alen >> 2)]; 986 printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16)); 987 printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff)); 988 989 src = &bkey[2], dst = &bkey[2 + (alen >> 2)]; 990 printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16)); 991 printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff)); 992 993 npf_state_dump(&con->c_state); 994 if (con->c_nat) { 995 npf_nat_dump(con->c_nat); 996 } 997 } 998 999 #endif 1000