1 /* $NetBSD: if_vlan.c,v 1.44 2005/02/26 22:45:09 perry Exp $ */ 2 3 /*- 4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright 1998 Massachusetts Institute of Technology 41 * 42 * Permission to use, copy, modify, and distribute this software and 43 * its documentation for any purpose and without fee is hereby 44 * granted, provided that both the above copyright notice and this 45 * permission notice appear in all copies, that both the above 46 * copyright notice and this permission notice appear in all 47 * supporting documentation, and that the name of M.I.T. not be used 48 * in advertising or publicity pertaining to distribution of the 49 * software without specific, written prior permission. M.I.T. makes 50 * no representations about the suitability of this software for any 51 * purpose. It is provided "as is" without express or implied 52 * warranty. 53 * 54 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 55 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 56 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 57 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 58 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 60 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 61 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 62 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 63 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 64 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp 68 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp 69 */ 70 71 /* 72 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be 73 * extended some day to also handle IEEE 802.1P priority tagging. This is 74 * sort of sneaky in the implementation, since we need to pretend to be 75 * enough of an Ethernet implementation to make ARP work. The way we do 76 * this is by telling everyone that we are an Ethernet interface, and then 77 * catch the packets that ether_output() left on our output queue when it 78 * calls if_start(), rewrite them for use by the real outgoing interface, 79 * and ask it to send them. 80 * 81 * TODO: 82 * 83 * - Need some way to notify vlan interfaces when the parent 84 * interface changes MTU. 85 */ 86 87 #include <sys/cdefs.h> 88 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.44 2005/02/26 22:45:09 perry Exp $"); 89 90 #include "opt_inet.h" 91 #include "bpfilter.h" 92 93 #include <sys/param.h> 94 #include <sys/kernel.h> 95 #include <sys/mbuf.h> 96 #include <sys/queue.h> 97 #include <sys/socket.h> 98 #include <sys/sockio.h> 99 #include <sys/systm.h> 100 #include <sys/proc.h> 101 102 #if NBPFILTER > 0 103 #include <net/bpf.h> 104 #endif 105 #include <net/if.h> 106 #include <net/if_dl.h> 107 #include <net/if_types.h> 108 #include <net/if_ether.h> 109 #include <net/if_vlanvar.h> 110 111 #ifdef INET 112 #include <netinet/in.h> 113 #include <netinet/if_inarp.h> 114 #endif 115 116 struct vlan_mc_entry { 117 LIST_ENTRY(vlan_mc_entry) mc_entries; 118 /* 119 * A key to identify this entry. The mc_addr below can't be 120 * used since multiple sockaddr may mapped into the same 121 * ether_multi (e.g., AF_UNSPEC). 122 */ 123 union { 124 struct ether_multi *mcu_enm; 125 } mc_u; 126 struct sockaddr_storage mc_addr; 127 }; 128 129 #define mc_enm mc_u.mcu_enm 130 131 struct ifvlan { 132 union { 133 struct ethercom ifvu_ec; 134 } ifv_u; 135 struct ifnet *ifv_p; /* parent interface of this vlan */ 136 struct ifv_linkmib { 137 const struct vlan_multisw *ifvm_msw; 138 int ifvm_encaplen; /* encapsulation length */ 139 int ifvm_mtufudge; /* MTU fudged by this much */ 140 int ifvm_mintu; /* min transmission unit */ 141 u_int16_t ifvm_proto; /* encapsulation ethertype */ 142 u_int16_t ifvm_tag; /* tag to apply on packets */ 143 } ifv_mib; 144 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead; 145 LIST_ENTRY(ifvlan) ifv_list; 146 int ifv_flags; 147 }; 148 149 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */ 150 151 #define ifv_ec ifv_u.ifvu_ec 152 153 #define ifv_if ifv_ec.ec_if 154 155 #define ifv_msw ifv_mib.ifvm_msw 156 #define ifv_encaplen ifv_mib.ifvm_encaplen 157 #define ifv_mtufudge ifv_mib.ifvm_mtufudge 158 #define ifv_mintu ifv_mib.ifvm_mintu 159 #define ifv_tag ifv_mib.ifvm_tag 160 161 struct vlan_multisw { 162 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *); 163 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *); 164 void (*vmsw_purgemulti)(struct ifvlan *); 165 }; 166 167 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *); 168 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *); 169 static void vlan_ether_purgemulti(struct ifvlan *); 170 171 const struct vlan_multisw vlan_ether_multisw = { 172 vlan_ether_addmulti, 173 vlan_ether_delmulti, 174 vlan_ether_purgemulti, 175 }; 176 177 static int vlan_clone_create(struct if_clone *, int); 178 static int vlan_clone_destroy(struct ifnet *); 179 static int vlan_config(struct ifvlan *, struct ifnet *); 180 static int vlan_ioctl(struct ifnet *, u_long, caddr_t); 181 static void vlan_start(struct ifnet *); 182 static void vlan_unconfig(struct ifnet *); 183 184 void vlanattach(int); 185 186 /* XXX This should be a hash table with the tag as the basis of the key. */ 187 static LIST_HEAD(, ifvlan) ifv_list; 188 189 struct if_clone vlan_cloner = 190 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy); 191 192 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */ 193 static char vlan_zero_pad_buff[ETHER_MIN_LEN]; 194 195 void 196 vlanattach(int n) 197 { 198 199 LIST_INIT(&ifv_list); 200 if_clone_attach(&vlan_cloner); 201 } 202 203 static void 204 vlan_reset_linkname(struct ifnet *ifp) 205 { 206 207 /* 208 * We start out with a "802.1Q VLAN" type and zero-length 209 * addresses. When we attach to a parent interface, we 210 * inherit its type, address length, address, and data link 211 * type. 212 */ 213 214 ifp->if_type = IFT_L2VLAN; 215 ifp->if_addrlen = 0; 216 ifp->if_dlt = DLT_NULL; 217 if_alloc_sadl(ifp); 218 } 219 220 static int 221 vlan_clone_create(struct if_clone *ifc, int unit) 222 { 223 struct ifvlan *ifv; 224 struct ifnet *ifp; 225 int s; 226 227 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK); 228 memset(ifv, 0, sizeof(struct ifvlan)); 229 ifp = &ifv->ifv_if; 230 LIST_INIT(&ifv->ifv_mc_listhead); 231 232 s = splnet(); 233 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list); 234 splx(s); 235 236 snprintf(ifp->if_xname, sizeof(ifp->if_xname), "%s%d", ifc->ifc_name, 237 unit); 238 ifp->if_softc = ifv; 239 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 240 ifp->if_start = vlan_start; 241 ifp->if_ioctl = vlan_ioctl; 242 IFQ_SET_READY(&ifp->if_snd); 243 244 if_attach(ifp); 245 vlan_reset_linkname(ifp); 246 247 return (0); 248 } 249 250 static int 251 vlan_clone_destroy(struct ifnet *ifp) 252 { 253 struct ifvlan *ifv = ifp->if_softc; 254 int s; 255 256 s = splnet(); 257 LIST_REMOVE(ifv, ifv_list); 258 vlan_unconfig(ifp); 259 splx(s); 260 261 if_detach(ifp); 262 free(ifv, M_DEVBUF); 263 264 return (0); 265 } 266 267 /* 268 * Configure a VLAN interface. Must be called at splnet(). 269 */ 270 static int 271 vlan_config(struct ifvlan *ifv, struct ifnet *p) 272 { 273 struct ifnet *ifp = &ifv->ifv_if; 274 int error; 275 276 if (ifv->ifv_p != NULL) 277 return (EBUSY); 278 279 switch (p->if_type) { 280 case IFT_ETHER: 281 { 282 struct ethercom *ec = (void *) p; 283 284 ifv->ifv_msw = &vlan_ether_multisw; 285 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN; 286 ifv->ifv_mintu = ETHERMIN; 287 288 /* 289 * If the parent supports the VLAN_MTU capability, 290 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames, 291 * enable it. 292 */ 293 if (ec->ec_nvlans++ == 0 && 294 (ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) { 295 /* 296 * Enable Tx/Rx of VLAN-sized frames. 297 */ 298 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 299 if (p->if_flags & IFF_UP) { 300 struct ifreq ifr; 301 302 ifr.ifr_flags = p->if_flags; 303 error = (*p->if_ioctl)(p, SIOCSIFFLAGS, 304 (caddr_t) &ifr); 305 if (error) { 306 if (ec->ec_nvlans-- == 1) 307 ec->ec_capenable &= 308 ~ETHERCAP_VLAN_MTU; 309 return (error); 310 } 311 } 312 ifv->ifv_mtufudge = 0; 313 } else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) { 314 /* 315 * Fudge the MTU by the encapsulation size. This 316 * makes us incompatible with strictly compliant 317 * 802.1Q implementations, but allows us to use 318 * the feature with other NetBSD implementations, 319 * which might still be useful. 320 */ 321 ifv->ifv_mtufudge = ifv->ifv_encaplen; 322 } 323 324 /* 325 * If the parent interface can do hardware-assisted 326 * VLAN encapsulation, then propagate its hardware- 327 * assisted checksumming flags. 328 */ 329 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) 330 ifp->if_capabilities = p->if_capabilities & 331 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4| 332 IFCAP_CSUM_UDPv4|IFCAP_CSUM_TCPv6| 333 IFCAP_CSUM_UDPv6); 334 335 /* 336 * We inherit the parent's Ethernet address. 337 */ 338 ether_ifattach(ifp, LLADDR(p->if_sadl)); 339 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */ 340 break; 341 } 342 343 default: 344 return (EPROTONOSUPPORT); 345 } 346 347 ifv->ifv_p = p; 348 ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge; 349 ifv->ifv_if.if_flags = p->if_flags & 350 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 351 352 /* 353 * Inherit the if_type from the parent. This allows us 354 * to participate in bridges of that type. 355 */ 356 ifv->ifv_if.if_type = p->if_type; 357 358 return (0); 359 } 360 361 /* 362 * Unconfigure a VLAN interface. Must be called at splnet(). 363 */ 364 static void 365 vlan_unconfig(struct ifnet *ifp) 366 { 367 struct ifvlan *ifv = ifp->if_softc; 368 369 if (ifv->ifv_p == NULL) 370 return; 371 372 /* 373 * Since the interface is being unconfigured, we need to empty the 374 * list of multicast groups that we may have joined while we were 375 * alive and remove them from the parent's list also. 376 */ 377 (*ifv->ifv_msw->vmsw_purgemulti)(ifv); 378 379 /* Disconnect from parent. */ 380 switch (ifv->ifv_p->if_type) { 381 case IFT_ETHER: 382 { 383 struct ethercom *ec = (void *) ifv->ifv_p; 384 385 if (ec->ec_nvlans-- == 1) { 386 /* 387 * Disable Tx/Rx of VLAN-sized frames. 388 */ 389 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 390 if (ifv->ifv_p->if_flags & IFF_UP) { 391 struct ifreq ifr; 392 393 ifr.ifr_flags = ifv->ifv_p->if_flags; 394 (void) (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, 395 SIOCSIFFLAGS, (caddr_t) &ifr); 396 } 397 } 398 399 ether_ifdetach(ifp); 400 vlan_reset_linkname(ifp); 401 break; 402 } 403 404 #ifdef DIAGNOSTIC 405 default: 406 panic("vlan_unconfig: impossible"); 407 #endif 408 } 409 410 ifv->ifv_p = NULL; 411 ifv->ifv_if.if_mtu = 0; 412 ifv->ifv_flags = 0; 413 414 if_down(ifp); 415 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING); 416 ifp->if_capabilities = 0; 417 } 418 419 /* 420 * Called when a parent interface is detaching; destroy any VLAN 421 * configuration for the parent interface. 422 */ 423 void 424 vlan_ifdetach(struct ifnet *p) 425 { 426 struct ifvlan *ifv; 427 int s; 428 429 s = splnet(); 430 431 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL; 432 ifv = LIST_NEXT(ifv, ifv_list)) { 433 if (ifv->ifv_p == p) 434 vlan_unconfig(&ifv->ifv_if); 435 } 436 437 splx(s); 438 } 439 440 static int 441 vlan_set_promisc(struct ifnet *ifp) 442 { 443 struct ifvlan *ifv = ifp->if_softc; 444 int error = 0; 445 446 if ((ifp->if_flags & IFF_PROMISC) != 0) { 447 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) { 448 error = ifpromisc(ifv->ifv_p, 1); 449 if (error == 0) 450 ifv->ifv_flags |= IFVF_PROMISC; 451 } 452 } else { 453 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) { 454 error = ifpromisc(ifv->ifv_p, 0); 455 if (error == 0) 456 ifv->ifv_flags &= ~IFVF_PROMISC; 457 } 458 } 459 460 return (error); 461 } 462 463 static int 464 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 465 { 466 struct proc *p = curproc; /* XXX */ 467 struct ifvlan *ifv = ifp->if_softc; 468 struct ifaddr *ifa = (struct ifaddr *) data; 469 struct ifreq *ifr = (struct ifreq *) data; 470 struct ifnet *pr; 471 struct vlanreq vlr; 472 struct sockaddr *sa; 473 int s, error = 0; 474 475 s = splnet(); 476 477 switch (cmd) { 478 case SIOCSIFADDR: 479 if (ifv->ifv_p != NULL) { 480 ifp->if_flags |= IFF_UP; 481 482 switch (ifa->ifa_addr->sa_family) { 483 #ifdef INET 484 case AF_INET: 485 arp_ifinit(ifp, ifa); 486 break; 487 #endif 488 default: 489 break; 490 } 491 } else { 492 error = EINVAL; 493 } 494 break; 495 496 case SIOCGIFADDR: 497 sa = (struct sockaddr *)&ifr->ifr_data; 498 memcpy(sa->sa_data, LLADDR(ifp->if_sadl), ifp->if_addrlen); 499 break; 500 501 case SIOCSIFMTU: 502 if (ifv->ifv_p != NULL) { 503 if (ifr->ifr_mtu > 504 (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) || 505 ifr->ifr_mtu < 506 (ifv->ifv_mintu - ifv->ifv_mtufudge)) 507 error = EINVAL; 508 else 509 ifp->if_mtu = ifr->ifr_mtu; 510 } else 511 error = EINVAL; 512 break; 513 514 case SIOCSETVLAN: 515 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) 516 break; 517 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0) 518 break; 519 if (vlr.vlr_parent[0] == '\0') { 520 vlan_unconfig(ifp); 521 break; 522 } 523 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) { 524 error = EINVAL; /* check for valid tag */ 525 break; 526 } 527 if ((pr = ifunit(vlr.vlr_parent)) == 0) { 528 error = ENOENT; 529 break; 530 } 531 if ((error = vlan_config(ifv, pr)) != 0) 532 break; 533 ifv->ifv_tag = vlr.vlr_tag; 534 ifp->if_flags |= IFF_RUNNING; 535 536 /* Update promiscuous mode, if necessary. */ 537 vlan_set_promisc(ifp); 538 break; 539 540 case SIOCGETVLAN: 541 memset(&vlr, 0, sizeof(vlr)); 542 if (ifv->ifv_p != NULL) { 543 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s", 544 ifv->ifv_p->if_xname); 545 vlr.vlr_tag = ifv->ifv_tag; 546 } 547 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr)); 548 break; 549 550 case SIOCSIFFLAGS: 551 /* 552 * For promiscuous mode, we enable promiscuous mode on 553 * the parent if we need promiscuous on the VLAN interface. 554 */ 555 if (ifv->ifv_p != NULL) 556 error = vlan_set_promisc(ifp); 557 break; 558 559 case SIOCADDMULTI: 560 error = (ifv->ifv_p != NULL) ? 561 (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL; 562 break; 563 564 case SIOCDELMULTI: 565 error = (ifv->ifv_p != NULL) ? 566 (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL; 567 break; 568 569 default: 570 error = EINVAL; 571 } 572 573 splx(s); 574 575 return (error); 576 } 577 578 static int 579 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr) 580 { 581 struct vlan_mc_entry *mc; 582 u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN]; 583 int error; 584 585 if (ifr->ifr_addr.sa_len > sizeof(struct sockaddr_storage)) 586 return (EINVAL); 587 588 error = ether_addmulti(ifr, &ifv->ifv_ec); 589 if (error != ENETRESET) 590 return (error); 591 592 /* 593 * This is new multicast address. We have to tell parent 594 * about it. Also, remember this multicast address so that 595 * we can delete them on unconfigure. 596 */ 597 MALLOC(mc, struct vlan_mc_entry *, sizeof(struct vlan_mc_entry), 598 M_DEVBUF, M_NOWAIT); 599 if (mc == NULL) { 600 error = ENOMEM; 601 goto alloc_failed; 602 } 603 604 /* 605 * As ether_addmulti() returns ENETRESET, following two 606 * statement shouldn't fail. 607 */ 608 (void)ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi); 609 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm); 610 memcpy(&mc->mc_addr, &ifr->ifr_addr, ifr->ifr_addr.sa_len); 611 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries); 612 613 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCADDMULTI, 614 (caddr_t)ifr); 615 if (error != 0) 616 goto ioctl_failed; 617 return (error); 618 619 ioctl_failed: 620 LIST_REMOVE(mc, mc_entries); 621 FREE(mc, M_DEVBUF); 622 alloc_failed: 623 (void)ether_delmulti(ifr, &ifv->ifv_ec); 624 return (error); 625 } 626 627 static int 628 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr) 629 { 630 struct ether_multi *enm; 631 struct vlan_mc_entry *mc; 632 u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN]; 633 int error; 634 635 /* 636 * Find a key to lookup vlan_mc_entry. We have to do this 637 * before calling ether_delmulti for obvious reason. 638 */ 639 if ((error = ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi)) != 0) 640 return (error); 641 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm); 642 643 error = ether_delmulti(ifr, &ifv->ifv_ec); 644 if (error != ENETRESET) 645 return (error); 646 647 /* We no longer use this multicast address. Tell parent so. */ 648 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCDELMULTI, 649 (caddr_t)ifr); 650 if (error == 0) { 651 /* And forget about this address. */ 652 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL; 653 mc = LIST_NEXT(mc, mc_entries)) { 654 if (mc->mc_enm == enm) { 655 LIST_REMOVE(mc, mc_entries); 656 FREE(mc, M_DEVBUF); 657 break; 658 } 659 } 660 KASSERT(mc != NULL); 661 } else 662 (void)ether_addmulti(ifr, &ifv->ifv_ec); 663 return (error); 664 } 665 666 /* 667 * Delete any multicast address we have asked to add from parent 668 * interface. Called when the vlan is being unconfigured. 669 */ 670 static void 671 vlan_ether_purgemulti(struct ifvlan *ifv) 672 { 673 struct ifnet *ifp = ifv->ifv_p; /* Parent. */ 674 struct vlan_mc_entry *mc; 675 union { 676 struct ifreq ifreq; 677 struct { 678 char ifr_name[IFNAMSIZ]; 679 struct sockaddr_storage ifr_ss; 680 } ifreq_storage; 681 } ifreq; 682 struct ifreq *ifr = &ifreq.ifreq; 683 684 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ); 685 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) { 686 memcpy(&ifr->ifr_addr, &mc->mc_addr, mc->mc_addr.ss_len); 687 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)ifr); 688 LIST_REMOVE(mc, mc_entries); 689 FREE(mc, M_DEVBUF); 690 } 691 } 692 693 static void 694 vlan_start(struct ifnet *ifp) 695 { 696 struct ifvlan *ifv = ifp->if_softc; 697 struct ifnet *p = ifv->ifv_p; 698 struct ethercom *ec = (void *) ifv->ifv_p; 699 struct mbuf *m; 700 int error; 701 ALTQ_DECL(struct altq_pktattr pktattr;) 702 703 ifp->if_flags |= IFF_OACTIVE; 704 705 for (;;) { 706 IFQ_DEQUEUE(&ifp->if_snd, m); 707 if (m == NULL) 708 break; 709 710 #ifdef ALTQ 711 /* 712 * If ALTQ is enabled on the parent interface, do 713 * classification; the queueing discipline might 714 * not require classification, but might require 715 * the address family/header pointer in the pktattr. 716 */ 717 if (ALTQ_IS_ENABLED(&p->if_snd)) { 718 switch (p->if_type) { 719 case IFT_ETHER: 720 altq_etherclassify(&p->if_snd, m, &pktattr); 721 break; 722 #ifdef DIAGNOSTIC 723 default: 724 panic("vlan_start: impossible (altq)"); 725 #endif 726 } 727 } 728 #endif /* ALTQ */ 729 730 #if NBPFILTER > 0 731 if (ifp->if_bpf) 732 bpf_mtap(ifp->if_bpf, m); 733 #endif 734 /* 735 * If the parent can insert the tag itself, just mark 736 * the tag in the mbuf header. 737 */ 738 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) { 739 struct m_tag *mtag; 740 741 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), 742 M_NOWAIT); 743 if (mtag == NULL) { 744 ifp->if_oerrors++; 745 m_freem(m); 746 continue; 747 } 748 *(u_int *)(mtag + 1) = ifv->ifv_tag; 749 m_tag_prepend(m, mtag); 750 } else { 751 /* 752 * insert the tag ourselves 753 */ 754 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT); 755 if (m == NULL) { 756 printf("%s: unable to prepend encap header", 757 ifv->ifv_p->if_xname); 758 ifp->if_oerrors++; 759 continue; 760 } 761 762 switch (p->if_type) { 763 case IFT_ETHER: 764 { 765 struct ether_vlan_header *evl; 766 767 if (m->m_len < sizeof(struct ether_vlan_header)) 768 m = m_pullup(m, 769 sizeof(struct ether_vlan_header)); 770 if (m == NULL) { 771 printf("%s: unable to pullup encap " 772 "header", ifv->ifv_p->if_xname); 773 ifp->if_oerrors++; 774 continue; 775 } 776 777 /* 778 * Transform the Ethernet header into an 779 * Ethernet header with 802.1Q encapsulation. 780 */ 781 memmove(mtod(m, caddr_t), 782 mtod(m, caddr_t) + ifv->ifv_encaplen, 783 sizeof(struct ether_header)); 784 evl = mtod(m, struct ether_vlan_header *); 785 evl->evl_proto = evl->evl_encap_proto; 786 evl->evl_encap_proto = htons(ETHERTYPE_VLAN); 787 evl->evl_tag = htons(ifv->ifv_tag); 788 789 /* 790 * To cater for VLAN-aware layer 2 ethernet 791 * switches which may need to strip the tag 792 * before forwarding the packet, make sure 793 * the packet+tag is at least 68 bytes long. 794 * This is necessary because our parent will 795 * only pad to 64 bytes (ETHER_MIN_LEN) and 796 * some switches will not pad by themselves 797 * after deleting a tag. 798 */ 799 if (m->m_pkthdr.len < 800 (ETHER_MIN_LEN + ETHER_VLAN_ENCAP_LEN)) { 801 m_copyback(m, m->m_pkthdr.len, 802 (ETHER_MIN_LEN + 803 ETHER_VLAN_ENCAP_LEN) - 804 m->m_pkthdr.len, 805 vlan_zero_pad_buff); 806 } 807 break; 808 } 809 810 #ifdef DIAGNOSTIC 811 default: 812 panic("vlan_start: impossible"); 813 #endif 814 } 815 } 816 817 /* 818 * Send it, precisely as the parent's output routine 819 * would have. We are already running at splnet. 820 */ 821 IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error); 822 if (error) { 823 /* mbuf is already freed */ 824 ifp->if_oerrors++; 825 continue; 826 } 827 828 ifp->if_opackets++; 829 if ((p->if_flags & (IFF_RUNNING|IFF_OACTIVE)) == IFF_RUNNING) 830 (*p->if_start)(p); 831 } 832 833 ifp->if_flags &= ~IFF_OACTIVE; 834 } 835 836 /* 837 * Given an Ethernet frame, find a valid vlan interface corresponding to the 838 * given source interface and tag, then run the real packet through the 839 * parent's input routine. 840 */ 841 void 842 vlan_input(struct ifnet *ifp, struct mbuf *m) 843 { 844 struct ifvlan *ifv; 845 u_int tag; 846 struct m_tag *mtag; 847 848 mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL); 849 if (mtag != NULL) { 850 /* m contains a normal ethernet frame, the tag is in mtag */ 851 tag = *(u_int *)(mtag + 1); 852 m_tag_delete(m, mtag); 853 } else { 854 switch (ifp->if_type) { 855 case IFT_ETHER: 856 { 857 struct ether_vlan_header *evl; 858 859 if (m->m_len < sizeof(struct ether_vlan_header) && 860 (m = m_pullup(m, 861 sizeof(struct ether_vlan_header))) == NULL) { 862 printf("%s: no memory for VLAN header, " 863 "dropping packet.\n", ifp->if_xname); 864 return; 865 } 866 evl = mtod(m, struct ether_vlan_header *); 867 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN); 868 869 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag)); 870 871 /* 872 * Restore the original ethertype. We'll remove 873 * the encapsulation after we've found the vlan 874 * interface corresponding to the tag. 875 */ 876 evl->evl_encap_proto = evl->evl_proto; 877 break; 878 } 879 880 default: 881 tag = (u_int) -1; /* XXX GCC */ 882 #ifdef DIAGNOSTIC 883 panic("vlan_input: impossible"); 884 #endif 885 } 886 } 887 888 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL; 889 ifv = LIST_NEXT(ifv, ifv_list)) 890 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag) 891 break; 892 893 if (ifv == NULL || 894 (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) != 895 (IFF_UP|IFF_RUNNING)) { 896 m_freem(m); 897 ifp->if_noproto++; 898 return; 899 } 900 901 /* 902 * Now, remove the encapsulation header. The original 903 * header has already been fixed up above. 904 */ 905 if (mtag == NULL) { 906 memmove(mtod(m, caddr_t) + ifv->ifv_encaplen, 907 mtod(m, caddr_t), sizeof(struct ether_header)); 908 m_adj(m, ifv->ifv_encaplen); 909 } 910 911 m->m_pkthdr.rcvif = &ifv->ifv_if; 912 ifv->ifv_if.if_ipackets++; 913 914 #if NBPFILTER > 0 915 if (ifv->ifv_if.if_bpf) 916 bpf_mtap(ifv->ifv_if.if_bpf, m); 917 #endif 918 919 /* Pass it back through the parent's input routine. */ 920 (*ifp->if_input)(&ifv->ifv_if, m); 921 } 922