1 /* $NetBSD: if_vlan.c,v 1.41 2004/07/08 19:09:12 mycroft Exp $ */ 2 3 /*- 4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright 1998 Massachusetts Institute of Technology 41 * 42 * Permission to use, copy, modify, and distribute this software and 43 * its documentation for any purpose and without fee is hereby 44 * granted, provided that both the above copyright notice and this 45 * permission notice appear in all copies, that both the above 46 * copyright notice and this permission notice appear in all 47 * supporting documentation, and that the name of M.I.T. not be used 48 * in advertising or publicity pertaining to distribution of the 49 * software without specific, written prior permission. M.I.T. makes 50 * no representations about the suitability of this software for any 51 * purpose. It is provided "as is" without express or implied 52 * warranty. 53 * 54 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 55 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 56 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 57 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 58 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 60 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 61 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 62 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 63 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 64 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp 68 * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp 69 */ 70 71 /* 72 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be 73 * extended some day to also handle IEEE 802.1P priority tagging. This is 74 * sort of sneaky in the implementation, since we need to pretend to be 75 * enough of an Ethernet implementation to make ARP work. The way we do 76 * this is by telling everyone that we are an Ethernet interface, and then 77 * catch the packets that ether_output() left on our output queue when it 78 * calls if_start(), rewrite them for use by the real outgoing interface, 79 * and ask it to send them. 80 * 81 * TODO: 82 * 83 * - Need some way to notify vlan interfaces when the parent 84 * interface changes MTU. 85 */ 86 87 #include <sys/cdefs.h> 88 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.41 2004/07/08 19:09:12 mycroft Exp $"); 89 90 #include "opt_inet.h" 91 #include "bpfilter.h" 92 93 #include <sys/param.h> 94 #include <sys/kernel.h> 95 #include <sys/mbuf.h> 96 #include <sys/queue.h> 97 #include <sys/socket.h> 98 #include <sys/sockio.h> 99 #include <sys/systm.h> 100 #include <sys/proc.h> 101 102 #if NBPFILTER > 0 103 #include <net/bpf.h> 104 #endif 105 #include <net/if.h> 106 #include <net/if_dl.h> 107 #include <net/if_types.h> 108 #include <net/if_ether.h> 109 #include <net/if_vlanvar.h> 110 111 #ifdef INET 112 #include <netinet/in.h> 113 #include <netinet/if_inarp.h> 114 #endif 115 116 struct vlan_mc_entry { 117 LIST_ENTRY(vlan_mc_entry) mc_entries; 118 /* 119 * A key to identify this entry. The mc_addr below can't be 120 * used since multiple sockaddr may mapped into the same 121 * ether_multi (e.g., AF_UNSPEC). 122 */ 123 union { 124 struct ether_multi *mcu_enm; 125 } mc_u; 126 struct sockaddr_storage mc_addr; 127 }; 128 129 #define mc_enm mc_u.mcu_enm 130 131 struct ifvlan { 132 union { 133 struct ethercom ifvu_ec; 134 } ifv_u; 135 struct ifnet *ifv_p; /* parent interface of this vlan */ 136 struct ifv_linkmib { 137 const struct vlan_multisw *ifvm_msw; 138 int ifvm_encaplen; /* encapsulation length */ 139 int ifvm_mtufudge; /* MTU fudged by this much */ 140 int ifvm_mintu; /* min transmission unit */ 141 u_int16_t ifvm_proto; /* encapsulation ethertype */ 142 u_int16_t ifvm_tag; /* tag to apply on packets */ 143 } ifv_mib; 144 LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead; 145 LIST_ENTRY(ifvlan) ifv_list; 146 int ifv_flags; 147 }; 148 149 #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */ 150 151 #define ifv_ec ifv_u.ifvu_ec 152 153 #define ifv_if ifv_ec.ec_if 154 155 #define ifv_msw ifv_mib.ifvm_msw 156 #define ifv_encaplen ifv_mib.ifvm_encaplen 157 #define ifv_mtufudge ifv_mib.ifvm_mtufudge 158 #define ifv_mintu ifv_mib.ifvm_mintu 159 #define ifv_tag ifv_mib.ifvm_tag 160 161 struct vlan_multisw { 162 int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *); 163 int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *); 164 void (*vmsw_purgemulti)(struct ifvlan *); 165 }; 166 167 static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *); 168 static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *); 169 static void vlan_ether_purgemulti(struct ifvlan *); 170 171 const struct vlan_multisw vlan_ether_multisw = { 172 vlan_ether_addmulti, 173 vlan_ether_delmulti, 174 vlan_ether_purgemulti, 175 }; 176 177 static int vlan_clone_create(struct if_clone *, int); 178 static void vlan_clone_destroy(struct ifnet *); 179 static int vlan_config(struct ifvlan *, struct ifnet *); 180 static int vlan_ioctl(struct ifnet *, u_long, caddr_t); 181 static void vlan_start(struct ifnet *); 182 static void vlan_unconfig(struct ifnet *); 183 184 void vlanattach(int); 185 186 /* XXX This should be a hash table with the tag as the basis of the key. */ 187 static LIST_HEAD(, ifvlan) ifv_list; 188 189 struct if_clone vlan_cloner = 190 IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy); 191 192 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */ 193 static char vlan_zero_pad_buff[ETHER_MIN_LEN]; 194 195 void 196 vlanattach(int n) 197 { 198 199 LIST_INIT(&ifv_list); 200 if_clone_attach(&vlan_cloner); 201 } 202 203 static void 204 vlan_reset_linkname(struct ifnet *ifp) 205 { 206 207 /* 208 * We start out with a "802.1Q VLAN" type and zero-length 209 * addresses. When we attach to a parent interface, we 210 * inherit its type, address length, address, and data link 211 * type. 212 */ 213 214 ifp->if_type = IFT_L2VLAN; 215 ifp->if_addrlen = 0; 216 ifp->if_dlt = DLT_NULL; 217 if_alloc_sadl(ifp); 218 } 219 220 static int 221 vlan_clone_create(struct if_clone *ifc, int unit) 222 { 223 struct ifvlan *ifv; 224 struct ifnet *ifp; 225 int s; 226 227 ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK); 228 memset(ifv, 0, sizeof(struct ifvlan)); 229 ifp = &ifv->ifv_if; 230 LIST_INIT(&ifv->ifv_mc_listhead); 231 232 s = splnet(); 233 LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list); 234 splx(s); 235 236 snprintf(ifp->if_xname, sizeof(ifp->if_xname), "%s%d", ifc->ifc_name, 237 unit); 238 ifp->if_softc = ifv; 239 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 240 ifp->if_start = vlan_start; 241 ifp->if_ioctl = vlan_ioctl; 242 IFQ_SET_READY(&ifp->if_snd); 243 244 if_attach(ifp); 245 vlan_reset_linkname(ifp); 246 247 return (0); 248 } 249 250 static void 251 vlan_clone_destroy(struct ifnet *ifp) 252 { 253 struct ifvlan *ifv = ifp->if_softc; 254 int s; 255 256 s = splnet(); 257 LIST_REMOVE(ifv, ifv_list); 258 vlan_unconfig(ifp); 259 splx(s); 260 261 if_detach(ifp); 262 free(ifv, M_DEVBUF); 263 } 264 265 /* 266 * Configure a VLAN interface. Must be called at splnet(). 267 */ 268 static int 269 vlan_config(struct ifvlan *ifv, struct ifnet *p) 270 { 271 struct ifnet *ifp = &ifv->ifv_if; 272 int error; 273 274 if (ifv->ifv_p != NULL) 275 return (EBUSY); 276 277 switch (p->if_type) { 278 case IFT_ETHER: 279 { 280 struct ethercom *ec = (void *) p; 281 282 ifv->ifv_msw = &vlan_ether_multisw; 283 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN; 284 ifv->ifv_mintu = ETHERMIN; 285 286 /* 287 * If the parent supports the VLAN_MTU capability, 288 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames, 289 * enable it. 290 */ 291 if (ec->ec_nvlans++ == 0 && 292 (ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) { 293 /* 294 * Enable Tx/Rx of VLAN-sized frames. 295 */ 296 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 297 if (p->if_flags & IFF_UP) { 298 struct ifreq ifr; 299 300 ifr.ifr_flags = p->if_flags; 301 error = (*p->if_ioctl)(p, SIOCSIFFLAGS, 302 (caddr_t) &ifr); 303 if (error) { 304 if (ec->ec_nvlans-- == 1) 305 ec->ec_capenable &= 306 ~ETHERCAP_VLAN_MTU; 307 return (error); 308 } 309 } 310 ifv->ifv_mtufudge = 0; 311 } else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) { 312 /* 313 * Fudge the MTU by the encapsulation size. This 314 * makes us incompatible with strictly compliant 315 * 802.1Q implementations, but allows us to use 316 * the feature with other NetBSD implementations, 317 * which might still be useful. 318 */ 319 ifv->ifv_mtufudge = ifv->ifv_encaplen; 320 } 321 322 /* 323 * If the parent interface can do hardware-assisted 324 * VLAN encapsulation, then propagate its hardware- 325 * assisted checksumming flags. 326 */ 327 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) 328 ifp->if_capabilities = p->if_capabilities & 329 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4| 330 IFCAP_CSUM_UDPv4|IFCAP_CSUM_TCPv6| 331 IFCAP_CSUM_UDPv6); 332 333 /* 334 * We inherit the parent's Ethernet address. 335 */ 336 ether_ifattach(ifp, LLADDR(p->if_sadl)); 337 ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */ 338 break; 339 } 340 341 default: 342 return (EPROTONOSUPPORT); 343 } 344 345 ifv->ifv_p = p; 346 ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge; 347 ifv->ifv_if.if_flags = p->if_flags & 348 (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 349 350 /* 351 * Inherit the if_type from the parent. This allows us 352 * to participate in bridges of that type. 353 */ 354 ifv->ifv_if.if_type = p->if_type; 355 356 return (0); 357 } 358 359 /* 360 * Unconfigure a VLAN interface. Must be called at splnet(). 361 */ 362 static void 363 vlan_unconfig(struct ifnet *ifp) 364 { 365 struct ifvlan *ifv = ifp->if_softc; 366 367 if (ifv->ifv_p == NULL) 368 return; 369 370 /* 371 * Since the interface is being unconfigured, we need to empty the 372 * list of multicast groups that we may have joined while we were 373 * alive and remove them from the parent's list also. 374 */ 375 (*ifv->ifv_msw->vmsw_purgemulti)(ifv); 376 377 /* Disconnect from parent. */ 378 switch (ifv->ifv_p->if_type) { 379 case IFT_ETHER: 380 { 381 struct ethercom *ec = (void *) ifv->ifv_p; 382 383 if (ec->ec_nvlans-- == 1) { 384 /* 385 * Disable Tx/Rx of VLAN-sized frames. 386 */ 387 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 388 if (ifv->ifv_p->if_flags & IFF_UP) { 389 struct ifreq ifr; 390 391 ifr.ifr_flags = ifv->ifv_p->if_flags; 392 (void) (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, 393 SIOCSIFFLAGS, (caddr_t) &ifr); 394 } 395 } 396 397 ether_ifdetach(ifp); 398 vlan_reset_linkname(ifp); 399 break; 400 } 401 402 #ifdef DIAGNOSTIC 403 default: 404 panic("vlan_unconfig: impossible"); 405 #endif 406 } 407 408 ifv->ifv_p = NULL; 409 ifv->ifv_if.if_mtu = 0; 410 ifv->ifv_flags = 0; 411 412 if_down(ifp); 413 ifp->if_flags &= ~(IFF_UP|IFF_RUNNING); 414 ifp->if_capabilities = 0; 415 } 416 417 /* 418 * Called when a parent interface is detaching; destroy any VLAN 419 * configuration for the parent interface. 420 */ 421 void 422 vlan_ifdetach(struct ifnet *p) 423 { 424 struct ifvlan *ifv; 425 int s; 426 427 s = splnet(); 428 429 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL; 430 ifv = LIST_NEXT(ifv, ifv_list)) { 431 if (ifv->ifv_p == p) 432 vlan_unconfig(&ifv->ifv_if); 433 } 434 435 splx(s); 436 } 437 438 static int 439 vlan_set_promisc(struct ifnet *ifp) 440 { 441 struct ifvlan *ifv = ifp->if_softc; 442 int error = 0; 443 444 if ((ifp->if_flags & IFF_PROMISC) != 0) { 445 if ((ifv->ifv_flags & IFVF_PROMISC) == 0) { 446 error = ifpromisc(ifv->ifv_p, 1); 447 if (error == 0) 448 ifv->ifv_flags |= IFVF_PROMISC; 449 } 450 } else { 451 if ((ifv->ifv_flags & IFVF_PROMISC) != 0) { 452 error = ifpromisc(ifv->ifv_p, 0); 453 if (error == 0) 454 ifv->ifv_flags &= ~IFVF_PROMISC; 455 } 456 } 457 458 return (error); 459 } 460 461 static int 462 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 463 { 464 struct proc *p = curproc; /* XXX */ 465 struct ifvlan *ifv = ifp->if_softc; 466 struct ifaddr *ifa = (struct ifaddr *) data; 467 struct ifreq *ifr = (struct ifreq *) data; 468 struct ifnet *pr; 469 struct vlanreq vlr; 470 struct sockaddr *sa; 471 int s, error = 0; 472 473 s = splnet(); 474 475 switch (cmd) { 476 case SIOCSIFADDR: 477 if (ifv->ifv_p != NULL) { 478 ifp->if_flags |= IFF_UP; 479 480 switch (ifa->ifa_addr->sa_family) { 481 #ifdef INET 482 case AF_INET: 483 arp_ifinit(ifp, ifa); 484 break; 485 #endif 486 default: 487 break; 488 } 489 } else { 490 error = EINVAL; 491 } 492 break; 493 494 case SIOCGIFADDR: 495 sa = (struct sockaddr *)&ifr->ifr_data; 496 memcpy(sa->sa_data, LLADDR(ifp->if_sadl), ifp->if_addrlen); 497 break; 498 499 case SIOCSIFMTU: 500 if (ifv->ifv_p != NULL) { 501 if (ifr->ifr_mtu > 502 (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) || 503 ifr->ifr_mtu < 504 (ifv->ifv_mintu - ifv->ifv_mtufudge)) 505 error = EINVAL; 506 else 507 ifp->if_mtu = ifr->ifr_mtu; 508 } else 509 error = EINVAL; 510 break; 511 512 case SIOCSETVLAN: 513 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) 514 break; 515 if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0) 516 break; 517 if (vlr.vlr_parent[0] == '\0') { 518 vlan_unconfig(ifp); 519 break; 520 } 521 if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) { 522 error = EINVAL; /* check for valid tag */ 523 break; 524 } 525 if ((pr = ifunit(vlr.vlr_parent)) == 0) { 526 error = ENOENT; 527 break; 528 } 529 if ((error = vlan_config(ifv, pr)) != 0) 530 break; 531 ifv->ifv_tag = vlr.vlr_tag; 532 ifp->if_flags |= IFF_RUNNING; 533 534 /* Update promiscuous mode, if necessary. */ 535 vlan_set_promisc(ifp); 536 break; 537 538 case SIOCGETVLAN: 539 memset(&vlr, 0, sizeof(vlr)); 540 if (ifv->ifv_p != NULL) { 541 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s", 542 ifv->ifv_p->if_xname); 543 vlr.vlr_tag = ifv->ifv_tag; 544 } 545 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr)); 546 break; 547 548 case SIOCSIFFLAGS: 549 /* 550 * For promiscuous mode, we enable promiscuous mode on 551 * the parent if we need promiscuous on the VLAN interface. 552 */ 553 if (ifv->ifv_p != NULL) 554 error = vlan_set_promisc(ifp); 555 break; 556 557 case SIOCADDMULTI: 558 error = (ifv->ifv_p != NULL) ? 559 (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL; 560 break; 561 562 case SIOCDELMULTI: 563 error = (ifv->ifv_p != NULL) ? 564 (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL; 565 break; 566 567 default: 568 error = EINVAL; 569 } 570 571 splx(s); 572 573 return (error); 574 } 575 576 static int 577 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr) 578 { 579 struct vlan_mc_entry *mc; 580 u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN]; 581 int error; 582 583 if (ifr->ifr_addr.sa_len > sizeof(struct sockaddr_storage)) 584 return (EINVAL); 585 586 error = ether_addmulti(ifr, &ifv->ifv_ec); 587 if (error != ENETRESET) 588 return (error); 589 590 /* 591 * This is new multicast address. We have to tell parent 592 * about it. Also, remember this multicast address so that 593 * we can delete them on unconfigure. 594 */ 595 MALLOC(mc, struct vlan_mc_entry *, sizeof(struct vlan_mc_entry), 596 M_DEVBUF, M_NOWAIT); 597 if (mc == NULL) { 598 error = ENOMEM; 599 goto alloc_failed; 600 } 601 602 /* 603 * As ether_addmulti() returns ENETRESET, following two 604 * statement shouldn't fail. 605 */ 606 (void)ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi); 607 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm); 608 memcpy(&mc->mc_addr, &ifr->ifr_addr, ifr->ifr_addr.sa_len); 609 LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries); 610 611 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCADDMULTI, 612 (caddr_t)ifr); 613 if (error != 0) 614 goto ioctl_failed; 615 return (error); 616 617 ioctl_failed: 618 LIST_REMOVE(mc, mc_entries); 619 FREE(mc, M_DEVBUF); 620 alloc_failed: 621 (void)ether_delmulti(ifr, &ifv->ifv_ec); 622 return (error); 623 } 624 625 static int 626 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr) 627 { 628 struct ether_multi *enm; 629 struct vlan_mc_entry *mc; 630 u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN]; 631 int error; 632 633 /* 634 * Find a key to lookup vlan_mc_entry. We have to do this 635 * before calling ether_delmulti for obvious reason. 636 */ 637 if ((error = ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi)) != 0) 638 return (error); 639 ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm); 640 641 error = ether_delmulti(ifr, &ifv->ifv_ec); 642 if (error != ENETRESET) 643 return (error); 644 645 /* We no longer use this multicast address. Tell parent so. */ 646 error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCDELMULTI, 647 (caddr_t)ifr); 648 if (error == 0) { 649 /* And forget about this address. */ 650 for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL; 651 mc = LIST_NEXT(mc, mc_entries)) { 652 if (mc->mc_enm == enm) { 653 LIST_REMOVE(mc, mc_entries); 654 FREE(mc, M_DEVBUF); 655 break; 656 } 657 } 658 KASSERT(mc != NULL); 659 } else 660 (void)ether_addmulti(ifr, &ifv->ifv_ec); 661 return (error); 662 } 663 664 /* 665 * Delete any multicast address we have asked to add from parent 666 * interface. Called when the vlan is being unconfigured. 667 */ 668 static void 669 vlan_ether_purgemulti(struct ifvlan *ifv) 670 { 671 struct ifnet *ifp = ifv->ifv_p; /* Parent. */ 672 struct vlan_mc_entry *mc; 673 union { 674 struct ifreq ifreq; 675 struct { 676 char ifr_name[IFNAMSIZ]; 677 struct sockaddr_storage ifr_ss; 678 } ifreq_storage; 679 } ifreq; 680 struct ifreq *ifr = &ifreq.ifreq; 681 682 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ); 683 while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) { 684 memcpy(&ifr->ifr_addr, &mc->mc_addr, mc->mc_addr.ss_len); 685 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)ifr); 686 LIST_REMOVE(mc, mc_entries); 687 FREE(mc, M_DEVBUF); 688 } 689 } 690 691 static void 692 vlan_start(struct ifnet *ifp) 693 { 694 struct ifvlan *ifv = ifp->if_softc; 695 struct ifnet *p = ifv->ifv_p; 696 struct ethercom *ec = (void *) ifv->ifv_p; 697 struct mbuf *m; 698 int error; 699 ALTQ_DECL(struct altq_pktattr pktattr;) 700 701 ifp->if_flags |= IFF_OACTIVE; 702 703 for (;;) { 704 IFQ_DEQUEUE(&ifp->if_snd, m); 705 if (m == NULL) 706 break; 707 708 #ifdef ALTQ 709 /* 710 * If ALTQ is enabled on the parent interface, do 711 * classification; the queueing discipline might 712 * not require classification, but might require 713 * the address family/header pointer in the pktattr. 714 */ 715 if (ALTQ_IS_ENABLED(&p->if_snd)) { 716 switch (p->if_type) { 717 case IFT_ETHER: 718 altq_etherclassify(&p->if_snd, m, &pktattr); 719 break; 720 #ifdef DIAGNOSTIC 721 default: 722 panic("vlan_start: impossible (altq)"); 723 #endif 724 } 725 } 726 #endif /* ALTQ */ 727 728 #if NBPFILTER > 0 729 if (ifp->if_bpf) 730 bpf_mtap(ifp->if_bpf, m); 731 #endif 732 /* 733 * If the parent can insert the tag itself, just mark 734 * the tag in the mbuf header. 735 */ 736 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) { 737 struct m_tag *mtag; 738 739 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), 740 M_NOWAIT); 741 if (mtag == NULL) { 742 ifp->if_oerrors++; 743 m_freem(m); 744 continue; 745 } 746 *(u_int *)(mtag + 1) = ifv->ifv_tag; 747 m_tag_prepend(m, mtag); 748 } else { 749 /* 750 * insert the tag ourselves 751 */ 752 M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT); 753 if (m == NULL) { 754 printf("%s: unable to prepend encap header", 755 ifv->ifv_p->if_xname); 756 ifp->if_oerrors++; 757 continue; 758 } 759 760 switch (p->if_type) { 761 case IFT_ETHER: 762 { 763 struct ether_vlan_header *evl; 764 765 if (m->m_len < sizeof(struct ether_vlan_header)) 766 m = m_pullup(m, 767 sizeof(struct ether_vlan_header)); 768 if (m == NULL) { 769 printf("%s: unable to pullup encap " 770 "header", ifv->ifv_p->if_xname); 771 ifp->if_oerrors++; 772 continue; 773 } 774 775 /* 776 * Transform the Ethernet header into an 777 * Ethernet header with 802.1Q encapsulation. 778 */ 779 memmove(mtod(m, caddr_t), 780 mtod(m, caddr_t) + ifv->ifv_encaplen, 781 sizeof(struct ether_header)); 782 evl = mtod(m, struct ether_vlan_header *); 783 evl->evl_proto = evl->evl_encap_proto; 784 evl->evl_encap_proto = htons(ETHERTYPE_VLAN); 785 evl->evl_tag = htons(ifv->ifv_tag); 786 787 /* 788 * To cater for VLAN-aware layer 2 ethernet 789 * switches which may need to strip the tag 790 * before forwarding the packet, make sure 791 * the packet+tag is at least 68 bytes long. 792 * This is necessary because our parent will 793 * only pad to 64 bytes (ETHER_MIN_LEN) and 794 * some switches will not pad by themselves 795 * after deleting a tag. 796 */ 797 if (m->m_pkthdr.len < 798 (ETHER_MIN_LEN + ETHER_VLAN_ENCAP_LEN)) { 799 m_copyback(m, m->m_pkthdr.len, 800 (ETHER_MIN_LEN + 801 ETHER_VLAN_ENCAP_LEN) - 802 m->m_pkthdr.len, 803 vlan_zero_pad_buff); 804 } 805 break; 806 } 807 808 #ifdef DIAGNOSTIC 809 default: 810 panic("vlan_start: impossible"); 811 #endif 812 } 813 } 814 815 /* 816 * Send it, precisely as the parent's output routine 817 * would have. We are already running at splnet. 818 */ 819 IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error); 820 if (error) { 821 /* mbuf is already freed */ 822 ifp->if_oerrors++; 823 continue; 824 } 825 826 ifp->if_opackets++; 827 if ((p->if_flags & (IFF_RUNNING|IFF_OACTIVE)) == IFF_RUNNING) 828 (*p->if_start)(p); 829 } 830 831 ifp->if_flags &= ~IFF_OACTIVE; 832 } 833 834 /* 835 * Given an Ethernet frame, find a valid vlan interface corresponding to the 836 * given source interface and tag, then run the real packet through the 837 * parent's input routine. 838 */ 839 void 840 vlan_input(struct ifnet *ifp, struct mbuf *m) 841 { 842 struct ifvlan *ifv; 843 u_int tag; 844 struct m_tag *mtag; 845 846 mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL); 847 if (mtag != NULL) { 848 /* m contains a normal ethernet frame, the tag is in mtag */ 849 tag = *(u_int *)(mtag + 1); 850 m_tag_delete(m, mtag); 851 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL; 852 ifv = LIST_NEXT(ifv, ifv_list)) 853 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag) 854 break; 855 } else { 856 switch (ifp->if_type) { 857 case IFT_ETHER: 858 { 859 struct ether_vlan_header *evl; 860 861 if (m->m_len < sizeof(struct ether_vlan_header) && 862 (m = m_pullup(m, 863 sizeof(struct ether_vlan_header))) == NULL) { 864 printf("%s: no memory for VLAN header, " 865 "dropping packet.\n", ifp->if_xname); 866 return; 867 } 868 evl = mtod(m, struct ether_vlan_header *); 869 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN); 870 871 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag)); 872 873 /* 874 * Restore the original ethertype. We'll remove 875 * the encapsulation after we've found the vlan 876 * interface corresponding to the tag. 877 */ 878 evl->evl_encap_proto = evl->evl_proto; 879 break; 880 } 881 882 default: 883 tag = (u_int) -1; /* XXX GCC */ 884 #ifdef DIAGNOSTIC 885 panic("vlan_input: impossible"); 886 #endif 887 } 888 889 for (ifv = LIST_FIRST(&ifv_list); ifv != NULL; 890 ifv = LIST_NEXT(ifv, ifv_list)) 891 if (ifp == ifv->ifv_p && tag == ifv->ifv_tag) 892 break; 893 894 895 /* 896 * Now, remove the encapsulation header. The original 897 * header has already been fixed up above. 898 */ 899 if (ifv) { 900 memmove(mtod(m, caddr_t) + ifv->ifv_encaplen, 901 mtod(m, caddr_t), sizeof(struct ether_header)); 902 m_adj(m, ifv->ifv_encaplen); 903 } 904 } 905 906 if (ifv == NULL || 907 (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) != 908 (IFF_UP|IFF_RUNNING)) { 909 m_freem(m); 910 ifp->if_noproto++; 911 return; 912 } 913 m->m_pkthdr.rcvif = &ifv->ifv_if; 914 ifv->ifv_if.if_ipackets++; 915 916 #if NBPFILTER > 0 917 if (ifv->ifv_if.if_bpf) 918 bpf_mtap(ifv->ifv_if.if_bpf, m); 919 #endif 920 921 /* Pass it back through the parent's input routine. */ 922 (*ifp->if_input)(&ifv->ifv_if, m); 923 } 924