xref: /netbsd-src/sys/net/if_vlan.c (revision e55cffd8e520e9b03f18a1bd98bb04223e79f69f)
1 /*	$NetBSD: if_vlan.c,v 1.31 2001/04/07 18:41:42 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright 1998 Massachusetts Institute of Technology
41  *
42  * Permission to use, copy, modify, and distribute this software and
43  * its documentation for any purpose and without fee is hereby
44  * granted, provided that both the above copyright notice and this
45  * permission notice appear in all copies, that both the above
46  * copyright notice and this permission notice appear in all
47  * supporting documentation, and that the name of M.I.T. not be used
48  * in advertising or publicity pertaining to distribution of the
49  * software without specific, written prior permission.  M.I.T. makes
50  * no representations about the suitability of this software for any
51  * purpose.  It is provided "as is" without express or implied
52  * warranty.
53  *
54  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
55  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
56  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
57  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
58  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
61  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
62  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
63  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
64  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
68  * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
69  */
70 
71 /*
72  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.  Might be
73  * extended some day to also handle IEEE 802.1P priority tagging.  This is
74  * sort of sneaky in the implementation, since we need to pretend to be
75  * enough of an Ethernet implementation to make ARP work.  The way we do
76  * this is by telling everyone that we are an Ethernet interface, and then
77  * catch the packets that ether_output() left on our output queue when it
78  * calls if_start(), rewrite them for use by the real outgoing interface,
79  * and ask it to send them.
80  *
81  * TODO:
82  *
83  *	- Need some way to notify vlan interfaces when the parent
84  *	  interface changes MTU.
85  */
86 
87 #include "opt_inet.h"
88 #include "bpfilter.h"
89 
90 #include <sys/param.h>
91 #include <sys/kernel.h>
92 #include <sys/mbuf.h>
93 #include <sys/queue.h>
94 #include <sys/socket.h>
95 #include <sys/sockio.h>
96 #include <sys/systm.h>
97 #include <sys/proc.h>
98 
99 #if NBPFILTER > 0
100 #include <net/bpf.h>
101 #endif
102 #include <net/if.h>
103 #include <net/if_dl.h>
104 #include <net/if_types.h>
105 #include <net/if_ether.h>
106 #include <net/if_vlanvar.h>
107 
108 #ifdef INET
109 #include <netinet/in.h>
110 #include <netinet/if_inarp.h>
111 #endif
112 
113 struct vlan_mc_entry {
114 	LIST_ENTRY(vlan_mc_entry)	mc_entries;
115 	/*
116 	 * A key to identify this entry.  The mc_addr below can't be
117 	 * used since multiple sockaddr may mapped into the same
118 	 * ether_multi (e.g., AF_UNSPEC).
119 	 */
120 	union {
121 		struct ether_multi	*mcu_enm;
122 	} mc_u;
123 	struct sockaddr_storage		mc_addr;
124 };
125 
126 #define	mc_enm		mc_u.mcu_enm
127 
128 struct ifvlan {
129 	union {
130 		struct ethercom ifvu_ec;
131 	} ifv_u;
132 	struct ifnet *ifv_p;	/* parent interface of this vlan */
133 	struct ifv_linkmib {
134 		const struct vlan_multisw *ifvm_msw;
135 		int	ifvm_encaplen;	/* encapsulation length */
136 		int	ifvm_mtufudge;	/* MTU fudged by this much */
137 		int	ifvm_mintu;	/* min transmission unit */
138 		u_int16_t ifvm_proto;	/* encapsulation ethertype */
139 		u_int16_t ifvm_tag;	/* tag to apply on packets */
140 	} ifv_mib;
141 	LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
142 	LIST_ENTRY(ifvlan) ifv_list;
143 	int ifv_flags;
144 };
145 
146 #define	IFVF_PROMISC	0x01		/* promiscuous mode enabled */
147 
148 #define	ifv_ec		ifv_u.ifvu_ec
149 
150 #define	ifv_if		ifv_ec.ec_if
151 
152 #define	ifv_msw		ifv_mib.ifvm_msw
153 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
154 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
155 #define	ifv_mintu	ifv_mib.ifvm_mintu
156 #define	ifv_tag		ifv_mib.ifvm_tag
157 
158 struct vlan_multisw {
159 	int	(*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
160 	int	(*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
161 	void	(*vmsw_purgemulti)(struct ifvlan *);
162 };
163 
164 static int	vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
165 static int	vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
166 static void	vlan_ether_purgemulti(struct ifvlan *);
167 
168 const struct vlan_multisw vlan_ether_multisw = {
169 	vlan_ether_addmulti,
170 	vlan_ether_delmulti,
171 	vlan_ether_purgemulti,
172 };
173 
174 static int	vlan_clone_create(struct if_clone *, int);
175 static void	vlan_clone_destroy(struct ifnet *);
176 static int	vlan_config(struct ifvlan *, struct ifnet *);
177 static int	vlan_ioctl(struct ifnet *, u_long, caddr_t);
178 static void	vlan_start(struct ifnet *);
179 static void	vlan_unconfig(struct ifnet *);
180 
181 void		vlanattach(int);
182 
183 /* XXX This should be a hash table with the tag as the basis of the key. */
184 static LIST_HEAD(, ifvlan) ifv_list;
185 
186 struct if_clone vlan_cloner =
187     IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
188 
189 void
190 vlanattach(int n)
191 {
192 
193 	LIST_INIT(&ifv_list);
194 	if_clone_attach(&vlan_cloner);
195 }
196 
197 static void
198 vlan_reset_linkname(struct ifnet *ifp)
199 {
200 
201 	/*
202 	 * We start out with a "802.1Q VLAN" type and zero-length
203 	 * addresses.  When we attach to a parent interface, we
204 	 * inherit its type, address length, address, and data link
205 	 * type.
206 	 */
207 
208 	ifp->if_type = IFT_L2VLAN;
209 	ifp->if_addrlen = 0;
210 	ifp->if_dlt = DLT_NULL;
211 	if_alloc_sadl(ifp);
212 }
213 
214 static int
215 vlan_clone_create(struct if_clone *ifc, int unit)
216 {
217 	struct ifvlan *ifv;
218 	struct ifnet *ifp;
219 	int s;
220 
221 	ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK);
222 	memset(ifv, 0, sizeof(struct ifvlan));
223 	ifp = &ifv->ifv_if;
224 	LIST_INIT(&ifv->ifv_mc_listhead);
225 
226 	s = splnet();
227 	LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
228 	splx(s);
229 
230 	sprintf(ifp->if_xname, "%s%d", ifc->ifc_name, unit);
231 	ifp->if_softc = ifv;
232 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
233 	ifp->if_start = vlan_start;
234 	ifp->if_ioctl = vlan_ioctl;
235 	IFQ_SET_READY(&ifp->if_snd);
236 
237 	if_attach(ifp);
238 	vlan_reset_linkname(ifp);
239 
240 	return (0);
241 }
242 
243 static void
244 vlan_clone_destroy(struct ifnet *ifp)
245 {
246 	struct ifvlan *ifv = ifp->if_softc;
247 	int s;
248 
249 	s = splnet();
250 	LIST_REMOVE(ifv, ifv_list);
251 	vlan_unconfig(ifp);
252 	splx(s);
253 
254 	if_detach(ifp);
255 	free(ifv, M_DEVBUF);
256 }
257 
258 /*
259  * Configure a VLAN interface.  Must be called at splnet().
260  */
261 static int
262 vlan_config(struct ifvlan *ifv, struct ifnet *p)
263 {
264 	struct ifnet *ifp = &ifv->ifv_if;
265 	int error;
266 
267 	if (ifv->ifv_p != NULL)
268 		return (EBUSY);
269 
270 	switch (p->if_type) {
271 	case IFT_ETHER:
272 	    {
273 		struct ethercom *ec = (void *) p;
274 
275 		ifv->ifv_msw = &vlan_ether_multisw;
276 		ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
277 		ifv->ifv_mintu = ETHERMIN;
278 
279 		/*
280 		 * If the parent supports the VLAN_MTU capability,
281 		 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
282 		 * enable it.
283 		 */
284 		if (ec->ec_nvlans++ == 0 &&
285 		    (ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) {
286 			/*
287 			 * Enable Tx/Rx of VLAN-sized frames.
288 			 */
289 			ec->ec_capenable |= ETHERCAP_VLAN_MTU;
290 			if (p->if_flags & IFF_UP) {
291 				struct ifreq ifr;
292 
293 				ifr.ifr_flags = p->if_flags;
294 				error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
295 				    (caddr_t) &ifr);
296 				if (error) {
297 					if (ec->ec_nvlans-- == 1)
298 						ec->ec_capenable &=
299 						    ~ETHERCAP_VLAN_MTU;
300 					return (error);
301 				}
302 			}
303 			ifv->ifv_mtufudge = 0;
304 		} else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) {
305 			/*
306 			 * Fudge the MTU by the encapsulation size.  This
307 			 * makes us incompatible with strictly compliant
308 			 * 802.1Q implementations, but allows us to use
309 			 * the feature with other NetBSD implementations,
310 			 * which might still be useful.
311 			 */
312 			ifv->ifv_mtufudge = ifv->ifv_encaplen;
313 		}
314 
315 		/*
316 		 * We inherit the parent's Ethernet address.
317 		 */
318 		ether_ifattach(ifp, LLADDR(p->if_sadl));
319 		ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
320 		break;
321 	    }
322 
323 	default:
324 		return (EPROTONOSUPPORT);
325 	}
326 
327 	ifv->ifv_p = p;
328 	ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
329 	ifv->ifv_if.if_flags = p->if_flags &
330 	    (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
331 
332 	/*
333 	 * Inherit the if_type from the parent.  This allows us
334 	 * to participate in bridges of that type.
335 	 */
336 	ifv->ifv_if.if_type = p->if_type;
337 
338 	return (0);
339 }
340 
341 /*
342  * Unconfigure a VLAN interface.  Must be called at splnet().
343  */
344 static void
345 vlan_unconfig(struct ifnet *ifp)
346 {
347 	struct ifvlan *ifv = ifp->if_softc;
348 
349 	if (ifv->ifv_p == NULL)
350 		return;
351 
352 	/*
353  	 * Since the interface is being unconfigured, we need to empty the
354 	 * list of multicast groups that we may have joined while we were
355 	 * alive and remove them from the parent's list also.
356 	 */
357 	(*ifv->ifv_msw->vmsw_purgemulti)(ifv);
358 
359 	/* Disconnect from parent. */
360 	switch (ifv->ifv_p->if_type) {
361 	case IFT_ETHER:
362 	    {
363 		struct ethercom *ec = (void *) ifv->ifv_p;
364 
365 		if (ec->ec_nvlans-- == 1) {
366 			/*
367 			 * Disable Tx/Rx of VLAN-sized frames.
368 			 */
369 			ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
370 			if (ifv->ifv_p->if_flags & IFF_UP) {
371 				struct ifreq ifr;
372 
373 				ifr.ifr_flags = ifv->ifv_p->if_flags;
374 				(void) (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
375 				    SIOCSIFFLAGS, (caddr_t) &ifr);
376 			}
377 		}
378 
379 		ether_ifdetach(ifp);
380 		vlan_reset_linkname(ifp);
381 		break;
382 	    }
383 
384 #ifdef DIAGNOSTIC
385 	default:
386 		panic("vlan_unconfig: impossible");
387 #endif
388 	}
389 
390 	ifv->ifv_p = NULL;
391 	ifv->ifv_if.if_mtu = 0;
392 	ifv->ifv_flags = 0;
393 
394 	if_down(ifp);
395 	ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
396 }
397 
398 /*
399  * Called when a parent interface is detaching; destroy any VLAN
400  * configuration for the parent interface.
401  */
402 void
403 vlan_ifdetach(struct ifnet *p)
404 {
405 	struct ifvlan *ifv;
406 	int s;
407 
408 	s = splnet();
409 
410 	for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
411 	     ifv = LIST_NEXT(ifv, ifv_list)) {
412 		if (ifv->ifv_p == p)
413 			vlan_unconfig(&ifv->ifv_if);
414 	}
415 
416 	splx(s);
417 }
418 
419 static int
420 vlan_set_promisc(struct ifnet *ifp)
421 {
422 	struct ifvlan *ifv = ifp->if_softc;
423 	int error = 0;
424 
425 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
426 		if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
427 			error = ifpromisc(ifv->ifv_p, 1);
428 			if (error == 0)
429 				ifv->ifv_flags |= IFVF_PROMISC;
430 		}
431 	} else {
432 		if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
433 			error = ifpromisc(ifv->ifv_p, 0);
434 			if (error == 0)
435 				ifv->ifv_flags &= ~IFVF_PROMISC;
436 		}
437 	}
438 
439 	return (error);
440 }
441 
442 static int
443 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
444 {
445 	struct proc *p = curproc;	/* XXX */
446 	struct ifvlan *ifv = ifp->if_softc;
447 	struct ifaddr *ifa = (struct ifaddr *) data;
448 	struct ifreq *ifr = (struct ifreq *) data;
449 	struct ifnet *pr;
450 	struct vlanreq vlr;
451 	struct sockaddr *sa;
452 	int s, error = 0;
453 
454 	s = splnet();
455 
456 	switch (cmd) {
457 	case SIOCSIFADDR:
458 		if (ifv->ifv_p != NULL) {
459 			ifp->if_flags |= IFF_UP;
460 
461 			switch (ifa->ifa_addr->sa_family) {
462 #ifdef INET
463 			case AF_INET:
464 				arp_ifinit(ifp, ifa);
465 				break;
466 #endif
467 			default:
468 				break;
469 			}
470 		} else {
471 			error = EINVAL;
472 		}
473 		break;
474 
475 	case SIOCGIFADDR:
476 		sa = (struct sockaddr *)&ifr->ifr_data;
477 		memcpy(sa->sa_data, LLADDR(ifp->if_sadl), ifp->if_addrlen);
478 		break;
479 
480 	case SIOCSIFMTU:
481 		if (ifv->ifv_p != NULL) {
482 			if (ifr->ifr_mtu >
483 			     (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
484 			    ifr->ifr_mtu <
485 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
486 				error = EINVAL;
487 			else
488 				ifp->if_mtu = ifr->ifr_mtu;
489 		} else
490 			error = EINVAL;
491 		break;
492 
493 	case SIOCSETVLAN:
494 		if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
495 			break;
496 		if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
497 			break;
498 		if (vlr.vlr_parent[0] == '\0') {
499 			vlan_unconfig(ifp);
500 			break;
501 		}
502 		if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
503 			error = EINVAL;		 /* check for valid tag */
504 			break;
505 		}
506 		if ((pr = ifunit(vlr.vlr_parent)) == 0) {
507 			error = ENOENT;
508 			break;
509 		}
510 		if ((error = vlan_config(ifv, pr)) != 0)
511 			break;
512 		ifv->ifv_tag = vlr.vlr_tag;
513 		ifp->if_flags |= IFF_RUNNING;
514 
515 		/* Update promiscuous mode, if necessary. */
516 		vlan_set_promisc(ifp);
517 		break;
518 
519 	case SIOCGETVLAN:
520 		memset(&vlr, 0, sizeof(vlr));
521 		if (ifv->ifv_p != NULL) {
522 			snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
523 			    ifv->ifv_p->if_xname);
524 			vlr.vlr_tag = ifv->ifv_tag;
525 		}
526 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
527 		break;
528 
529 	case SIOCSIFFLAGS:
530 		/*
531 		 * For promiscuous mode, we enable promiscuous mode on
532 		 * the parent if we need promiscuous on the VLAN interface.
533 		 */
534 		if (ifv->ifv_p != NULL)
535 			error = vlan_set_promisc(ifp);
536 		break;
537 
538 	case SIOCADDMULTI:
539 		error = (ifv->ifv_p != NULL) ?
540 		    (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
541 		break;
542 
543 	case SIOCDELMULTI:
544 		error = (ifv->ifv_p != NULL) ?
545 		    (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
546 		break;
547 
548 	default:
549 		error = EINVAL;
550 	}
551 
552 	splx(s);
553 
554 	return (error);
555 }
556 
557 static int
558 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
559 {
560 	struct vlan_mc_entry *mc;
561 	u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
562 	int error;
563 
564 	if (ifr->ifr_addr.sa_len > sizeof(struct sockaddr_storage))
565 		return (EINVAL);
566 
567 	error = ether_addmulti(ifr, &ifv->ifv_ec);
568 	if (error != ENETRESET)
569 		return (error);
570 
571 	/*
572 	 * This is new multicast address.  We have to tell parent
573 	 * about it.  Also, remember this multicast address so that
574 	 * we can delete them on unconfigure.
575 	 */
576 	MALLOC(mc, struct vlan_mc_entry *, sizeof(struct vlan_mc_entry),
577 	    M_DEVBUF, M_NOWAIT);
578 	if (mc == NULL) {
579 		error = ENOMEM;
580 		goto alloc_failed;
581 	}
582 
583 	/*
584 	 * As ether_addmulti() returns ENETRESET, following two
585 	 * statement shouldn't fail.
586 	 */
587 	(void)ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi);
588 	ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
589 	memcpy(&mc->mc_addr, &ifr->ifr_addr, ifr->ifr_addr.sa_len);
590 	LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
591 
592 	error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCADDMULTI,
593 	    (caddr_t)ifr);
594 	if (error != 0)
595 		goto ioctl_failed;
596 	return (error);
597 
598  ioctl_failed:
599 	LIST_REMOVE(mc, mc_entries);
600 	FREE(mc, M_DEVBUF);
601  alloc_failed:
602 	(void)ether_delmulti(ifr, &ifv->ifv_ec);
603 	return (error);
604 }
605 
606 static int
607 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
608 {
609 	struct ether_multi *enm;
610 	struct vlan_mc_entry *mc;
611 	u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
612 	int error;
613 
614 	/*
615 	 * Find a key to lookup vlan_mc_entry.  We have to do this
616 	 * before calling ether_delmulti for obvious reason.
617 	 */
618 	if ((error = ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi)) != 0)
619 		return (error);
620 	ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
621 
622 	error = ether_delmulti(ifr, &ifv->ifv_ec);
623 	if (error != ENETRESET)
624 		return (error);
625 
626 	/* We no longer use this multicast address.  Tell parent so. */
627 	error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCDELMULTI,
628 	    (caddr_t)ifr);
629 	if (error == 0) {
630 		/* And forget about this address. */
631 		for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
632 		    mc = LIST_NEXT(mc, mc_entries)) {
633 			if (mc->mc_enm == enm) {
634 				LIST_REMOVE(mc, mc_entries);
635 				FREE(mc, M_DEVBUF);
636 				break;
637 			}
638 		}
639 		KASSERT(mc != NULL);
640 	} else
641 		(void)ether_addmulti(ifr, &ifv->ifv_ec);
642 	return (error);
643 }
644 
645 /*
646  * Delete any multicast address we have asked to add form parent
647  * interface.  Called when the vlan is being unconfigured.
648  */
649 static void
650 vlan_ether_purgemulti(struct ifvlan *ifv)
651 {
652 	struct ifnet *ifp = ifv->ifv_p;		/* Parent. */
653 	struct vlan_mc_entry *mc;
654 	union {
655 		struct ifreq ifreq;
656 		struct {
657 			char ifr_name[IFNAMSIZ];
658 			struct sockaddr_storage ifr_ss;
659 		} ifreq_storage;
660 	} ifreq;
661 	struct ifreq *ifr = &ifreq.ifreq;
662 
663 	memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
664 	while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
665 		memcpy(&ifr->ifr_addr, &mc->mc_addr, mc->mc_addr.ss_len);
666 		(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)ifr);
667 		LIST_REMOVE(mc, mc_entries);
668 		FREE(mc, M_DEVBUF);
669 	}
670 }
671 
672 static void
673 vlan_start(struct ifnet *ifp)
674 {
675 	struct ifvlan *ifv = ifp->if_softc;
676 	struct ifnet *p = ifv->ifv_p;
677 	struct ethercom *ec = (void *) ifv->ifv_p;
678 	struct mbuf *m;
679 	int error;
680 	ALTQ_DECL(struct altq_pktattr pktattr;)
681 
682 	ifp->if_flags |= IFF_OACTIVE;
683 
684 	for (;;) {
685 		IFQ_DEQUEUE(&ifp->if_snd, m);
686 		if (m == NULL)
687 			break;
688 
689 #ifdef ALTQ
690 		/*
691 		 * If ALTQ is enabled on the parent interface, do
692 		 * classification; the queueing discipline might
693 		 * not require classification, but might require
694 		 * the address family/header pointer in the pktattr.
695 		 */
696 		if (ALTQ_IS_ENABLED(&p->if_snd)) {
697 			switch (p->if_type) {
698 			case IFT_ETHER:
699 				altq_etherclassify(&p->if_snd, m, &pktattr);
700 				break;
701 #ifdef DIAGNOSTIC
702 			default:
703 				panic("vlan_start: impossible (altq)");
704 #endif
705 			}
706 		}
707 #endif /* ALTQ */
708 
709 #if NBPFILTER > 0
710 		if (ifp->if_bpf)
711 			bpf_mtap(ifp->if_bpf, m);
712 #endif
713 		/*
714 		 * If the parent can insert the tag itself, just mark
715 		 * the tag in the mbuf header.
716 		 */
717 		if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
718 			struct mbuf *n;
719 			n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
720 			if (n == NULL) {
721 				ifp->if_oerrors++;
722 				m_freem(m);
723 				continue;
724 			}
725 			*mtod(n, int *) = ifv->ifv_tag;
726 			n->m_len = sizeof(int);
727 		} else {
728 			/*
729 			 * insert the tag ourselve
730 			 */
731 			M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
732 			if (m == NULL) {
733 				printf("%s: unable to prepend encap header",
734 				    ifv->ifv_p->if_xname);
735 				ifp->if_oerrors++;
736 				continue;
737 			}
738 
739 			switch (p->if_type) {
740 			case IFT_ETHER:
741 			    {
742 				struct ether_vlan_header *evl;
743 
744 				if (m->m_len < sizeof(struct ether_vlan_header))
745 					m = m_pullup(m,
746 					    sizeof(struct ether_vlan_header));
747 				if (m == NULL) {
748 					printf("%s: unable to pullup encap "
749 					    "header", ifv->ifv_p->if_xname);
750 					ifp->if_oerrors++;
751 					continue;
752 				}
753 
754 				/*
755 				 * Transform the Ethernet header into an
756 				 * Ethernet header with 802.1Q encapsulation.
757 				 */
758 				memmove(mtod(m, caddr_t),
759 				    mtod(m, caddr_t) + ifv->ifv_encaplen,
760 				    sizeof(struct ether_header));
761 				evl = mtod(m, struct ether_vlan_header *);
762 				evl->evl_proto = evl->evl_encap_proto;
763 				evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
764 				evl->evl_tag = htons(ifv->ifv_tag);
765 				break;
766 			    }
767 
768 #ifdef DIAGNOSTIC
769 			default:
770 				panic("vlan_start: impossible");
771 #endif
772 			}
773 		}
774 
775 		/*
776 		 * Send it, precisely as the parent's output routine
777 		 * would have.  We are already running at splimp.
778 		 */
779 		IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error);
780 		if (error) {
781 			/* mbuf is already freed */
782 			ifp->if_oerrors++;
783 			continue;
784 		}
785 
786 		ifp->if_opackets++;
787 		if ((p->if_flags & IFF_OACTIVE) == 0)
788 			(*p->if_start)(p);
789 	}
790 
791 	ifp->if_flags &= ~IFF_OACTIVE;
792 }
793 
794 /*
795  * Given an Ethernet frame, find a valid vlan interface corresponding to the
796  * given source interface and tag, then run the the real packet through
797  * the parent's input routine.
798  */
799 void
800 vlan_input(struct ifnet *ifp, struct mbuf *m)
801 {
802 	struct ifvlan *ifv;
803 	u_int tag;
804 	struct mbuf *n;
805 
806 	n = m_aux_find(m, AF_LINK, ETHERTYPE_VLAN);
807 	if (n) {
808 		/* m contains a normal ethernet frame, the tag is in m_aux */
809 		tag = *mtod(n, int *);
810 		m_aux_delete(m, n);
811 		for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
812 		    ifv = LIST_NEXT(ifv, ifv_list))
813 			if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
814 				break;
815 	} else {
816 		switch (ifp->if_type) {
817 		case IFT_ETHER:
818 		    {
819 			struct ether_vlan_header *evl;
820 
821 			if (m->m_len < sizeof(struct ether_vlan_header) &&
822 			    (m = m_pullup(m,
823 			     sizeof(struct ether_vlan_header))) == NULL) {
824 				printf("%s: no memory for VLAN header, "
825 				    "dropping packet.\n", ifp->if_xname);
826 				return;
827 			}
828 			evl = mtod(m, struct ether_vlan_header *);
829 			KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
830 
831 			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
832 
833 			/*
834 			 * Restore the original ethertype.  We'll remove
835 			 * the encapsulation after we've found the vlan
836 			 * interface corresponding to the tag.
837 			 */
838 			evl->evl_encap_proto = evl->evl_proto;
839 			break;
840 		    }
841 
842 		default:
843 			tag = (u_int) -1;	/* XXX GCC */
844 #ifdef DIAGNOSTIC
845 			panic("vlan_input: impossible");
846 #endif
847 		}
848 
849 		for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
850 		     ifv = LIST_NEXT(ifv, ifv_list))
851 			if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
852 				break;
853 
854 
855 		/*
856 		 * Now, remove the encapsulation header.  The original
857 		 * header has already been fixed up above.
858 		 */
859 		if (ifv) {
860 			memmove(mtod(m, caddr_t) + ifv->ifv_encaplen,
861 			    mtod(m, caddr_t), sizeof(struct ether_header));
862 			m_adj(m, ifv->ifv_encaplen);
863 		}
864 	}
865 
866 	if (ifv == NULL ||
867 	    (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
868 	     (IFF_UP|IFF_RUNNING)) {
869 		m_free(m);
870 		ifp->if_noproto++;
871 		return;
872 	}
873 	m->m_pkthdr.rcvif = &ifv->ifv_if;
874 	ifv->ifv_if.if_ipackets++;
875 
876 #if NBPFILTER > 0
877 	if (ifv->ifv_if.if_bpf)
878 		bpf_mtap(ifv->ifv_if.if_bpf, m);
879 #endif
880 
881 	/* Pass it back through the parent's input routine. */
882 	(*ifp->if_input)(&ifv->ifv_if, m);
883 }
884