1 /* $NetBSD: if_vlan.c,v 1.31 2001/04/07 18:41:42 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright 1998 Massachusetts Institute of Technology 41 * 42 * Permission to use, copy, modify, and distribute this software and 43 * its documentation for any purpose and without fee is hereby 44 * granted, provided that both the above copyright notice and this 45 * permission notice appear in all copies, that both the above 46 * copyright notice and this permission notice appear in all 47 * supporting documentation, and that the name of M.I.T. not be used 48 * in advertising or publicity pertaining to distribution of the 49 * software without specific, written prior permission. M.I.T. makes 50 * no representations about the suitability of this software for any 51 * purpose. It is provided "as is" without express or implied 52 * warranty. 53 * 54 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 55 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 56 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 57 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 58 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 60 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 61 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 62 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 63 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 64 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp 68 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp 69 */ 70 71 /* 72 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be 73 * extended some day to also handle IEEE 802.1P priority tagging. This is 74 * sort of sneaky in the implementation, since we need to pretend to be 75 * enough of an Ethernet implementation to make ARP work. The way we do 76 * this is by telling everyone that we are an Ethernet interface, and then 77 * catch the packets that ether_output() left on our output queue when it 78 * calls if_start(), rewrite them for use by the real outgoing interface, 79 * and ask it to send them. 80 * 81 * TODO: 82 * 83 * - Need some way to notify vlan interfaces when the parent 84 * interface changes MTU. 85 */ 86 87 #include "opt_inet.h" 88 #include "bpfilter.h" 89 90 #include <sys/param.h> 91 #include <sys/kernel.h> 92 #include <sys/mbuf.h> 93 #include <sys/queue.h> 94 #include <sys/socket.h> 95 #include <sys/sockio.h> 96 #include <sys/systm.h> 97 #include <sys/proc.h> 98 99 #if NBPFILTER > 0 100 #include <net/bpf.h> 101 #endif 102 #include <net/if.h> 103 #include <net/if_dl.h> 104 #include <net/if_types.h> 105 #include <net/if_ether.h> 106 #include <net/if_vlanvar.h> 107 108 #ifdef INET 109 #include <netinet/in.h> 110 #include <netinet/if_inarp.h> 111 #endif 112 113 struct vlan_mc_entry { 114 LIST_ENTRY(vlan_mc_entry) mc_entries; 115 /* 116 * A key to identify this entry. The mc_addr below can't be 117 * used since multiple sockaddr may mapped into the same 118 * ether_multi (e.g., AF_UNSPEC). 119 */ 120 union { 121 struct ether_multi *mcu_enm; 122 } mc_u; 123 struct sockaddr_storage mc_addr; 124 }; 125 126 #define mc_enm mc_u.mcu_enm 127 128 struct ifvlan { 129 union { 130 struct ethercom ifvu_ec; 131 } ifv_u; 132 struct ifnet *ifv_p; /* parent interface of this vlan */ 133 struct ifv_linkmib { 134 const struct vlan_multisw *ifvm_msw; 135 int ifvm_encaplen; /* encapsulation length */ 136 int ifvm_mtufudge; /* MTU fudged by this much */ 137 int ifvm_mintu; /* min transmission unit */ 138 u_int16_t ifvm_proto; /* encapsulation ethertype */ 139 u_int16_t ifvm_tag; /* tag to apply on packets */ 140 } ifv_mib; 141 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead; 142 LIST_ENTRY(ifvlan) ifv_list; 143 int ifv_flags; 144 }; 145 146 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */ 147 148 #define ifv_ec ifv_u.ifvu_ec 149 150 #define ifv_if ifv_ec.ec_if 151 152 #define ifv_msw ifv_mib.ifvm_msw 153 #define ifv_encaplen ifv_mib.ifvm_encaplen 154 #define ifv_mtufudge ifv_mib.ifvm_mtufudge 155 #define ifv_mintu ifv_mib.ifvm_mintu 156 #define ifv_tag ifv_mib.ifvm_tag 157 158 struct vlan_multisw { 159 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *); 160 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *); 161 void (*vmsw_purgemulti)(struct ifvlan *); 162 }; 163 164 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *); 165 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *); 166 static void vlan_ether_purgemulti(struct ifvlan *); 167 168 const struct vlan_multisw vlan_ether_multisw = { 169 vlan_ether_addmulti, 170 vlan_ether_delmulti, 171 vlan_ether_purgemulti, 172 }; 173 174 static int vlan_clone_create(struct if_clone *, int); 175 static void vlan_clone_destroy(struct ifnet *); 176 static int vlan_config(struct ifvlan *, struct ifnet *); 177 static int vlan_ioctl(struct ifnet *, u_long, caddr_t); 178 static void vlan_start(struct ifnet *); 179 static void vlan_unconfig(struct ifnet *); 180 181 void vlanattach(int); 182 183 /* XXX This should be a hash table with the tag as the basis of the key. */ 184 static LIST_HEAD(, ifvlan) ifv_list; 185 186 struct if_clone vlan_cloner = 187 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy); 188 189 void 190 vlanattach(int n) 191 { 192 193 LIST_INIT(&ifv_list); 194 if_clone_attach(&vlan_cloner); 195 } 196 197 static void 198 vlan_reset_linkname(struct ifnet *ifp) 199 { 200 201 /* 202 * We start out with a "802.1Q VLAN" type and zero-length 203 * addresses. When we attach to a parent interface, we 204 * inherit its type, address length, address, and data link 205 * type. 206 */ 207 208 ifp->if_type = IFT_L2VLAN; 209 ifp->if_addrlen = 0; 210 ifp->if_dlt = DLT_NULL; 211 if_alloc_sadl(ifp); 212 } 213 214 static int 215 vlan_clone_create(struct if_clone *ifc, int unit) 216 { 217 struct ifvlan *ifv; 218 struct ifnet *ifp; 219 int s; 220 221 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK); 222 memset(ifv, 0, sizeof(struct ifvlan)); 223 ifp = &ifv->ifv_if; 224 LIST_INIT(&ifv->ifv_mc_listhead); 225 226 s = splnet(); 227 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list); 228 splx(s); 229 230 sprintf(ifp->if_xname, "%s%d", ifc->ifc_name, unit); 231 ifp->if_softc = ifv; 232 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 233 ifp->if_start = vlan_start; 234 ifp->if_ioctl = vlan_ioctl; 235 IFQ_SET_READY(&ifp->if_snd); 236 237 if_attach(ifp); 238 vlan_reset_linkname(ifp); 239 240 return (0); 241 } 242 243 static void 244 vlan_clone_destroy(struct ifnet *ifp) 245 { 246 struct ifvlan *ifv = ifp->if_softc; 247 int s; 248 249 s = splnet(); 250 LIST_REMOVE(ifv, ifv_list); 251 vlan_unconfig(ifp); 252 splx(s); 253 254 if_detach(ifp); 255 free(ifv, M_DEVBUF); 256 } 257 258 /* 259 * Configure a VLAN interface. Must be called at splnet(). 260 */ 261 static int 262 vlan_config(struct ifvlan *ifv, struct ifnet *p) 263 { 264 struct ifnet *ifp = &ifv->ifv_if; 265 int error; 266 267 if (ifv->ifv_p != NULL) 268 return (EBUSY); 269 270 switch (p->if_type) { 271 case IFT_ETHER: 272 { 273 struct ethercom *ec = (void *) p; 274 275 ifv->ifv_msw = &vlan_ether_multisw; 276 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN; 277 ifv->ifv_mintu = ETHERMIN; 278 279 /* 280 * If the parent supports the VLAN_MTU capability, 281 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames, 282 * enable it. 283 */ 284 if (ec->ec_nvlans++ == 0 && 285 (ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) { 286 /* 287 * Enable Tx/Rx of VLAN-sized frames. 288 */ 289 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 290 if (p->if_flags & IFF_UP) { 291 struct ifreq ifr; 292 293 ifr.ifr_flags = p->if_flags; 294 error = (*p->if_ioctl)(p, SIOCSIFFLAGS, 295 (caddr_t) &ifr); 296 if (error) { 297 if (ec->ec_nvlans-- == 1) 298 ec->ec_capenable &= 299 ~ETHERCAP_VLAN_MTU; 300 return (error); 301 } 302 } 303 ifv->ifv_mtufudge = 0; 304 } else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) { 305 /* 306 * Fudge the MTU by the encapsulation size. This 307 * makes us incompatible with strictly compliant 308 * 802.1Q implementations, but allows us to use 309 * the feature with other NetBSD implementations, 310 * which might still be useful. 311 */ 312 ifv->ifv_mtufudge = ifv->ifv_encaplen; 313 } 314 315 /* 316 * We inherit the parent's Ethernet address. 317 */ 318 ether_ifattach(ifp, LLADDR(p->if_sadl)); 319 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */ 320 break; 321 } 322 323 default: 324 return (EPROTONOSUPPORT); 325 } 326 327 ifv->ifv_p = p; 328 ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge; 329 ifv->ifv_if.if_flags = p->if_flags & 330 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 331 332 /* 333 * Inherit the if_type from the parent. This allows us 334 * to participate in bridges of that type. 335 */ 336 ifv->ifv_if.if_type = p->if_type; 337 338 return (0); 339 } 340 341 /* 342 * Unconfigure a VLAN interface. Must be called at splnet(). 343 */ 344 static void 345 vlan_unconfig(struct ifnet *ifp) 346 { 347 struct ifvlan *ifv = ifp->if_softc; 348 349 if (ifv->ifv_p == NULL) 350 return; 351 352 /* 353 * Since the interface is being unconfigured, we need to empty the 354 * list of multicast groups that we may have joined while we were 355 * alive and remove them from the parent's list also. 356 */ 357 (*ifv->ifv_msw->vmsw_purgemulti)(ifv); 358 359 /* Disconnect from parent. */ 360 switch (ifv->ifv_p->if_type) { 361 case IFT_ETHER: 362 { 363 struct ethercom *ec = (void *) ifv->ifv_p; 364 365 if (ec->ec_nvlans-- == 1) { 366 /* 367 * Disable Tx/Rx of VLAN-sized frames. 368 */ 369 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 370 if (ifv->ifv_p->if_flags & IFF_UP) { 371 struct ifreq ifr; 372 373 ifr.ifr_flags = ifv->ifv_p->if_flags; 374 (void) (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, 375 SIOCSIFFLAGS, (caddr_t) &ifr); 376 } 377 } 378 379 ether_ifdetach(ifp); 380 vlan_reset_linkname(ifp); 381 break; 382 } 383 384 #ifdef DIAGNOSTIC 385 default: 386 panic("vlan_unconfig: impossible"); 387 #endif 388 } 389 390 ifv->ifv_p = NULL; 391 ifv->ifv_if.if_mtu = 0; 392 ifv->ifv_flags = 0; 393 394 if_down(ifp); 395 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING); 396 } 397 398 /* 399 * Called when a parent interface is detaching; destroy any VLAN 400 * configuration for the parent interface. 401 */ 402 void 403 vlan_ifdetach(struct ifnet *p) 404 { 405 struct ifvlan *ifv; 406 int s; 407 408 s = splnet(); 409 410 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL; 411 ifv = LIST_NEXT(ifv, ifv_list)) { 412 if (ifv->ifv_p == p) 413 vlan_unconfig(&ifv->ifv_if); 414 } 415 416 splx(s); 417 } 418 419 static int 420 vlan_set_promisc(struct ifnet *ifp) 421 { 422 struct ifvlan *ifv = ifp->if_softc; 423 int error = 0; 424 425 if ((ifp->if_flags & IFF_PROMISC) != 0) { 426 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) { 427 error = ifpromisc(ifv->ifv_p, 1); 428 if (error == 0) 429 ifv->ifv_flags |= IFVF_PROMISC; 430 } 431 } else { 432 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) { 433 error = ifpromisc(ifv->ifv_p, 0); 434 if (error == 0) 435 ifv->ifv_flags &= ~IFVF_PROMISC; 436 } 437 } 438 439 return (error); 440 } 441 442 static int 443 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 444 { 445 struct proc *p = curproc; /* XXX */ 446 struct ifvlan *ifv = ifp->if_softc; 447 struct ifaddr *ifa = (struct ifaddr *) data; 448 struct ifreq *ifr = (struct ifreq *) data; 449 struct ifnet *pr; 450 struct vlanreq vlr; 451 struct sockaddr *sa; 452 int s, error = 0; 453 454 s = splnet(); 455 456 switch (cmd) { 457 case SIOCSIFADDR: 458 if (ifv->ifv_p != NULL) { 459 ifp->if_flags |= IFF_UP; 460 461 switch (ifa->ifa_addr->sa_family) { 462 #ifdef INET 463 case AF_INET: 464 arp_ifinit(ifp, ifa); 465 break; 466 #endif 467 default: 468 break; 469 } 470 } else { 471 error = EINVAL; 472 } 473 break; 474 475 case SIOCGIFADDR: 476 sa = (struct sockaddr *)&ifr->ifr_data; 477 memcpy(sa->sa_data, LLADDR(ifp->if_sadl), ifp->if_addrlen); 478 break; 479 480 case SIOCSIFMTU: 481 if (ifv->ifv_p != NULL) { 482 if (ifr->ifr_mtu > 483 (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) || 484 ifr->ifr_mtu < 485 (ifv->ifv_mintu - ifv->ifv_mtufudge)) 486 error = EINVAL; 487 else 488 ifp->if_mtu = ifr->ifr_mtu; 489 } else 490 error = EINVAL; 491 break; 492 493 case SIOCSETVLAN: 494 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) 495 break; 496 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0) 497 break; 498 if (vlr.vlr_parent[0] == '\0') { 499 vlan_unconfig(ifp); 500 break; 501 } 502 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) { 503 error = EINVAL; /* check for valid tag */ 504 break; 505 } 506 if ((pr = ifunit(vlr.vlr_parent)) == 0) { 507 error = ENOENT; 508 break; 509 } 510 if ((error = vlan_config(ifv, pr)) != 0) 511 break; 512 ifv->ifv_tag = vlr.vlr_tag; 513 ifp->if_flags |= IFF_RUNNING; 514 515 /* Update promiscuous mode, if necessary. */ 516 vlan_set_promisc(ifp); 517 break; 518 519 case SIOCGETVLAN: 520 memset(&vlr, 0, sizeof(vlr)); 521 if (ifv->ifv_p != NULL) { 522 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s", 523 ifv->ifv_p->if_xname); 524 vlr.vlr_tag = ifv->ifv_tag; 525 } 526 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr)); 527 break; 528 529 case SIOCSIFFLAGS: 530 /* 531 * For promiscuous mode, we enable promiscuous mode on 532 * the parent if we need promiscuous on the VLAN interface. 533 */ 534 if (ifv->ifv_p != NULL) 535 error = vlan_set_promisc(ifp); 536 break; 537 538 case SIOCADDMULTI: 539 error = (ifv->ifv_p != NULL) ? 540 (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL; 541 break; 542 543 case SIOCDELMULTI: 544 error = (ifv->ifv_p != NULL) ? 545 (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL; 546 break; 547 548 default: 549 error = EINVAL; 550 } 551 552 splx(s); 553 554 return (error); 555 } 556 557 static int 558 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr) 559 { 560 struct vlan_mc_entry *mc; 561 u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN]; 562 int error; 563 564 if (ifr->ifr_addr.sa_len > sizeof(struct sockaddr_storage)) 565 return (EINVAL); 566 567 error = ether_addmulti(ifr, &ifv->ifv_ec); 568 if (error != ENETRESET) 569 return (error); 570 571 /* 572 * This is new multicast address. We have to tell parent 573 * about it. Also, remember this multicast address so that 574 * we can delete them on unconfigure. 575 */ 576 MALLOC(mc, struct vlan_mc_entry *, sizeof(struct vlan_mc_entry), 577 M_DEVBUF, M_NOWAIT); 578 if (mc == NULL) { 579 error = ENOMEM; 580 goto alloc_failed; 581 } 582 583 /* 584 * As ether_addmulti() returns ENETRESET, following two 585 * statement shouldn't fail. 586 */ 587 (void)ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi); 588 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm); 589 memcpy(&mc->mc_addr, &ifr->ifr_addr, ifr->ifr_addr.sa_len); 590 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries); 591 592 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCADDMULTI, 593 (caddr_t)ifr); 594 if (error != 0) 595 goto ioctl_failed; 596 return (error); 597 598 ioctl_failed: 599 LIST_REMOVE(mc, mc_entries); 600 FREE(mc, M_DEVBUF); 601 alloc_failed: 602 (void)ether_delmulti(ifr, &ifv->ifv_ec); 603 return (error); 604 } 605 606 static int 607 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr) 608 { 609 struct ether_multi *enm; 610 struct vlan_mc_entry *mc; 611 u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN]; 612 int error; 613 614 /* 615 * Find a key to lookup vlan_mc_entry. We have to do this 616 * before calling ether_delmulti for obvious reason. 617 */ 618 if ((error = ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi)) != 0) 619 return (error); 620 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm); 621 622 error = ether_delmulti(ifr, &ifv->ifv_ec); 623 if (error != ENETRESET) 624 return (error); 625 626 /* We no longer use this multicast address. Tell parent so. */ 627 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCDELMULTI, 628 (caddr_t)ifr); 629 if (error == 0) { 630 /* And forget about this address. */ 631 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL; 632 mc = LIST_NEXT(mc, mc_entries)) { 633 if (mc->mc_enm == enm) { 634 LIST_REMOVE(mc, mc_entries); 635 FREE(mc, M_DEVBUF); 636 break; 637 } 638 } 639 KASSERT(mc != NULL); 640 } else 641 (void)ether_addmulti(ifr, &ifv->ifv_ec); 642 return (error); 643 } 644 645 /* 646 * Delete any multicast address we have asked to add form parent 647 * interface. Called when the vlan is being unconfigured. 648 */ 649 static void 650 vlan_ether_purgemulti(struct ifvlan *ifv) 651 { 652 struct ifnet *ifp = ifv->ifv_p; /* Parent. */ 653 struct vlan_mc_entry *mc; 654 union { 655 struct ifreq ifreq; 656 struct { 657 char ifr_name[IFNAMSIZ]; 658 struct sockaddr_storage ifr_ss; 659 } ifreq_storage; 660 } ifreq; 661 struct ifreq *ifr = &ifreq.ifreq; 662 663 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ); 664 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) { 665 memcpy(&ifr->ifr_addr, &mc->mc_addr, mc->mc_addr.ss_len); 666 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)ifr); 667 LIST_REMOVE(mc, mc_entries); 668 FREE(mc, M_DEVBUF); 669 } 670 } 671 672 static void 673 vlan_start(struct ifnet *ifp) 674 { 675 struct ifvlan *ifv = ifp->if_softc; 676 struct ifnet *p = ifv->ifv_p; 677 struct ethercom *ec = (void *) ifv->ifv_p; 678 struct mbuf *m; 679 int error; 680 ALTQ_DECL(struct altq_pktattr pktattr;) 681 682 ifp->if_flags |= IFF_OACTIVE; 683 684 for (;;) { 685 IFQ_DEQUEUE(&ifp->if_snd, m); 686 if (m == NULL) 687 break; 688 689 #ifdef ALTQ 690 /* 691 * If ALTQ is enabled on the parent interface, do 692 * classification; the queueing discipline might 693 * not require classification, but might require 694 * the address family/header pointer in the pktattr. 695 */ 696 if (ALTQ_IS_ENABLED(&p->if_snd)) { 697 switch (p->if_type) { 698 case IFT_ETHER: 699 altq_etherclassify(&p->if_snd, m, &pktattr); 700 break; 701 #ifdef DIAGNOSTIC 702 default: 703 panic("vlan_start: impossible (altq)"); 704 #endif 705 } 706 } 707 #endif /* ALTQ */ 708 709 #if NBPFILTER > 0 710 if (ifp->if_bpf) 711 bpf_mtap(ifp->if_bpf, m); 712 #endif 713 /* 714 * If the parent can insert the tag itself, just mark 715 * the tag in the mbuf header. 716 */ 717 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) { 718 struct mbuf *n; 719 n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN); 720 if (n == NULL) { 721 ifp->if_oerrors++; 722 m_freem(m); 723 continue; 724 } 725 *mtod(n, int *) = ifv->ifv_tag; 726 n->m_len = sizeof(int); 727 } else { 728 /* 729 * insert the tag ourselve 730 */ 731 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT); 732 if (m == NULL) { 733 printf("%s: unable to prepend encap header", 734 ifv->ifv_p->if_xname); 735 ifp->if_oerrors++; 736 continue; 737 } 738 739 switch (p->if_type) { 740 case IFT_ETHER: 741 { 742 struct ether_vlan_header *evl; 743 744 if (m->m_len < sizeof(struct ether_vlan_header)) 745 m = m_pullup(m, 746 sizeof(struct ether_vlan_header)); 747 if (m == NULL) { 748 printf("%s: unable to pullup encap " 749 "header", ifv->ifv_p->if_xname); 750 ifp->if_oerrors++; 751 continue; 752 } 753 754 /* 755 * Transform the Ethernet header into an 756 * Ethernet header with 802.1Q encapsulation. 757 */ 758 memmove(mtod(m, caddr_t), 759 mtod(m, caddr_t) + ifv->ifv_encaplen, 760 sizeof(struct ether_header)); 761 evl = mtod(m, struct ether_vlan_header *); 762 evl->evl_proto = evl->evl_encap_proto; 763 evl->evl_encap_proto = htons(ETHERTYPE_VLAN); 764 evl->evl_tag = htons(ifv->ifv_tag); 765 break; 766 } 767 768 #ifdef DIAGNOSTIC 769 default: 770 panic("vlan_start: impossible"); 771 #endif 772 } 773 } 774 775 /* 776 * Send it, precisely as the parent's output routine 777 * would have. We are already running at splimp. 778 */ 779 IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error); 780 if (error) { 781 /* mbuf is already freed */ 782 ifp->if_oerrors++; 783 continue; 784 } 785 786 ifp->if_opackets++; 787 if ((p->if_flags & IFF_OACTIVE) == 0) 788 (*p->if_start)(p); 789 } 790 791 ifp->if_flags &= ~IFF_OACTIVE; 792 } 793 794 /* 795 * Given an Ethernet frame, find a valid vlan interface corresponding to the 796 * given source interface and tag, then run the the real packet through 797 * the parent's input routine. 798 */ 799 void 800 vlan_input(struct ifnet *ifp, struct mbuf *m) 801 { 802 struct ifvlan *ifv; 803 u_int tag; 804 struct mbuf *n; 805 806 n = m_aux_find(m, AF_LINK, ETHERTYPE_VLAN); 807 if (n) { 808 /* m contains a normal ethernet frame, the tag is in m_aux */ 809 tag = *mtod(n, int *); 810 m_aux_delete(m, n); 811 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL; 812 ifv = LIST_NEXT(ifv, ifv_list)) 813 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag) 814 break; 815 } else { 816 switch (ifp->if_type) { 817 case IFT_ETHER: 818 { 819 struct ether_vlan_header *evl; 820 821 if (m->m_len < sizeof(struct ether_vlan_header) && 822 (m = m_pullup(m, 823 sizeof(struct ether_vlan_header))) == NULL) { 824 printf("%s: no memory for VLAN header, " 825 "dropping packet.\n", ifp->if_xname); 826 return; 827 } 828 evl = mtod(m, struct ether_vlan_header *); 829 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN); 830 831 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag)); 832 833 /* 834 * Restore the original ethertype. We'll remove 835 * the encapsulation after we've found the vlan 836 * interface corresponding to the tag. 837 */ 838 evl->evl_encap_proto = evl->evl_proto; 839 break; 840 } 841 842 default: 843 tag = (u_int) -1; /* XXX GCC */ 844 #ifdef DIAGNOSTIC 845 panic("vlan_input: impossible"); 846 #endif 847 } 848 849 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL; 850 ifv = LIST_NEXT(ifv, ifv_list)) 851 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag) 852 break; 853 854 855 /* 856 * Now, remove the encapsulation header. The original 857 * header has already been fixed up above. 858 */ 859 if (ifv) { 860 memmove(mtod(m, caddr_t) + ifv->ifv_encaplen, 861 mtod(m, caddr_t), sizeof(struct ether_header)); 862 m_adj(m, ifv->ifv_encaplen); 863 } 864 } 865 866 if (ifv == NULL || 867 (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) != 868 (IFF_UP|IFF_RUNNING)) { 869 m_free(m); 870 ifp->if_noproto++; 871 return; 872 } 873 m->m_pkthdr.rcvif = &ifv->ifv_if; 874 ifv->ifv_if.if_ipackets++; 875 876 #if NBPFILTER > 0 877 if (ifv->ifv_if.if_bpf) 878 bpf_mtap(ifv->ifv_if.if_bpf, m); 879 #endif 880 881 /* Pass it back through the parent's input routine. */ 882 (*ifp->if_input)(&ifv->ifv_if, m); 883 } 884