xref: /netbsd-src/sys/net/if_tap.c (revision fad4c9f71477ae11cea2ee75ec82151ac770a534)
1 /*	$NetBSD: if_tap.c,v 1.18 2006/06/07 22:33:43 kardel Exp $	*/
2 
3 /*
4  *  Copyright (c) 2003, 2004 The NetBSD Foundation.
5  *  All rights reserved.
6  *
7  *  This code is derived from software contributed to the NetBSD Foundation
8  *   by Quentin Garnier.
9  *
10  *  Redistribution and use in source and binary forms, with or without
11  *  modification, are permitted provided that the following conditions
12  *  are met:
13  *  1. Redistributions of source code must retain the above copyright
14  *     notice, this list of conditions and the following disclaimer.
15  *  2. Redistributions in binary form must reproduce the above copyright
16  *     notice, this list of conditions and the following disclaimer in the
17  *     documentation and/or other materials provided with the distribution.
18  *  3. All advertising materials mentioning features or use of this software
19  *     must display the following acknowledgement:
20  *         This product includes software developed by the NetBSD
21  *         Foundation, Inc. and its contributors.
22  *  4. Neither the name of The NetBSD Foundation nor the names of its
23  *     contributors may be used to endorse or promote products derived
24  *     from this software without specific prior written permission.
25  *
26  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  *  POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
41  * device to the system, but can also be accessed by userland through a
42  * character device interface, which allows reading and injecting frames.
43  */
44 
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.18 2006/06/07 22:33:43 kardel Exp $");
47 
48 #if defined(_KERNEL_OPT)
49 #include "bpfilter.h"
50 #endif
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/conf.h>
57 #include <sys/device.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/ksyms.h>
61 #include <sys/poll.h>
62 #include <sys/select.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65 #include <sys/kauth.h>
66 
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_ether.h>
70 #include <net/if_media.h>
71 #include <net/if_tap.h>
72 #if NBPFILTER > 0
73 #include <net/bpf.h>
74 #endif
75 
76 /*
77  * sysctl node management
78  *
79  * It's not really possible to use a SYSCTL_SETUP block with
80  * current LKM implementation, so it is easier to just define
81  * our own function.
82  *
83  * The handler function is a "helper" in Andrew Brown's sysctl
84  * framework terminology.  It is used as a gateway for sysctl
85  * requests over the nodes.
86  *
87  * tap_log allows the module to log creations of nodes and
88  * destroy them all at once using sysctl_teardown.
89  */
90 static int tap_node;
91 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
92 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
93 
94 /*
95  * Since we're an Ethernet device, we need the 3 following
96  * components: a leading struct device, a struct ethercom,
97  * and also a struct ifmedia since we don't attach a PHY to
98  * ourselves. We could emulate one, but there's no real
99  * point.
100  */
101 
102 struct tap_softc {
103 	struct device	sc_dev;
104 	struct ifmedia	sc_im;
105 	struct ethercom	sc_ec;
106 	int		sc_flags;
107 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
108 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
109 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
110 #define TAP_GOING	0x00000008	/* interface is being destroyed */
111 	struct selinfo	sc_rsel;
112 	pid_t		sc_pgid; /* For async. IO */
113 	struct lock	sc_rdlock;
114 	struct simplelock	sc_kqlock;
115 };
116 
117 /* autoconf(9) glue */
118 
119 void	tapattach(int);
120 
121 static int	tap_match(struct device *, struct cfdata *, void *);
122 static void	tap_attach(struct device *, struct device *, void *);
123 static int	tap_detach(struct device*, int);
124 
125 /* Ethernet address helper functions */
126 
127 static int	tap_ether_aton(u_char *, char *);
128 
129 CFATTACH_DECL(tap, sizeof(struct tap_softc),
130     tap_match, tap_attach, tap_detach, NULL);
131 extern struct cfdriver tap_cd;
132 
133 /* Real device access routines */
134 static int	tap_dev_close(struct tap_softc *);
135 static int	tap_dev_read(int, struct uio *, int);
136 static int	tap_dev_write(int, struct uio *, int);
137 static int	tap_dev_ioctl(int, u_long, caddr_t, struct lwp *);
138 static int	tap_dev_poll(int, int, struct lwp *);
139 static int	tap_dev_kqfilter(int, struct knote *);
140 
141 /* Fileops access routines */
142 static int	tap_fops_close(struct file *, struct lwp *);
143 static int	tap_fops_read(struct file *, off_t *, struct uio *,
144     kauth_cred_t, int);
145 static int	tap_fops_write(struct file *, off_t *, struct uio *,
146     kauth_cred_t, int);
147 static int	tap_fops_ioctl(struct file *, u_long, void *,
148     struct lwp *);
149 static int	tap_fops_poll(struct file *, int, struct lwp *);
150 static int	tap_fops_kqfilter(struct file *, struct knote *);
151 
152 static const struct fileops tap_fileops = {
153 	tap_fops_read,
154 	tap_fops_write,
155 	tap_fops_ioctl,
156 	fnullop_fcntl,
157 	tap_fops_poll,
158 	fbadop_stat,
159 	tap_fops_close,
160 	tap_fops_kqfilter,
161 };
162 
163 /* Helper for cloning open() */
164 static int	tap_dev_cloner(struct lwp *);
165 
166 /* Character device routines */
167 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
168 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
169 static int	tap_cdev_read(dev_t, struct uio *, int);
170 static int	tap_cdev_write(dev_t, struct uio *, int);
171 static int	tap_cdev_ioctl(dev_t, u_long, caddr_t, int, struct lwp *);
172 static int	tap_cdev_poll(dev_t, int, struct lwp *);
173 static int	tap_cdev_kqfilter(dev_t, struct knote *);
174 
175 const struct cdevsw tap_cdevsw = {
176 	tap_cdev_open, tap_cdev_close,
177 	tap_cdev_read, tap_cdev_write,
178 	tap_cdev_ioctl, nostop, notty,
179 	tap_cdev_poll, nommap,
180 	tap_cdev_kqfilter,
181 };
182 
183 #define TAP_CLONER	0xfffff		/* Maximal minor value */
184 
185 /* kqueue-related routines */
186 static void	tap_kqdetach(struct knote *);
187 static int	tap_kqread(struct knote *, long);
188 
189 /*
190  * Those are needed by the if_media interface.
191  */
192 
193 static int	tap_mediachange(struct ifnet *);
194 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
195 
196 /*
197  * Those are needed by the ifnet interface, and would typically be
198  * there for any network interface driver.
199  * Some other routines are optional: watchdog and drain.
200  */
201 
202 static void	tap_start(struct ifnet *);
203 static void	tap_stop(struct ifnet *, int);
204 static int	tap_init(struct ifnet *);
205 static int	tap_ioctl(struct ifnet *, u_long, caddr_t);
206 
207 /* This is an internal function to keep tap_ioctl readable */
208 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
209 
210 /*
211  * tap is a clonable interface, although it is highly unrealistic for
212  * an Ethernet device.
213  *
214  * Here are the bits needed for a clonable interface.
215  */
216 static int	tap_clone_create(struct if_clone *, int);
217 static int	tap_clone_destroy(struct ifnet *);
218 
219 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
220 					tap_clone_create,
221 					tap_clone_destroy);
222 
223 /* Helper functionis shared by the two cloning code paths */
224 static struct tap_softc *	tap_clone_creator(int);
225 int	tap_clone_destroyer(struct device *);
226 
227 void
228 tapattach(int n)
229 {
230 	int error;
231 
232 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
233 	if (error) {
234 		aprint_error("%s: unable to register cfattach\n",
235 		    tap_cd.cd_name);
236 		(void)config_cfdriver_detach(&tap_cd);
237 		return;
238 	}
239 
240 	if_clone_attach(&tap_cloners);
241 }
242 
243 /* Pretty much useless for a pseudo-device */
244 static int
245 tap_match(struct device *self, struct cfdata *cfdata, void *arg)
246 {
247 	return (1);
248 }
249 
250 void
251 tap_attach(struct device *parent, struct device *self, void *aux)
252 {
253 	struct tap_softc *sc = (struct tap_softc *)self;
254 	struct ifnet *ifp;
255 	const struct sysctlnode *node;
256 	u_int8_t enaddr[ETHER_ADDR_LEN] =
257 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
258 	char enaddrstr[3 * ETHER_ADDR_LEN];
259 	struct timeval tv;
260 	uint32_t ui;
261 	int error;
262 
263 	aprint_normal("%s: faking Ethernet device\n",
264 	    self->dv_xname);
265 
266 	/*
267 	 * In order to obtain unique initial Ethernet address on a host,
268 	 * do some randomisation using the current uptime.  It's not meant
269 	 * for anything but avoiding hard-coding an address.
270 	 */
271 	getmicrouptime(&tv);
272 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
273 	memcpy(enaddr+3, (u_int8_t *)&ui, 3);
274 
275 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
276 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
277 
278 	/*
279 	 * Why 1000baseT? Why not? You can add more.
280 	 *
281 	 * Note that there are 3 steps: init, one or several additions to
282 	 * list of supported media, and in the end, the selection of one
283 	 * of them.
284 	 */
285 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
286 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
287 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
288 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
289 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
290 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
291 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
292 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
293 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
294 
295 	/*
296 	 * One should note that an interface must do multicast in order
297 	 * to support IPv6.
298 	 */
299 	ifp = &sc->sc_ec.ec_if;
300 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
301 	ifp->if_softc	= sc;
302 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
303 	ifp->if_ioctl	= tap_ioctl;
304 	ifp->if_start	= tap_start;
305 	ifp->if_stop	= tap_stop;
306 	ifp->if_init	= tap_init;
307 	IFQ_SET_READY(&ifp->if_snd);
308 
309 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
310 
311 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
312 	 * being common to all network interface drivers. */
313 	if_attach(ifp);
314 	ether_ifattach(ifp, enaddr);
315 
316 	sc->sc_flags = 0;
317 
318 	/*
319 	 * Add a sysctl node for that interface.
320 	 *
321 	 * The pointer transmitted is not a string, but instead a pointer to
322 	 * the softc structure, which we can use to build the string value on
323 	 * the fly in the helper function of the node.  See the comments for
324 	 * tap_sysctl_handler for details.
325 	 */
326 	if ((error = sysctl_createv(NULL, 0, NULL,
327 	    &node, CTLFLAG_READWRITE,
328 	    CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
329 	    tap_sysctl_handler, 0, sc, 18,
330 	    CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
331 	    CTL_EOL)) != 0)
332 		aprint_error("%s: sysctl_createv returned %d, ignoring\n",
333 		    sc->sc_dev.dv_xname, error);
334 
335 	/*
336 	 * Initialize the two locks for the device.
337 	 *
338 	 * We need a lock here because even though the tap device can be
339 	 * opened only once, the file descriptor might be passed to another
340 	 * process, say a fork(2)ed child.
341 	 *
342 	 * The Giant saves us from most of the hassle, but since the read
343 	 * operation can sleep, we don't want two processes to wake up at
344 	 * the same moment and both try and dequeue a single packet.
345 	 *
346 	 * The queue for event listeners (used by kqueue(9), see below) has
347 	 * to be protected, too, but we don't need the same level of
348 	 * complexity for that lock, so a simple spinning lock is fine.
349 	 */
350 	lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
351 	simple_lock_init(&sc->sc_kqlock);
352 }
353 
354 /*
355  * When detaching, we do the inverse of what is done in the attach
356  * routine, in reversed order.
357  */
358 static int
359 tap_detach(struct device* self, int flags)
360 {
361 	struct tap_softc *sc = (struct tap_softc *)self;
362 	struct ifnet *ifp = &sc->sc_ec.ec_if;
363 	int error, s;
364 
365 	/*
366 	 * Some processes might be sleeping on "tap", so we have to make
367 	 * them release their hold on the device.
368 	 *
369 	 * The LK_DRAIN operation will wait for every locked process to
370 	 * release their hold.
371 	 */
372 	sc->sc_flags |= TAP_GOING;
373 	s = splnet();
374 	tap_stop(ifp, 1);
375 	if_down(ifp);
376 	splx(s);
377 	lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
378 
379 	/*
380 	 * Destroying a single leaf is a very straightforward operation using
381 	 * sysctl_destroyv.  One should be sure to always end the path with
382 	 * CTL_EOL.
383 	 */
384 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
385 	    device_unit(&sc->sc_dev), CTL_EOL)) != 0)
386 		aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
387 		    sc->sc_dev.dv_xname, error);
388 	ether_ifdetach(ifp);
389 	if_detach(ifp);
390 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
391 
392 	return (0);
393 }
394 
395 /*
396  * This function is called by the ifmedia layer to notify the driver
397  * that the user requested a media change.  A real driver would
398  * reconfigure the hardware.
399  */
400 static int
401 tap_mediachange(struct ifnet *ifp)
402 {
403 	return (0);
404 }
405 
406 /*
407  * Here the user asks for the currently used media.
408  */
409 static void
410 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
411 {
412 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
413 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
414 }
415 
416 /*
417  * This is the function where we SEND packets.
418  *
419  * There is no 'receive' equivalent.  A typical driver will get
420  * interrupts from the hardware, and from there will inject new packets
421  * into the network stack.
422  *
423  * Once handled, a packet must be freed.  A real driver might not be able
424  * to fit all the pending packets into the hardware, and is allowed to
425  * return before having sent all the packets.  It should then use the
426  * if_flags flag IFF_OACTIVE to notify the upper layer.
427  *
428  * There are also other flags one should check, such as IFF_PAUSE.
429  *
430  * It is our duty to make packets available to BPF listeners.
431  *
432  * You should be aware that this function is called by the Ethernet layer
433  * at splnet().
434  *
435  * When the device is opened, we have to pass the packet(s) to the
436  * userland.  For that we stay in OACTIVE mode while the userland gets
437  * the packets, and we send a signal to the processes waiting to read.
438  *
439  * wakeup(sc) is the counterpart to the tsleep call in
440  * tap_dev_read, while selnotify() is used for kevent(2) and
441  * poll(2) (which includes select(2)) listeners.
442  */
443 static void
444 tap_start(struct ifnet *ifp)
445 {
446 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
447 	struct mbuf *m0;
448 
449 	if ((sc->sc_flags & TAP_INUSE) == 0) {
450 		/* Simply drop packets */
451 		for(;;) {
452 			IFQ_DEQUEUE(&ifp->if_snd, m0);
453 			if (m0 == NULL)
454 				return;
455 
456 			ifp->if_opackets++;
457 #if NBPFILTER > 0
458 			if (ifp->if_bpf)
459 				bpf_mtap(ifp->if_bpf, m0);
460 #endif
461 
462 			m_freem(m0);
463 		}
464 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
465 		ifp->if_flags |= IFF_OACTIVE;
466 		wakeup(sc);
467 		selnotify(&sc->sc_rsel, 1);
468 		if (sc->sc_flags & TAP_ASYNCIO)
469 			fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
470 			    POLLIN|POLLRDNORM, NULL);
471 	}
472 }
473 
474 /*
475  * A typical driver will only contain the following handlers for
476  * ioctl calls, except SIOCSIFPHYADDR.
477  * The latter is a hack I used to set the Ethernet address of the
478  * faked device.
479  *
480  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
481  * called under splnet().
482  */
483 static int
484 tap_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
485 {
486 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
487 	struct ifreq *ifr = (struct ifreq *)data;
488 	int s, error;
489 
490 	s = splnet();
491 
492 	switch (cmd) {
493 	case SIOCSIFMEDIA:
494 	case SIOCGIFMEDIA:
495 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
496 		break;
497 	case SIOCSIFPHYADDR:
498 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
499 		break;
500 	default:
501 		error = ether_ioctl(ifp, cmd, data);
502 		if (error == ENETRESET)
503 			error = 0;
504 		break;
505 	}
506 
507 	splx(s);
508 
509 	return (error);
510 }
511 
512 /*
513  * Helper function to set Ethernet address.  This shouldn't be done there,
514  * and should actually be available to all Ethernet drivers, real or not.
515  */
516 static int
517 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
518 {
519 	struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
520 
521 	if (sa->sa_family != AF_LINK)
522 		return (EINVAL);
523 
524 	memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
525 
526 	return (0);
527 }
528 
529 /*
530  * _init() would typically be called when an interface goes up,
531  * meaning it should configure itself into the state in which it
532  * can send packets.
533  */
534 static int
535 tap_init(struct ifnet *ifp)
536 {
537 	ifp->if_flags |= IFF_RUNNING;
538 
539 	tap_start(ifp);
540 
541 	return (0);
542 }
543 
544 /*
545  * _stop() is called when an interface goes down.  It is our
546  * responsability to validate that state by clearing the
547  * IFF_RUNNING flag.
548  *
549  * We have to wake up all the sleeping processes to have the pending
550  * read requests cancelled.
551  */
552 static void
553 tap_stop(struct ifnet *ifp, int disable)
554 {
555 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
556 
557 	ifp->if_flags &= ~IFF_RUNNING;
558 	wakeup(sc);
559 	selnotify(&sc->sc_rsel, 1);
560 	if (sc->sc_flags & TAP_ASYNCIO)
561 		fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
562 }
563 
564 /*
565  * The 'create' command of ifconfig can be used to create
566  * any numbered instance of a given device.  Thus we have to
567  * make sure we have enough room in cd_devs to create the
568  * user-specified instance.  config_attach_pseudo will do this
569  * for us.
570  */
571 static int
572 tap_clone_create(struct if_clone *ifc, int unit)
573 {
574 	if (tap_clone_creator(unit) == NULL) {
575 		aprint_error("%s%d: unable to attach an instance\n",
576                     tap_cd.cd_name, unit);
577 		return (ENXIO);
578 	}
579 
580 	return (0);
581 }
582 
583 /*
584  * tap(4) can be cloned by two ways:
585  *   using 'ifconfig tap0 create', which will use the network
586  *     interface cloning API, and call tap_clone_create above.
587  *   opening the cloning device node, whose minor number is TAP_CLONER.
588  *     See below for an explanation on how this part work.
589  *
590  * config_attach_pseudo can be called with unit = DVUNIT_ANY to have
591  * autoconf(9) choose a unit number for us.  This is what happens when
592  * the cloner is openend, while the ifcloner interface creates a device
593  * with a specific unit number.
594  */
595 static struct tap_softc *
596 tap_clone_creator(int unit)
597 {
598 	struct cfdata *cf;
599 
600 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
601 	cf->cf_name = tap_cd.cd_name;
602 	cf->cf_atname = tap_ca.ca_name;
603 	cf->cf_unit = unit;
604 	cf->cf_fstate = FSTATE_STAR;
605 
606 	return (struct tap_softc *)config_attach_pseudo(cf);
607 }
608 
609 /*
610  * The clean design of if_clone and autoconf(9) makes that part
611  * really straightforward.  The second argument of config_detach
612  * means neither QUIET nor FORCED.
613  */
614 static int
615 tap_clone_destroy(struct ifnet *ifp)
616 {
617 	return tap_clone_destroyer((struct device *)ifp->if_softc);
618 }
619 
620 int
621 tap_clone_destroyer(struct device *dev)
622 {
623 	struct cfdata *cf = device_cfdata(dev);
624 	int error;
625 
626 	if ((error = config_detach(dev, 0)) != 0)
627 		aprint_error("%s: unable to detach instance\n",
628 		    dev->dv_xname);
629 	free(cf, M_DEVBUF);
630 
631 	return (error);
632 }
633 
634 /*
635  * tap(4) is a bit of an hybrid device.  It can be used in two different
636  * ways:
637  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
638  *  2. open /dev/tap, get a new interface created and read/write off it.
639  *     That interface is destroyed when the process that had it created exits.
640  *
641  * The first way is managed by the cdevsw structure, and you access interfaces
642  * through a (major, minor) mapping:  tap4 is obtained by the minor number
643  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
644  *
645  * The second way is the so-called "cloning" device.  It's a special minor
646  * number (chosen as the maximal number, to allow as much tap devices as
647  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
648  * call ends in tap_cdev_open.  The actual place where it is handled is
649  * tap_dev_cloner.
650  *
651  * An tap device cannot be opened more than once at a time, so the cdevsw
652  * part of open() does nothing but noting that the interface is being used and
653  * hence ready to actually handle packets.
654  */
655 
656 static int
657 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
658 {
659 	struct tap_softc *sc;
660 
661 	if (minor(dev) == TAP_CLONER)
662 		return tap_dev_cloner(l);
663 
664 	sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
665 	if (sc == NULL)
666 		return (ENXIO);
667 
668 	/* The device can only be opened once */
669 	if (sc->sc_flags & TAP_INUSE)
670 		return (EBUSY);
671 	sc->sc_flags |= TAP_INUSE;
672 	return (0);
673 }
674 
675 /*
676  * There are several kinds of cloning devices, and the most simple is the one
677  * tap(4) uses.  What it does is change the file descriptor with a new one,
678  * with its own fileops structure (which maps to the various read, write,
679  * ioctl functions).  It starts allocating a new file descriptor with falloc,
680  * then actually creates the new tap devices.
681  *
682  * Once those two steps are successful, we can re-wire the existing file
683  * descriptor to its new self.  This is done with fdclone():  it fills the fp
684  * structure as needed (notably f_data gets filled with the fifth parameter
685  * passed, the unit of the tap device which will allows us identifying the
686  * device later), and returns EMOVEFD.
687  *
688  * That magic value is interpreted by sys_open() which then replaces the
689  * current file descriptor by the new one (through a magic member of struct
690  * lwp, l_dupfd).
691  *
692  * The tap device is flagged as being busy since it otherwise could be
693  * externally accessed through the corresponding device node with the cdevsw
694  * interface.
695  */
696 
697 static int
698 tap_dev_cloner(struct lwp *l)
699 {
700 	struct tap_softc *sc;
701 	struct file *fp;
702 	int error, fd;
703 
704 	if ((error = falloc(l->l_proc, &fp, &fd)) != 0)
705 		return (error);
706 
707 	if ((sc = tap_clone_creator(DVUNIT_ANY)) == NULL) {
708 		FILE_UNUSE(fp, l);
709 		ffree(fp);
710 		return (ENXIO);
711 	}
712 
713 	sc->sc_flags |= TAP_INUSE;
714 
715 	return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
716 	    (void *)(intptr_t)device_unit(&sc->sc_dev));
717 }
718 
719 /*
720  * While all other operations (read, write, ioctl, poll and kqfilter) are
721  * really the same whether we are in cdevsw or fileops mode, the close()
722  * function is slightly different in the two cases.
723  *
724  * As for the other, the core of it is shared in tap_dev_close.  What
725  * it does is sufficient for the cdevsw interface, but the cloning interface
726  * needs another thing:  the interface is destroyed when the processes that
727  * created it closes it.
728  */
729 static int
730 tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l)
731 {
732 	struct tap_softc *sc =
733 	    (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
734 
735 	if (sc == NULL)
736 		return (ENXIO);
737 
738 	return tap_dev_close(sc);
739 }
740 
741 /*
742  * It might happen that the administrator used ifconfig to externally destroy
743  * the interface.  In that case, tap_fops_close will be called while
744  * tap_detach is already happening.  If we called it again from here, we
745  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
746  */
747 static int
748 tap_fops_close(struct file *fp, struct lwp *l)
749 {
750 	int unit = (intptr_t)fp->f_data;
751 	struct tap_softc *sc;
752 	int error;
753 
754 	sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
755 	if (sc == NULL)
756 		return (ENXIO);
757 
758 	/* tap_dev_close currently always succeeds, but it might not
759 	 * always be the case. */
760 	if ((error = tap_dev_close(sc)) != 0)
761 		return (error);
762 
763 	/* Destroy the device now that it is no longer useful,
764 	 * unless it's already being destroyed. */
765 	if ((sc->sc_flags & TAP_GOING) != 0)
766 		return (0);
767 
768 	return tap_clone_destroyer((struct device *)sc);
769 }
770 
771 static int
772 tap_dev_close(struct tap_softc *sc)
773 {
774 	struct ifnet *ifp;
775 	int s;
776 
777 	s = splnet();
778 	/* Let tap_start handle packets again */
779 	ifp = &sc->sc_ec.ec_if;
780 	ifp->if_flags &= ~IFF_OACTIVE;
781 
782 	/* Purge output queue */
783 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
784 		struct mbuf *m;
785 
786 		for (;;) {
787 			IFQ_DEQUEUE(&ifp->if_snd, m);
788 			if (m == NULL)
789 				break;
790 
791 			ifp->if_opackets++;
792 #if NBPFILTER > 0
793 			if (ifp->if_bpf)
794 				bpf_mtap(ifp->if_bpf, m);
795 #endif
796 		}
797 	}
798 	splx(s);
799 
800 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
801 
802 	return (0);
803 }
804 
805 static int
806 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
807 {
808 	return tap_dev_read(minor(dev), uio, flags);
809 }
810 
811 static int
812 tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
813     kauth_cred_t cred, int flags)
814 {
815 	return tap_dev_read((intptr_t)fp->f_data, uio, flags);
816 }
817 
818 static int
819 tap_dev_read(int unit, struct uio *uio, int flags)
820 {
821 	struct tap_softc *sc =
822 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
823 	struct ifnet *ifp;
824 	struct mbuf *m, *n;
825 	int error = 0, s;
826 
827 	if (sc == NULL)
828 		return (ENXIO);
829 
830 	ifp = &sc->sc_ec.ec_if;
831 	if ((ifp->if_flags & IFF_UP) == 0)
832 		return (EHOSTDOWN);
833 
834 	/*
835 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
836 	 */
837 	if ((sc->sc_flags & TAP_NBIO) &&
838 	    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
839 		return (EWOULDBLOCK);
840 	error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
841 	if (error != 0)
842 		return (error);
843 
844 	s = splnet();
845 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
846 		ifp->if_flags &= ~IFF_OACTIVE;
847 		splx(s);
848 		/*
849 		 * We must release the lock before sleeping, and re-acquire it
850 		 * after.
851 		 */
852 		(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
853 		if (sc->sc_flags & TAP_NBIO)
854 			error = EWOULDBLOCK;
855 		else
856 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
857 
858 		if (error != 0)
859 			return (error);
860 		/* The device might have been downed */
861 		if ((ifp->if_flags & IFF_UP) == 0)
862 			return (EHOSTDOWN);
863 		if ((sc->sc_flags & TAP_NBIO) &&
864 		    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
865 			return (EWOULDBLOCK);
866 		error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
867 		if (error != 0)
868 			return (error);
869 		s = splnet();
870 	}
871 
872 	IFQ_DEQUEUE(&ifp->if_snd, m);
873 	ifp->if_flags &= ~IFF_OACTIVE;
874 	splx(s);
875 	if (m == NULL) {
876 		error = 0;
877 		goto out;
878 	}
879 
880 	ifp->if_opackets++;
881 #if NBPFILTER > 0
882 	if (ifp->if_bpf)
883 		bpf_mtap(ifp->if_bpf, m);
884 #endif
885 
886 	/*
887 	 * One read is one packet.
888 	 */
889 	do {
890 		error = uiomove(mtod(m, caddr_t),
891 		    min(m->m_len, uio->uio_resid), uio);
892 		MFREE(m, n);
893 		m = n;
894 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
895 
896 	if (m != NULL)
897 		m_freem(m);
898 
899 out:
900 	(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
901 	return (error);
902 }
903 
904 static int
905 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
906 {
907 	return tap_dev_write(minor(dev), uio, flags);
908 }
909 
910 static int
911 tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
912     kauth_cred_t cred, int flags)
913 {
914 	return tap_dev_write((intptr_t)fp->f_data, uio, flags);
915 }
916 
917 static int
918 tap_dev_write(int unit, struct uio *uio, int flags)
919 {
920 	struct tap_softc *sc =
921 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
922 	struct ifnet *ifp;
923 	struct mbuf *m, **mp;
924 	int error = 0;
925 	int s;
926 
927 	if (sc == NULL)
928 		return (ENXIO);
929 
930 	ifp = &sc->sc_ec.ec_if;
931 
932 	/* One write, one packet, that's the rule */
933 	MGETHDR(m, M_DONTWAIT, MT_DATA);
934 	if (m == NULL) {
935 		ifp->if_ierrors++;
936 		return (ENOBUFS);
937 	}
938 	m->m_pkthdr.len = uio->uio_resid;
939 
940 	mp = &m;
941 	while (error == 0 && uio->uio_resid > 0) {
942 		if (*mp != m) {
943 			MGET(*mp, M_DONTWAIT, MT_DATA);
944 			if (*mp == NULL) {
945 				error = ENOBUFS;
946 				break;
947 			}
948 		}
949 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
950 		error = uiomove(mtod(*mp, caddr_t), (*mp)->m_len, uio);
951 		mp = &(*mp)->m_next;
952 	}
953 	if (error) {
954 		ifp->if_ierrors++;
955 		m_freem(m);
956 		return (error);
957 	}
958 
959 	ifp->if_ipackets++;
960 	m->m_pkthdr.rcvif = ifp;
961 
962 #if NBPFILTER > 0
963 	if (ifp->if_bpf)
964 		bpf_mtap(ifp->if_bpf, m);
965 #endif
966 	s =splnet();
967 	(*ifp->if_input)(ifp, m);
968 	splx(s);
969 
970 	return (0);
971 }
972 
973 static int
974 tap_cdev_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags,
975     struct lwp *l)
976 {
977 	return tap_dev_ioctl(minor(dev), cmd, data, l);
978 }
979 
980 static int
981 tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
982 {
983 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (caddr_t)data, l);
984 }
985 
986 static int
987 tap_dev_ioctl(int unit, u_long cmd, caddr_t data, struct lwp *l)
988 {
989 	struct tap_softc *sc =
990 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
991 	int error = 0;
992 
993 	if (sc == NULL)
994 		return (ENXIO);
995 
996 	switch (cmd) {
997 	case FIONREAD:
998 		{
999 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1000 			struct mbuf *m;
1001 			int s;
1002 
1003 			s = splnet();
1004 			IFQ_POLL(&ifp->if_snd, m);
1005 
1006 			if (m == NULL)
1007 				*(int *)data = 0;
1008 			else
1009 				*(int *)data = m->m_pkthdr.len;
1010 			splx(s);
1011 		} break;
1012 	case TIOCSPGRP:
1013 	case FIOSETOWN:
1014 		error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
1015 		break;
1016 	case TIOCGPGRP:
1017 	case FIOGETOWN:
1018 		error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
1019 		break;
1020 	case FIOASYNC:
1021 		if (*(int *)data)
1022 			sc->sc_flags |= TAP_ASYNCIO;
1023 		else
1024 			sc->sc_flags &= ~TAP_ASYNCIO;
1025 		break;
1026 	case FIONBIO:
1027 		if (*(int *)data)
1028 			sc->sc_flags |= TAP_NBIO;
1029 		else
1030 			sc->sc_flags &= ~TAP_NBIO;
1031 		break;
1032 	case TAPGIFNAME:
1033 		{
1034 			struct ifreq *ifr = (struct ifreq *)data;
1035 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1036 
1037 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1038 		} break;
1039 	default:
1040 		error = ENOTTY;
1041 		break;
1042 	}
1043 
1044 	return (0);
1045 }
1046 
1047 static int
1048 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1049 {
1050 	return tap_dev_poll(minor(dev), events, l);
1051 }
1052 
1053 static int
1054 tap_fops_poll(struct file *fp, int events, struct lwp *l)
1055 {
1056 	return tap_dev_poll((intptr_t)fp->f_data, events, l);
1057 }
1058 
1059 static int
1060 tap_dev_poll(int unit, int events, struct lwp *l)
1061 {
1062 	struct tap_softc *sc =
1063 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
1064 	int revents = 0;
1065 
1066 	if (sc == NULL)
1067 		return (ENXIO);
1068 
1069 	if (events & (POLLIN|POLLRDNORM)) {
1070 		struct ifnet *ifp = &sc->sc_ec.ec_if;
1071 		struct mbuf *m;
1072 		int s;
1073 
1074 		s = splnet();
1075 		IFQ_POLL(&ifp->if_snd, m);
1076 		splx(s);
1077 
1078 		if (m != NULL)
1079 			revents |= events & (POLLIN|POLLRDNORM);
1080 		else {
1081 			simple_lock(&sc->sc_kqlock);
1082 			selrecord(l, &sc->sc_rsel);
1083 			simple_unlock(&sc->sc_kqlock);
1084 		}
1085 	}
1086 	revents |= events & (POLLOUT|POLLWRNORM);
1087 
1088 	return (revents);
1089 }
1090 
1091 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1092 	tap_kqread };
1093 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1094 	filt_seltrue };
1095 
1096 static int
1097 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1098 {
1099 	return tap_dev_kqfilter(minor(dev), kn);
1100 }
1101 
1102 static int
1103 tap_fops_kqfilter(struct file *fp, struct knote *kn)
1104 {
1105 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1106 }
1107 
1108 static int
1109 tap_dev_kqfilter(int unit, struct knote *kn)
1110 {
1111 	struct tap_softc *sc =
1112 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
1113 
1114 	if (sc == NULL)
1115 		return (ENXIO);
1116 
1117 	switch(kn->kn_filter) {
1118 	case EVFILT_READ:
1119 		kn->kn_fop = &tap_read_filterops;
1120 		break;
1121 	case EVFILT_WRITE:
1122 		kn->kn_fop = &tap_seltrue_filterops;
1123 		break;
1124 	default:
1125 		return (1);
1126 	}
1127 
1128 	kn->kn_hook = sc;
1129 	simple_lock(&sc->sc_kqlock);
1130 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1131 	simple_unlock(&sc->sc_kqlock);
1132 	return (0);
1133 }
1134 
1135 static void
1136 tap_kqdetach(struct knote *kn)
1137 {
1138 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1139 
1140 	simple_lock(&sc->sc_kqlock);
1141 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1142 	simple_unlock(&sc->sc_kqlock);
1143 }
1144 
1145 static int
1146 tap_kqread(struct knote *kn, long hint)
1147 {
1148 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1149 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1150 	struct mbuf *m;
1151 	int s;
1152 
1153 	s = splnet();
1154 	IFQ_POLL(&ifp->if_snd, m);
1155 
1156 	if (m == NULL)
1157 		kn->kn_data = 0;
1158 	else
1159 		kn->kn_data = m->m_pkthdr.len;
1160 	splx(s);
1161 	return (kn->kn_data != 0 ? 1 : 0);
1162 }
1163 
1164 /*
1165  * sysctl management routines
1166  * You can set the address of an interface through:
1167  * net.link.tap.tap<number>
1168  *
1169  * Note the consistent use of tap_log in order to use
1170  * sysctl_teardown at unload time.
1171  *
1172  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
1173  * blocks register a function in a special section of the kernel
1174  * (called a link set) which is used at init_sysctl() time to cycle
1175  * through all those functions to create the kernel's sysctl tree.
1176  *
1177  * It is not (currently) possible to use link sets in a LKM, so the
1178  * easiest is to simply call our own setup routine at load time.
1179  *
1180  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1181  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
1182  * whole kernel sysctl tree is built, it is not possible to add any
1183  * permanent node.
1184  *
1185  * It should be noted that we're not saving the sysctlnode pointer
1186  * we are returned when creating the "tap" node.  That structure
1187  * cannot be trusted once out of the calling function, as it might
1188  * get reused.  So we just save the MIB number, and always give the
1189  * full path starting from the root for later calls to sysctl_createv
1190  * and sysctl_destroyv.
1191  */
1192 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1193 {
1194 	const struct sysctlnode *node;
1195 	int error = 0;
1196 
1197 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1198 	    CTLFLAG_PERMANENT,
1199 	    CTLTYPE_NODE, "net", NULL,
1200 	    NULL, 0, NULL, 0,
1201 	    CTL_NET, CTL_EOL)) != 0)
1202 		return;
1203 
1204 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1205 	    CTLFLAG_PERMANENT,
1206 	    CTLTYPE_NODE, "link", NULL,
1207 	    NULL, 0, NULL, 0,
1208 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
1209 		return;
1210 
1211 	/*
1212 	 * The first four parameters of sysctl_createv are for management.
1213 	 *
1214 	 * The four that follows, here starting with a '0' for the flags,
1215 	 * describe the node.
1216 	 *
1217 	 * The next series of four set its value, through various possible
1218 	 * means.
1219 	 *
1220 	 * Last but not least, the path to the node is described.  That path
1221 	 * is relative to the given root (third argument).  Here we're
1222 	 * starting from the root.
1223 	 */
1224 	if ((error = sysctl_createv(clog, 0, NULL, &node,
1225 	    CTLFLAG_PERMANENT,
1226 	    CTLTYPE_NODE, "tap", NULL,
1227 	    NULL, 0, NULL, 0,
1228 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1229 		return;
1230 	tap_node = node->sysctl_num;
1231 }
1232 
1233 /*
1234  * The helper functions make Andrew Brown's interface really
1235  * shine.  It makes possible to create value on the fly whether
1236  * the sysctl value is read or written.
1237  *
1238  * As shown as an example in the man page, the first step is to
1239  * create a copy of the node to have sysctl_lookup work on it.
1240  *
1241  * Here, we have more work to do than just a copy, since we have
1242  * to create the string.  The first step is to collect the actual
1243  * value of the node, which is a convenient pointer to the softc
1244  * of the interface.  From there we create the string and use it
1245  * as the value, but only for the *copy* of the node.
1246  *
1247  * Then we let sysctl_lookup do the magic, which consists in
1248  * setting oldp and newp as required by the operation.  When the
1249  * value is read, that means that the string will be copied to
1250  * the user, and when it is written, the new value will be copied
1251  * over in the addr array.
1252  *
1253  * If newp is NULL, the user was reading the value, so we don't
1254  * have anything else to do.  If a new value was written, we
1255  * have to check it.
1256  *
1257  * If it is incorrect, we can return an error and leave 'node' as
1258  * it is:  since it is a copy of the actual node, the change will
1259  * be forgotten.
1260  *
1261  * Upon a correct input, we commit the change to the ifnet
1262  * structure of our interface.
1263  */
1264 static int
1265 tap_sysctl_handler(SYSCTLFN_ARGS)
1266 {
1267 	struct sysctlnode node;
1268 	struct tap_softc *sc;
1269 	struct ifnet *ifp;
1270 	int error;
1271 	size_t len;
1272 	char addr[3 * ETHER_ADDR_LEN];
1273 
1274 	node = *rnode;
1275 	sc = node.sysctl_data;
1276 	ifp = &sc->sc_ec.ec_if;
1277 	(void)ether_snprintf(addr, sizeof(addr), LLADDR(ifp->if_sadl));
1278 	node.sysctl_data = addr;
1279 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1280 	if (error || newp == NULL)
1281 		return (error);
1282 
1283 	len = strlen(addr);
1284 	if (len < 11 || len > 17)
1285 		return (EINVAL);
1286 
1287 	/* Commit change */
1288 	if (tap_ether_aton(LLADDR(ifp->if_sadl), addr) != 0)
1289 		return (EINVAL);
1290 	return (error);
1291 }
1292 
1293 /*
1294  * ether_aton implementation, not using a static buffer.
1295  */
1296 static int
1297 tap_ether_aton(u_char *dest, char *str)
1298 {
1299 	int i;
1300 	char *cp = str;
1301 	u_char val[6];
1302 
1303 #define	set_value			\
1304 	if (*cp > '9' && *cp < 'a')	\
1305 		*cp -= 'A' - 10;	\
1306 	else if (*cp > '9')		\
1307 		*cp -= 'a' - 10;	\
1308 	else				\
1309 		*cp -= '0'
1310 
1311 	for (i = 0; i < 6; i++, cp++) {
1312 		if (!isxdigit(*cp))
1313 			return (1);
1314 		set_value;
1315 		val[i] = *cp++;
1316 		if (isxdigit(*cp)) {
1317 			set_value;
1318 			val[i] *= 16;
1319 			val[i] += *cp++;
1320 		}
1321 		if (*cp == ':' || i == 5)
1322 			continue;
1323 		else
1324 			return (1);
1325 	}
1326 	memcpy(dest, val, 6);
1327 	return (0);
1328 }
1329