1 /* $NetBSD: if_vlan.c,v 1.90 2016/06/22 10:44:32 knakahara Exp $ */ 2 3 /*- 4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright 1998 Massachusetts Institute of Technology 34 * 35 * Permission to use, copy, modify, and distribute this software and 36 * its documentation for any purpose and without fee is hereby 37 * granted, provided that both the above copyright notice and this 38 * permission notice appear in all copies, that both the above 39 * copyright notice and this permission notice appear in all 40 * supporting documentation, and that the name of M.I.T. not be used 41 * in advertising or publicity pertaining to distribution of the 42 * software without specific, written prior permission. M.I.T. makes 43 * no representations about the suitability of this software for any 44 * purpose. It is provided "as is" without express or implied 45 * warranty. 46 * 47 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 48 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 51 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 53 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 54 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 55 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 56 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 57 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp 61 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp 62 */ 63 64 /* 65 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be 66 * extended some day to also handle IEEE 802.1P priority tagging. This is 67 * sort of sneaky in the implementation, since we need to pretend to be 68 * enough of an Ethernet implementation to make ARP work. The way we do 69 * this is by telling everyone that we are an Ethernet interface, and then 70 * catch the packets that ether_output() left on our output queue when it 71 * calls if_start(), rewrite them for use by the real outgoing interface, 72 * and ask it to send them. 73 * 74 * TODO: 75 * 76 * - Need some way to notify vlan interfaces when the parent 77 * interface changes MTU. 78 */ 79 80 #include <sys/cdefs.h> 81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.90 2016/06/22 10:44:32 knakahara Exp $"); 82 83 #ifdef _KERNEL_OPT 84 #include "opt_inet.h" 85 #include "opt_net_mpsafe.h" 86 #endif 87 88 #include <sys/param.h> 89 #include <sys/kernel.h> 90 #include <sys/mbuf.h> 91 #include <sys/queue.h> 92 #include <sys/socket.h> 93 #include <sys/sockio.h> 94 #include <sys/systm.h> 95 #include <sys/proc.h> 96 #include <sys/kauth.h> 97 #include <sys/mutex.h> 98 99 #include <net/bpf.h> 100 #include <net/if.h> 101 #include <net/if_dl.h> 102 #include <net/if_types.h> 103 #include <net/if_ether.h> 104 #include <net/if_vlanvar.h> 105 106 #ifdef INET 107 #include <netinet/in.h> 108 #include <netinet/if_inarp.h> 109 #endif 110 #ifdef INET6 111 #include <netinet6/in6_ifattach.h> 112 #endif 113 114 #include "ioconf.h" 115 116 struct vlan_mc_entry { 117 LIST_ENTRY(vlan_mc_entry) mc_entries; 118 /* 119 * A key to identify this entry. The mc_addr below can't be 120 * used since multiple sockaddr may mapped into the same 121 * ether_multi (e.g., AF_UNSPEC). 122 */ 123 union { 124 struct ether_multi *mcu_enm; 125 } mc_u; 126 struct sockaddr_storage mc_addr; 127 }; 128 129 #define mc_enm mc_u.mcu_enm 130 131 struct ifvlan { 132 union { 133 struct ethercom ifvu_ec; 134 } ifv_u; 135 struct ifnet *ifv_p; /* parent interface of this vlan */ 136 struct ifv_linkmib { 137 const struct vlan_multisw *ifvm_msw; 138 int ifvm_encaplen; /* encapsulation length */ 139 int ifvm_mtufudge; /* MTU fudged by this much */ 140 int ifvm_mintu; /* min transmission unit */ 141 uint16_t ifvm_proto; /* encapsulation ethertype */ 142 uint16_t ifvm_tag; /* tag to apply on packets */ 143 } ifv_mib; 144 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead; 145 LIST_ENTRY(ifvlan) ifv_list; 146 int ifv_flags; 147 }; 148 149 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */ 150 151 #define ifv_ec ifv_u.ifvu_ec 152 153 #define ifv_if ifv_ec.ec_if 154 155 #define ifv_msw ifv_mib.ifvm_msw 156 #define ifv_encaplen ifv_mib.ifvm_encaplen 157 #define ifv_mtufudge ifv_mib.ifvm_mtufudge 158 #define ifv_mintu ifv_mib.ifvm_mintu 159 #define ifv_tag ifv_mib.ifvm_tag 160 161 struct vlan_multisw { 162 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *); 163 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *); 164 void (*vmsw_purgemulti)(struct ifvlan *); 165 }; 166 167 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *); 168 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *); 169 static void vlan_ether_purgemulti(struct ifvlan *); 170 171 const struct vlan_multisw vlan_ether_multisw = { 172 vlan_ether_addmulti, 173 vlan_ether_delmulti, 174 vlan_ether_purgemulti, 175 }; 176 177 static int vlan_clone_create(struct if_clone *, int); 178 static int vlan_clone_destroy(struct ifnet *); 179 static int vlan_config(struct ifvlan *, struct ifnet *); 180 static int vlan_ioctl(struct ifnet *, u_long, void *); 181 static void vlan_start(struct ifnet *); 182 static void vlan_unconfig(struct ifnet *); 183 184 /* XXX This should be a hash table with the tag as the basis of the key. */ 185 static LIST_HEAD(, ifvlan) ifv_list; 186 187 static kmutex_t ifv_mtx __cacheline_aligned; 188 189 struct if_clone vlan_cloner = 190 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy); 191 192 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */ 193 static char vlan_zero_pad_buff[ETHER_MIN_LEN]; 194 195 void 196 vlanattach(int n) 197 { 198 199 LIST_INIT(&ifv_list); 200 mutex_init(&ifv_mtx, MUTEX_DEFAULT, IPL_NONE); 201 if_clone_attach(&vlan_cloner); 202 } 203 204 static void 205 vlan_reset_linkname(struct ifnet *ifp) 206 { 207 208 /* 209 * We start out with a "802.1Q VLAN" type and zero-length 210 * addresses. When we attach to a parent interface, we 211 * inherit its type, address length, address, and data link 212 * type. 213 */ 214 215 ifp->if_type = IFT_L2VLAN; 216 ifp->if_addrlen = 0; 217 ifp->if_dlt = DLT_NULL; 218 if_alloc_sadl(ifp); 219 } 220 221 static int 222 vlan_clone_create(struct if_clone *ifc, int unit) 223 { 224 struct ifvlan *ifv; 225 struct ifnet *ifp; 226 int s; 227 228 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO); 229 ifp = &ifv->ifv_if; 230 LIST_INIT(&ifv->ifv_mc_listhead); 231 232 s = splnet(); 233 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list); 234 splx(s); 235 236 if_initname(ifp, ifc->ifc_name, unit); 237 ifp->if_softc = ifv; 238 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 239 ifp->if_start = vlan_start; 240 ifp->if_ioctl = vlan_ioctl; 241 IFQ_SET_READY(&ifp->if_snd); 242 243 if_initialize(ifp); 244 vlan_reset_linkname(ifp); 245 if_register(ifp); 246 247 return (0); 248 } 249 250 static int 251 vlan_clone_destroy(struct ifnet *ifp) 252 { 253 struct ifvlan *ifv = ifp->if_softc; 254 int s; 255 256 s = splnet(); 257 LIST_REMOVE(ifv, ifv_list); 258 vlan_unconfig(ifp); 259 if_detach(ifp); 260 splx(s); 261 262 free(ifv, M_DEVBUF); 263 264 return (0); 265 } 266 267 /* 268 * Configure a VLAN interface. Must be called at splnet(). 269 */ 270 static int 271 vlan_config(struct ifvlan *ifv, struct ifnet *p) 272 { 273 struct ifnet *ifp = &ifv->ifv_if; 274 int error; 275 276 if (ifv->ifv_p != NULL) 277 return (EBUSY); 278 279 switch (p->if_type) { 280 case IFT_ETHER: 281 { 282 struct ethercom *ec = (void *) p; 283 284 ifv->ifv_msw = &vlan_ether_multisw; 285 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN; 286 ifv->ifv_mintu = ETHERMIN; 287 288 if (ec->ec_nvlans == 0) { 289 if ((error = ether_enable_vlan_mtu(p)) >= 0) { 290 if (error) 291 return error; 292 ifv->ifv_mtufudge = 0; 293 } else { 294 /* 295 * Fudge the MTU by the encapsulation size. This 296 * makes us incompatible with strictly compliant 297 * 802.1Q implementations, but allows us to use 298 * the feature with other NetBSD 299 * implementations, which might still be useful. 300 */ 301 ifv->ifv_mtufudge = ifv->ifv_encaplen; 302 } 303 } 304 ec->ec_nvlans++; 305 306 /* 307 * If the parent interface can do hardware-assisted 308 * VLAN encapsulation, then propagate its hardware- 309 * assisted checksumming flags and tcp segmentation 310 * offload. 311 */ 312 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) { 313 ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING; 314 ifp->if_capabilities = p->if_capabilities & 315 (IFCAP_TSOv4 | IFCAP_TSOv6 | 316 IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx| 317 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx| 318 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx| 319 IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx| 320 IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx); 321 } 322 /* 323 * We inherit the parent's Ethernet address. 324 */ 325 ether_ifattach(ifp, CLLADDR(p->if_sadl)); 326 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */ 327 break; 328 } 329 330 default: 331 return (EPROTONOSUPPORT); 332 } 333 334 ifv->ifv_p = p; 335 ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge; 336 ifv->ifv_if.if_flags = p->if_flags & 337 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 338 339 /* 340 * Inherit the if_type from the parent. This allows us 341 * to participate in bridges of that type. 342 */ 343 ifv->ifv_if.if_type = p->if_type; 344 345 return (0); 346 } 347 348 /* 349 * Unconfigure a VLAN interface. Must be called at splnet(). 350 */ 351 static void 352 vlan_unconfig(struct ifnet *ifp) 353 { 354 struct ifvlan *ifv = ifp->if_softc; 355 struct ifnet *p; 356 357 mutex_enter(&ifv_mtx); 358 p = ifv->ifv_p; 359 360 if (p == NULL) { 361 mutex_exit(&ifv_mtx); 362 return; 363 } 364 365 /* 366 * Since the interface is being unconfigured, we need to empty the 367 * list of multicast groups that we may have joined while we were 368 * alive and remove them from the parent's list also. 369 */ 370 (*ifv->ifv_msw->vmsw_purgemulti)(ifv); 371 372 /* Disconnect from parent. */ 373 switch (p->if_type) { 374 case IFT_ETHER: 375 { 376 struct ethercom *ec = (void *)p; 377 if (--ec->ec_nvlans == 0) 378 (void)ether_disable_vlan_mtu(p); 379 380 ether_ifdetach(ifp); 381 /* Restore vlan_ioctl overwritten by ether_ifdetach */ 382 ifp->if_ioctl = vlan_ioctl; 383 vlan_reset_linkname(ifp); 384 break; 385 } 386 387 #ifdef DIAGNOSTIC 388 default: 389 panic("vlan_unconfig: impossible"); 390 #endif 391 } 392 393 ifv->ifv_p = NULL; 394 ifv->ifv_if.if_mtu = 0; 395 ifv->ifv_flags = 0; 396 397 #ifdef INET6 398 /* To delete v6 link local addresses */ 399 in6_ifdetach(ifp); 400 #endif 401 if ((ifp->if_flags & IFF_PROMISC) != 0) 402 ifpromisc(ifp, 0); 403 if_down(ifp); 404 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING); 405 ifp->if_capabilities = 0; 406 407 mutex_exit(&ifv_mtx); 408 } 409 410 /* 411 * Called when a parent interface is detaching; destroy any VLAN 412 * configuration for the parent interface. 413 */ 414 void 415 vlan_ifdetach(struct ifnet *p) 416 { 417 struct ifvlan *ifv; 418 int s; 419 420 s = splnet(); 421 422 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL; 423 ifv = LIST_NEXT(ifv, ifv_list)) { 424 if (ifv->ifv_p == p) 425 vlan_unconfig(&ifv->ifv_if); 426 } 427 428 splx(s); 429 } 430 431 static int 432 vlan_set_promisc(struct ifnet *ifp) 433 { 434 struct ifvlan *ifv = ifp->if_softc; 435 int error = 0; 436 437 if ((ifp->if_flags & IFF_PROMISC) != 0) { 438 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) { 439 error = ifpromisc(ifv->ifv_p, 1); 440 if (error == 0) 441 ifv->ifv_flags |= IFVF_PROMISC; 442 } 443 } else { 444 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) { 445 error = ifpromisc(ifv->ifv_p, 0); 446 if (error == 0) 447 ifv->ifv_flags &= ~IFVF_PROMISC; 448 } 449 } 450 451 return (error); 452 } 453 454 static int 455 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data) 456 { 457 struct lwp *l = curlwp; /* XXX */ 458 struct ifvlan *ifv = ifp->if_softc; 459 struct ifaddr *ifa = (struct ifaddr *) data; 460 struct ifreq *ifr = (struct ifreq *) data; 461 struct ifnet *pr; 462 struct ifcapreq *ifcr; 463 struct vlanreq vlr; 464 int s, error = 0; 465 466 s = splnet(); 467 468 switch (cmd) { 469 case SIOCSIFMTU: 470 if (ifv->ifv_p == NULL) 471 error = EINVAL; 472 else if ( 473 ifr->ifr_mtu > (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) || 474 ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge)) 475 error = EINVAL; 476 else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET) 477 error = 0; 478 break; 479 480 case SIOCSETVLAN: 481 if ((error = kauth_authorize_network(l->l_cred, 482 KAUTH_NETWORK_INTERFACE, 483 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, 484 NULL)) != 0) 485 break; 486 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0) 487 break; 488 if (vlr.vlr_parent[0] == '\0') { 489 if (ifv->ifv_p != NULL && 490 (ifp->if_flags & IFF_PROMISC) != 0) 491 error = ifpromisc(ifv->ifv_p, 0); 492 vlan_unconfig(ifp); 493 break; 494 } 495 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) { 496 error = EINVAL; /* check for valid tag */ 497 break; 498 } 499 if ((pr = ifunit(vlr.vlr_parent)) == 0) { 500 error = ENOENT; 501 break; 502 } 503 if ((error = vlan_config(ifv, pr)) != 0) 504 break; 505 ifv->ifv_tag = vlr.vlr_tag; 506 ifp->if_flags |= IFF_RUNNING; 507 508 /* Update promiscuous mode, if necessary. */ 509 vlan_set_promisc(ifp); 510 break; 511 512 case SIOCGETVLAN: 513 memset(&vlr, 0, sizeof(vlr)); 514 if (ifv->ifv_p != NULL) { 515 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s", 516 ifv->ifv_p->if_xname); 517 vlr.vlr_tag = ifv->ifv_tag; 518 } 519 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr)); 520 break; 521 522 case SIOCSIFFLAGS: 523 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 524 break; 525 /* 526 * For promiscuous mode, we enable promiscuous mode on 527 * the parent if we need promiscuous on the VLAN interface. 528 */ 529 if (ifv->ifv_p != NULL) 530 error = vlan_set_promisc(ifp); 531 break; 532 533 case SIOCADDMULTI: 534 error = (ifv->ifv_p != NULL) ? 535 (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL; 536 break; 537 538 case SIOCDELMULTI: 539 error = (ifv->ifv_p != NULL) ? 540 (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL; 541 break; 542 543 case SIOCSIFCAP: 544 ifcr = data; 545 /* make sure caps are enabled on parent */ 546 if ((ifv->ifv_p->if_capenable & ifcr->ifcr_capenable) != 547 ifcr->ifcr_capenable) { 548 error = EINVAL; 549 break; 550 } 551 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET) 552 error = 0; 553 break; 554 case SIOCINITIFADDR: 555 if (ifv->ifv_p == NULL) { 556 error = EINVAL; 557 break; 558 } 559 560 ifp->if_flags |= IFF_UP; 561 #ifdef INET 562 if (ifa->ifa_addr->sa_family == AF_INET) 563 arp_ifinit(ifp, ifa); 564 #endif 565 break; 566 567 default: 568 error = ether_ioctl(ifp, cmd, data); 569 } 570 571 splx(s); 572 573 return (error); 574 } 575 576 static int 577 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr) 578 { 579 const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr); 580 struct vlan_mc_entry *mc; 581 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN]; 582 int error; 583 584 if (sa->sa_len > sizeof(struct sockaddr_storage)) 585 return (EINVAL); 586 587 error = ether_addmulti(sa, &ifv->ifv_ec); 588 if (error != ENETRESET) 589 return (error); 590 591 /* 592 * This is new multicast address. We have to tell parent 593 * about it. Also, remember this multicast address so that 594 * we can delete them on unconfigure. 595 */ 596 mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT); 597 if (mc == NULL) { 598 error = ENOMEM; 599 goto alloc_failed; 600 } 601 602 /* 603 * As ether_addmulti() returns ENETRESET, following two 604 * statement shouldn't fail. 605 */ 606 (void)ether_multiaddr(sa, addrlo, addrhi); 607 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm); 608 memcpy(&mc->mc_addr, sa, sa->sa_len); 609 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries); 610 611 error = if_mcast_op(ifv->ifv_p, SIOCADDMULTI, sa); 612 if (error != 0) 613 goto ioctl_failed; 614 return (error); 615 616 ioctl_failed: 617 LIST_REMOVE(mc, mc_entries); 618 free(mc, M_DEVBUF); 619 alloc_failed: 620 (void)ether_delmulti(sa, &ifv->ifv_ec); 621 return (error); 622 } 623 624 static int 625 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr) 626 { 627 const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr); 628 struct ether_multi *enm; 629 struct vlan_mc_entry *mc; 630 uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN]; 631 int error; 632 633 /* 634 * Find a key to lookup vlan_mc_entry. We have to do this 635 * before calling ether_delmulti for obvious reason. 636 */ 637 if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0) 638 return (error); 639 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm); 640 641 error = ether_delmulti(sa, &ifv->ifv_ec); 642 if (error != ENETRESET) 643 return (error); 644 645 /* We no longer use this multicast address. Tell parent so. */ 646 error = if_mcast_op(ifv->ifv_p, SIOCDELMULTI, sa); 647 if (error == 0) { 648 /* And forget about this address. */ 649 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL; 650 mc = LIST_NEXT(mc, mc_entries)) { 651 if (mc->mc_enm == enm) { 652 LIST_REMOVE(mc, mc_entries); 653 free(mc, M_DEVBUF); 654 break; 655 } 656 } 657 KASSERT(mc != NULL); 658 } else 659 (void)ether_addmulti(sa, &ifv->ifv_ec); 660 return (error); 661 } 662 663 /* 664 * Delete any multicast address we have asked to add from parent 665 * interface. Called when the vlan is being unconfigured. 666 */ 667 static void 668 vlan_ether_purgemulti(struct ifvlan *ifv) 669 { 670 struct ifnet *ifp = ifv->ifv_p; /* Parent. */ 671 struct vlan_mc_entry *mc; 672 673 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) { 674 (void)if_mcast_op(ifp, SIOCDELMULTI, 675 (const struct sockaddr *)&mc->mc_addr); 676 LIST_REMOVE(mc, mc_entries); 677 free(mc, M_DEVBUF); 678 } 679 } 680 681 static void 682 vlan_start(struct ifnet *ifp) 683 { 684 struct ifvlan *ifv = ifp->if_softc; 685 struct ifnet *p = ifv->ifv_p; 686 struct ethercom *ec = (void *) ifv->ifv_p; 687 struct mbuf *m; 688 int error; 689 690 #ifndef NET_MPSAFE 691 KASSERT(KERNEL_LOCKED_P()); 692 #endif 693 694 ifp->if_flags |= IFF_OACTIVE; 695 696 for (;;) { 697 IFQ_DEQUEUE(&ifp->if_snd, m); 698 if (m == NULL) 699 break; 700 701 #ifdef ALTQ 702 /* 703 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE if defined. 704 */ 705 KERNEL_LOCK(1, NULL); 706 /* 707 * If ALTQ is enabled on the parent interface, do 708 * classification; the queueing discipline might 709 * not require classification, but might require 710 * the address family/header pointer in the pktattr. 711 */ 712 if (ALTQ_IS_ENABLED(&p->if_snd)) { 713 switch (p->if_type) { 714 case IFT_ETHER: 715 altq_etherclassify(&p->if_snd, m); 716 break; 717 #ifdef DIAGNOSTIC 718 default: 719 panic("vlan_start: impossible (altq)"); 720 #endif 721 } 722 } 723 KERNEL_UNLOCK_ONE(NULL); 724 #endif /* ALTQ */ 725 726 bpf_mtap(ifp, m); 727 /* 728 * If the parent can insert the tag itself, just mark 729 * the tag in the mbuf header. 730 */ 731 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) { 732 struct m_tag *mtag; 733 734 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), 735 M_NOWAIT); 736 if (mtag == NULL) { 737 ifp->if_oerrors++; 738 m_freem(m); 739 continue; 740 } 741 *(u_int *)(mtag + 1) = ifv->ifv_tag; 742 m_tag_prepend(m, mtag); 743 } else { 744 /* 745 * insert the tag ourselves 746 */ 747 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT); 748 if (m == NULL) { 749 printf("%s: unable to prepend encap header", 750 ifv->ifv_p->if_xname); 751 ifp->if_oerrors++; 752 continue; 753 } 754 755 switch (p->if_type) { 756 case IFT_ETHER: 757 { 758 struct ether_vlan_header *evl; 759 760 if (m->m_len < sizeof(struct ether_vlan_header)) 761 m = m_pullup(m, 762 sizeof(struct ether_vlan_header)); 763 if (m == NULL) { 764 printf("%s: unable to pullup encap " 765 "header", ifv->ifv_p->if_xname); 766 ifp->if_oerrors++; 767 continue; 768 } 769 770 /* 771 * Transform the Ethernet header into an 772 * Ethernet header with 802.1Q encapsulation. 773 */ 774 memmove(mtod(m, void *), 775 mtod(m, char *) + ifv->ifv_encaplen, 776 sizeof(struct ether_header)); 777 evl = mtod(m, struct ether_vlan_header *); 778 evl->evl_proto = evl->evl_encap_proto; 779 evl->evl_encap_proto = htons(ETHERTYPE_VLAN); 780 evl->evl_tag = htons(ifv->ifv_tag); 781 782 /* 783 * To cater for VLAN-aware layer 2 ethernet 784 * switches which may need to strip the tag 785 * before forwarding the packet, make sure 786 * the packet+tag is at least 68 bytes long. 787 * This is necessary because our parent will 788 * only pad to 64 bytes (ETHER_MIN_LEN) and 789 * some switches will not pad by themselves 790 * after deleting a tag. 791 */ 792 if (m->m_pkthdr.len < 793 (ETHER_MIN_LEN - ETHER_CRC_LEN + 794 ETHER_VLAN_ENCAP_LEN)) { 795 m_copyback(m, m->m_pkthdr.len, 796 (ETHER_MIN_LEN - ETHER_CRC_LEN + 797 ETHER_VLAN_ENCAP_LEN) - 798 m->m_pkthdr.len, 799 vlan_zero_pad_buff); 800 } 801 break; 802 } 803 804 #ifdef DIAGNOSTIC 805 default: 806 panic("vlan_start: impossible"); 807 #endif 808 } 809 } 810 811 /* 812 * Send it, precisely as the parent's output routine 813 * would have. We are already running at splnet. 814 */ 815 if ((p->if_flags & IFF_RUNNING) != 0) { 816 error = if_transmit_lock(p, m); 817 if (error) { 818 /* mbuf is already freed */ 819 ifp->if_oerrors++; 820 continue; 821 } 822 } 823 824 ifp->if_opackets++; 825 } 826 827 ifp->if_flags &= ~IFF_OACTIVE; 828 } 829 830 /* 831 * Given an Ethernet frame, find a valid vlan interface corresponding to the 832 * given source interface and tag, then run the real packet through the 833 * parent's input routine. 834 */ 835 void 836 vlan_input(struct ifnet *ifp, struct mbuf *m) 837 { 838 struct ifvlan *ifv; 839 u_int tag; 840 struct m_tag *mtag; 841 842 mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL); 843 if (mtag != NULL) { 844 /* m contains a normal ethernet frame, the tag is in mtag */ 845 tag = EVL_VLANOFTAG(*(u_int *)(mtag + 1)); 846 m_tag_delete(m, mtag); 847 } else { 848 switch (ifp->if_type) { 849 case IFT_ETHER: 850 { 851 struct ether_vlan_header *evl; 852 853 if (m->m_len < sizeof(struct ether_vlan_header) && 854 (m = m_pullup(m, 855 sizeof(struct ether_vlan_header))) == NULL) { 856 printf("%s: no memory for VLAN header, " 857 "dropping packet.\n", ifp->if_xname); 858 return; 859 } 860 evl = mtod(m, struct ether_vlan_header *); 861 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN); 862 863 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag)); 864 865 /* 866 * Restore the original ethertype. We'll remove 867 * the encapsulation after we've found the vlan 868 * interface corresponding to the tag. 869 */ 870 evl->evl_encap_proto = evl->evl_proto; 871 break; 872 } 873 874 default: 875 tag = (u_int) -1; /* XXX GCC */ 876 #ifdef DIAGNOSTIC 877 panic("vlan_input: impossible"); 878 #endif 879 } 880 } 881 882 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL; 883 ifv = LIST_NEXT(ifv, ifv_list)) 884 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag) 885 break; 886 887 if (ifv == NULL || 888 (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) != 889 (IFF_UP|IFF_RUNNING)) { 890 m_freem(m); 891 ifp->if_noproto++; 892 return; 893 } 894 895 /* 896 * Now, remove the encapsulation header. The original 897 * header has already been fixed up above. 898 */ 899 if (mtag == NULL) { 900 memmove(mtod(m, char *) + ifv->ifv_encaplen, 901 mtod(m, void *), sizeof(struct ether_header)); 902 m_adj(m, ifv->ifv_encaplen); 903 } 904 905 m_set_rcvif(m, &ifv->ifv_if); 906 ifv->ifv_if.if_ipackets++; 907 908 bpf_mtap(&ifv->ifv_if, m); 909 910 m->m_flags &= ~M_PROMISC; 911 if_input(&ifv->ifv_if, m); 912 } 913