xref: /netbsd-src/sys/net/if_wg.c (revision 924795e69c8bb3f17afd8fcbb799710cc1719dc4)
1 /*	$NetBSD: if_wg.c,v 1.76 2023/04/11 14:03:46 jakllsch Exp $	*/
2 
3 /*
4  * Copyright (C) Ryota Ozaki <ozaki.ryota@gmail.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * This network interface aims to implement the WireGuard protocol.
34  * The implementation is based on the paper of WireGuard as of
35  * 2018-06-30 [1].  The paper is referred in the source code with label
36  * [W].  Also the specification of the Noise protocol framework as of
37  * 2018-07-11 [2] is referred with label [N].
38  *
39  * [1] https://www.wireguard.com/papers/wireguard.pdf
40  * [2] http://noiseprotocol.org/noise.pdf
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.76 2023/04/11 14:03:46 jakllsch Exp $");
45 
46 #ifdef _KERNEL_OPT
47 #include "opt_altq_enabled.h"
48 #include "opt_inet.h"
49 #endif
50 
51 #include <sys/param.h>
52 #include <sys/types.h>
53 
54 #include <sys/atomic.h>
55 #include <sys/callout.h>
56 #include <sys/cprng.h>
57 #include <sys/cpu.h>
58 #include <sys/device.h>
59 #include <sys/domain.h>
60 #include <sys/errno.h>
61 #include <sys/intr.h>
62 #include <sys/ioctl.h>
63 #include <sys/kernel.h>
64 #include <sys/kmem.h>
65 #include <sys/mbuf.h>
66 #include <sys/module.h>
67 #include <sys/mutex.h>
68 #include <sys/once.h>
69 #include <sys/percpu.h>
70 #include <sys/pserialize.h>
71 #include <sys/psref.h>
72 #include <sys/queue.h>
73 #include <sys/rwlock.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/sysctl.h>
78 #include <sys/syslog.h>
79 #include <sys/systm.h>
80 #include <sys/thmap.h>
81 #include <sys/threadpool.h>
82 #include <sys/time.h>
83 #include <sys/timespec.h>
84 #include <sys/workqueue.h>
85 
86 #include <net/bpf.h>
87 #include <net/if.h>
88 #include <net/if_types.h>
89 #include <net/if_wg.h>
90 #include <net/pktqueue.h>
91 #include <net/route.h>
92 
93 #include <netinet/in.h>
94 #include <netinet/in_pcb.h>
95 #include <netinet/in_var.h>
96 #include <netinet/ip.h>
97 #include <netinet/ip_var.h>
98 #include <netinet/udp.h>
99 #include <netinet/udp_var.h>
100 
101 #ifdef INET6
102 #include <netinet/ip6.h>
103 #include <netinet6/in6_pcb.h>
104 #include <netinet6/in6_var.h>
105 #include <netinet6/ip6_var.h>
106 #include <netinet6/udp6_var.h>
107 #endif /* INET6 */
108 
109 #include <prop/proplib.h>
110 
111 #include <crypto/blake2/blake2s.h>
112 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
113 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
114 #include <crypto/sodium/crypto_scalarmult.h>
115 
116 #include "ioconf.h"
117 
118 #ifdef WG_RUMPKERNEL
119 #include "wg_user.h"
120 #endif
121 
122 /*
123  * Data structures
124  * - struct wg_softc is an instance of wg interfaces
125  *   - It has a list of peers (struct wg_peer)
126  *   - It has a threadpool job that sends/receives handshake messages and
127  *     runs event handlers
128  *   - It has its own two routing tables: one is for IPv4 and the other IPv6
129  * - struct wg_peer is a representative of a peer
130  *   - It has a struct work to handle handshakes and timer tasks
131  *   - It has a pair of session instances (struct wg_session)
132  *   - It has a pair of endpoint instances (struct wg_sockaddr)
133  *     - Normally one endpoint is used and the second one is used only on
134  *       a peer migration (a change of peer's IP address)
135  *   - It has a list of IP addresses and sub networks called allowedips
136  *     (struct wg_allowedip)
137  *     - A packets sent over a session is allowed if its destination matches
138  *       any IP addresses or sub networks of the list
139  * - struct wg_session represents a session of a secure tunnel with a peer
140  *   - Two instances of sessions belong to a peer; a stable session and a
141  *     unstable session
142  *   - A handshake process of a session always starts with a unstable instance
143  *   - Once a session is established, its instance becomes stable and the
144  *     other becomes unstable instead
145  *   - Data messages are always sent via a stable session
146  *
147  * Locking notes:
148  * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
149  *   - Changes to the peer list are serialized by wg_lock
150  *   - The peer list may be read with pserialize(9) and psref(9)
151  *   - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
152  *     => XXX replace by pserialize when routing table is psz-safe
153  * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
154  *   only in thread context and serializes:
155  *   - the stable and unstable session pointers
156  *   - all unstable session state
157  * - Packet processing may be done in softint context:
158  *   - The stable session can be read under pserialize(9) or psref(9)
159  *     - The stable session is always ESTABLISHED
160  *     - On a session swap, we must wait for all readers to release a
161  *       reference to a stable session before changing wgs_state and
162  *       session states
163  * - Lock order: wg_lock -> wgp_lock
164  */
165 
166 
167 #define WGLOG(level, fmt, args...)					      \
168 	log(level, "%s: " fmt, __func__, ##args)
169 
170 /* Debug options */
171 #ifdef WG_DEBUG
172 /* Output debug logs */
173 #ifndef WG_DEBUG_LOG
174 #define WG_DEBUG_LOG
175 #endif
176 /* Output trace logs */
177 #ifndef WG_DEBUG_TRACE
178 #define WG_DEBUG_TRACE
179 #endif
180 /* Output hash values, etc. */
181 #ifndef WG_DEBUG_DUMP
182 #define WG_DEBUG_DUMP
183 #endif
184 /* Make some internal parameters configurable for testing and debugging */
185 #ifndef WG_DEBUG_PARAMS
186 #define WG_DEBUG_PARAMS
187 #endif
188 #endif
189 
190 #ifdef WG_DEBUG_TRACE
191 #define WG_TRACE(msg)							      \
192 	log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg))
193 #else
194 #define WG_TRACE(msg)	__nothing
195 #endif
196 
197 #ifdef WG_DEBUG_LOG
198 #define WG_DLOG(fmt, args...)	log(LOG_DEBUG, "%s: " fmt, __func__, ##args)
199 #else
200 #define WG_DLOG(fmt, args...)	__nothing
201 #endif
202 
203 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...)	do {		\
204 	if (ppsratecheck(&(wgprc)->wgprc_lasttime,			\
205 	    &(wgprc)->wgprc_curpps, 1)) {				\
206 		log(level, fmt, ##args);				\
207 	}								\
208 } while (0)
209 
210 #ifdef WG_DEBUG_PARAMS
211 static bool wg_force_underload = false;
212 #endif
213 
214 #ifdef WG_DEBUG_DUMP
215 
216 static char *
217 gethexdump(const char *p, size_t n)
218 {
219 	char *buf;
220 	size_t i;
221 
222 	if (n > SIZE_MAX/3 - 1)
223 		return NULL;
224 	buf = kmem_alloc(3*n + 1, KM_NOSLEEP);
225 	if (buf == NULL)
226 		return NULL;
227 	for (i = 0; i < n; i++)
228 		snprintf(buf + 3*i, 3 + 1, " %02hhx", p[i]);
229 	return buf;
230 }
231 
232 static void
233 puthexdump(char *buf, const void *p, size_t n)
234 {
235 
236 	if (buf == NULL)
237 		return;
238 	kmem_free(buf, 3*n + 1);
239 }
240 
241 #ifdef WG_RUMPKERNEL
242 static void
243 wg_dump_buf(const char *func, const char *buf, const size_t size)
244 {
245 	char *hex = gethexdump(buf, size);
246 
247 	log(LOG_DEBUG, "%s: %s\n", func, hex ? hex : "(enomem)");
248 	puthexdump(hex, buf, size);
249 }
250 #endif
251 
252 static void
253 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
254     const size_t size)
255 {
256 	char *hex = gethexdump(hash, size);
257 
258 	log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex ? hex : "(enomem)");
259 	puthexdump(hex, hash, size);
260 }
261 
262 #define WG_DUMP_HASH(name, hash) \
263 	wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
264 #define WG_DUMP_HASH48(name, hash) \
265 	wg_dump_hash(__func__, name, hash, 48)
266 #define WG_DUMP_BUF(buf, size) \
267 	wg_dump_buf(__func__, buf, size)
268 #else
269 #define WG_DUMP_HASH(name, hash)	__nothing
270 #define WG_DUMP_HASH48(name, hash)	__nothing
271 #define WG_DUMP_BUF(buf, size)	__nothing
272 #endif /* WG_DEBUG_DUMP */
273 
274 /* chosen somewhat arbitrarily -- fits in signed 16 bits NUL-terminated */
275 #define	WG_MAX_PROPLEN		32766
276 
277 #define WG_MTU			1420
278 #define WG_ALLOWEDIPS		16
279 
280 #define CURVE25519_KEY_LEN	32
281 #define TAI64N_LEN		sizeof(uint32_t) * 3
282 #define POLY1305_AUTHTAG_LEN	16
283 #define HMAC_BLOCK_LEN		64
284 
285 /* [N] 4.1: "DHLEN must be 32 or greater."  WireGuard chooses 32. */
286 /* [N] 4.3: Hash functions */
287 #define NOISE_DHLEN		32
288 /* [N] 4.3: "Must be 32 or 64."  WireGuard chooses 32. */
289 #define NOISE_HASHLEN		32
290 #define NOISE_BLOCKLEN		64
291 #define NOISE_HKDF_OUTPUT_LEN	NOISE_HASHLEN
292 /* [N] 5.1: "k" */
293 #define NOISE_CIPHER_KEY_LEN	32
294 /*
295  * [N] 9.2: "psk"
296  *          "... psk is a 32-byte secret value provided by the application."
297  */
298 #define NOISE_PRESHARED_KEY_LEN	32
299 
300 #define WG_STATIC_KEY_LEN	CURVE25519_KEY_LEN
301 #define WG_TIMESTAMP_LEN	TAI64N_LEN
302 
303 #define WG_PRESHARED_KEY_LEN	NOISE_PRESHARED_KEY_LEN
304 
305 #define WG_COOKIE_LEN		16
306 #define WG_MAC_LEN		16
307 #define WG_RANDVAL_LEN		24
308 
309 #define WG_EPHEMERAL_KEY_LEN	CURVE25519_KEY_LEN
310 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
311 #define WG_CHAINING_KEY_LEN	NOISE_HASHLEN
312 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
313 #define WG_HASH_LEN		NOISE_HASHLEN
314 #define WG_CIPHER_KEY_LEN	NOISE_CIPHER_KEY_LEN
315 #define WG_DH_OUTPUT_LEN	NOISE_DHLEN
316 #define WG_KDF_OUTPUT_LEN	NOISE_HKDF_OUTPUT_LEN
317 #define WG_AUTHTAG_LEN		POLY1305_AUTHTAG_LEN
318 #define WG_DATA_KEY_LEN		32
319 #define WG_SALT_LEN		24
320 
321 /*
322  * The protocol messages
323  */
324 struct wg_msg {
325 	uint32_t	wgm_type;
326 } __packed;
327 
328 /* [W] 5.4.2 First Message: Initiator to Responder */
329 struct wg_msg_init {
330 	uint32_t	wgmi_type;
331 	uint32_t	wgmi_sender;
332 	uint8_t		wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
333 	uint8_t		wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
334 	uint8_t		wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
335 	uint8_t		wgmi_mac1[WG_MAC_LEN];
336 	uint8_t		wgmi_mac2[WG_MAC_LEN];
337 } __packed;
338 
339 /* [W] 5.4.3 Second Message: Responder to Initiator */
340 struct wg_msg_resp {
341 	uint32_t	wgmr_type;
342 	uint32_t	wgmr_sender;
343 	uint32_t	wgmr_receiver;
344 	uint8_t		wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
345 	uint8_t		wgmr_empty[0 + WG_AUTHTAG_LEN];
346 	uint8_t		wgmr_mac1[WG_MAC_LEN];
347 	uint8_t		wgmr_mac2[WG_MAC_LEN];
348 } __packed;
349 
350 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
351 struct wg_msg_data {
352 	uint32_t	wgmd_type;
353 	uint32_t	wgmd_receiver;
354 	uint64_t	wgmd_counter;
355 	uint32_t	wgmd_packet[0];
356 } __packed;
357 
358 /* [W] 5.4.7 Under Load: Cookie Reply Message */
359 struct wg_msg_cookie {
360 	uint32_t	wgmc_type;
361 	uint32_t	wgmc_receiver;
362 	uint8_t		wgmc_salt[WG_SALT_LEN];
363 	uint8_t		wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
364 } __packed;
365 
366 #define WG_MSG_TYPE_INIT		1
367 #define WG_MSG_TYPE_RESP		2
368 #define WG_MSG_TYPE_COOKIE		3
369 #define WG_MSG_TYPE_DATA		4
370 #define WG_MSG_TYPE_MAX			WG_MSG_TYPE_DATA
371 
372 /* Sliding windows */
373 
374 #define	SLIWIN_BITS	2048u
375 #define	SLIWIN_TYPE	uint32_t
376 #define	SLIWIN_BPW	NBBY*sizeof(SLIWIN_TYPE)
377 #define	SLIWIN_WORDS	howmany(SLIWIN_BITS, SLIWIN_BPW)
378 #define	SLIWIN_NPKT	(SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
379 
380 struct sliwin {
381 	SLIWIN_TYPE	B[SLIWIN_WORDS];
382 	uint64_t	T;
383 };
384 
385 static void
386 sliwin_reset(struct sliwin *W)
387 {
388 
389 	memset(W, 0, sizeof(*W));
390 }
391 
392 static int
393 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
394 {
395 
396 	/*
397 	 * If it's more than one window older than the highest sequence
398 	 * number we've seen, reject.
399 	 */
400 #ifdef __HAVE_ATOMIC64_LOADSTORE
401 	if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
402 		return EAUTH;
403 #endif
404 
405 	/*
406 	 * Otherwise, we need to take the lock to decide, so don't
407 	 * reject just yet.  Caller must serialize a call to
408 	 * sliwin_update in this case.
409 	 */
410 	return 0;
411 }
412 
413 static int
414 sliwin_update(struct sliwin *W, uint64_t S)
415 {
416 	unsigned word, bit;
417 
418 	/*
419 	 * If it's more than one window older than the highest sequence
420 	 * number we've seen, reject.
421 	 */
422 	if (S + SLIWIN_NPKT < W->T)
423 		return EAUTH;
424 
425 	/*
426 	 * If it's higher than the highest sequence number we've seen,
427 	 * advance the window.
428 	 */
429 	if (S > W->T) {
430 		uint64_t i = W->T / SLIWIN_BPW;
431 		uint64_t j = S / SLIWIN_BPW;
432 		unsigned k;
433 
434 		for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
435 			W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
436 #ifdef __HAVE_ATOMIC64_LOADSTORE
437 		atomic_store_relaxed(&W->T, S);
438 #else
439 		W->T = S;
440 #endif
441 	}
442 
443 	/* Test and set the bit -- if already set, reject.  */
444 	word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
445 	bit = S % SLIWIN_BPW;
446 	if (W->B[word] & (1UL << bit))
447 		return EAUTH;
448 	W->B[word] |= 1U << bit;
449 
450 	/* Accept!  */
451 	return 0;
452 }
453 
454 struct wg_session {
455 	struct wg_peer	*wgs_peer;
456 	struct psref_target
457 			wgs_psref;
458 
459 	int		wgs_state;
460 #define WGS_STATE_UNKNOWN	0
461 #define WGS_STATE_INIT_ACTIVE	1
462 #define WGS_STATE_INIT_PASSIVE	2
463 #define WGS_STATE_ESTABLISHED	3
464 #define WGS_STATE_DESTROYING	4
465 
466 	time_t		wgs_time_established;
467 	time_t		wgs_time_last_data_sent;
468 	bool		wgs_is_initiator;
469 
470 	uint32_t	wgs_local_index;
471 	uint32_t	wgs_remote_index;
472 #ifdef __HAVE_ATOMIC64_LOADSTORE
473 	volatile uint64_t
474 			wgs_send_counter;
475 #else
476 	kmutex_t	wgs_send_counter_lock;
477 	uint64_t	wgs_send_counter;
478 #endif
479 
480 	struct {
481 		kmutex_t	lock;
482 		struct sliwin	window;
483 	}		*wgs_recvwin;
484 
485 	uint8_t		wgs_handshake_hash[WG_HASH_LEN];
486 	uint8_t		wgs_chaining_key[WG_CHAINING_KEY_LEN];
487 	uint8_t		wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
488 	uint8_t		wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
489 	uint8_t		wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
490 	uint8_t		wgs_tkey_send[WG_DATA_KEY_LEN];
491 	uint8_t		wgs_tkey_recv[WG_DATA_KEY_LEN];
492 };
493 
494 struct wg_sockaddr {
495 	union {
496 		struct sockaddr_storage _ss;
497 		struct sockaddr _sa;
498 		struct sockaddr_in _sin;
499 		struct sockaddr_in6 _sin6;
500 	};
501 	struct psref_target	wgsa_psref;
502 };
503 
504 #define wgsatoss(wgsa)		(&(wgsa)->_ss)
505 #define wgsatosa(wgsa)		(&(wgsa)->_sa)
506 #define wgsatosin(wgsa)		(&(wgsa)->_sin)
507 #define wgsatosin6(wgsa)	(&(wgsa)->_sin6)
508 
509 #define	wgsa_family(wgsa)	(wgsatosa(wgsa)->sa_family)
510 
511 struct wg_peer;
512 struct wg_allowedip {
513 	struct radix_node	wga_nodes[2];
514 	struct wg_sockaddr	_wga_sa_addr;
515 	struct wg_sockaddr	_wga_sa_mask;
516 #define wga_sa_addr		_wga_sa_addr._sa
517 #define wga_sa_mask		_wga_sa_mask._sa
518 
519 	int			wga_family;
520 	uint8_t			wga_cidr;
521 	union {
522 		struct in_addr _ip4;
523 		struct in6_addr _ip6;
524 	} wga_addr;
525 #define wga_addr4	wga_addr._ip4
526 #define wga_addr6	wga_addr._ip6
527 
528 	struct wg_peer		*wga_peer;
529 };
530 
531 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
532 
533 struct wg_ppsratecheck {
534 	struct timeval		wgprc_lasttime;
535 	int			wgprc_curpps;
536 };
537 
538 struct wg_softc;
539 struct wg_peer {
540 	struct wg_softc		*wgp_sc;
541 	char			wgp_name[WG_PEER_NAME_MAXLEN + 1];
542 	struct pslist_entry	wgp_peerlist_entry;
543 	pserialize_t		wgp_psz;
544 	struct psref_target	wgp_psref;
545 	kmutex_t		*wgp_lock;
546 	kmutex_t		*wgp_intr_lock;
547 
548 	uint8_t	wgp_pubkey[WG_STATIC_KEY_LEN];
549 	struct wg_sockaddr	*wgp_endpoint;
550 	struct wg_sockaddr	*wgp_endpoint0;
551 	volatile unsigned	wgp_endpoint_changing;
552 	bool			wgp_endpoint_available;
553 
554 			/* The preshared key (optional) */
555 	uint8_t		wgp_psk[WG_PRESHARED_KEY_LEN];
556 
557 	struct wg_session	*wgp_session_stable;
558 	struct wg_session	*wgp_session_unstable;
559 
560 	/* first outgoing packet awaiting session initiation */
561 	struct mbuf		*wgp_pending;
562 
563 	/* timestamp in big-endian */
564 	wg_timestamp_t	wgp_timestamp_latest_init;
565 
566 	struct timespec		wgp_last_handshake_time;
567 
568 	callout_t		wgp_rekey_timer;
569 	callout_t		wgp_handshake_timeout_timer;
570 	callout_t		wgp_session_dtor_timer;
571 
572 	time_t			wgp_handshake_start_time;
573 
574 	int			wgp_n_allowedips;
575 	struct wg_allowedip	wgp_allowedips[WG_ALLOWEDIPS];
576 
577 	time_t			wgp_latest_cookie_time;
578 	uint8_t			wgp_latest_cookie[WG_COOKIE_LEN];
579 	uint8_t			wgp_last_sent_mac1[WG_MAC_LEN];
580 	bool			wgp_last_sent_mac1_valid;
581 	uint8_t			wgp_last_sent_cookie[WG_COOKIE_LEN];
582 	bool			wgp_last_sent_cookie_valid;
583 
584 	time_t			wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
585 
586 	time_t			wgp_last_genrandval_time;
587 	uint32_t		wgp_randval;
588 
589 	struct wg_ppsratecheck	wgp_ppsratecheck;
590 
591 	struct work		wgp_work;
592 	unsigned int		wgp_tasks;
593 #define WGP_TASK_SEND_INIT_MESSAGE		__BIT(0)
594 #define WGP_TASK_RETRY_HANDSHAKE		__BIT(1)
595 #define WGP_TASK_ESTABLISH_SESSION		__BIT(2)
596 #define WGP_TASK_ENDPOINT_CHANGED		__BIT(3)
597 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE		__BIT(4)
598 #define WGP_TASK_DESTROY_PREV_SESSION		__BIT(5)
599 };
600 
601 struct wg_ops;
602 
603 struct wg_softc {
604 	struct ifnet	wg_if;
605 	LIST_ENTRY(wg_softc) wg_list;
606 	kmutex_t	*wg_lock;
607 	kmutex_t	*wg_intr_lock;
608 	krwlock_t	*wg_rwlock;
609 
610 	uint8_t		wg_privkey[WG_STATIC_KEY_LEN];
611 	uint8_t		wg_pubkey[WG_STATIC_KEY_LEN];
612 
613 	int		wg_npeers;
614 	struct pslist_head	wg_peers;
615 	struct thmap	*wg_peers_bypubkey;
616 	struct thmap	*wg_peers_byname;
617 	struct thmap	*wg_sessions_byindex;
618 	uint16_t	wg_listen_port;
619 
620 	struct threadpool	*wg_threadpool;
621 
622 	struct threadpool_job	wg_job;
623 	int			wg_upcalls;
624 #define	WG_UPCALL_INET	__BIT(0)
625 #define	WG_UPCALL_INET6	__BIT(1)
626 
627 #ifdef INET
628 	struct socket		*wg_so4;
629 	struct radix_node_head	*wg_rtable_ipv4;
630 #endif
631 #ifdef INET6
632 	struct socket		*wg_so6;
633 	struct radix_node_head	*wg_rtable_ipv6;
634 #endif
635 
636 	struct wg_ppsratecheck	wg_ppsratecheck;
637 
638 	struct wg_ops		*wg_ops;
639 
640 #ifdef WG_RUMPKERNEL
641 	struct wg_user		*wg_user;
642 #endif
643 };
644 
645 /* [W] 6.1 Preliminaries */
646 #define WG_REKEY_AFTER_MESSAGES		(1ULL << 60)
647 #define WG_REJECT_AFTER_MESSAGES	(UINT64_MAX - (1 << 13))
648 #define WG_REKEY_AFTER_TIME		120
649 #define WG_REJECT_AFTER_TIME		180
650 #define WG_REKEY_ATTEMPT_TIME		 90
651 #define WG_REKEY_TIMEOUT		  5
652 #define WG_KEEPALIVE_TIMEOUT		 10
653 
654 #define WG_COOKIE_TIME			120
655 #define WG_RANDVAL_TIME			(2 * 60)
656 
657 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
658 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
659 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
660 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
661 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
662 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
663 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
664 
665 static struct mbuf *
666 		wg_get_mbuf(size_t, size_t);
667 
668 static int	wg_send_data_msg(struct wg_peer *, struct wg_session *,
669 		    struct mbuf *);
670 static int	wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
671 		    const uint32_t, const uint8_t [], const struct sockaddr *);
672 static int	wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
673 		    struct wg_session *, const struct wg_msg_init *);
674 static void	wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
675 
676 static struct wg_peer *
677 		wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
678 		    struct psref *);
679 static struct wg_peer *
680 		wg_lookup_peer_by_pubkey(struct wg_softc *,
681 		    const uint8_t [], struct psref *);
682 
683 static struct wg_session *
684 		wg_lookup_session_by_index(struct wg_softc *,
685 		    const uint32_t, struct psref *);
686 
687 static void	wg_update_endpoint_if_necessary(struct wg_peer *,
688 		    const struct sockaddr *);
689 
690 static void	wg_schedule_rekey_timer(struct wg_peer *);
691 static void	wg_schedule_session_dtor_timer(struct wg_peer *);
692 
693 static bool	wg_is_underload(struct wg_softc *, struct wg_peer *, int);
694 static void	wg_calculate_keys(struct wg_session *, const bool);
695 
696 static void	wg_clear_states(struct wg_session *);
697 
698 static void	wg_get_peer(struct wg_peer *, struct psref *);
699 static void	wg_put_peer(struct wg_peer *, struct psref *);
700 
701 static int	wg_send_so(struct wg_peer *, struct mbuf *);
702 static int	wg_send_udp(struct wg_peer *, struct mbuf *);
703 static int	wg_output(struct ifnet *, struct mbuf *,
704 			   const struct sockaddr *, const struct rtentry *);
705 static void	wg_input(struct ifnet *, struct mbuf *, const int);
706 static int	wg_ioctl(struct ifnet *, u_long, void *);
707 static int	wg_bind_port(struct wg_softc *, const uint16_t);
708 static int	wg_init(struct ifnet *);
709 #ifdef ALTQ
710 static void	wg_start(struct ifnet *);
711 #endif
712 static void	wg_stop(struct ifnet *, int);
713 
714 static void	wg_peer_work(struct work *, void *);
715 static void	wg_job(struct threadpool_job *);
716 static void	wgintr(void *);
717 static void	wg_purge_pending_packets(struct wg_peer *);
718 
719 static int	wg_clone_create(struct if_clone *, int);
720 static int	wg_clone_destroy(struct ifnet *);
721 
722 struct wg_ops {
723 	int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
724 	int (*send_data_msg)(struct wg_peer *, struct mbuf *);
725 	void (*input)(struct ifnet *, struct mbuf *, const int);
726 	int (*bind_port)(struct wg_softc *, const uint16_t);
727 };
728 
729 struct wg_ops wg_ops_rumpkernel = {
730 	.send_hs_msg	= wg_send_so,
731 	.send_data_msg	= wg_send_udp,
732 	.input		= wg_input,
733 	.bind_port	= wg_bind_port,
734 };
735 
736 #ifdef WG_RUMPKERNEL
737 static bool	wg_user_mode(struct wg_softc *);
738 static int	wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
739 
740 static int	wg_send_user(struct wg_peer *, struct mbuf *);
741 static void	wg_input_user(struct ifnet *, struct mbuf *, const int);
742 static int	wg_bind_port_user(struct wg_softc *, const uint16_t);
743 
744 struct wg_ops wg_ops_rumpuser = {
745 	.send_hs_msg	= wg_send_user,
746 	.send_data_msg	= wg_send_user,
747 	.input		= wg_input_user,
748 	.bind_port	= wg_bind_port_user,
749 };
750 #endif
751 
752 #define WG_PEER_READER_FOREACH(wgp, wg)					\
753 	PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer,	\
754 	    wgp_peerlist_entry)
755 #define WG_PEER_WRITER_FOREACH(wgp, wg)					\
756 	PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer,	\
757 	    wgp_peerlist_entry)
758 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg)				\
759 	PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
760 #define WG_PEER_WRITER_REMOVE(wgp)					\
761 	PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
762 
763 struct wg_route {
764 	struct radix_node	wgr_nodes[2];
765 	struct wg_peer		*wgr_peer;
766 };
767 
768 static struct radix_node_head *
769 wg_rnh(struct wg_softc *wg, const int family)
770 {
771 
772 	switch (family) {
773 		case AF_INET:
774 			return wg->wg_rtable_ipv4;
775 #ifdef INET6
776 		case AF_INET6:
777 			return wg->wg_rtable_ipv6;
778 #endif
779 		default:
780 			return NULL;
781 	}
782 }
783 
784 
785 /*
786  * Global variables
787  */
788 static volatile unsigned wg_count __cacheline_aligned;
789 
790 struct psref_class *wg_psref_class __read_mostly;
791 
792 static struct if_clone wg_cloner =
793     IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
794 
795 static struct pktqueue *wg_pktq __read_mostly;
796 static struct workqueue *wg_wq __read_mostly;
797 
798 void wgattach(int);
799 /* ARGSUSED */
800 void
801 wgattach(int count)
802 {
803 	/*
804 	 * Nothing to do here, initialization is handled by the
805 	 * module initialization code in wginit() below).
806 	 */
807 }
808 
809 static void
810 wginit(void)
811 {
812 
813 	wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
814 
815 	if_clone_attach(&wg_cloner);
816 }
817 
818 /*
819  * XXX Kludge: This should just happen in wginit, but workqueue_create
820  * cannot be run until after CPUs have been detected, and wginit runs
821  * before configure.
822  */
823 static int
824 wginitqueues(void)
825 {
826 	int error __diagused;
827 
828 	wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
829 	KASSERT(wg_pktq != NULL);
830 
831 	error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
832 	    PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
833 	KASSERT(error == 0);
834 
835 	return 0;
836 }
837 
838 static void
839 wg_guarantee_initialized(void)
840 {
841 	static ONCE_DECL(init);
842 	int error __diagused;
843 
844 	error = RUN_ONCE(&init, wginitqueues);
845 	KASSERT(error == 0);
846 }
847 
848 static int
849 wg_count_inc(void)
850 {
851 	unsigned o, n;
852 
853 	do {
854 		o = atomic_load_relaxed(&wg_count);
855 		if (o == UINT_MAX)
856 			return ENFILE;
857 		n = o + 1;
858 	} while (atomic_cas_uint(&wg_count, o, n) != o);
859 
860 	return 0;
861 }
862 
863 static void
864 wg_count_dec(void)
865 {
866 	unsigned c __diagused;
867 
868 	c = atomic_dec_uint_nv(&wg_count);
869 	KASSERT(c != UINT_MAX);
870 }
871 
872 static int
873 wgdetach(void)
874 {
875 
876 	/* Prevent new interface creation.  */
877 	if_clone_detach(&wg_cloner);
878 
879 	/* Check whether there are any existing interfaces.  */
880 	if (atomic_load_relaxed(&wg_count)) {
881 		/* Back out -- reattach the cloner.  */
882 		if_clone_attach(&wg_cloner);
883 		return EBUSY;
884 	}
885 
886 	/* No interfaces left.  Nuke it.  */
887 	workqueue_destroy(wg_wq);
888 	pktq_destroy(wg_pktq);
889 	psref_class_destroy(wg_psref_class);
890 
891 	return 0;
892 }
893 
894 static void
895 wg_init_key_and_hash(uint8_t ckey[WG_CHAINING_KEY_LEN],
896     uint8_t hash[WG_HASH_LEN])
897 {
898 	/* [W] 5.4: CONSTRUCTION */
899 	const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
900 	/* [W] 5.4: IDENTIFIER */
901 	const char *id = "WireGuard v1 zx2c4 Jason@zx2c4.com";
902 	struct blake2s state;
903 
904 	blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
905 	    signature, strlen(signature));
906 
907 	CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
908 	memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
909 
910 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
911 	blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
912 	blake2s_update(&state, id, strlen(id));
913 	blake2s_final(&state, hash);
914 
915 	WG_DUMP_HASH("ckey", ckey);
916 	WG_DUMP_HASH("hash", hash);
917 }
918 
919 static void
920 wg_algo_hash(uint8_t hash[WG_HASH_LEN], const uint8_t input[],
921     const size_t inputsize)
922 {
923 	struct blake2s state;
924 
925 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
926 	blake2s_update(&state, hash, WG_HASH_LEN);
927 	blake2s_update(&state, input, inputsize);
928 	blake2s_final(&state, hash);
929 }
930 
931 static void
932 wg_algo_mac(uint8_t out[], const size_t outsize,
933     const uint8_t key[], const size_t keylen,
934     const uint8_t input1[], const size_t input1len,
935     const uint8_t input2[], const size_t input2len)
936 {
937 	struct blake2s state;
938 
939 	blake2s_init(&state, outsize, key, keylen);
940 
941 	blake2s_update(&state, input1, input1len);
942 	if (input2 != NULL)
943 		blake2s_update(&state, input2, input2len);
944 	blake2s_final(&state, out);
945 }
946 
947 static void
948 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
949     const uint8_t input1[], const size_t input1len,
950     const uint8_t input2[], const size_t input2len)
951 {
952 	struct blake2s state;
953 	/* [W] 5.4: LABEL-MAC1 */
954 	const char *label = "mac1----";
955 	uint8_t key[WG_HASH_LEN];
956 
957 	blake2s_init(&state, sizeof(key), NULL, 0);
958 	blake2s_update(&state, label, strlen(label));
959 	blake2s_update(&state, input1, input1len);
960 	blake2s_final(&state, key);
961 
962 	blake2s_init(&state, outsize, key, sizeof(key));
963 	if (input2 != NULL)
964 		blake2s_update(&state, input2, input2len);
965 	blake2s_final(&state, out);
966 }
967 
968 static void
969 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
970     const uint8_t input1[], const size_t input1len)
971 {
972 	struct blake2s state;
973 	/* [W] 5.4: LABEL-COOKIE */
974 	const char *label = "cookie--";
975 
976 	blake2s_init(&state, outsize, NULL, 0);
977 	blake2s_update(&state, label, strlen(label));
978 	blake2s_update(&state, input1, input1len);
979 	blake2s_final(&state, out);
980 }
981 
982 static void
983 wg_algo_generate_keypair(uint8_t pubkey[WG_EPHEMERAL_KEY_LEN],
984     uint8_t privkey[WG_EPHEMERAL_KEY_LEN])
985 {
986 
987 	CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
988 
989 	cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
990 	crypto_scalarmult_base(pubkey, privkey);
991 }
992 
993 static void
994 wg_algo_dh(uint8_t out[WG_DH_OUTPUT_LEN],
995     const uint8_t privkey[WG_STATIC_KEY_LEN],
996     const uint8_t pubkey[WG_STATIC_KEY_LEN])
997 {
998 
999 	CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
1000 
1001 	int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
1002 	KASSERT(ret == 0);
1003 }
1004 
1005 static void
1006 wg_algo_hmac(uint8_t out[], const size_t outlen,
1007     const uint8_t key[], const size_t keylen,
1008     const uint8_t in[], const size_t inlen)
1009 {
1010 #define IPAD	0x36
1011 #define OPAD	0x5c
1012 	uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
1013 	uint8_t ipad[HMAC_BLOCK_LEN];
1014 	uint8_t opad[HMAC_BLOCK_LEN];
1015 	size_t i;
1016 	struct blake2s state;
1017 
1018 	KASSERT(outlen == WG_HASH_LEN);
1019 	KASSERT(keylen <= HMAC_BLOCK_LEN);
1020 
1021 	memcpy(hmackey, key, keylen);
1022 
1023 	for (i = 0; i < sizeof(hmackey); i++) {
1024 		ipad[i] = hmackey[i] ^ IPAD;
1025 		opad[i] = hmackey[i] ^ OPAD;
1026 	}
1027 
1028 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1029 	blake2s_update(&state, ipad, sizeof(ipad));
1030 	blake2s_update(&state, in, inlen);
1031 	blake2s_final(&state, out);
1032 
1033 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
1034 	blake2s_update(&state, opad, sizeof(opad));
1035 	blake2s_update(&state, out, WG_HASH_LEN);
1036 	blake2s_final(&state, out);
1037 #undef IPAD
1038 #undef OPAD
1039 }
1040 
1041 static void
1042 wg_algo_kdf(uint8_t out1[WG_KDF_OUTPUT_LEN], uint8_t out2[WG_KDF_OUTPUT_LEN],
1043     uint8_t out3[WG_KDF_OUTPUT_LEN], const uint8_t ckey[WG_CHAINING_KEY_LEN],
1044     const uint8_t input[], const size_t inputlen)
1045 {
1046 	uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
1047 	uint8_t one[1];
1048 
1049 	/*
1050 	 * [N] 4.3: "an input_key_material byte sequence with length
1051 	 * either zero bytes, 32 bytes, or DHLEN bytes."
1052 	 */
1053 	KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
1054 
1055 	WG_DUMP_HASH("ckey", ckey);
1056 	if (input != NULL)
1057 		WG_DUMP_HASH("input", input);
1058 	wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
1059 	    input, inputlen);
1060 	WG_DUMP_HASH("tmp1", tmp1);
1061 	one[0] = 1;
1062 	wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1063 	    one, sizeof(one));
1064 	WG_DUMP_HASH("out1", out1);
1065 	if (out2 == NULL)
1066 		return;
1067 	memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
1068 	tmp2[WG_KDF_OUTPUT_LEN] = 2;
1069 	wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1070 	    tmp2, sizeof(tmp2));
1071 	WG_DUMP_HASH("out2", out2);
1072 	if (out3 == NULL)
1073 		return;
1074 	memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
1075 	tmp2[WG_KDF_OUTPUT_LEN] = 3;
1076 	wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
1077 	    tmp2, sizeof(tmp2));
1078 	WG_DUMP_HASH("out3", out3);
1079 }
1080 
1081 static void __noinline
1082 wg_algo_dh_kdf(uint8_t ckey[WG_CHAINING_KEY_LEN],
1083     uint8_t cipher_key[WG_CIPHER_KEY_LEN],
1084     const uint8_t local_key[WG_STATIC_KEY_LEN],
1085     const uint8_t remote_key[WG_STATIC_KEY_LEN])
1086 {
1087 	uint8_t dhout[WG_DH_OUTPUT_LEN];
1088 
1089 	wg_algo_dh(dhout, local_key, remote_key);
1090 	wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
1091 
1092 	WG_DUMP_HASH("dhout", dhout);
1093 	WG_DUMP_HASH("ckey", ckey);
1094 	if (cipher_key != NULL)
1095 		WG_DUMP_HASH("cipher_key", cipher_key);
1096 }
1097 
1098 static void
1099 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1100     const uint64_t counter, const uint8_t plain[], const size_t plainsize,
1101     const uint8_t auth[], size_t authlen)
1102 {
1103 	uint8_t nonce[(32 + 64) / 8] = {0};
1104 	long long unsigned int outsize;
1105 	int error __diagused;
1106 
1107 	le64enc(&nonce[4], counter);
1108 
1109 	error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
1110 	    plainsize, auth, authlen, NULL, nonce, key);
1111 	KASSERT(error == 0);
1112 	KASSERT(outsize == expected_outsize);
1113 }
1114 
1115 static int
1116 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize, const uint8_t key[],
1117     const uint64_t counter, const uint8_t encrypted[],
1118     const size_t encryptedsize, const uint8_t auth[], size_t authlen)
1119 {
1120 	uint8_t nonce[(32 + 64) / 8] = {0};
1121 	long long unsigned int outsize;
1122 	int error;
1123 
1124 	le64enc(&nonce[4], counter);
1125 
1126 	error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1127 	    encrypted, encryptedsize, auth, authlen, nonce, key);
1128 	if (error == 0)
1129 		KASSERT(outsize == expected_outsize);
1130 	return error;
1131 }
1132 
1133 static void
1134 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
1135     const uint8_t key[], const uint8_t plain[], const size_t plainsize,
1136     const uint8_t auth[], size_t authlen,
1137     const uint8_t nonce[WG_SALT_LEN])
1138 {
1139 	long long unsigned int outsize;
1140 	int error __diagused;
1141 
1142 	CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
1143 	error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
1144 	    plain, plainsize, auth, authlen, NULL, nonce, key);
1145 	KASSERT(error == 0);
1146 	KASSERT(outsize == expected_outsize);
1147 }
1148 
1149 static int
1150 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
1151     const uint8_t key[], const uint8_t encrypted[], const size_t encryptedsize,
1152     const uint8_t auth[], size_t authlen,
1153     const uint8_t nonce[WG_SALT_LEN])
1154 {
1155 	long long unsigned int outsize;
1156 	int error;
1157 
1158 	error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
1159 	    encrypted, encryptedsize, auth, authlen, nonce, key);
1160 	if (error == 0)
1161 		KASSERT(outsize == expected_outsize);
1162 	return error;
1163 }
1164 
1165 static void
1166 wg_algo_tai64n(wg_timestamp_t timestamp)
1167 {
1168 	struct timespec ts;
1169 
1170 	/* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
1171 	getnanotime(&ts);
1172 	/* TAI64 label in external TAI64 format */
1173 	be32enc(timestamp, 0x40000000U + (uint32_t)(ts.tv_sec >> 32));
1174 	/* second beginning from 1970 TAI */
1175 	be32enc(timestamp + 4, (uint32_t)(ts.tv_sec & 0xffffffffU));
1176 	/* nanosecond in big-endian format */
1177 	be32enc(timestamp + 8, (uint32_t)ts.tv_nsec);
1178 }
1179 
1180 /*
1181  * wg_get_stable_session(wgp, psref)
1182  *
1183  *	Get a passive reference to the current stable session, or
1184  *	return NULL if there is no current stable session.
1185  *
1186  *	The pointer is always there but the session is not necessarily
1187  *	ESTABLISHED; if it is not ESTABLISHED, return NULL.  However,
1188  *	the session may transition from ESTABLISHED to DESTROYING while
1189  *	holding the passive reference.
1190  */
1191 static struct wg_session *
1192 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
1193 {
1194 	int s;
1195 	struct wg_session *wgs;
1196 
1197 	s = pserialize_read_enter();
1198 	wgs = atomic_load_consume(&wgp->wgp_session_stable);
1199 	if (__predict_false(wgs->wgs_state != WGS_STATE_ESTABLISHED))
1200 		wgs = NULL;
1201 	else
1202 		psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
1203 	pserialize_read_exit(s);
1204 
1205 	return wgs;
1206 }
1207 
1208 static void
1209 wg_put_session(struct wg_session *wgs, struct psref *psref)
1210 {
1211 
1212 	psref_release(psref, &wgs->wgs_psref, wg_psref_class);
1213 }
1214 
1215 static void
1216 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
1217 {
1218 	struct wg_peer *wgp = wgs->wgs_peer;
1219 	struct wg_session *wgs0 __diagused;
1220 	void *garbage;
1221 
1222 	KASSERT(mutex_owned(wgp->wgp_lock));
1223 	KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1224 
1225 	/* Remove the session from the table.  */
1226 	wgs0 = thmap_del(wg->wg_sessions_byindex,
1227 	    &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
1228 	KASSERT(wgs0 == wgs);
1229 	garbage = thmap_stage_gc(wg->wg_sessions_byindex);
1230 
1231 	/* Wait for passive references to drain.  */
1232 	pserialize_perform(wgp->wgp_psz);
1233 	psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
1234 
1235 	/* Free memory, zero state, and transition to UNKNOWN.  */
1236 	thmap_gc(wg->wg_sessions_byindex, garbage);
1237 	wg_clear_states(wgs);
1238 	wgs->wgs_state = WGS_STATE_UNKNOWN;
1239 }
1240 
1241 /*
1242  * wg_get_session_index(wg, wgs)
1243  *
1244  *	Choose a session index for wgs->wgs_local_index, and store it
1245  *	in wg's table of sessions by index.
1246  *
1247  *	wgs must be the unstable session of its peer, and must be
1248  *	transitioning out of the UNKNOWN state.
1249  */
1250 static void
1251 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
1252 {
1253 	struct wg_peer *wgp __diagused = wgs->wgs_peer;
1254 	struct wg_session *wgs0;
1255 	uint32_t index;
1256 
1257 	KASSERT(mutex_owned(wgp->wgp_lock));
1258 	KASSERT(wgs == wgp->wgp_session_unstable);
1259 	KASSERT(wgs->wgs_state == WGS_STATE_UNKNOWN);
1260 
1261 	do {
1262 		/* Pick a uniform random index.  */
1263 		index = cprng_strong32();
1264 
1265 		/* Try to take it.  */
1266 		wgs->wgs_local_index = index;
1267 		wgs0 = thmap_put(wg->wg_sessions_byindex,
1268 		    &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
1269 
1270 		/* If someone else beat us, start over.  */
1271 	} while (__predict_false(wgs0 != wgs));
1272 }
1273 
1274 /*
1275  * wg_put_session_index(wg, wgs)
1276  *
1277  *	Remove wgs from the table of sessions by index, wait for any
1278  *	passive references to drain, and transition the session to the
1279  *	UNKNOWN state.
1280  *
1281  *	wgs must be the unstable session of its peer, and must not be
1282  *	UNKNOWN or ESTABLISHED.
1283  */
1284 static void
1285 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
1286 {
1287 	struct wg_peer *wgp __diagused = wgs->wgs_peer;
1288 
1289 	KASSERT(mutex_owned(wgp->wgp_lock));
1290 	KASSERT(wgs == wgp->wgp_session_unstable);
1291 	KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
1292 	KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
1293 
1294 	wg_destroy_session(wg, wgs);
1295 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
1296 }
1297 
1298 /*
1299  * Handshake patterns
1300  *
1301  * [W] 5: "These messages use the "IK" pattern from Noise"
1302  * [N] 7.5. Interactive handshake patterns (fundamental)
1303  *     "The first character refers to the initiator’s static key:"
1304  *     "I = Static key for initiator Immediately transmitted to responder,
1305  *          despite reduced or absent identity hiding"
1306  *     "The second character refers to the responder’s static key:"
1307  *     "K = Static key for responder Known to initiator"
1308  *     "IK:
1309  *        <- s
1310  *        ...
1311  *        -> e, es, s, ss
1312  *        <- e, ee, se"
1313  * [N] 9.4. Pattern modifiers
1314  *     "IKpsk2:
1315  *        <- s
1316  *        ...
1317  *        -> e, es, s, ss
1318  *        <- e, ee, se, psk"
1319  */
1320 static void
1321 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
1322     struct wg_session *wgs, struct wg_msg_init *wgmi)
1323 {
1324 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1325 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1326 	uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1327 	uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1328 	uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1329 
1330 	KASSERT(mutex_owned(wgp->wgp_lock));
1331 	KASSERT(wgs == wgp->wgp_session_unstable);
1332 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
1333 
1334 	wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
1335 	wgmi->wgmi_sender = wgs->wgs_local_index;
1336 
1337 	/* [W] 5.4.2: First Message: Initiator to Responder */
1338 
1339 	/* Ci := HASH(CONSTRUCTION) */
1340 	/* Hi := HASH(Ci || IDENTIFIER) */
1341 	wg_init_key_and_hash(ckey, hash);
1342 	/* Hi := HASH(Hi || Sr^pub) */
1343 	wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
1344 
1345 	WG_DUMP_HASH("hash", hash);
1346 
1347 	/* [N] 2.2: "e" */
1348 	/* Ei^priv, Ei^pub := DH-GENERATE() */
1349 	wg_algo_generate_keypair(pubkey, privkey);
1350 	/* Ci := KDF1(Ci, Ei^pub) */
1351 	wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1352 	/* msg.ephemeral := Ei^pub */
1353 	memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
1354 	/* Hi := HASH(Hi || msg.ephemeral) */
1355 	wg_algo_hash(hash, pubkey, sizeof(pubkey));
1356 
1357 	WG_DUMP_HASH("ckey", ckey);
1358 	WG_DUMP_HASH("hash", hash);
1359 
1360 	/* [N] 2.2: "es" */
1361 	/* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1362 	wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
1363 
1364 	/* [N] 2.2: "s" */
1365 	/* msg.static := AEAD(k, 0, Si^pub, Hi) */
1366 	wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
1367 	    cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
1368 	    hash, sizeof(hash));
1369 	/* Hi := HASH(Hi || msg.static) */
1370 	wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1371 
1372 	WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1373 
1374 	/* [N] 2.2: "ss" */
1375 	/* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1376 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1377 
1378 	/* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1379 	wg_timestamp_t timestamp;
1380 	wg_algo_tai64n(timestamp);
1381 	wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1382 	    cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
1383 	/* Hi := HASH(Hi || msg.timestamp) */
1384 	wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1385 
1386 	/* [W] 5.4.4 Cookie MACs */
1387 	wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
1388 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1389 	    (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1390 	/* Need mac1 to decrypt a cookie from a cookie message */
1391 	memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
1392 	    sizeof(wgp->wgp_last_sent_mac1));
1393 	wgp->wgp_last_sent_mac1_valid = true;
1394 
1395 	if (wgp->wgp_latest_cookie_time == 0 ||
1396 	    (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1397 		memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
1398 	else {
1399 		wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
1400 		    wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1401 		    (const uint8_t *)wgmi,
1402 		    offsetof(struct wg_msg_init, wgmi_mac2),
1403 		    NULL, 0);
1404 	}
1405 
1406 	memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1407 	memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1408 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1409 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1410 	WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
1411 }
1412 
1413 static void __noinline
1414 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
1415     const struct sockaddr *src)
1416 {
1417 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
1418 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
1419 	uint8_t cipher_key[WG_CIPHER_KEY_LEN];
1420 	uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
1421 	struct wg_peer *wgp;
1422 	struct wg_session *wgs;
1423 	int error, ret;
1424 	struct psref psref_peer;
1425 	uint8_t mac1[WG_MAC_LEN];
1426 
1427 	WG_TRACE("init msg received");
1428 
1429 	wg_algo_mac_mac1(mac1, sizeof(mac1),
1430 	    wg->wg_pubkey, sizeof(wg->wg_pubkey),
1431 	    (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
1432 
1433 	/*
1434 	 * [W] 5.3: Denial of Service Mitigation & Cookies
1435 	 * "the responder, ..., must always reject messages with an invalid
1436 	 *  msg.mac1"
1437 	 */
1438 	if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
1439 		WG_DLOG("mac1 is invalid\n");
1440 		return;
1441 	}
1442 
1443 	/*
1444 	 * [W] 5.4.2: First Message: Initiator to Responder
1445 	 * "When the responder receives this message, it does the same
1446 	 *  operations so that its final state variables are identical,
1447 	 *  replacing the operands of the DH function to produce equivalent
1448 	 *  values."
1449 	 *  Note that the following comments of operations are just copies of
1450 	 *  the initiator's ones.
1451 	 */
1452 
1453 	/* Ci := HASH(CONSTRUCTION) */
1454 	/* Hi := HASH(Ci || IDENTIFIER) */
1455 	wg_init_key_and_hash(ckey, hash);
1456 	/* Hi := HASH(Hi || Sr^pub) */
1457 	wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
1458 
1459 	/* [N] 2.2: "e" */
1460 	/* Ci := KDF1(Ci, Ei^pub) */
1461 	wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
1462 	    sizeof(wgmi->wgmi_ephemeral));
1463 	/* Hi := HASH(Hi || msg.ephemeral) */
1464 	wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
1465 
1466 	WG_DUMP_HASH("ckey", ckey);
1467 
1468 	/* [N] 2.2: "es" */
1469 	/* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
1470 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
1471 
1472 	WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
1473 
1474 	/* [N] 2.2: "s" */
1475 	/* msg.static := AEAD(k, 0, Si^pub, Hi) */
1476 	error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
1477 	    wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
1478 	if (error != 0) {
1479 		WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
1480 		    "%s: wg_algo_aead_dec for secret key failed\n",
1481 		    if_name(&wg->wg_if));
1482 		return;
1483 	}
1484 	/* Hi := HASH(Hi || msg.static) */
1485 	wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
1486 
1487 	wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
1488 	if (wgp == NULL) {
1489 		WG_DLOG("peer not found\n");
1490 		return;
1491 	}
1492 
1493 	/*
1494 	 * Lock the peer to serialize access to cookie state.
1495 	 *
1496 	 * XXX Can we safely avoid holding the lock across DH?  Take it
1497 	 * just to verify mac2 and then unlock/DH/lock?
1498 	 */
1499 	mutex_enter(wgp->wgp_lock);
1500 
1501 	if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
1502 		WG_TRACE("under load");
1503 		/*
1504 		 * [W] 5.3: Denial of Service Mitigation & Cookies
1505 		 * "the responder, ..., and when under load may reject messages
1506 		 *  with an invalid msg.mac2.  If the responder receives a
1507 		 *  message with a valid msg.mac1 yet with an invalid msg.mac2,
1508 		 *  and is under load, it may respond with a cookie reply
1509 		 *  message"
1510 		 */
1511 		uint8_t zero[WG_MAC_LEN] = {0};
1512 		if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
1513 			WG_TRACE("sending a cookie message: no cookie included");
1514 			(void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1515 			    wgmi->wgmi_mac1, src);
1516 			goto out;
1517 		}
1518 		if (!wgp->wgp_last_sent_cookie_valid) {
1519 			WG_TRACE("sending a cookie message: no cookie sent ever");
1520 			(void)wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
1521 			    wgmi->wgmi_mac1, src);
1522 			goto out;
1523 		}
1524 		uint8_t mac2[WG_MAC_LEN];
1525 		wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1526 		    WG_COOKIE_LEN, (const uint8_t *)wgmi,
1527 		    offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
1528 		if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
1529 			WG_DLOG("mac2 is invalid\n");
1530 			goto out;
1531 		}
1532 		WG_TRACE("under load, but continue to sending");
1533 	}
1534 
1535 	/* [N] 2.2: "ss" */
1536 	/* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
1537 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
1538 
1539 	/* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
1540 	wg_timestamp_t timestamp;
1541 	error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
1542 	    wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
1543 	    hash, sizeof(hash));
1544 	if (error != 0) {
1545 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1546 		    "%s: peer %s: wg_algo_aead_dec for timestamp failed\n",
1547 		    if_name(&wg->wg_if), wgp->wgp_name);
1548 		goto out;
1549 	}
1550 	/* Hi := HASH(Hi || msg.timestamp) */
1551 	wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
1552 
1553 	/*
1554 	 * [W] 5.1 "The responder keeps track of the greatest timestamp
1555 	 *      received per peer and discards packets containing
1556 	 *      timestamps less than or equal to it."
1557 	 */
1558 	ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
1559 	    sizeof(timestamp));
1560 	if (ret <= 0) {
1561 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1562 		    "%s: peer %s: invalid init msg: timestamp is old\n",
1563 		    if_name(&wg->wg_if), wgp->wgp_name);
1564 		goto out;
1565 	}
1566 	memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
1567 
1568 	/*
1569 	 * Message is good -- we're committing to handle it now, unless
1570 	 * we were already initiating a session.
1571 	 */
1572 	wgs = wgp->wgp_session_unstable;
1573 	switch (wgs->wgs_state) {
1574 	case WGS_STATE_UNKNOWN:		/* new session initiated by peer */
1575 		wg_get_session_index(wg, wgs);
1576 		break;
1577 	case WGS_STATE_INIT_ACTIVE:	/* we're already initiating, drop */
1578 		WG_TRACE("Session already initializing, ignoring the message");
1579 		goto out;
1580 	case WGS_STATE_INIT_PASSIVE:	/* peer is retrying, start over */
1581 		WG_TRACE("Session already initializing, destroying old states");
1582 		wg_clear_states(wgs);
1583 		/* keep session index */
1584 		break;
1585 	case WGS_STATE_ESTABLISHED:	/* can't happen */
1586 		panic("unstable session can't be established");
1587 		break;
1588 	case WGS_STATE_DESTROYING:	/* rekey initiated by peer */
1589 		WG_TRACE("Session destroying, but force to clear");
1590 		callout_stop(&wgp->wgp_session_dtor_timer);
1591 		wg_clear_states(wgs);
1592 		/* keep session index */
1593 		break;
1594 	default:
1595 		panic("invalid session state: %d", wgs->wgs_state);
1596 	}
1597 	wgs->wgs_state = WGS_STATE_INIT_PASSIVE;
1598 
1599 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1600 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1601 	memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
1602 	    sizeof(wgmi->wgmi_ephemeral));
1603 
1604 	wg_update_endpoint_if_necessary(wgp, src);
1605 
1606 	(void)wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
1607 
1608 	wg_calculate_keys(wgs, false);
1609 	wg_clear_states(wgs);
1610 
1611 out:
1612 	mutex_exit(wgp->wgp_lock);
1613 	wg_put_peer(wgp, &psref_peer);
1614 }
1615 
1616 static struct socket *
1617 wg_get_so_by_af(struct wg_softc *wg, const int af)
1618 {
1619 
1620 	switch (af) {
1621 #ifdef INET
1622 	case AF_INET:
1623 		return wg->wg_so4;
1624 #endif
1625 #ifdef INET6
1626 	case AF_INET6:
1627 		return wg->wg_so6;
1628 #endif
1629 	default:
1630 		panic("wg: no such af: %d", af);
1631 	}
1632 }
1633 
1634 static struct socket *
1635 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
1636 {
1637 
1638 	return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
1639 }
1640 
1641 static struct wg_sockaddr *
1642 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
1643 {
1644 	struct wg_sockaddr *wgsa;
1645 	int s;
1646 
1647 	s = pserialize_read_enter();
1648 	wgsa = atomic_load_consume(&wgp->wgp_endpoint);
1649 	psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
1650 	pserialize_read_exit(s);
1651 
1652 	return wgsa;
1653 }
1654 
1655 static void
1656 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
1657 {
1658 
1659 	psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
1660 }
1661 
1662 static int
1663 wg_send_so(struct wg_peer *wgp, struct mbuf *m)
1664 {
1665 	int error;
1666 	struct socket *so;
1667 	struct psref psref;
1668 	struct wg_sockaddr *wgsa;
1669 
1670 	wgsa = wg_get_endpoint_sa(wgp, &psref);
1671 	so = wg_get_so_by_peer(wgp, wgsa);
1672 	error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
1673 	wg_put_sa(wgp, wgsa, &psref);
1674 
1675 	return error;
1676 }
1677 
1678 static int
1679 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
1680 {
1681 	int error;
1682 	struct mbuf *m;
1683 	struct wg_msg_init *wgmi;
1684 	struct wg_session *wgs;
1685 
1686 	KASSERT(mutex_owned(wgp->wgp_lock));
1687 
1688 	wgs = wgp->wgp_session_unstable;
1689 	/* XXX pull dispatch out into wg_task_send_init_message */
1690 	switch (wgs->wgs_state) {
1691 	case WGS_STATE_UNKNOWN:		/* new session initiated by us */
1692 		wg_get_session_index(wg, wgs);
1693 		break;
1694 	case WGS_STATE_INIT_ACTIVE:	/* we're already initiating, stop */
1695 		WG_TRACE("Session already initializing, skip starting new one");
1696 		return EBUSY;
1697 	case WGS_STATE_INIT_PASSIVE:	/* peer was trying -- XXX what now? */
1698 		WG_TRACE("Session already initializing, destroying old states");
1699 		wg_clear_states(wgs);
1700 		/* keep session index */
1701 		break;
1702 	case WGS_STATE_ESTABLISHED:	/* can't happen */
1703 		panic("unstable session can't be established");
1704 		break;
1705 	case WGS_STATE_DESTROYING:	/* rekey initiated by us too early */
1706 		WG_TRACE("Session destroying");
1707 		/* XXX should wait? */
1708 		return EBUSY;
1709 	}
1710 	wgs->wgs_state = WGS_STATE_INIT_ACTIVE;
1711 
1712 	m = m_gethdr(M_WAIT, MT_DATA);
1713 	if (sizeof(*wgmi) > MHLEN) {
1714 		m_clget(m, M_WAIT);
1715 		CTASSERT(sizeof(*wgmi) <= MCLBYTES);
1716 	}
1717 	m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
1718 	wgmi = mtod(m, struct wg_msg_init *);
1719 	wg_fill_msg_init(wg, wgp, wgs, wgmi);
1720 
1721 	error = wg->wg_ops->send_hs_msg(wgp, m);
1722 	if (error == 0) {
1723 		WG_TRACE("init msg sent");
1724 
1725 		if (wgp->wgp_handshake_start_time == 0)
1726 			wgp->wgp_handshake_start_time = time_uptime;
1727 		callout_schedule(&wgp->wgp_handshake_timeout_timer,
1728 		    MIN(wg_rekey_timeout, (unsigned)(INT_MAX / hz)) * hz);
1729 	} else {
1730 		wg_put_session_index(wg, wgs);
1731 		/* Initiation failed; toss packet waiting for it if any.  */
1732 		if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL)
1733 			m_freem(m);
1734 	}
1735 
1736 	return error;
1737 }
1738 
1739 static void
1740 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
1741     struct wg_session *wgs, struct wg_msg_resp *wgmr,
1742     const struct wg_msg_init *wgmi)
1743 {
1744 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1745 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
1746 	uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1747 	uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
1748 	uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
1749 
1750 	KASSERT(mutex_owned(wgp->wgp_lock));
1751 	KASSERT(wgs == wgp->wgp_session_unstable);
1752 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
1753 
1754 	memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1755 	memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1756 
1757 	wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
1758 	wgmr->wgmr_sender = wgs->wgs_local_index;
1759 	wgmr->wgmr_receiver = wgmi->wgmi_sender;
1760 
1761 	/* [W] 5.4.3 Second Message: Responder to Initiator */
1762 
1763 	/* [N] 2.2: "e" */
1764 	/* Er^priv, Er^pub := DH-GENERATE() */
1765 	wg_algo_generate_keypair(pubkey, privkey);
1766 	/* Cr := KDF1(Cr, Er^pub) */
1767 	wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
1768 	/* msg.ephemeral := Er^pub */
1769 	memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
1770 	/* Hr := HASH(Hr || msg.ephemeral) */
1771 	wg_algo_hash(hash, pubkey, sizeof(pubkey));
1772 
1773 	WG_DUMP_HASH("ckey", ckey);
1774 	WG_DUMP_HASH("hash", hash);
1775 
1776 	/* [N] 2.2: "ee" */
1777 	/* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1778 	wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
1779 
1780 	/* [N] 2.2: "se" */
1781 	/* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1782 	wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
1783 
1784 	/* [N] 9.2: "psk" */
1785     {
1786 	uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1787 	/* Cr, r, k := KDF3(Cr, Q) */
1788 	wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1789 	    sizeof(wgp->wgp_psk));
1790 	/* Hr := HASH(Hr || r) */
1791 	wg_algo_hash(hash, kdfout, sizeof(kdfout));
1792     }
1793 
1794 	/* msg.empty := AEAD(k, 0, e, Hr) */
1795 	wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
1796 	    cipher_key, 0, NULL, 0, hash, sizeof(hash));
1797 	/* Hr := HASH(Hr || msg.empty) */
1798 	wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1799 
1800 	WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1801 
1802 	/* [W] 5.4.4: Cookie MACs */
1803 	/* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
1804 	wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
1805 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
1806 	    (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1807 	/* Need mac1 to decrypt a cookie from a cookie message */
1808 	memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
1809 	    sizeof(wgp->wgp_last_sent_mac1));
1810 	wgp->wgp_last_sent_mac1_valid = true;
1811 
1812 	if (wgp->wgp_latest_cookie_time == 0 ||
1813 	    (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
1814 		/* msg.mac2 := 0^16 */
1815 		memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
1816 	else {
1817 		/* msg.mac2 := MAC(Lm, msg_b) */
1818 		wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
1819 		    wgp->wgp_latest_cookie, WG_COOKIE_LEN,
1820 		    (const uint8_t *)wgmr,
1821 		    offsetof(struct wg_msg_resp, wgmr_mac2),
1822 		    NULL, 0);
1823 	}
1824 
1825 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
1826 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
1827 	memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
1828 	memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
1829 	wgs->wgs_remote_index = wgmi->wgmi_sender;
1830 	WG_DLOG("sender=%x\n", wgs->wgs_local_index);
1831 	WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
1832 }
1833 
1834 static void
1835 wg_swap_sessions(struct wg_peer *wgp)
1836 {
1837 	struct wg_session *wgs, *wgs_prev;
1838 
1839 	KASSERT(mutex_owned(wgp->wgp_lock));
1840 
1841 	wgs = wgp->wgp_session_unstable;
1842 	KASSERT(wgs->wgs_state == WGS_STATE_ESTABLISHED);
1843 
1844 	wgs_prev = wgp->wgp_session_stable;
1845 	KASSERT(wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
1846 	    wgs_prev->wgs_state == WGS_STATE_UNKNOWN);
1847 	atomic_store_release(&wgp->wgp_session_stable, wgs);
1848 	wgp->wgp_session_unstable = wgs_prev;
1849 }
1850 
1851 static void __noinline
1852 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
1853     const struct sockaddr *src)
1854 {
1855 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
1856 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
1857 	uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
1858 	struct wg_peer *wgp;
1859 	struct wg_session *wgs;
1860 	struct psref psref;
1861 	int error;
1862 	uint8_t mac1[WG_MAC_LEN];
1863 	struct wg_session *wgs_prev;
1864 	struct mbuf *m;
1865 
1866 	wg_algo_mac_mac1(mac1, sizeof(mac1),
1867 	    wg->wg_pubkey, sizeof(wg->wg_pubkey),
1868 	    (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
1869 
1870 	/*
1871 	 * [W] 5.3: Denial of Service Mitigation & Cookies
1872 	 * "the responder, ..., must always reject messages with an invalid
1873 	 *  msg.mac1"
1874 	 */
1875 	if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
1876 		WG_DLOG("mac1 is invalid\n");
1877 		return;
1878 	}
1879 
1880 	WG_TRACE("resp msg received");
1881 	wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
1882 	if (wgs == NULL) {
1883 		WG_TRACE("No session found");
1884 		return;
1885 	}
1886 
1887 	wgp = wgs->wgs_peer;
1888 
1889 	mutex_enter(wgp->wgp_lock);
1890 
1891 	/* If we weren't waiting for a handshake response, drop it.  */
1892 	if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
1893 		WG_TRACE("peer sent spurious handshake response, ignoring");
1894 		goto out;
1895 	}
1896 
1897 	if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
1898 		WG_TRACE("under load");
1899 		/*
1900 		 * [W] 5.3: Denial of Service Mitigation & Cookies
1901 		 * "the responder, ..., and when under load may reject messages
1902 		 *  with an invalid msg.mac2.  If the responder receives a
1903 		 *  message with a valid msg.mac1 yet with an invalid msg.mac2,
1904 		 *  and is under load, it may respond with a cookie reply
1905 		 *  message"
1906 		 */
1907 		uint8_t zero[WG_MAC_LEN] = {0};
1908 		if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
1909 			WG_TRACE("sending a cookie message: no cookie included");
1910 			(void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1911 			    wgmr->wgmr_mac1, src);
1912 			goto out;
1913 		}
1914 		if (!wgp->wgp_last_sent_cookie_valid) {
1915 			WG_TRACE("sending a cookie message: no cookie sent ever");
1916 			(void)wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
1917 			    wgmr->wgmr_mac1, src);
1918 			goto out;
1919 		}
1920 		uint8_t mac2[WG_MAC_LEN];
1921 		wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
1922 		    WG_COOKIE_LEN, (const uint8_t *)wgmr,
1923 		    offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
1924 		if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
1925 			WG_DLOG("mac2 is invalid\n");
1926 			goto out;
1927 		}
1928 		WG_TRACE("under load, but continue to sending");
1929 	}
1930 
1931 	memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
1932 	memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
1933 
1934 	/*
1935 	 * [W] 5.4.3 Second Message: Responder to Initiator
1936 	 * "When the initiator receives this message, it does the same
1937 	 *  operations so that its final state variables are identical,
1938 	 *  replacing the operands of the DH function to produce equivalent
1939 	 *  values."
1940 	 *  Note that the following comments of operations are just copies of
1941 	 *  the initiator's ones.
1942 	 */
1943 
1944 	/* [N] 2.2: "e" */
1945 	/* Cr := KDF1(Cr, Er^pub) */
1946 	wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
1947 	    sizeof(wgmr->wgmr_ephemeral));
1948 	/* Hr := HASH(Hr || msg.ephemeral) */
1949 	wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
1950 
1951 	WG_DUMP_HASH("ckey", ckey);
1952 	WG_DUMP_HASH("hash", hash);
1953 
1954 	/* [N] 2.2: "ee" */
1955 	/* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
1956 	wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
1957 	    wgmr->wgmr_ephemeral);
1958 
1959 	/* [N] 2.2: "se" */
1960 	/* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
1961 	wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
1962 
1963 	/* [N] 9.2: "psk" */
1964     {
1965 	uint8_t kdfout[WG_KDF_OUTPUT_LEN];
1966 	/* Cr, r, k := KDF3(Cr, Q) */
1967 	wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
1968 	    sizeof(wgp->wgp_psk));
1969 	/* Hr := HASH(Hr || r) */
1970 	wg_algo_hash(hash, kdfout, sizeof(kdfout));
1971     }
1972 
1973     {
1974 	uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
1975 	/* msg.empty := AEAD(k, 0, e, Hr) */
1976 	error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
1977 	    sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
1978 	WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
1979 	if (error != 0) {
1980 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
1981 		    "%s: peer %s: wg_algo_aead_dec for empty message failed\n",
1982 		    if_name(&wg->wg_if), wgp->wgp_name);
1983 		goto out;
1984 	}
1985 	/* Hr := HASH(Hr || msg.empty) */
1986 	wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
1987     }
1988 
1989 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
1990 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
1991 	wgs->wgs_remote_index = wgmr->wgmr_sender;
1992 	WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
1993 
1994 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_ACTIVE);
1995 	wgs->wgs_state = WGS_STATE_ESTABLISHED;
1996 	wgs->wgs_time_established = time_uptime;
1997 	wgs->wgs_time_last_data_sent = 0;
1998 	wgs->wgs_is_initiator = true;
1999 	wg_calculate_keys(wgs, true);
2000 	wg_clear_states(wgs);
2001 	WG_TRACE("WGS_STATE_ESTABLISHED");
2002 
2003 	callout_stop(&wgp->wgp_handshake_timeout_timer);
2004 
2005 	wg_swap_sessions(wgp);
2006 	KASSERT(wgs == wgp->wgp_session_stable);
2007 	wgs_prev = wgp->wgp_session_unstable;
2008 	getnanotime(&wgp->wgp_last_handshake_time);
2009 	wgp->wgp_handshake_start_time = 0;
2010 	wgp->wgp_last_sent_mac1_valid = false;
2011 	wgp->wgp_last_sent_cookie_valid = false;
2012 
2013 	wg_schedule_rekey_timer(wgp);
2014 
2015 	wg_update_endpoint_if_necessary(wgp, src);
2016 
2017 	/*
2018 	 * If we had a data packet queued up, send it; otherwise send a
2019 	 * keepalive message -- either way we have to send something
2020 	 * immediately or else the responder will never answer.
2021 	 */
2022 	if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
2023 		kpreempt_disable();
2024 		const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
2025 		M_SETCTX(m, wgp);
2026 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
2027 			WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
2028 			    if_name(&wg->wg_if));
2029 			m_freem(m);
2030 		}
2031 		kpreempt_enable();
2032 	} else {
2033 		wg_send_keepalive_msg(wgp, wgs);
2034 	}
2035 
2036 	if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
2037 		/* Wait for wg_get_stable_session to drain.  */
2038 		pserialize_perform(wgp->wgp_psz);
2039 
2040 		/* Transition ESTABLISHED->DESTROYING.  */
2041 		wgs_prev->wgs_state = WGS_STATE_DESTROYING;
2042 
2043 		/* We can't destroy the old session immediately */
2044 		wg_schedule_session_dtor_timer(wgp);
2045 	} else {
2046 		KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
2047 		    "state=%d", wgs_prev->wgs_state);
2048 	}
2049 
2050 out:
2051 	mutex_exit(wgp->wgp_lock);
2052 	wg_put_session(wgs, &psref);
2053 }
2054 
2055 static int
2056 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
2057     struct wg_session *wgs, const struct wg_msg_init *wgmi)
2058 {
2059 	int error;
2060 	struct mbuf *m;
2061 	struct wg_msg_resp *wgmr;
2062 
2063 	KASSERT(mutex_owned(wgp->wgp_lock));
2064 	KASSERT(wgs == wgp->wgp_session_unstable);
2065 	KASSERT(wgs->wgs_state == WGS_STATE_INIT_PASSIVE);
2066 
2067 	m = m_gethdr(M_WAIT, MT_DATA);
2068 	if (sizeof(*wgmr) > MHLEN) {
2069 		m_clget(m, M_WAIT);
2070 		CTASSERT(sizeof(*wgmr) <= MCLBYTES);
2071 	}
2072 	m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
2073 	wgmr = mtod(m, struct wg_msg_resp *);
2074 	wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
2075 
2076 	error = wg->wg_ops->send_hs_msg(wgp, m);
2077 	if (error == 0)
2078 		WG_TRACE("resp msg sent");
2079 	return error;
2080 }
2081 
2082 static struct wg_peer *
2083 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
2084     const uint8_t pubkey[WG_STATIC_KEY_LEN], struct psref *psref)
2085 {
2086 	struct wg_peer *wgp;
2087 
2088 	int s = pserialize_read_enter();
2089 	wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
2090 	if (wgp != NULL)
2091 		wg_get_peer(wgp, psref);
2092 	pserialize_read_exit(s);
2093 
2094 	return wgp;
2095 }
2096 
2097 static void
2098 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
2099     struct wg_msg_cookie *wgmc, const uint32_t sender,
2100     const uint8_t mac1[WG_MAC_LEN], const struct sockaddr *src)
2101 {
2102 	uint8_t cookie[WG_COOKIE_LEN];
2103 	uint8_t key[WG_HASH_LEN];
2104 	uint8_t addr[sizeof(struct in6_addr)];
2105 	size_t addrlen;
2106 	uint16_t uh_sport; /* be */
2107 
2108 	KASSERT(mutex_owned(wgp->wgp_lock));
2109 
2110 	wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
2111 	wgmc->wgmc_receiver = sender;
2112 	cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
2113 
2114 	/*
2115 	 * [W] 5.4.7: Under Load: Cookie Reply Message
2116 	 * "The secret variable, Rm, changes every two minutes to a
2117 	 * random value"
2118 	 */
2119 	if ((time_uptime - wgp->wgp_last_genrandval_time) > WG_RANDVAL_TIME) {
2120 		wgp->wgp_randval = cprng_strong32();
2121 		wgp->wgp_last_genrandval_time = time_uptime;
2122 	}
2123 
2124 	switch (src->sa_family) {
2125 	case AF_INET: {
2126 		const struct sockaddr_in *sin = satocsin(src);
2127 		addrlen = sizeof(sin->sin_addr);
2128 		memcpy(addr, &sin->sin_addr, addrlen);
2129 		uh_sport = sin->sin_port;
2130 		break;
2131 	    }
2132 #ifdef INET6
2133 	case AF_INET6: {
2134 		const struct sockaddr_in6 *sin6 = satocsin6(src);
2135 		addrlen = sizeof(sin6->sin6_addr);
2136 		memcpy(addr, &sin6->sin6_addr, addrlen);
2137 		uh_sport = sin6->sin6_port;
2138 		break;
2139 	    }
2140 #endif
2141 	default:
2142 		panic("invalid af=%d", src->sa_family);
2143 	}
2144 
2145 	wg_algo_mac(cookie, sizeof(cookie),
2146 	    (const uint8_t *)&wgp->wgp_randval, sizeof(wgp->wgp_randval),
2147 	    addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
2148 	wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
2149 	    sizeof(wg->wg_pubkey));
2150 	wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
2151 	    cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
2152 
2153 	/* Need to store to calculate mac2 */
2154 	memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
2155 	wgp->wgp_last_sent_cookie_valid = true;
2156 }
2157 
2158 static int
2159 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
2160     const uint32_t sender, const uint8_t mac1[WG_MAC_LEN],
2161     const struct sockaddr *src)
2162 {
2163 	int error;
2164 	struct mbuf *m;
2165 	struct wg_msg_cookie *wgmc;
2166 
2167 	KASSERT(mutex_owned(wgp->wgp_lock));
2168 
2169 	m = m_gethdr(M_WAIT, MT_DATA);
2170 	if (sizeof(*wgmc) > MHLEN) {
2171 		m_clget(m, M_WAIT);
2172 		CTASSERT(sizeof(*wgmc) <= MCLBYTES);
2173 	}
2174 	m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
2175 	wgmc = mtod(m, struct wg_msg_cookie *);
2176 	wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
2177 
2178 	error = wg->wg_ops->send_hs_msg(wgp, m);
2179 	if (error == 0)
2180 		WG_TRACE("cookie msg sent");
2181 	return error;
2182 }
2183 
2184 static bool
2185 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
2186 {
2187 #ifdef WG_DEBUG_PARAMS
2188 	if (wg_force_underload)
2189 		return true;
2190 #endif
2191 
2192 	/*
2193 	 * XXX we don't have a means of a load estimation.  The purpose of
2194 	 * the mechanism is a DoS mitigation, so we consider frequent handshake
2195 	 * messages as (a kind of) load; if a message of the same type comes
2196 	 * to a peer within 1 second, we consider we are under load.
2197 	 */
2198 	time_t last = wgp->wgp_last_msg_received_time[msgtype];
2199 	wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
2200 	return (time_uptime - last) == 0;
2201 }
2202 
2203 static void
2204 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
2205 {
2206 
2207 	KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2208 
2209 	/*
2210 	 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
2211 	 */
2212 	if (initiator) {
2213 		wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
2214 		    wgs->wgs_chaining_key, NULL, 0);
2215 	} else {
2216 		wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
2217 		    wgs->wgs_chaining_key, NULL, 0);
2218 	}
2219 	WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
2220 	WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
2221 }
2222 
2223 static uint64_t
2224 wg_session_get_send_counter(struct wg_session *wgs)
2225 {
2226 #ifdef __HAVE_ATOMIC64_LOADSTORE
2227 	return atomic_load_relaxed(&wgs->wgs_send_counter);
2228 #else
2229 	uint64_t send_counter;
2230 
2231 	mutex_enter(&wgs->wgs_send_counter_lock);
2232 	send_counter = wgs->wgs_send_counter;
2233 	mutex_exit(&wgs->wgs_send_counter_lock);
2234 
2235 	return send_counter;
2236 #endif
2237 }
2238 
2239 static uint64_t
2240 wg_session_inc_send_counter(struct wg_session *wgs)
2241 {
2242 #ifdef __HAVE_ATOMIC64_LOADSTORE
2243 	return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
2244 #else
2245 	uint64_t send_counter;
2246 
2247 	mutex_enter(&wgs->wgs_send_counter_lock);
2248 	send_counter = wgs->wgs_send_counter++;
2249 	mutex_exit(&wgs->wgs_send_counter_lock);
2250 
2251 	return send_counter;
2252 #endif
2253 }
2254 
2255 static void
2256 wg_clear_states(struct wg_session *wgs)
2257 {
2258 
2259 	KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
2260 
2261 	wgs->wgs_send_counter = 0;
2262 	sliwin_reset(&wgs->wgs_recvwin->window);
2263 
2264 #define wgs_clear(v)	explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
2265 	wgs_clear(handshake_hash);
2266 	wgs_clear(chaining_key);
2267 	wgs_clear(ephemeral_key_pub);
2268 	wgs_clear(ephemeral_key_priv);
2269 	wgs_clear(ephemeral_key_peer);
2270 #undef wgs_clear
2271 }
2272 
2273 static struct wg_session *
2274 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
2275     struct psref *psref)
2276 {
2277 	struct wg_session *wgs;
2278 
2279 	int s = pserialize_read_enter();
2280 	wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
2281 	if (wgs != NULL) {
2282 		KASSERT(atomic_load_relaxed(&wgs->wgs_state) !=
2283 		    WGS_STATE_UNKNOWN);
2284 		psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
2285 	}
2286 	pserialize_read_exit(s);
2287 
2288 	return wgs;
2289 }
2290 
2291 static void
2292 wg_schedule_rekey_timer(struct wg_peer *wgp)
2293 {
2294 	int timeout = MIN(wg_rekey_after_time, (unsigned)(INT_MAX / hz));
2295 
2296 	callout_schedule(&wgp->wgp_rekey_timer, timeout * hz);
2297 }
2298 
2299 static void
2300 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
2301 {
2302 	struct mbuf *m;
2303 
2304 	/*
2305 	 * [W] 6.5 Passive Keepalive
2306 	 * "A keepalive message is simply a transport data message with
2307 	 *  a zero-length encapsulated encrypted inner-packet."
2308 	 */
2309 	m = m_gethdr(M_WAIT, MT_DATA);
2310 	wg_send_data_msg(wgp, wgs, m);
2311 }
2312 
2313 static bool
2314 wg_need_to_send_init_message(struct wg_session *wgs)
2315 {
2316 	/*
2317 	 * [W] 6.2 Transport Message Limits
2318 	 * "if a peer is the initiator of a current secure session,
2319 	 *  WireGuard will send a handshake initiation message to begin
2320 	 *  a new secure session ... if after receiving a transport data
2321 	 *  message, the current secure session is (REJECT-AFTER-TIME −
2322 	 *  KEEPALIVE-TIMEOUT − REKEY-TIMEOUT) seconds old and it has
2323 	 *  not yet acted upon this event."
2324 	 */
2325 	return wgs->wgs_is_initiator && wgs->wgs_time_last_data_sent == 0 &&
2326 	    (time_uptime - wgs->wgs_time_established) >=
2327 	    (wg_reject_after_time - wg_keepalive_timeout - wg_rekey_timeout);
2328 }
2329 
2330 static void
2331 wg_schedule_peer_task(struct wg_peer *wgp, unsigned int task)
2332 {
2333 
2334 	mutex_enter(wgp->wgp_intr_lock);
2335 	WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
2336 	if (wgp->wgp_tasks == 0)
2337 		/*
2338 		 * XXX If the current CPU is already loaded -- e.g., if
2339 		 * there's already a bunch of handshakes queued up --
2340 		 * consider tossing this over to another CPU to
2341 		 * distribute the load.
2342 		 */
2343 		workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
2344 	wgp->wgp_tasks |= task;
2345 	mutex_exit(wgp->wgp_intr_lock);
2346 }
2347 
2348 static void
2349 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
2350 {
2351 	struct wg_sockaddr *wgsa_prev;
2352 
2353 	WG_TRACE("Changing endpoint");
2354 
2355 	memcpy(wgp->wgp_endpoint0, new, new->sa_len);
2356 	wgsa_prev = wgp->wgp_endpoint;
2357 	atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
2358 	wgp->wgp_endpoint0 = wgsa_prev;
2359 	atomic_store_release(&wgp->wgp_endpoint_available, true);
2360 
2361 	wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
2362 }
2363 
2364 static bool
2365 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
2366 {
2367 	uint16_t packet_len;
2368 	const struct ip *ip;
2369 
2370 	if (__predict_false(decrypted_len < sizeof(struct ip)))
2371 		return false;
2372 
2373 	ip = (const struct ip *)packet;
2374 	if (ip->ip_v == 4)
2375 		*af = AF_INET;
2376 	else if (ip->ip_v == 6)
2377 		*af = AF_INET6;
2378 	else
2379 		return false;
2380 
2381 	WG_DLOG("af=%d\n", *af);
2382 
2383 	switch (*af) {
2384 #ifdef INET
2385 	case AF_INET:
2386 		packet_len = ntohs(ip->ip_len);
2387 		break;
2388 #endif
2389 #ifdef INET6
2390 	case AF_INET6: {
2391 		const struct ip6_hdr *ip6;
2392 
2393 		if (__predict_false(decrypted_len < sizeof(struct ip6_hdr)))
2394 			return false;
2395 
2396 		ip6 = (const struct ip6_hdr *)packet;
2397 		packet_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2398 		break;
2399 	}
2400 #endif
2401 	default:
2402 		return false;
2403 	}
2404 
2405 	WG_DLOG("packet_len=%u\n", packet_len);
2406 	if (packet_len > decrypted_len)
2407 		return false;
2408 
2409 	return true;
2410 }
2411 
2412 static bool
2413 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
2414     int af, char *packet)
2415 {
2416 	struct sockaddr_storage ss;
2417 	struct sockaddr *sa;
2418 	struct psref psref;
2419 	struct wg_peer *wgp;
2420 	bool ok;
2421 
2422 	/*
2423 	 * II CRYPTOKEY ROUTING
2424 	 * "it will only accept it if its source IP resolves in the
2425 	 *  table to the public key used in the secure session for
2426 	 *  decrypting it."
2427 	 */
2428 
2429 	if (af == AF_INET) {
2430 		const struct ip *ip = (const struct ip *)packet;
2431 		struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
2432 		sockaddr_in_init(sin, &ip->ip_src, 0);
2433 		sa = sintosa(sin);
2434 #ifdef INET6
2435 	} else {
2436 		const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
2437 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
2438 		sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
2439 		sa = sin6tosa(sin6);
2440 #endif
2441 	}
2442 
2443 	wgp = wg_pick_peer_by_sa(wg, sa, &psref);
2444 	ok = (wgp == wgp_expected);
2445 	if (wgp != NULL)
2446 		wg_put_peer(wgp, &psref);
2447 
2448 	return ok;
2449 }
2450 
2451 static void
2452 wg_session_dtor_timer(void *arg)
2453 {
2454 	struct wg_peer *wgp = arg;
2455 
2456 	WG_TRACE("enter");
2457 
2458 	wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
2459 }
2460 
2461 static void
2462 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
2463 {
2464 
2465 	/* 1 second grace period */
2466 	callout_schedule(&wgp->wgp_session_dtor_timer, hz);
2467 }
2468 
2469 static bool
2470 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
2471 {
2472 	if (sa1->sa_family != sa2->sa_family)
2473 		return false;
2474 
2475 	switch (sa1->sa_family) {
2476 #ifdef INET
2477 	case AF_INET:
2478 		return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
2479 #endif
2480 #ifdef INET6
2481 	case AF_INET6:
2482 		return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
2483 #endif
2484 	default:
2485 		return false;
2486 	}
2487 }
2488 
2489 static void
2490 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
2491     const struct sockaddr *src)
2492 {
2493 	struct wg_sockaddr *wgsa;
2494 	struct psref psref;
2495 
2496 	wgsa = wg_get_endpoint_sa(wgp, &psref);
2497 
2498 #ifdef WG_DEBUG_LOG
2499 	char oldaddr[128], newaddr[128];
2500 	sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
2501 	sockaddr_format(src, newaddr, sizeof(newaddr));
2502 	WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
2503 #endif
2504 
2505 	/*
2506 	 * III: "Since the packet has authenticated correctly, the source IP of
2507 	 * the outer UDP/IP packet is used to update the endpoint for peer..."
2508 	 */
2509 	if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
2510 		!sockaddr_port_match(src, wgsatosa(wgsa)))) {
2511 		/* XXX We can't change the endpoint twice in a short period */
2512 		if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
2513 			wg_change_endpoint(wgp, src);
2514 		}
2515 	}
2516 
2517 	wg_put_sa(wgp, wgsa, &psref);
2518 }
2519 
2520 static void __noinline
2521 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
2522     const struct sockaddr *src)
2523 {
2524 	struct wg_msg_data *wgmd;
2525 	char *encrypted_buf = NULL, *decrypted_buf;
2526 	size_t encrypted_len, decrypted_len;
2527 	struct wg_session *wgs;
2528 	struct wg_peer *wgp;
2529 	int state;
2530 	size_t mlen;
2531 	struct psref psref;
2532 	int error, af;
2533 	bool success, free_encrypted_buf = false, ok;
2534 	struct mbuf *n;
2535 
2536 	KASSERT(m->m_len >= sizeof(struct wg_msg_data));
2537 	wgmd = mtod(m, struct wg_msg_data *);
2538 
2539 	KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
2540 	WG_TRACE("data");
2541 
2542 	/* Find the putative session, or drop.  */
2543 	wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
2544 	if (wgs == NULL) {
2545 		WG_TRACE("No session found");
2546 		m_freem(m);
2547 		return;
2548 	}
2549 
2550 	/*
2551 	 * We are only ready to handle data when in INIT_PASSIVE,
2552 	 * ESTABLISHED, or DESTROYING.  All transitions out of that
2553 	 * state dissociate the session index and drain psrefs.
2554 	 */
2555 	state = atomic_load_relaxed(&wgs->wgs_state);
2556 	switch (state) {
2557 	case WGS_STATE_UNKNOWN:
2558 		panic("wg session %p in unknown state has session index %u",
2559 		    wgs, wgmd->wgmd_receiver);
2560 	case WGS_STATE_INIT_ACTIVE:
2561 		WG_TRACE("not yet ready for data");
2562 		goto out;
2563 	case WGS_STATE_INIT_PASSIVE:
2564 	case WGS_STATE_ESTABLISHED:
2565 	case WGS_STATE_DESTROYING:
2566 		break;
2567 	}
2568 
2569 	/*
2570 	 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
2571 	 * to update the endpoint if authentication succeeds.
2572 	 */
2573 	wgp = wgs->wgs_peer;
2574 
2575 	/*
2576 	 * Reject outrageously wrong sequence numbers before doing any
2577 	 * crypto work or taking any locks.
2578 	 */
2579 	error = sliwin_check_fast(&wgs->wgs_recvwin->window,
2580 	    le64toh(wgmd->wgmd_counter));
2581 	if (error) {
2582 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2583 		    "%s: peer %s: out-of-window packet: %"PRIu64"\n",
2584 		    if_name(&wg->wg_if), wgp->wgp_name,
2585 		    le64toh(wgmd->wgmd_counter));
2586 		goto out;
2587 	}
2588 
2589 	/* Ensure the payload and authenticator are contiguous.  */
2590 	mlen = m_length(m);
2591 	encrypted_len = mlen - sizeof(*wgmd);
2592 	if (encrypted_len < WG_AUTHTAG_LEN) {
2593 		WG_DLOG("Short encrypted_len: %lu\n", encrypted_len);
2594 		goto out;
2595 	}
2596 	success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
2597 	if (success) {
2598 		encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
2599 	} else {
2600 		encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
2601 		if (encrypted_buf == NULL) {
2602 			WG_DLOG("failed to allocate encrypted_buf\n");
2603 			goto out;
2604 		}
2605 		m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
2606 		free_encrypted_buf = true;
2607 	}
2608 	/* m_ensure_contig may change m regardless of its result */
2609 	KASSERT(m->m_len >= sizeof(*wgmd));
2610 	wgmd = mtod(m, struct wg_msg_data *);
2611 
2612 	/*
2613 	 * Get a buffer for the plaintext.  Add WG_AUTHTAG_LEN to avoid
2614 	 * a zero-length buffer (XXX).  Drop if plaintext is longer
2615 	 * than MCLBYTES (XXX).
2616 	 */
2617 	decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
2618 	if (decrypted_len > MCLBYTES) {
2619 		/* FIXME handle larger data than MCLBYTES */
2620 		WG_DLOG("couldn't handle larger data than MCLBYTES\n");
2621 		goto out;
2622 	}
2623 	n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
2624 	if (n == NULL) {
2625 		WG_DLOG("wg_get_mbuf failed\n");
2626 		goto out;
2627 	}
2628 	decrypted_buf = mtod(n, char *);
2629 
2630 	/* Decrypt and verify the packet.  */
2631 	WG_DLOG("mlen=%lu, encrypted_len=%lu\n", mlen, encrypted_len);
2632 	error = wg_algo_aead_dec(decrypted_buf,
2633 	    encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
2634 	    wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
2635 	    encrypted_len, NULL, 0);
2636 	if (error != 0) {
2637 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2638 		    "%s: peer %s: failed to wg_algo_aead_dec\n",
2639 		    if_name(&wg->wg_if), wgp->wgp_name);
2640 		m_freem(n);
2641 		goto out;
2642 	}
2643 	WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
2644 
2645 	/* Packet is genuine.  Reject it if a replay or just too old.  */
2646 	mutex_enter(&wgs->wgs_recvwin->lock);
2647 	error = sliwin_update(&wgs->wgs_recvwin->window,
2648 	    le64toh(wgmd->wgmd_counter));
2649 	mutex_exit(&wgs->wgs_recvwin->lock);
2650 	if (error) {
2651 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2652 		    "%s: peer %s: replay or out-of-window packet: %"PRIu64"\n",
2653 		    if_name(&wg->wg_if), wgp->wgp_name,
2654 		    le64toh(wgmd->wgmd_counter));
2655 		m_freem(n);
2656 		goto out;
2657 	}
2658 
2659 	/* We're done with m now; free it and chuck the pointers.  */
2660 	m_freem(m);
2661 	m = NULL;
2662 	wgmd = NULL;
2663 
2664 	/*
2665 	 * Validate the encapsulated packet header and get the address
2666 	 * family, or drop.
2667 	 */
2668 	ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
2669 	if (!ok) {
2670 		m_freem(n);
2671 		goto out;
2672 	}
2673 
2674 	/*
2675 	 * The packet is genuine.  Update the peer's endpoint if the
2676 	 * source address changed.
2677 	 *
2678 	 * XXX How to prevent DoS by replaying genuine packets from the
2679 	 * wrong source address?
2680 	 */
2681 	wg_update_endpoint_if_necessary(wgp, src);
2682 
2683 	/* Submit it into our network stack if routable.  */
2684 	ok = wg_validate_route(wg, wgp, af, decrypted_buf);
2685 	if (ok) {
2686 		wg->wg_ops->input(&wg->wg_if, n, af);
2687 	} else {
2688 		char addrstr[INET6_ADDRSTRLEN];
2689 		memset(addrstr, 0, sizeof(addrstr));
2690 		if (af == AF_INET) {
2691 			const struct ip *ip = (const struct ip *)decrypted_buf;
2692 			IN_PRINT(addrstr, &ip->ip_src);
2693 #ifdef INET6
2694 		} else if (af == AF_INET6) {
2695 			const struct ip6_hdr *ip6 =
2696 			    (const struct ip6_hdr *)decrypted_buf;
2697 			IN6_PRINT(addrstr, &ip6->ip6_src);
2698 #endif
2699 		}
2700 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2701 		    "%s: peer %s: invalid source address (%s)\n",
2702 		    if_name(&wg->wg_if), wgp->wgp_name, addrstr);
2703 		m_freem(n);
2704 		/*
2705 		 * The inner address is invalid however the session is valid
2706 		 * so continue the session processing below.
2707 		 */
2708 	}
2709 	n = NULL;
2710 
2711 	/* Update the state machine if necessary.  */
2712 	if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
2713 		/*
2714 		 * We were waiting for the initiator to send their
2715 		 * first data transport message, and that has happened.
2716 		 * Schedule a task to establish this session.
2717 		 */
2718 		wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
2719 	} else {
2720 		if (__predict_false(wg_need_to_send_init_message(wgs))) {
2721 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
2722 		}
2723 		/*
2724 		 * [W] 6.5 Passive Keepalive
2725 		 * "If a peer has received a validly-authenticated transport
2726 		 *  data message (section 5.4.6), but does not have any packets
2727 		 *  itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
2728 		 *  a keepalive message."
2729 		 */
2730 		WG_DLOG("time_uptime=%ju wgs_time_last_data_sent=%ju\n",
2731 		    (uintmax_t)time_uptime,
2732 		    (uintmax_t)wgs->wgs_time_last_data_sent);
2733 		if ((time_uptime - wgs->wgs_time_last_data_sent) >=
2734 		    wg_keepalive_timeout) {
2735 			WG_TRACE("Schedule sending keepalive message");
2736 			/*
2737 			 * We can't send a keepalive message here to avoid
2738 			 * a deadlock;  we already hold the solock of a socket
2739 			 * that is used to send the message.
2740 			 */
2741 			wg_schedule_peer_task(wgp,
2742 			    WGP_TASK_SEND_KEEPALIVE_MESSAGE);
2743 		}
2744 	}
2745 out:
2746 	wg_put_session(wgs, &psref);
2747 	if (m != NULL)
2748 		m_freem(m);
2749 	if (free_encrypted_buf)
2750 		kmem_intr_free(encrypted_buf, encrypted_len);
2751 }
2752 
2753 static void __noinline
2754 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
2755 {
2756 	struct wg_session *wgs;
2757 	struct wg_peer *wgp;
2758 	struct psref psref;
2759 	int error;
2760 	uint8_t key[WG_HASH_LEN];
2761 	uint8_t cookie[WG_COOKIE_LEN];
2762 
2763 	WG_TRACE("cookie msg received");
2764 
2765 	/* Find the putative session.  */
2766 	wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
2767 	if (wgs == NULL) {
2768 		WG_TRACE("No session found");
2769 		return;
2770 	}
2771 
2772 	/* Lock the peer so we can update the cookie state.  */
2773 	wgp = wgs->wgs_peer;
2774 	mutex_enter(wgp->wgp_lock);
2775 
2776 	if (!wgp->wgp_last_sent_mac1_valid) {
2777 		WG_TRACE("No valid mac1 sent (or expired)");
2778 		goto out;
2779 	}
2780 
2781 	/* Decrypt the cookie and store it for later handshake retry.  */
2782 	wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
2783 	    sizeof(wgp->wgp_pubkey));
2784 	error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
2785 	    wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
2786 	    wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
2787 	    wgmc->wgmc_salt);
2788 	if (error != 0) {
2789 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
2790 		    "%s: peer %s: wg_algo_aead_dec for cookie failed: "
2791 		    "error=%d\n", if_name(&wg->wg_if), wgp->wgp_name, error);
2792 		goto out;
2793 	}
2794 	/*
2795 	 * [W] 6.6: Interaction with Cookie Reply System
2796 	 * "it should simply store the decrypted cookie value from the cookie
2797 	 *  reply message, and wait for the expiration of the REKEY-TIMEOUT
2798 	 *  timer for retrying a handshake initiation message."
2799 	 */
2800 	wgp->wgp_latest_cookie_time = time_uptime;
2801 	memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
2802 out:
2803 	mutex_exit(wgp->wgp_lock);
2804 	wg_put_session(wgs, &psref);
2805 }
2806 
2807 static struct mbuf *
2808 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
2809 {
2810 	struct wg_msg wgm;
2811 	size_t mbuflen;
2812 	size_t msglen;
2813 
2814 	/*
2815 	 * Get the mbuf chain length.  It is already guaranteed, by
2816 	 * wg_overudp_cb, to be large enough for a struct wg_msg.
2817 	 */
2818 	mbuflen = m_length(m);
2819 	KASSERT(mbuflen >= sizeof(struct wg_msg));
2820 
2821 	/*
2822 	 * Copy the message header (32-bit message type) out -- we'll
2823 	 * worry about contiguity and alignment later.
2824 	 */
2825 	m_copydata(m, 0, sizeof(wgm), &wgm);
2826 	switch (le32toh(wgm.wgm_type)) {
2827 	case WG_MSG_TYPE_INIT:
2828 		msglen = sizeof(struct wg_msg_init);
2829 		break;
2830 	case WG_MSG_TYPE_RESP:
2831 		msglen = sizeof(struct wg_msg_resp);
2832 		break;
2833 	case WG_MSG_TYPE_COOKIE:
2834 		msglen = sizeof(struct wg_msg_cookie);
2835 		break;
2836 	case WG_MSG_TYPE_DATA:
2837 		msglen = sizeof(struct wg_msg_data);
2838 		break;
2839 	default:
2840 		WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
2841 		    "%s: Unexpected msg type: %u\n", if_name(&wg->wg_if),
2842 		    le32toh(wgm.wgm_type));
2843 		goto error;
2844 	}
2845 
2846 	/* Verify the mbuf chain is long enough for this type of message.  */
2847 	if (__predict_false(mbuflen < msglen)) {
2848 		WG_DLOG("Invalid msg size: mbuflen=%lu type=%u\n", mbuflen,
2849 		    le32toh(wgm.wgm_type));
2850 		goto error;
2851 	}
2852 
2853 	/* Make the message header contiguous if necessary.  */
2854 	if (__predict_false(m->m_len < msglen)) {
2855 		m = m_pullup(m, msglen);
2856 		if (m == NULL)
2857 			return NULL;
2858 	}
2859 
2860 	return m;
2861 
2862 error:
2863 	m_freem(m);
2864 	return NULL;
2865 }
2866 
2867 static void
2868 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
2869     const struct sockaddr *src)
2870 {
2871 	struct wg_msg *wgm;
2872 
2873 	m = wg_validate_msg_header(wg, m);
2874 	if (__predict_false(m == NULL))
2875 		return;
2876 
2877 	KASSERT(m->m_len >= sizeof(struct wg_msg));
2878 	wgm = mtod(m, struct wg_msg *);
2879 	switch (le32toh(wgm->wgm_type)) {
2880 	case WG_MSG_TYPE_INIT:
2881 		wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
2882 		break;
2883 	case WG_MSG_TYPE_RESP:
2884 		wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
2885 		break;
2886 	case WG_MSG_TYPE_COOKIE:
2887 		wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
2888 		break;
2889 	case WG_MSG_TYPE_DATA:
2890 		wg_handle_msg_data(wg, m, src);
2891 		/* wg_handle_msg_data frees m for us */
2892 		return;
2893 	default:
2894 		panic("invalid message type: %d", le32toh(wgm->wgm_type));
2895 	}
2896 
2897 	m_freem(m);
2898 }
2899 
2900 static void
2901 wg_receive_packets(struct wg_softc *wg, const int af)
2902 {
2903 
2904 	for (;;) {
2905 		int error, flags;
2906 		struct socket *so;
2907 		struct mbuf *m = NULL;
2908 		struct uio dummy_uio;
2909 		struct mbuf *paddr = NULL;
2910 		struct sockaddr *src;
2911 
2912 		so = wg_get_so_by_af(wg, af);
2913 		flags = MSG_DONTWAIT;
2914 		dummy_uio.uio_resid = 1000000000;
2915 
2916 		error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
2917 		    &flags);
2918 		if (error || m == NULL) {
2919 			//if (error == EWOULDBLOCK)
2920 			return;
2921 		}
2922 
2923 		KASSERT(paddr != NULL);
2924 		KASSERT(paddr->m_len >= sizeof(struct sockaddr));
2925 		src = mtod(paddr, struct sockaddr *);
2926 
2927 		wg_handle_packet(wg, m, src);
2928 	}
2929 }
2930 
2931 static void
2932 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
2933 {
2934 
2935 	psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
2936 }
2937 
2938 static void
2939 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
2940 {
2941 
2942 	psref_release(psref, &wgp->wgp_psref, wg_psref_class);
2943 }
2944 
2945 static void
2946 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
2947 {
2948 	struct wg_session *wgs;
2949 
2950 	WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
2951 
2952 	KASSERT(mutex_owned(wgp->wgp_lock));
2953 
2954 	if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
2955 		WGLOG(LOG_DEBUG, "%s: No endpoint available\n",
2956 		    if_name(&wg->wg_if));
2957 		/* XXX should do something? */
2958 		return;
2959 	}
2960 
2961 	wgs = wgp->wgp_session_stable;
2962 	if (wgs->wgs_state == WGS_STATE_UNKNOWN) {
2963 		/* XXX What if the unstable session is already INIT_ACTIVE?  */
2964 		wg_send_handshake_msg_init(wg, wgp);
2965 	} else {
2966 		/* rekey */
2967 		wgs = wgp->wgp_session_unstable;
2968 		if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
2969 			wg_send_handshake_msg_init(wg, wgp);
2970 	}
2971 }
2972 
2973 static void
2974 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
2975 {
2976 	struct wg_session *wgs;
2977 
2978 	WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
2979 
2980 	KASSERT(mutex_owned(wgp->wgp_lock));
2981 	KASSERT(wgp->wgp_handshake_start_time != 0);
2982 
2983 	wgs = wgp->wgp_session_unstable;
2984 	if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
2985 		return;
2986 
2987 	/*
2988 	 * XXX no real need to assign a new index here, but we do need
2989 	 * to transition to UNKNOWN temporarily
2990 	 */
2991 	wg_put_session_index(wg, wgs);
2992 
2993 	/* [W] 6.4 Handshake Initiation Retransmission */
2994 	if ((time_uptime - wgp->wgp_handshake_start_time) >
2995 	    wg_rekey_attempt_time) {
2996 		/* Give up handshaking */
2997 		wgp->wgp_handshake_start_time = 0;
2998 		WG_TRACE("give up");
2999 
3000 		/*
3001 		 * If a new data packet comes, handshaking will be retried
3002 		 * and a new session would be established at that time,
3003 		 * however we don't want to send pending packets then.
3004 		 */
3005 		wg_purge_pending_packets(wgp);
3006 		return;
3007 	}
3008 
3009 	wg_task_send_init_message(wg, wgp);
3010 }
3011 
3012 static void
3013 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
3014 {
3015 	struct wg_session *wgs, *wgs_prev;
3016 	struct mbuf *m;
3017 
3018 	KASSERT(mutex_owned(wgp->wgp_lock));
3019 
3020 	wgs = wgp->wgp_session_unstable;
3021 	if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
3022 		/* XXX Can this happen?  */
3023 		return;
3024 
3025 	wgs->wgs_state = WGS_STATE_ESTABLISHED;
3026 	wgs->wgs_time_established = time_uptime;
3027 	wgs->wgs_time_last_data_sent = 0;
3028 	wgs->wgs_is_initiator = false;
3029 	WG_TRACE("WGS_STATE_ESTABLISHED");
3030 
3031 	wg_swap_sessions(wgp);
3032 	KASSERT(wgs == wgp->wgp_session_stable);
3033 	wgs_prev = wgp->wgp_session_unstable;
3034 	getnanotime(&wgp->wgp_last_handshake_time);
3035 	wgp->wgp_handshake_start_time = 0;
3036 	wgp->wgp_last_sent_mac1_valid = false;
3037 	wgp->wgp_last_sent_cookie_valid = false;
3038 
3039 	/* If we had a data packet queued up, send it.  */
3040 	if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
3041 		kpreempt_disable();
3042 		const uint32_t h = curcpu()->ci_index; // pktq_rps_hash(m)
3043 		M_SETCTX(m, wgp);
3044 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
3045 			WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
3046 			    if_name(&wg->wg_if));
3047 			m_freem(m);
3048 		}
3049 		kpreempt_enable();
3050 	}
3051 
3052 	if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
3053 		/* Wait for wg_get_stable_session to drain.  */
3054 		pserialize_perform(wgp->wgp_psz);
3055 
3056 		/* Transition ESTABLISHED->DESTROYING.  */
3057 		wgs_prev->wgs_state = WGS_STATE_DESTROYING;
3058 
3059 		/* We can't destroy the old session immediately */
3060 		wg_schedule_session_dtor_timer(wgp);
3061 	} else {
3062 		KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
3063 		    "state=%d", wgs_prev->wgs_state);
3064 		wg_clear_states(wgs_prev);
3065 		wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
3066 	}
3067 }
3068 
3069 static void
3070 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
3071 {
3072 
3073 	WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
3074 
3075 	KASSERT(mutex_owned(wgp->wgp_lock));
3076 
3077 	if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
3078 		pserialize_perform(wgp->wgp_psz);
3079 		mutex_exit(wgp->wgp_lock);
3080 		psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
3081 		    wg_psref_class);
3082 		psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
3083 		    wg_psref_class);
3084 		mutex_enter(wgp->wgp_lock);
3085 		atomic_store_release(&wgp->wgp_endpoint_changing, 0);
3086 	}
3087 }
3088 
3089 static void
3090 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
3091 {
3092 	struct wg_session *wgs;
3093 
3094 	WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
3095 
3096 	KASSERT(mutex_owned(wgp->wgp_lock));
3097 
3098 	wgs = wgp->wgp_session_stable;
3099 	if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
3100 		return;
3101 
3102 	wg_send_keepalive_msg(wgp, wgs);
3103 }
3104 
3105 static void
3106 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
3107 {
3108 	struct wg_session *wgs;
3109 
3110 	WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
3111 
3112 	KASSERT(mutex_owned(wgp->wgp_lock));
3113 
3114 	wgs = wgp->wgp_session_unstable;
3115 	if (wgs->wgs_state == WGS_STATE_DESTROYING) {
3116 		wg_put_session_index(wg, wgs);
3117 	}
3118 }
3119 
3120 static void
3121 wg_peer_work(struct work *wk, void *cookie)
3122 {
3123 	struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
3124 	struct wg_softc *wg = wgp->wgp_sc;
3125 	unsigned int tasks;
3126 
3127 	mutex_enter(wgp->wgp_intr_lock);
3128 	while ((tasks = wgp->wgp_tasks) != 0) {
3129 		wgp->wgp_tasks = 0;
3130 		mutex_exit(wgp->wgp_intr_lock);
3131 
3132 		mutex_enter(wgp->wgp_lock);
3133 		if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
3134 			wg_task_send_init_message(wg, wgp);
3135 		if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
3136 			wg_task_retry_handshake(wg, wgp);
3137 		if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
3138 			wg_task_establish_session(wg, wgp);
3139 		if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
3140 			wg_task_endpoint_changed(wg, wgp);
3141 		if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
3142 			wg_task_send_keepalive_message(wg, wgp);
3143 		if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
3144 			wg_task_destroy_prev_session(wg, wgp);
3145 		mutex_exit(wgp->wgp_lock);
3146 
3147 		mutex_enter(wgp->wgp_intr_lock);
3148 	}
3149 	mutex_exit(wgp->wgp_intr_lock);
3150 }
3151 
3152 static void
3153 wg_job(struct threadpool_job *job)
3154 {
3155 	struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
3156 	int bound, upcalls;
3157 
3158 	mutex_enter(wg->wg_intr_lock);
3159 	while ((upcalls = wg->wg_upcalls) != 0) {
3160 		wg->wg_upcalls = 0;
3161 		mutex_exit(wg->wg_intr_lock);
3162 		bound = curlwp_bind();
3163 		if (ISSET(upcalls, WG_UPCALL_INET))
3164 			wg_receive_packets(wg, AF_INET);
3165 		if (ISSET(upcalls, WG_UPCALL_INET6))
3166 			wg_receive_packets(wg, AF_INET6);
3167 		curlwp_bindx(bound);
3168 		mutex_enter(wg->wg_intr_lock);
3169 	}
3170 	threadpool_job_done(job);
3171 	mutex_exit(wg->wg_intr_lock);
3172 }
3173 
3174 static int
3175 wg_bind_port(struct wg_softc *wg, const uint16_t port)
3176 {
3177 	int error;
3178 	uint16_t old_port = wg->wg_listen_port;
3179 
3180 	if (port != 0 && old_port == port)
3181 		return 0;
3182 
3183 	struct sockaddr_in _sin, *sin = &_sin;
3184 	sin->sin_len = sizeof(*sin);
3185 	sin->sin_family = AF_INET;
3186 	sin->sin_addr.s_addr = INADDR_ANY;
3187 	sin->sin_port = htons(port);
3188 
3189 	error = sobind(wg->wg_so4, sintosa(sin), curlwp);
3190 	if (error != 0)
3191 		return error;
3192 
3193 #ifdef INET6
3194 	struct sockaddr_in6 _sin6, *sin6 = &_sin6;
3195 	sin6->sin6_len = sizeof(*sin6);
3196 	sin6->sin6_family = AF_INET6;
3197 	sin6->sin6_addr = in6addr_any;
3198 	sin6->sin6_port = htons(port);
3199 
3200 	error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
3201 	if (error != 0)
3202 		return error;
3203 #endif
3204 
3205 	wg->wg_listen_port = port;
3206 
3207 	return 0;
3208 }
3209 
3210 static void
3211 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
3212 {
3213 	struct wg_softc *wg = cookie;
3214 	int reason;
3215 
3216 	reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
3217 	    WG_UPCALL_INET :
3218 	    WG_UPCALL_INET6;
3219 
3220 	mutex_enter(wg->wg_intr_lock);
3221 	wg->wg_upcalls |= reason;
3222 	threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
3223 	mutex_exit(wg->wg_intr_lock);
3224 }
3225 
3226 static int
3227 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
3228     struct sockaddr *src, void *arg)
3229 {
3230 	struct wg_softc *wg = arg;
3231 	struct wg_msg wgm;
3232 	struct mbuf *m = *mp;
3233 
3234 	WG_TRACE("enter");
3235 
3236 	/* Verify the mbuf chain is long enough to have a wg msg header.  */
3237 	KASSERT(offset <= m_length(m));
3238 	if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
3239 		/* drop on the floor */
3240 		m_freem(m);
3241 		return -1;
3242 	}
3243 
3244 	/*
3245 	 * Copy the message header (32-bit message type) out -- we'll
3246 	 * worry about contiguity and alignment later.
3247 	 */
3248 	m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
3249 	WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
3250 
3251 	/*
3252 	 * Handle DATA packets promptly as they arrive.  Other packets
3253 	 * may require expensive public-key crypto and are not as
3254 	 * sensitive to latency, so defer them to the worker thread.
3255 	 */
3256 	switch (le32toh(wgm.wgm_type)) {
3257 	case WG_MSG_TYPE_DATA:
3258 		/* handle immediately */
3259 		m_adj(m, offset);
3260 		if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
3261 			m = m_pullup(m, sizeof(struct wg_msg_data));
3262 			if (m == NULL)
3263 				return -1;
3264 		}
3265 		wg_handle_msg_data(wg, m, src);
3266 		*mp = NULL;
3267 		return 1;
3268 	case WG_MSG_TYPE_INIT:
3269 	case WG_MSG_TYPE_RESP:
3270 	case WG_MSG_TYPE_COOKIE:
3271 		/* pass through to so_receive in wg_receive_packets */
3272 		return 0;
3273 	default:
3274 		/* drop on the floor */
3275 		m_freem(m);
3276 		return -1;
3277 	}
3278 }
3279 
3280 static int
3281 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
3282 {
3283 	int error;
3284 	struct socket *so;
3285 
3286 	error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
3287 	if (error != 0)
3288 		return error;
3289 
3290 	solock(so);
3291 	so->so_upcallarg = wg;
3292 	so->so_upcall = wg_so_upcall;
3293 	so->so_rcv.sb_flags |= SB_UPCALL;
3294 	inpcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
3295 	sounlock(so);
3296 
3297 	*sop = so;
3298 
3299 	return 0;
3300 }
3301 
3302 static bool
3303 wg_session_hit_limits(struct wg_session *wgs)
3304 {
3305 
3306 	/*
3307 	 * [W] 6.2: Transport Message Limits
3308 	 * "After REJECT-AFTER-MESSAGES transport data messages or after the
3309 	 *  current secure session is REJECT-AFTER-TIME seconds old, whichever
3310 	 *  comes first, WireGuard will refuse to send any more transport data
3311 	 *  messages using the current secure session, ..."
3312 	 */
3313 	KASSERT(wgs->wgs_time_established != 0);
3314 	if ((time_uptime - wgs->wgs_time_established) > wg_reject_after_time) {
3315 		WG_DLOG("The session hits REJECT_AFTER_TIME\n");
3316 		return true;
3317 	} else if (wg_session_get_send_counter(wgs) >
3318 	    wg_reject_after_messages) {
3319 		WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
3320 		return true;
3321 	}
3322 
3323 	return false;
3324 }
3325 
3326 static void
3327 wgintr(void *cookie)
3328 {
3329 	struct wg_peer *wgp;
3330 	struct wg_session *wgs;
3331 	struct mbuf *m;
3332 	struct psref psref;
3333 
3334 	while ((m = pktq_dequeue(wg_pktq)) != NULL) {
3335 		wgp = M_GETCTX(m, struct wg_peer *);
3336 		if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
3337 			WG_TRACE("no stable session");
3338 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3339 			goto next0;
3340 		}
3341 		if (__predict_false(wg_session_hit_limits(wgs))) {
3342 			WG_TRACE("stable session hit limits");
3343 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3344 			goto next1;
3345 		}
3346 		wg_send_data_msg(wgp, wgs, m);
3347 		m = NULL;	/* consumed */
3348 next1:		wg_put_session(wgs, &psref);
3349 next0:		if (m)
3350 			m_freem(m);
3351 		/* XXX Yield to avoid userland starvation?  */
3352 	}
3353 }
3354 
3355 static void
3356 wg_rekey_timer(void *arg)
3357 {
3358 	struct wg_peer *wgp = arg;
3359 
3360 	wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3361 }
3362 
3363 static void
3364 wg_purge_pending_packets(struct wg_peer *wgp)
3365 {
3366 	struct mbuf *m;
3367 
3368 	if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL)
3369 		m_freem(m);
3370 	pktq_barrier(wg_pktq);
3371 }
3372 
3373 static void
3374 wg_handshake_timeout_timer(void *arg)
3375 {
3376 	struct wg_peer *wgp = arg;
3377 
3378 	WG_TRACE("enter");
3379 
3380 	wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
3381 }
3382 
3383 static struct wg_peer *
3384 wg_alloc_peer(struct wg_softc *wg)
3385 {
3386 	struct wg_peer *wgp;
3387 
3388 	wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
3389 
3390 	wgp->wgp_sc = wg;
3391 	callout_init(&wgp->wgp_rekey_timer, CALLOUT_MPSAFE);
3392 	callout_setfunc(&wgp->wgp_rekey_timer, wg_rekey_timer, wgp);
3393 	callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
3394 	callout_setfunc(&wgp->wgp_handshake_timeout_timer,
3395 	    wg_handshake_timeout_timer, wgp);
3396 	callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
3397 	callout_setfunc(&wgp->wgp_session_dtor_timer,
3398 	    wg_session_dtor_timer, wgp);
3399 	PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
3400 	wgp->wgp_endpoint_changing = false;
3401 	wgp->wgp_endpoint_available = false;
3402 	wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3403 	wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3404 	wgp->wgp_psz = pserialize_create();
3405 	psref_target_init(&wgp->wgp_psref, wg_psref_class);
3406 
3407 	wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
3408 	wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
3409 	psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3410 	psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3411 
3412 	struct wg_session *wgs;
3413 	wgp->wgp_session_stable =
3414 	    kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
3415 	wgp->wgp_session_unstable =
3416 	    kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
3417 	wgs = wgp->wgp_session_stable;
3418 	wgs->wgs_peer = wgp;
3419 	wgs->wgs_state = WGS_STATE_UNKNOWN;
3420 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
3421 #ifndef __HAVE_ATOMIC64_LOADSTORE
3422 	mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3423 #endif
3424 	wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3425 	mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3426 
3427 	wgs = wgp->wgp_session_unstable;
3428 	wgs->wgs_peer = wgp;
3429 	wgs->wgs_state = WGS_STATE_UNKNOWN;
3430 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
3431 #ifndef __HAVE_ATOMIC64_LOADSTORE
3432 	mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
3433 #endif
3434 	wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
3435 	mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
3436 
3437 	return wgp;
3438 }
3439 
3440 static void
3441 wg_destroy_peer(struct wg_peer *wgp)
3442 {
3443 	struct wg_session *wgs;
3444 	struct wg_softc *wg = wgp->wgp_sc;
3445 
3446 	/* Prevent new packets from this peer on any source address.  */
3447 	rw_enter(wg->wg_rwlock, RW_WRITER);
3448 	for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
3449 		struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
3450 		struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
3451 		struct radix_node *rn;
3452 
3453 		KASSERT(rnh != NULL);
3454 		rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
3455 		    &wga->wga_sa_mask, rnh);
3456 		if (rn == NULL) {
3457 			char addrstr[128];
3458 			sockaddr_format(&wga->wga_sa_addr, addrstr,
3459 			    sizeof(addrstr));
3460 			WGLOG(LOG_WARNING, "%s: Couldn't delete %s",
3461 			    if_name(&wg->wg_if), addrstr);
3462 		}
3463 	}
3464 	rw_exit(wg->wg_rwlock);
3465 
3466 	/* Purge pending packets.  */
3467 	wg_purge_pending_packets(wgp);
3468 
3469 	/* Halt all packet processing and timeouts.  */
3470 	callout_halt(&wgp->wgp_rekey_timer, NULL);
3471 	callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
3472 	callout_halt(&wgp->wgp_session_dtor_timer, NULL);
3473 
3474 	/* Wait for any queued work to complete.  */
3475 	workqueue_wait(wg_wq, &wgp->wgp_work);
3476 
3477 	wgs = wgp->wgp_session_unstable;
3478 	if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3479 		mutex_enter(wgp->wgp_lock);
3480 		wg_destroy_session(wg, wgs);
3481 		mutex_exit(wgp->wgp_lock);
3482 	}
3483 	mutex_destroy(&wgs->wgs_recvwin->lock);
3484 	kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3485 #ifndef __HAVE_ATOMIC64_LOADSTORE
3486 	mutex_destroy(&wgs->wgs_send_counter_lock);
3487 #endif
3488 	kmem_free(wgs, sizeof(*wgs));
3489 
3490 	wgs = wgp->wgp_session_stable;
3491 	if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
3492 		mutex_enter(wgp->wgp_lock);
3493 		wg_destroy_session(wg, wgs);
3494 		mutex_exit(wgp->wgp_lock);
3495 	}
3496 	mutex_destroy(&wgs->wgs_recvwin->lock);
3497 	kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
3498 #ifndef __HAVE_ATOMIC64_LOADSTORE
3499 	mutex_destroy(&wgs->wgs_send_counter_lock);
3500 #endif
3501 	kmem_free(wgs, sizeof(*wgs));
3502 
3503 	psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
3504 	psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
3505 	kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
3506 	kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
3507 
3508 	pserialize_destroy(wgp->wgp_psz);
3509 	mutex_obj_free(wgp->wgp_intr_lock);
3510 	mutex_obj_free(wgp->wgp_lock);
3511 
3512 	kmem_free(wgp, sizeof(*wgp));
3513 }
3514 
3515 static void
3516 wg_destroy_all_peers(struct wg_softc *wg)
3517 {
3518 	struct wg_peer *wgp, *wgp0 __diagused;
3519 	void *garbage_byname, *garbage_bypubkey;
3520 
3521 restart:
3522 	garbage_byname = garbage_bypubkey = NULL;
3523 	mutex_enter(wg->wg_lock);
3524 	WG_PEER_WRITER_FOREACH(wgp, wg) {
3525 		if (wgp->wgp_name[0]) {
3526 			wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
3527 			    strlen(wgp->wgp_name));
3528 			KASSERT(wgp0 == wgp);
3529 			garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3530 		}
3531 		wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3532 		    sizeof(wgp->wgp_pubkey));
3533 		KASSERT(wgp0 == wgp);
3534 		garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3535 		WG_PEER_WRITER_REMOVE(wgp);
3536 		wg->wg_npeers--;
3537 		mutex_enter(wgp->wgp_lock);
3538 		pserialize_perform(wgp->wgp_psz);
3539 		mutex_exit(wgp->wgp_lock);
3540 		PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3541 		break;
3542 	}
3543 	mutex_exit(wg->wg_lock);
3544 
3545 	if (wgp == NULL)
3546 		return;
3547 
3548 	psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3549 
3550 	wg_destroy_peer(wgp);
3551 	thmap_gc(wg->wg_peers_byname, garbage_byname);
3552 	thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3553 
3554 	goto restart;
3555 }
3556 
3557 static int
3558 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
3559 {
3560 	struct wg_peer *wgp, *wgp0 __diagused;
3561 	void *garbage_byname, *garbage_bypubkey;
3562 
3563 	mutex_enter(wg->wg_lock);
3564 	wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
3565 	if (wgp != NULL) {
3566 		wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
3567 		    sizeof(wgp->wgp_pubkey));
3568 		KASSERT(wgp0 == wgp);
3569 		garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
3570 		garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
3571 		WG_PEER_WRITER_REMOVE(wgp);
3572 		wg->wg_npeers--;
3573 		if (wg->wg_npeers == 0)
3574 			if_link_state_change(&wg->wg_if, LINK_STATE_DOWN);
3575 		mutex_enter(wgp->wgp_lock);
3576 		pserialize_perform(wgp->wgp_psz);
3577 		mutex_exit(wgp->wgp_lock);
3578 		PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
3579 	}
3580 	mutex_exit(wg->wg_lock);
3581 
3582 	if (wgp == NULL)
3583 		return ENOENT;
3584 
3585 	psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
3586 
3587 	wg_destroy_peer(wgp);
3588 	thmap_gc(wg->wg_peers_byname, garbage_byname);
3589 	thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
3590 
3591 	return 0;
3592 }
3593 
3594 static int
3595 wg_if_attach(struct wg_softc *wg)
3596 {
3597 
3598 	wg->wg_if.if_addrlen = 0;
3599 	wg->wg_if.if_mtu = WG_MTU;
3600 	wg->wg_if.if_flags = IFF_MULTICAST;
3601 	wg->wg_if.if_extflags = IFEF_MPSAFE;
3602 	wg->wg_if.if_ioctl = wg_ioctl;
3603 	wg->wg_if.if_output = wg_output;
3604 	wg->wg_if.if_init = wg_init;
3605 #ifdef ALTQ
3606 	wg->wg_if.if_start = wg_start;
3607 #endif
3608 	wg->wg_if.if_stop = wg_stop;
3609 	wg->wg_if.if_type = IFT_OTHER;
3610 	wg->wg_if.if_dlt = DLT_NULL;
3611 	wg->wg_if.if_softc = wg;
3612 #ifdef ALTQ
3613 	IFQ_SET_READY(&wg->wg_if.if_snd);
3614 #endif
3615 	if_initialize(&wg->wg_if);
3616 
3617 	wg->wg_if.if_link_state = LINK_STATE_DOWN;
3618 	if_alloc_sadl(&wg->wg_if);
3619 	if_register(&wg->wg_if);
3620 
3621 	bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
3622 
3623 	return 0;
3624 }
3625 
3626 static void
3627 wg_if_detach(struct wg_softc *wg)
3628 {
3629 	struct ifnet *ifp = &wg->wg_if;
3630 
3631 	bpf_detach(ifp);
3632 	if_detach(ifp);
3633 }
3634 
3635 static int
3636 wg_clone_create(struct if_clone *ifc, int unit)
3637 {
3638 	struct wg_softc *wg;
3639 	int error;
3640 
3641 	wg_guarantee_initialized();
3642 
3643 	error = wg_count_inc();
3644 	if (error)
3645 		return error;
3646 
3647 	wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
3648 
3649 	if_initname(&wg->wg_if, ifc->ifc_name, unit);
3650 
3651 	PSLIST_INIT(&wg->wg_peers);
3652 	wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
3653 	wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
3654 	wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
3655 	wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3656 	wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3657 	wg->wg_rwlock = rw_obj_alloc();
3658 	threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
3659 	    "%s", if_name(&wg->wg_if));
3660 	wg->wg_ops = &wg_ops_rumpkernel;
3661 
3662 	error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
3663 	if (error)
3664 		goto fail0;
3665 
3666 #ifdef INET
3667 	error = wg_socreate(wg, AF_INET, &wg->wg_so4);
3668 	if (error)
3669 		goto fail1;
3670 	rn_inithead((void **)&wg->wg_rtable_ipv4,
3671 	    offsetof(struct sockaddr_in, sin_addr) * NBBY);
3672 #endif
3673 #ifdef INET6
3674 	error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
3675 	if (error)
3676 		goto fail2;
3677 	rn_inithead((void **)&wg->wg_rtable_ipv6,
3678 	    offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
3679 #endif
3680 
3681 	error = wg_if_attach(wg);
3682 	if (error)
3683 		goto fail3;
3684 
3685 	return 0;
3686 
3687 fail4: __unused
3688 	wg_if_detach(wg);
3689 fail3:	wg_destroy_all_peers(wg);
3690 #ifdef INET6
3691 	solock(wg->wg_so6);
3692 	wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
3693 	sounlock(wg->wg_so6);
3694 #endif
3695 #ifdef INET
3696 	solock(wg->wg_so4);
3697 	wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
3698 	sounlock(wg->wg_so4);
3699 #endif
3700 	mutex_enter(wg->wg_intr_lock);
3701 	threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
3702 	mutex_exit(wg->wg_intr_lock);
3703 #ifdef INET6
3704 	if (wg->wg_rtable_ipv6 != NULL)
3705 		free(wg->wg_rtable_ipv6, M_RTABLE);
3706 	soclose(wg->wg_so6);
3707 fail2:
3708 #endif
3709 #ifdef INET
3710 	if (wg->wg_rtable_ipv4 != NULL)
3711 		free(wg->wg_rtable_ipv4, M_RTABLE);
3712 	soclose(wg->wg_so4);
3713 fail1:
3714 #endif
3715 	threadpool_put(wg->wg_threadpool, PRI_NONE);
3716 fail0:	threadpool_job_destroy(&wg->wg_job);
3717 	rw_obj_free(wg->wg_rwlock);
3718 	mutex_obj_free(wg->wg_intr_lock);
3719 	mutex_obj_free(wg->wg_lock);
3720 	thmap_destroy(wg->wg_sessions_byindex);
3721 	thmap_destroy(wg->wg_peers_byname);
3722 	thmap_destroy(wg->wg_peers_bypubkey);
3723 	PSLIST_DESTROY(&wg->wg_peers);
3724 	kmem_free(wg, sizeof(*wg));
3725 	wg_count_dec();
3726 	return error;
3727 }
3728 
3729 static int
3730 wg_clone_destroy(struct ifnet *ifp)
3731 {
3732 	struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
3733 
3734 #ifdef WG_RUMPKERNEL
3735 	if (wg_user_mode(wg)) {
3736 		rumpuser_wg_destroy(wg->wg_user);
3737 		wg->wg_user = NULL;
3738 	}
3739 #endif
3740 
3741 	wg_if_detach(wg);
3742 	wg_destroy_all_peers(wg);
3743 #ifdef INET6
3744 	solock(wg->wg_so6);
3745 	wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
3746 	sounlock(wg->wg_so6);
3747 #endif
3748 #ifdef INET
3749 	solock(wg->wg_so4);
3750 	wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
3751 	sounlock(wg->wg_so4);
3752 #endif
3753 	mutex_enter(wg->wg_intr_lock);
3754 	threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
3755 	mutex_exit(wg->wg_intr_lock);
3756 #ifdef INET6
3757 	if (wg->wg_rtable_ipv6 != NULL)
3758 		free(wg->wg_rtable_ipv6, M_RTABLE);
3759 	soclose(wg->wg_so6);
3760 #endif
3761 #ifdef INET
3762 	if (wg->wg_rtable_ipv4 != NULL)
3763 		free(wg->wg_rtable_ipv4, M_RTABLE);
3764 	soclose(wg->wg_so4);
3765 #endif
3766 	threadpool_put(wg->wg_threadpool, PRI_NONE);
3767 	threadpool_job_destroy(&wg->wg_job);
3768 	rw_obj_free(wg->wg_rwlock);
3769 	mutex_obj_free(wg->wg_intr_lock);
3770 	mutex_obj_free(wg->wg_lock);
3771 	thmap_destroy(wg->wg_sessions_byindex);
3772 	thmap_destroy(wg->wg_peers_byname);
3773 	thmap_destroy(wg->wg_peers_bypubkey);
3774 	PSLIST_DESTROY(&wg->wg_peers);
3775 	kmem_free(wg, sizeof(*wg));
3776 	wg_count_dec();
3777 
3778 	return 0;
3779 }
3780 
3781 static struct wg_peer *
3782 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
3783     struct psref *psref)
3784 {
3785 	struct radix_node_head *rnh;
3786 	struct radix_node *rn;
3787 	struct wg_peer *wgp = NULL;
3788 	struct wg_allowedip *wga;
3789 
3790 #ifdef WG_DEBUG_LOG
3791 	char addrstr[128];
3792 	sockaddr_format(sa, addrstr, sizeof(addrstr));
3793 	WG_DLOG("sa=%s\n", addrstr);
3794 #endif
3795 
3796 	rw_enter(wg->wg_rwlock, RW_READER);
3797 
3798 	rnh = wg_rnh(wg, sa->sa_family);
3799 	if (rnh == NULL)
3800 		goto out;
3801 
3802 	rn = rnh->rnh_matchaddr(sa, rnh);
3803 	if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
3804 		goto out;
3805 
3806 	WG_TRACE("success");
3807 
3808 	wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
3809 	wgp = wga->wga_peer;
3810 	wg_get_peer(wgp, psref);
3811 
3812 out:
3813 	rw_exit(wg->wg_rwlock);
3814 	return wgp;
3815 }
3816 
3817 static void
3818 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
3819     struct wg_session *wgs, struct wg_msg_data *wgmd)
3820 {
3821 
3822 	memset(wgmd, 0, sizeof(*wgmd));
3823 	wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
3824 	wgmd->wgmd_receiver = wgs->wgs_remote_index;
3825 	/* [W] 5.4.6: msg.counter := Nm^send */
3826 	/* [W] 5.4.6: Nm^send := Nm^send + 1 */
3827 	wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
3828 	WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
3829 }
3830 
3831 static int
3832 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
3833     const struct rtentry *rt)
3834 {
3835 	struct wg_softc *wg = ifp->if_softc;
3836 	struct wg_peer *wgp = NULL;
3837 	struct wg_session *wgs = NULL;
3838 	struct psref wgp_psref, wgs_psref;
3839 	int bound;
3840 	int error;
3841 
3842 	bound = curlwp_bind();
3843 
3844 	/* TODO make the nest limit configurable via sysctl */
3845 	error = if_tunnel_check_nesting(ifp, m, 1);
3846 	if (error) {
3847 		WGLOG(LOG_ERR,
3848 		    "%s: tunneling loop detected and packet dropped\n",
3849 		    if_name(&wg->wg_if));
3850 		goto out0;
3851 	}
3852 
3853 #ifdef ALTQ
3854 	bool altq = atomic_load_relaxed(&ifp->if_snd.altq_flags)
3855 	    & ALTQF_ENABLED;
3856 	if (altq)
3857 		IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
3858 #endif
3859 
3860 	bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
3861 
3862 	m->m_flags &= ~(M_BCAST|M_MCAST);
3863 
3864 	wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
3865 	if (wgp == NULL) {
3866 		WG_TRACE("peer not found");
3867 		error = EHOSTUNREACH;
3868 		goto out0;
3869 	}
3870 
3871 	/* Clear checksum-offload flags. */
3872 	m->m_pkthdr.csum_flags = 0;
3873 	m->m_pkthdr.csum_data = 0;
3874 
3875 	/* Check whether there's an established session.  */
3876 	wgs = wg_get_stable_session(wgp, &wgs_psref);
3877 	if (wgs == NULL) {
3878 		/*
3879 		 * No established session.  If we're the first to try
3880 		 * sending data, schedule a handshake and queue the
3881 		 * packet for when the handshake is done; otherwise
3882 		 * just drop the packet and let the ongoing handshake
3883 		 * attempt continue.  We could queue more data packets
3884 		 * but it's not clear that's worthwhile.
3885 		 */
3886 		if (atomic_cas_ptr(&wgp->wgp_pending, NULL, m) == NULL) {
3887 			m = NULL; /* consume */
3888 			WG_TRACE("queued first packet; init handshake");
3889 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
3890 		} else {
3891 			WG_TRACE("first packet already queued, dropping");
3892 		}
3893 		goto out1;
3894 	}
3895 
3896 	/* There's an established session.  Toss it in the queue.  */
3897 #ifdef ALTQ
3898 	if (altq) {
3899 		mutex_enter(ifp->if_snd.ifq_lock);
3900 		if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
3901 			M_SETCTX(m, wgp);
3902 			ALTQ_ENQUEUE(&ifp->if_snd, m, error);
3903 			m = NULL; /* consume */
3904 		}
3905 		mutex_exit(ifp->if_snd.ifq_lock);
3906 		if (m == NULL) {
3907 			wg_start(ifp);
3908 			goto out2;
3909 		}
3910 	}
3911 #endif
3912 	kpreempt_disable();
3913 	const uint32_t h = curcpu()->ci_index;	// pktq_rps_hash(m)
3914 	M_SETCTX(m, wgp);
3915 	if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
3916 		WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
3917 		    if_name(&wg->wg_if));
3918 		error = ENOBUFS;
3919 		goto out3;
3920 	}
3921 	m = NULL;		/* consumed */
3922 	error = 0;
3923 out3:	kpreempt_enable();
3924 
3925 #ifdef ALTQ
3926 out2:
3927 #endif
3928 	wg_put_session(wgs, &wgs_psref);
3929 out1:	wg_put_peer(wgp, &wgp_psref);
3930 out0:	if (m)
3931 		m_freem(m);
3932 	curlwp_bindx(bound);
3933 	return error;
3934 }
3935 
3936 static int
3937 wg_send_udp(struct wg_peer *wgp, struct mbuf *m)
3938 {
3939 	struct psref psref;
3940 	struct wg_sockaddr *wgsa;
3941 	int error;
3942 	struct socket *so;
3943 
3944 	wgsa = wg_get_endpoint_sa(wgp, &psref);
3945 	so = wg_get_so_by_peer(wgp, wgsa);
3946 	solock(so);
3947 	if (wgsatosa(wgsa)->sa_family == AF_INET) {
3948 		error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
3949 	} else {
3950 #ifdef INET6
3951 		error = udp6_output(sotoinpcb(so), m, wgsatosin6(wgsa),
3952 		    NULL, curlwp);
3953 #else
3954 		m_freem(m);
3955 		error = EPFNOSUPPORT;
3956 #endif
3957 	}
3958 	sounlock(so);
3959 	wg_put_sa(wgp, wgsa, &psref);
3960 
3961 	return error;
3962 }
3963 
3964 /* Inspired by pppoe_get_mbuf */
3965 static struct mbuf *
3966 wg_get_mbuf(size_t leading_len, size_t len)
3967 {
3968 	struct mbuf *m;
3969 
3970 	KASSERT(leading_len <= MCLBYTES);
3971 	KASSERT(len <= MCLBYTES - leading_len);
3972 
3973 	m = m_gethdr(M_DONTWAIT, MT_DATA);
3974 	if (m == NULL)
3975 		return NULL;
3976 	if (len + leading_len > MHLEN) {
3977 		m_clget(m, M_DONTWAIT);
3978 		if ((m->m_flags & M_EXT) == 0) {
3979 			m_free(m);
3980 			return NULL;
3981 		}
3982 	}
3983 	m->m_data += leading_len;
3984 	m->m_pkthdr.len = m->m_len = len;
3985 
3986 	return m;
3987 }
3988 
3989 static int
3990 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs,
3991     struct mbuf *m)
3992 {
3993 	struct wg_softc *wg = wgp->wgp_sc;
3994 	int error;
3995 	size_t inner_len, padded_len, encrypted_len;
3996 	char *padded_buf = NULL;
3997 	size_t mlen;
3998 	struct wg_msg_data *wgmd;
3999 	bool free_padded_buf = false;
4000 	struct mbuf *n;
4001 	size_t leading_len = max_hdr + sizeof(struct udphdr);
4002 
4003 	mlen = m_length(m);
4004 	inner_len = mlen;
4005 	padded_len = roundup(mlen, 16);
4006 	encrypted_len = padded_len + WG_AUTHTAG_LEN;
4007 	WG_DLOG("inner=%lu, padded=%lu, encrypted_len=%lu\n",
4008 	    inner_len, padded_len, encrypted_len);
4009 	if (mlen != 0) {
4010 		bool success;
4011 		success = m_ensure_contig(&m, padded_len);
4012 		if (success) {
4013 			padded_buf = mtod(m, char *);
4014 		} else {
4015 			padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
4016 			if (padded_buf == NULL) {
4017 				error = ENOBUFS;
4018 				goto end;
4019 			}
4020 			free_padded_buf = true;
4021 			m_copydata(m, 0, mlen, padded_buf);
4022 		}
4023 		memset(padded_buf + mlen, 0, padded_len - inner_len);
4024 	}
4025 
4026 	n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
4027 	if (n == NULL) {
4028 		error = ENOBUFS;
4029 		goto end;
4030 	}
4031 	KASSERT(n->m_len >= sizeof(*wgmd));
4032 	wgmd = mtod(n, struct wg_msg_data *);
4033 	wg_fill_msg_data(wg, wgp, wgs, wgmd);
4034 	/* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
4035 	wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
4036 	    wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
4037 	    padded_buf, padded_len,
4038 	    NULL, 0);
4039 
4040 	error = wg->wg_ops->send_data_msg(wgp, n);
4041 	if (error == 0) {
4042 		struct ifnet *ifp = &wg->wg_if;
4043 		if_statadd(ifp, if_obytes, mlen);
4044 		if_statinc(ifp, if_opackets);
4045 		if (wgs->wgs_is_initiator &&
4046 		    wgs->wgs_time_last_data_sent == 0) {
4047 			/*
4048 			 * [W] 6.2 Transport Message Limits
4049 			 * "if a peer is the initiator of a current secure
4050 			 *  session, WireGuard will send a handshake initiation
4051 			 *  message to begin a new secure session if, after
4052 			 *  transmitting a transport data message, the current
4053 			 *  secure session is REKEY-AFTER-TIME seconds old,"
4054 			 */
4055 			wg_schedule_rekey_timer(wgp);
4056 		}
4057 		wgs->wgs_time_last_data_sent = time_uptime;
4058 		if (wg_session_get_send_counter(wgs) >=
4059 		    wg_rekey_after_messages) {
4060 			/*
4061 			 * [W] 6.2 Transport Message Limits
4062 			 * "WireGuard will try to create a new session, by
4063 			 *  sending a handshake initiation message (section
4064 			 *  5.4.2), after it has sent REKEY-AFTER-MESSAGES
4065 			 *  transport data messages..."
4066 			 */
4067 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
4068 		}
4069 	}
4070 end:
4071 	m_freem(m);
4072 	if (free_padded_buf)
4073 		kmem_intr_free(padded_buf, padded_len);
4074 	return error;
4075 }
4076 
4077 static void
4078 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
4079 {
4080 	pktqueue_t *pktq;
4081 	size_t pktlen;
4082 
4083 	KASSERT(af == AF_INET || af == AF_INET6);
4084 
4085 	WG_TRACE("");
4086 
4087 	m_set_rcvif(m, ifp);
4088 	pktlen = m->m_pkthdr.len;
4089 
4090 	bpf_mtap_af(ifp, af, m, BPF_D_IN);
4091 
4092 	switch (af) {
4093 	case AF_INET:
4094 		pktq = ip_pktq;
4095 		break;
4096 #ifdef INET6
4097 	case AF_INET6:
4098 		pktq = ip6_pktq;
4099 		break;
4100 #endif
4101 	default:
4102 		panic("invalid af=%d", af);
4103 	}
4104 
4105 	kpreempt_disable();
4106 	const u_int h = curcpu()->ci_index;
4107 	if (__predict_true(pktq_enqueue(pktq, m, h))) {
4108 		if_statadd(ifp, if_ibytes, pktlen);
4109 		if_statinc(ifp, if_ipackets);
4110 	} else {
4111 		m_freem(m);
4112 	}
4113 	kpreempt_enable();
4114 }
4115 
4116 static void
4117 wg_calc_pubkey(uint8_t pubkey[WG_STATIC_KEY_LEN],
4118     const uint8_t privkey[WG_STATIC_KEY_LEN])
4119 {
4120 
4121 	crypto_scalarmult_base(pubkey, privkey);
4122 }
4123 
4124 static int
4125 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
4126 {
4127 	struct radix_node_head *rnh;
4128 	struct radix_node *rn;
4129 	int error = 0;
4130 
4131 	rw_enter(wg->wg_rwlock, RW_WRITER);
4132 	rnh = wg_rnh(wg, wga->wga_family);
4133 	KASSERT(rnh != NULL);
4134 	rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
4135 	    wga->wga_nodes);
4136 	rw_exit(wg->wg_rwlock);
4137 
4138 	if (rn == NULL)
4139 		error = EEXIST;
4140 
4141 	return error;
4142 }
4143 
4144 static int
4145 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
4146     struct wg_peer **wgpp)
4147 {
4148 	int error = 0;
4149 	const void *pubkey;
4150 	size_t pubkey_len;
4151 	const void *psk;
4152 	size_t psk_len;
4153 	const char *name = NULL;
4154 
4155 	if (prop_dictionary_get_string(peer, "name", &name)) {
4156 		if (strlen(name) > WG_PEER_NAME_MAXLEN) {
4157 			error = EINVAL;
4158 			goto out;
4159 		}
4160 	}
4161 
4162 	if (!prop_dictionary_get_data(peer, "public_key",
4163 		&pubkey, &pubkey_len)) {
4164 		error = EINVAL;
4165 		goto out;
4166 	}
4167 #ifdef WG_DEBUG_DUMP
4168     {
4169 	char *hex = gethexdump(pubkey, pubkey_len);
4170 	log(LOG_DEBUG, "pubkey=%p, pubkey_len=%lu\n%s\n",
4171 	    pubkey, pubkey_len, hex);
4172 	puthexdump(hex, pubkey, pubkey_len);
4173     }
4174 #endif
4175 
4176 	struct wg_peer *wgp = wg_alloc_peer(wg);
4177 	memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
4178 	if (name != NULL)
4179 		strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
4180 
4181 	if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
4182 		if (psk_len != sizeof(wgp->wgp_psk)) {
4183 			error = EINVAL;
4184 			goto out;
4185 		}
4186 		memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
4187 	}
4188 
4189 	const void *addr;
4190 	size_t addr_len;
4191 	struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
4192 
4193 	if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
4194 		goto skip_endpoint;
4195 	if (addr_len < sizeof(*wgsatosa(wgsa)) ||
4196 	    addr_len > sizeof(*wgsatoss(wgsa))) {
4197 		error = EINVAL;
4198 		goto out;
4199 	}
4200 	memcpy(wgsatoss(wgsa), addr, addr_len);
4201 	switch (wgsa_family(wgsa)) {
4202 	case AF_INET:
4203 #ifdef INET6
4204 	case AF_INET6:
4205 #endif
4206 		break;
4207 	default:
4208 		error = EPFNOSUPPORT;
4209 		goto out;
4210 	}
4211 	if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
4212 		error = EINVAL;
4213 		goto out;
4214 	}
4215     {
4216 	char addrstr[128];
4217 	sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
4218 	WG_DLOG("addr=%s\n", addrstr);
4219     }
4220 	wgp->wgp_endpoint_available = true;
4221 
4222 	prop_array_t allowedips;
4223 skip_endpoint:
4224 	allowedips = prop_dictionary_get(peer, "allowedips");
4225 	if (allowedips == NULL)
4226 		goto skip;
4227 
4228 	prop_object_iterator_t _it = prop_array_iterator(allowedips);
4229 	prop_dictionary_t prop_allowedip;
4230 	int j = 0;
4231 	while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
4232 		struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4233 
4234 		if (!prop_dictionary_get_int(prop_allowedip, "family",
4235 			&wga->wga_family))
4236 			continue;
4237 		if (!prop_dictionary_get_data(prop_allowedip, "ip",
4238 			&addr, &addr_len))
4239 			continue;
4240 		if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
4241 			&wga->wga_cidr))
4242 			continue;
4243 
4244 		switch (wga->wga_family) {
4245 		case AF_INET: {
4246 			struct sockaddr_in sin;
4247 			char addrstr[128];
4248 			struct in_addr mask;
4249 			struct sockaddr_in sin_mask;
4250 
4251 			if (addr_len != sizeof(struct in_addr))
4252 				return EINVAL;
4253 			memcpy(&wga->wga_addr4, addr, addr_len);
4254 
4255 			sockaddr_in_init(&sin, (const struct in_addr *)addr,
4256 			    0);
4257 			sockaddr_copy(&wga->wga_sa_addr,
4258 			    sizeof(sin), sintosa(&sin));
4259 
4260 			sockaddr_format(sintosa(&sin),
4261 			    addrstr, sizeof(addrstr));
4262 			WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4263 
4264 			in_len2mask(&mask, wga->wga_cidr);
4265 			sockaddr_in_init(&sin_mask, &mask, 0);
4266 			sockaddr_copy(&wga->wga_sa_mask,
4267 			    sizeof(sin_mask), sintosa(&sin_mask));
4268 
4269 			break;
4270 		    }
4271 #ifdef INET6
4272 		case AF_INET6: {
4273 			struct sockaddr_in6 sin6;
4274 			char addrstr[128];
4275 			struct in6_addr mask;
4276 			struct sockaddr_in6 sin6_mask;
4277 
4278 			if (addr_len != sizeof(struct in6_addr))
4279 				return EINVAL;
4280 			memcpy(&wga->wga_addr6, addr, addr_len);
4281 
4282 			sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
4283 			    0, 0, 0);
4284 			sockaddr_copy(&wga->wga_sa_addr,
4285 			    sizeof(sin6), sin6tosa(&sin6));
4286 
4287 			sockaddr_format(sin6tosa(&sin6),
4288 			    addrstr, sizeof(addrstr));
4289 			WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
4290 
4291 			in6_prefixlen2mask(&mask, wga->wga_cidr);
4292 			sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
4293 			sockaddr_copy(&wga->wga_sa_mask,
4294 			    sizeof(sin6_mask), sin6tosa(&sin6_mask));
4295 
4296 			break;
4297 		    }
4298 #endif
4299 		default:
4300 			error = EINVAL;
4301 			goto out;
4302 		}
4303 		wga->wga_peer = wgp;
4304 
4305 		error = wg_rtable_add_route(wg, wga);
4306 		if (error != 0)
4307 			goto out;
4308 
4309 		j++;
4310 	}
4311 	wgp->wgp_n_allowedips = j;
4312 skip:
4313 	*wgpp = wgp;
4314 out:
4315 	return error;
4316 }
4317 
4318 static int
4319 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
4320 {
4321 	int error;
4322 	char *buf;
4323 
4324 	WG_DLOG("buf=%p, len=%lu\n", ifd->ifd_data, ifd->ifd_len);
4325 	if (ifd->ifd_len >= WG_MAX_PROPLEN)
4326 		return E2BIG;
4327 	buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
4328 	error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
4329 	if (error != 0)
4330 		return error;
4331 	buf[ifd->ifd_len] = '\0';
4332 #ifdef WG_DEBUG_DUMP
4333 	log(LOG_DEBUG, "%.*s\n",
4334 	    (int)MIN(INT_MAX, ifd->ifd_len),
4335 	    (const char *)buf);
4336 #endif
4337 	*_buf = buf;
4338 	return 0;
4339 }
4340 
4341 static int
4342 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
4343 {
4344 	int error;
4345 	prop_dictionary_t prop_dict;
4346 	char *buf = NULL;
4347 	const void *privkey;
4348 	size_t privkey_len;
4349 
4350 	error = wg_alloc_prop_buf(&buf, ifd);
4351 	if (error != 0)
4352 		return error;
4353 	error = EINVAL;
4354 	prop_dict = prop_dictionary_internalize(buf);
4355 	if (prop_dict == NULL)
4356 		goto out;
4357 	if (!prop_dictionary_get_data(prop_dict, "private_key",
4358 		&privkey, &privkey_len))
4359 		goto out;
4360 #ifdef WG_DEBUG_DUMP
4361     {
4362 	char *hex = gethexdump(privkey, privkey_len);
4363 	log(LOG_DEBUG, "privkey=%p, privkey_len=%lu\n%s\n",
4364 	    privkey, privkey_len, hex);
4365 	puthexdump(hex, privkey, privkey_len);
4366     }
4367 #endif
4368 	if (privkey_len != WG_STATIC_KEY_LEN)
4369 		goto out;
4370 	memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
4371 	wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
4372 	error = 0;
4373 
4374 out:
4375 	kmem_free(buf, ifd->ifd_len + 1);
4376 	return error;
4377 }
4378 
4379 static int
4380 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
4381 {
4382 	int error;
4383 	prop_dictionary_t prop_dict;
4384 	char *buf = NULL;
4385 	uint16_t port;
4386 
4387 	error = wg_alloc_prop_buf(&buf, ifd);
4388 	if (error != 0)
4389 		return error;
4390 	error = EINVAL;
4391 	prop_dict = prop_dictionary_internalize(buf);
4392 	if (prop_dict == NULL)
4393 		goto out;
4394 	if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
4395 		goto out;
4396 
4397 	error = wg->wg_ops->bind_port(wg, (uint16_t)port);
4398 
4399 out:
4400 	kmem_free(buf, ifd->ifd_len + 1);
4401 	return error;
4402 }
4403 
4404 static int
4405 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
4406 {
4407 	int error;
4408 	prop_dictionary_t prop_dict;
4409 	char *buf = NULL;
4410 	struct wg_peer *wgp = NULL, *wgp0 __diagused;
4411 
4412 	error = wg_alloc_prop_buf(&buf, ifd);
4413 	if (error != 0)
4414 		return error;
4415 	error = EINVAL;
4416 	prop_dict = prop_dictionary_internalize(buf);
4417 	if (prop_dict == NULL)
4418 		goto out;
4419 
4420 	error = wg_handle_prop_peer(wg, prop_dict, &wgp);
4421 	if (error != 0)
4422 		goto out;
4423 
4424 	mutex_enter(wg->wg_lock);
4425 	if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4426 		sizeof(wgp->wgp_pubkey)) != NULL ||
4427 	    (wgp->wgp_name[0] &&
4428 		thmap_get(wg->wg_peers_byname, wgp->wgp_name,
4429 		    strlen(wgp->wgp_name)) != NULL)) {
4430 		mutex_exit(wg->wg_lock);
4431 		wg_destroy_peer(wgp);
4432 		error = EEXIST;
4433 		goto out;
4434 	}
4435 	wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
4436 	    sizeof(wgp->wgp_pubkey), wgp);
4437 	KASSERT(wgp0 == wgp);
4438 	if (wgp->wgp_name[0]) {
4439 		wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
4440 		    strlen(wgp->wgp_name), wgp);
4441 		KASSERT(wgp0 == wgp);
4442 	}
4443 	WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
4444 	wg->wg_npeers++;
4445 	mutex_exit(wg->wg_lock);
4446 
4447 	if_link_state_change(&wg->wg_if, LINK_STATE_UP);
4448 
4449 out:
4450 	kmem_free(buf, ifd->ifd_len + 1);
4451 	return error;
4452 }
4453 
4454 static int
4455 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
4456 {
4457 	int error;
4458 	prop_dictionary_t prop_dict;
4459 	char *buf = NULL;
4460 	const char *name;
4461 
4462 	error = wg_alloc_prop_buf(&buf, ifd);
4463 	if (error != 0)
4464 		return error;
4465 	error = EINVAL;
4466 	prop_dict = prop_dictionary_internalize(buf);
4467 	if (prop_dict == NULL)
4468 		goto out;
4469 
4470 	if (!prop_dictionary_get_string(prop_dict, "name", &name))
4471 		goto out;
4472 	if (strlen(name) > WG_PEER_NAME_MAXLEN)
4473 		goto out;
4474 
4475 	error = wg_destroy_peer_name(wg, name);
4476 out:
4477 	kmem_free(buf, ifd->ifd_len + 1);
4478 	return error;
4479 }
4480 
4481 static bool
4482 wg_is_authorized(struct wg_softc *wg, u_long cmd)
4483 {
4484 	int au = cmd == SIOCGDRVSPEC ?
4485 	    KAUTH_REQ_NETWORK_INTERFACE_WG_GETPRIV :
4486 	    KAUTH_REQ_NETWORK_INTERFACE_WG_SETPRIV;
4487 	return kauth_authorize_network(kauth_cred_get(),
4488 	    KAUTH_NETWORK_INTERFACE_WG, au, &wg->wg_if,
4489 	    (void *)cmd, NULL) == 0;
4490 }
4491 
4492 static int
4493 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
4494 {
4495 	int error = ENOMEM;
4496 	prop_dictionary_t prop_dict;
4497 	prop_array_t peers = NULL;
4498 	char *buf;
4499 	struct wg_peer *wgp;
4500 	int s, i;
4501 
4502 	prop_dict = prop_dictionary_create();
4503 	if (prop_dict == NULL)
4504 		goto error;
4505 
4506 	if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
4507 		if (!prop_dictionary_set_data(prop_dict, "private_key",
4508 			wg->wg_privkey, WG_STATIC_KEY_LEN))
4509 			goto error;
4510 	}
4511 
4512 	if (wg->wg_listen_port != 0) {
4513 		if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
4514 			wg->wg_listen_port))
4515 			goto error;
4516 	}
4517 
4518 	if (wg->wg_npeers == 0)
4519 		goto skip_peers;
4520 
4521 	peers = prop_array_create();
4522 	if (peers == NULL)
4523 		goto error;
4524 
4525 	s = pserialize_read_enter();
4526 	i = 0;
4527 	WG_PEER_READER_FOREACH(wgp, wg) {
4528 		struct wg_sockaddr *wgsa;
4529 		struct psref wgp_psref, wgsa_psref;
4530 		prop_dictionary_t prop_peer;
4531 
4532 		wg_get_peer(wgp, &wgp_psref);
4533 		pserialize_read_exit(s);
4534 
4535 		prop_peer = prop_dictionary_create();
4536 		if (prop_peer == NULL)
4537 			goto next;
4538 
4539 		if (strlen(wgp->wgp_name) > 0) {
4540 			if (!prop_dictionary_set_string(prop_peer, "name",
4541 				wgp->wgp_name))
4542 				goto next;
4543 		}
4544 
4545 		if (!prop_dictionary_set_data(prop_peer, "public_key",
4546 			wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
4547 			goto next;
4548 
4549 		uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
4550 		if (!consttime_memequal(wgp->wgp_psk, psk_zero,
4551 			sizeof(wgp->wgp_psk))) {
4552 			if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
4553 				if (!prop_dictionary_set_data(prop_peer,
4554 					"preshared_key",
4555 					wgp->wgp_psk, sizeof(wgp->wgp_psk)))
4556 					goto next;
4557 			}
4558 		}
4559 
4560 		wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
4561 		CTASSERT(AF_UNSPEC == 0);
4562 		if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
4563 		    !prop_dictionary_set_data(prop_peer, "endpoint",
4564 			wgsatoss(wgsa),
4565 			sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
4566 			wg_put_sa(wgp, wgsa, &wgsa_psref);
4567 			goto next;
4568 		}
4569 		wg_put_sa(wgp, wgsa, &wgsa_psref);
4570 
4571 		const struct timespec *t = &wgp->wgp_last_handshake_time;
4572 
4573 		if (!prop_dictionary_set_uint64(prop_peer,
4574 			"last_handshake_time_sec", (uint64_t)t->tv_sec))
4575 			goto next;
4576 		if (!prop_dictionary_set_uint32(prop_peer,
4577 			"last_handshake_time_nsec", (uint32_t)t->tv_nsec))
4578 			goto next;
4579 
4580 		if (wgp->wgp_n_allowedips == 0)
4581 			goto skip_allowedips;
4582 
4583 		prop_array_t allowedips = prop_array_create();
4584 		if (allowedips == NULL)
4585 			goto next;
4586 		for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
4587 			struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
4588 			prop_dictionary_t prop_allowedip;
4589 
4590 			prop_allowedip = prop_dictionary_create();
4591 			if (prop_allowedip == NULL)
4592 				break;
4593 
4594 			if (!prop_dictionary_set_int(prop_allowedip, "family",
4595 				wga->wga_family))
4596 				goto _next;
4597 			if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
4598 				wga->wga_cidr))
4599 				goto _next;
4600 
4601 			switch (wga->wga_family) {
4602 			case AF_INET:
4603 				if (!prop_dictionary_set_data(prop_allowedip,
4604 					"ip", &wga->wga_addr4,
4605 					sizeof(wga->wga_addr4)))
4606 					goto _next;
4607 				break;
4608 #ifdef INET6
4609 			case AF_INET6:
4610 				if (!prop_dictionary_set_data(prop_allowedip,
4611 					"ip", &wga->wga_addr6,
4612 					sizeof(wga->wga_addr6)))
4613 					goto _next;
4614 				break;
4615 #endif
4616 			default:
4617 				break;
4618 			}
4619 			prop_array_set(allowedips, j, prop_allowedip);
4620 		_next:
4621 			prop_object_release(prop_allowedip);
4622 		}
4623 		prop_dictionary_set(prop_peer, "allowedips", allowedips);
4624 		prop_object_release(allowedips);
4625 
4626 	skip_allowedips:
4627 
4628 		prop_array_set(peers, i, prop_peer);
4629 	next:
4630 		if (prop_peer)
4631 			prop_object_release(prop_peer);
4632 		i++;
4633 
4634 		s = pserialize_read_enter();
4635 		wg_put_peer(wgp, &wgp_psref);
4636 	}
4637 	pserialize_read_exit(s);
4638 
4639 	prop_dictionary_set(prop_dict, "peers", peers);
4640 	prop_object_release(peers);
4641 	peers = NULL;
4642 
4643 skip_peers:
4644 	buf = prop_dictionary_externalize(prop_dict);
4645 	if (buf == NULL)
4646 		goto error;
4647 	if (ifd->ifd_len < (strlen(buf) + 1)) {
4648 		error = EINVAL;
4649 		goto error;
4650 	}
4651 	error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
4652 
4653 	free(buf, 0);
4654 error:
4655 	if (peers != NULL)
4656 		prop_object_release(peers);
4657 	if (prop_dict != NULL)
4658 		prop_object_release(prop_dict);
4659 
4660 	return error;
4661 }
4662 
4663 static int
4664 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
4665 {
4666 	struct wg_softc *wg = ifp->if_softc;
4667 	struct ifreq *ifr = data;
4668 	struct ifaddr *ifa = data;
4669 	struct ifdrv *ifd = data;
4670 	int error = 0;
4671 
4672 	switch (cmd) {
4673 	case SIOCINITIFADDR:
4674 		if (ifa->ifa_addr->sa_family != AF_LINK &&
4675 		    (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
4676 		    (IFF_UP | IFF_RUNNING)) {
4677 			ifp->if_flags |= IFF_UP;
4678 			error = if_init(ifp);
4679 		}
4680 		return error;
4681 	case SIOCADDMULTI:
4682 	case SIOCDELMULTI:
4683 		switch (ifr->ifr_addr.sa_family) {
4684 		case AF_INET:	/* IP supports Multicast */
4685 			break;
4686 #ifdef INET6
4687 		case AF_INET6:	/* IP6 supports Multicast */
4688 			break;
4689 #endif
4690 		default:  /* Other protocols doesn't support Multicast */
4691 			error = EAFNOSUPPORT;
4692 			break;
4693 		}
4694 		return error;
4695 	case SIOCSDRVSPEC:
4696 		if (!wg_is_authorized(wg, cmd)) {
4697 			return EPERM;
4698 		}
4699 		switch (ifd->ifd_cmd) {
4700 		case WG_IOCTL_SET_PRIVATE_KEY:
4701 			error = wg_ioctl_set_private_key(wg, ifd);
4702 			break;
4703 		case WG_IOCTL_SET_LISTEN_PORT:
4704 			error = wg_ioctl_set_listen_port(wg, ifd);
4705 			break;
4706 		case WG_IOCTL_ADD_PEER:
4707 			error = wg_ioctl_add_peer(wg, ifd);
4708 			break;
4709 		case WG_IOCTL_DELETE_PEER:
4710 			error = wg_ioctl_delete_peer(wg, ifd);
4711 			break;
4712 		default:
4713 			error = EINVAL;
4714 			break;
4715 		}
4716 		return error;
4717 	case SIOCGDRVSPEC:
4718 		return wg_ioctl_get(wg, ifd);
4719 	case SIOCSIFFLAGS:
4720 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
4721 			break;
4722 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
4723 		case IFF_RUNNING:
4724 			/*
4725 			 * If interface is marked down and it is running,
4726 			 * then stop and disable it.
4727 			 */
4728 			if_stop(ifp, 1);
4729 			break;
4730 		case IFF_UP:
4731 			/*
4732 			 * If interface is marked up and it is stopped, then
4733 			 * start it.
4734 			 */
4735 			error = if_init(ifp);
4736 			break;
4737 		default:
4738 			break;
4739 		}
4740 		return error;
4741 #ifdef WG_RUMPKERNEL
4742 	case SIOCSLINKSTR:
4743 		error = wg_ioctl_linkstr(wg, ifd);
4744 		if (error == 0)
4745 			wg->wg_ops = &wg_ops_rumpuser;
4746 		return error;
4747 #endif
4748 	default:
4749 		break;
4750 	}
4751 
4752 	error = ifioctl_common(ifp, cmd, data);
4753 
4754 #ifdef WG_RUMPKERNEL
4755 	if (!wg_user_mode(wg))
4756 		return error;
4757 
4758 	/* Do the same to the corresponding tun device on the host */
4759 	/*
4760 	 * XXX Actually the command has not been handled yet.  It
4761 	 *     will be handled via pr_ioctl form doifioctl later.
4762 	 */
4763 	switch (cmd) {
4764 	case SIOCAIFADDR:
4765 	case SIOCDIFADDR: {
4766 		struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
4767 		struct in_aliasreq *ifra = &_ifra;
4768 		KASSERT(error == ENOTTY);
4769 		strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4770 		    IFNAMSIZ);
4771 		error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
4772 		if (error == 0)
4773 			error = ENOTTY;
4774 		break;
4775 	}
4776 #ifdef INET6
4777 	case SIOCAIFADDR_IN6:
4778 	case SIOCDIFADDR_IN6: {
4779 		struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
4780 		struct in6_aliasreq *ifra = &_ifra;
4781 		KASSERT(error == ENOTTY);
4782 		strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
4783 		    IFNAMSIZ);
4784 		error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
4785 		if (error == 0)
4786 			error = ENOTTY;
4787 		break;
4788 	}
4789 #endif
4790 	}
4791 #endif /* WG_RUMPKERNEL */
4792 
4793 	return error;
4794 }
4795 
4796 static int
4797 wg_init(struct ifnet *ifp)
4798 {
4799 
4800 	ifp->if_flags |= IFF_RUNNING;
4801 
4802 	/* TODO flush pending packets. */
4803 	return 0;
4804 }
4805 
4806 #ifdef ALTQ
4807 static void
4808 wg_start(struct ifnet *ifp)
4809 {
4810 	struct mbuf *m;
4811 
4812 	for (;;) {
4813 		IFQ_DEQUEUE(&ifp->if_snd, m);
4814 		if (m == NULL)
4815 			break;
4816 
4817 		kpreempt_disable();
4818 		const uint32_t h = curcpu()->ci_index;	// pktq_rps_hash(m)
4819 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
4820 			WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
4821 			    if_name(ifp));
4822 			m_freem(m);
4823 		}
4824 		kpreempt_enable();
4825 	}
4826 }
4827 #endif
4828 
4829 static void
4830 wg_stop(struct ifnet *ifp, int disable)
4831 {
4832 
4833 	KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
4834 	ifp->if_flags &= ~IFF_RUNNING;
4835 
4836 	/* Need to do something? */
4837 }
4838 
4839 #ifdef WG_DEBUG_PARAMS
4840 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
4841 {
4842 	const struct sysctlnode *node = NULL;
4843 
4844 	sysctl_createv(clog, 0, NULL, &node,
4845 	    CTLFLAG_PERMANENT,
4846 	    CTLTYPE_NODE, "wg",
4847 	    SYSCTL_DESCR("wg(4)"),
4848 	    NULL, 0, NULL, 0,
4849 	    CTL_NET, CTL_CREATE, CTL_EOL);
4850 	sysctl_createv(clog, 0, &node, NULL,
4851 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4852 	    CTLTYPE_QUAD, "rekey_after_messages",
4853 	    SYSCTL_DESCR("session liftime by messages"),
4854 	    NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
4855 	sysctl_createv(clog, 0, &node, NULL,
4856 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4857 	    CTLTYPE_INT, "rekey_after_time",
4858 	    SYSCTL_DESCR("session liftime"),
4859 	    NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
4860 	sysctl_createv(clog, 0, &node, NULL,
4861 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4862 	    CTLTYPE_INT, "rekey_timeout",
4863 	    SYSCTL_DESCR("session handshake retry time"),
4864 	    NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
4865 	sysctl_createv(clog, 0, &node, NULL,
4866 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4867 	    CTLTYPE_INT, "rekey_attempt_time",
4868 	    SYSCTL_DESCR("session handshake timeout"),
4869 	    NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
4870 	sysctl_createv(clog, 0, &node, NULL,
4871 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4872 	    CTLTYPE_INT, "keepalive_timeout",
4873 	    SYSCTL_DESCR("keepalive timeout"),
4874 	    NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
4875 	sysctl_createv(clog, 0, &node, NULL,
4876 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4877 	    CTLTYPE_BOOL, "force_underload",
4878 	    SYSCTL_DESCR("force to detemine under load"),
4879 	    NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
4880 }
4881 #endif
4882 
4883 #ifdef WG_RUMPKERNEL
4884 static bool
4885 wg_user_mode(struct wg_softc *wg)
4886 {
4887 
4888 	return wg->wg_user != NULL;
4889 }
4890 
4891 static int
4892 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
4893 {
4894 	struct ifnet *ifp = &wg->wg_if;
4895 	int error;
4896 
4897 	if (ifp->if_flags & IFF_UP)
4898 		return EBUSY;
4899 
4900 	if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
4901 		/* XXX do nothing */
4902 		return 0;
4903 	} else if (ifd->ifd_cmd != 0) {
4904 		return EINVAL;
4905 	} else if (wg->wg_user != NULL) {
4906 		return EBUSY;
4907 	}
4908 
4909 	/* Assume \0 included */
4910 	if (ifd->ifd_len > IFNAMSIZ) {
4911 		return E2BIG;
4912 	} else if (ifd->ifd_len < 1) {
4913 		return EINVAL;
4914 	}
4915 
4916 	char tun_name[IFNAMSIZ];
4917 	error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
4918 	if (error != 0)
4919 		return error;
4920 
4921 	if (strncmp(tun_name, "tun", 3) != 0)
4922 		return EINVAL;
4923 
4924 	error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
4925 
4926 	return error;
4927 }
4928 
4929 static int
4930 wg_send_user(struct wg_peer *wgp, struct mbuf *m)
4931 {
4932 	int error;
4933 	struct psref psref;
4934 	struct wg_sockaddr *wgsa;
4935 	struct wg_softc *wg = wgp->wgp_sc;
4936 	struct iovec iov[1];
4937 
4938 	wgsa = wg_get_endpoint_sa(wgp, &psref);
4939 
4940 	iov[0].iov_base = mtod(m, void *);
4941 	iov[0].iov_len = m->m_len;
4942 
4943 	/* Send messages to a peer via an ordinary socket. */
4944 	error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
4945 
4946 	wg_put_sa(wgp, wgsa, &psref);
4947 
4948 	m_freem(m);
4949 
4950 	return error;
4951 }
4952 
4953 static void
4954 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
4955 {
4956 	struct wg_softc *wg = ifp->if_softc;
4957 	struct iovec iov[2];
4958 	struct sockaddr_storage ss;
4959 
4960 	KASSERT(af == AF_INET || af == AF_INET6);
4961 
4962 	WG_TRACE("");
4963 
4964 	if (af == AF_INET) {
4965 		struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
4966 		struct ip *ip;
4967 
4968 		KASSERT(m->m_len >= sizeof(struct ip));
4969 		ip = mtod(m, struct ip *);
4970 		sockaddr_in_init(sin, &ip->ip_dst, 0);
4971 	} else {
4972 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
4973 		struct ip6_hdr *ip6;
4974 
4975 		KASSERT(m->m_len >= sizeof(struct ip6_hdr));
4976 		ip6 = mtod(m, struct ip6_hdr *);
4977 		sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
4978 	}
4979 
4980 	iov[0].iov_base = &ss;
4981 	iov[0].iov_len = ss.ss_len;
4982 	iov[1].iov_base = mtod(m, void *);
4983 	iov[1].iov_len = m->m_len;
4984 
4985 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
4986 
4987 	/* Send decrypted packets to users via a tun. */
4988 	rumpuser_wg_send_user(wg->wg_user, iov, 2);
4989 
4990 	m_freem(m);
4991 }
4992 
4993 static int
4994 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
4995 {
4996 	int error;
4997 	uint16_t old_port = wg->wg_listen_port;
4998 
4999 	if (port != 0 && old_port == port)
5000 		return 0;
5001 
5002 	error = rumpuser_wg_sock_bind(wg->wg_user, port);
5003 	if (error == 0)
5004 		wg->wg_listen_port = port;
5005 	return error;
5006 }
5007 
5008 /*
5009  * Receive user packets.
5010  */
5011 void
5012 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5013 {
5014 	struct ifnet *ifp = &wg->wg_if;
5015 	struct mbuf *m;
5016 	const struct sockaddr *dst;
5017 
5018 	WG_TRACE("");
5019 
5020 	dst = iov[0].iov_base;
5021 
5022 	m = m_gethdr(M_DONTWAIT, MT_DATA);
5023 	if (m == NULL)
5024 		return;
5025 	m->m_len = m->m_pkthdr.len = 0;
5026 	m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5027 
5028 	WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
5029 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5030 
5031 	(void)wg_output(ifp, m, dst, NULL);
5032 }
5033 
5034 /*
5035  * Receive packets from a peer.
5036  */
5037 void
5038 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
5039 {
5040 	struct mbuf *m;
5041 	const struct sockaddr *src;
5042 
5043 	WG_TRACE("");
5044 
5045 	src = iov[0].iov_base;
5046 
5047 	m = m_gethdr(M_DONTWAIT, MT_DATA);
5048 	if (m == NULL)
5049 		return;
5050 	m->m_len = m->m_pkthdr.len = 0;
5051 	m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
5052 
5053 	WG_DLOG("iov_len=%lu\n", iov[1].iov_len);
5054 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
5055 
5056 	wg_handle_packet(wg, m, src);
5057 }
5058 #endif /* WG_RUMPKERNEL */
5059 
5060 /*
5061  * Module infrastructure
5062  */
5063 #include "if_module.h"
5064 
5065 IF_MODULE(MODULE_CLASS_DRIVER, wg, "sodium,blake2s")
5066