xref: /netbsd-src/sys/net/if_tap.c (revision e89934bbf778a6d6d6894877c4da59d0c7835b0f)
1 /*	$NetBSD: if_tap.c,v 1.99 2017/02/12 09:47:31 skrll Exp $	*/
2 
3 /*
4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5  *  All rights reserved.
6  *
7  *  Redistribution and use in source and binary forms, with or without
8  *  modification, are permitted provided that the following conditions
9  *  are met:
10  *  1. Redistributions of source code must retain the above copyright
11  *     notice, this list of conditions and the following disclaimer.
12  *  2. Redistributions in binary form must reproduce the above copyright
13  *     notice, this list of conditions and the following disclaimer in the
14  *     documentation and/or other materials provided with the distribution.
15  *
16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  *  POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
31  * device to the system, but can also be accessed by userland through a
32  * character device interface, which allows reading and injecting frames.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.99 2017/02/12 09:47:31 skrll Exp $");
37 
38 #if defined(_KERNEL_OPT)
39 
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/atomic.h>
46 #include <sys/conf.h>
47 #include <sys/cprng.h>
48 #include <sys/device.h>
49 #include <sys/file.h>
50 #include <sys/filedesc.h>
51 #include <sys/intr.h>
52 #include <sys/kauth.h>
53 #include <sys/kernel.h>
54 #include <sys/kmem.h>
55 #include <sys/module.h>
56 #include <sys/mutex.h>
57 #include <sys/poll.h>
58 #include <sys/proc.h>
59 #include <sys/select.h>
60 #include <sys/sockio.h>
61 #include <sys/stat.h>
62 #include <sys/sysctl.h>
63 #include <sys/systm.h>
64 
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_ether.h>
68 #include <net/if_media.h>
69 #include <net/if_tap.h>
70 #include <net/bpf.h>
71 
72 #include <compat/sys/sockio.h>
73 
74 #include "ioconf.h"
75 
76 /*
77  * sysctl node management
78  *
79  * It's not really possible to use a SYSCTL_SETUP block with
80  * current module implementation, so it is easier to just define
81  * our own function.
82  *
83  * The handler function is a "helper" in Andrew Brown's sysctl
84  * framework terminology.  It is used as a gateway for sysctl
85  * requests over the nodes.
86  *
87  * tap_log allows the module to log creations of nodes and
88  * destroy them all at once using sysctl_teardown.
89  */
90 static int	tap_node;
91 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
92 static void	sysctl_tap_setup(struct sysctllog **);
93 
94 /*
95  * Since we're an Ethernet device, we need the 2 following
96  * components: a struct ethercom and a struct ifmedia
97  * since we don't attach a PHY to ourselves.
98  * We could emulate one, but there's no real point.
99  */
100 
101 struct tap_softc {
102 	device_t	sc_dev;
103 	struct ifmedia	sc_im;
104 	struct ethercom	sc_ec;
105 	int		sc_flags;
106 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
107 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
108 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
109 #define TAP_GOING	0x00000008	/* interface is being destroyed */
110 	struct selinfo	sc_rsel;
111 	pid_t		sc_pgid; /* For async. IO */
112 	kmutex_t	sc_rdlock;
113 	kmutex_t	sc_kqlock;
114 	void		*sc_sih;
115 	struct timespec sc_atime;
116 	struct timespec sc_mtime;
117 	struct timespec sc_btime;
118 };
119 
120 /* autoconf(9) glue */
121 
122 static int	tap_match(device_t, cfdata_t, void *);
123 static void	tap_attach(device_t, device_t, void *);
124 static int	tap_detach(device_t, int);
125 
126 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
127     tap_match, tap_attach, tap_detach, NULL);
128 extern struct cfdriver tap_cd;
129 
130 /* Real device access routines */
131 static int	tap_dev_close(struct tap_softc *);
132 static int	tap_dev_read(int, struct uio *, int);
133 static int	tap_dev_write(int, struct uio *, int);
134 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
135 static int	tap_dev_poll(int, int, struct lwp *);
136 static int	tap_dev_kqfilter(int, struct knote *);
137 
138 /* Fileops access routines */
139 static int	tap_fops_close(file_t *);
140 static int	tap_fops_read(file_t *, off_t *, struct uio *,
141     kauth_cred_t, int);
142 static int	tap_fops_write(file_t *, off_t *, struct uio *,
143     kauth_cred_t, int);
144 static int	tap_fops_ioctl(file_t *, u_long, void *);
145 static int	tap_fops_poll(file_t *, int);
146 static int	tap_fops_stat(file_t *, struct stat *);
147 static int	tap_fops_kqfilter(file_t *, struct knote *);
148 
149 static const struct fileops tap_fileops = {
150 	.fo_read = tap_fops_read,
151 	.fo_write = tap_fops_write,
152 	.fo_ioctl = tap_fops_ioctl,
153 	.fo_fcntl = fnullop_fcntl,
154 	.fo_poll = tap_fops_poll,
155 	.fo_stat = tap_fops_stat,
156 	.fo_close = tap_fops_close,
157 	.fo_kqfilter = tap_fops_kqfilter,
158 	.fo_restart = fnullop_restart,
159 };
160 
161 /* Helper for cloning open() */
162 static int	tap_dev_cloner(struct lwp *);
163 
164 /* Character device routines */
165 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
166 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
167 static int	tap_cdev_read(dev_t, struct uio *, int);
168 static int	tap_cdev_write(dev_t, struct uio *, int);
169 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
170 static int	tap_cdev_poll(dev_t, int, struct lwp *);
171 static int	tap_cdev_kqfilter(dev_t, struct knote *);
172 
173 const struct cdevsw tap_cdevsw = {
174 	.d_open = tap_cdev_open,
175 	.d_close = tap_cdev_close,
176 	.d_read = tap_cdev_read,
177 	.d_write = tap_cdev_write,
178 	.d_ioctl = tap_cdev_ioctl,
179 	.d_stop = nostop,
180 	.d_tty = notty,
181 	.d_poll = tap_cdev_poll,
182 	.d_mmap = nommap,
183 	.d_kqfilter = tap_cdev_kqfilter,
184 	.d_discard = nodiscard,
185 	.d_flag = D_OTHER
186 };
187 
188 #define TAP_CLONER	0xfffff		/* Maximal minor value */
189 
190 /* kqueue-related routines */
191 static void	tap_kqdetach(struct knote *);
192 static int	tap_kqread(struct knote *, long);
193 
194 /*
195  * Those are needed by the if_media interface.
196  */
197 
198 static int	tap_mediachange(struct ifnet *);
199 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
200 
201 /*
202  * Those are needed by the ifnet interface, and would typically be
203  * there for any network interface driver.
204  * Some other routines are optional: watchdog and drain.
205  */
206 
207 static void	tap_start(struct ifnet *);
208 static void	tap_stop(struct ifnet *, int);
209 static int	tap_init(struct ifnet *);
210 static int	tap_ioctl(struct ifnet *, u_long, void *);
211 
212 /* Internal functions */
213 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
214 static void	tap_softintr(void *);
215 
216 /*
217  * tap is a clonable interface, although it is highly unrealistic for
218  * an Ethernet device.
219  *
220  * Here are the bits needed for a clonable interface.
221  */
222 static int	tap_clone_create(struct if_clone *, int);
223 static int	tap_clone_destroy(struct ifnet *);
224 
225 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
226 					tap_clone_create,
227 					tap_clone_destroy);
228 
229 /* Helper functions shared by the two cloning code paths */
230 static struct tap_softc *	tap_clone_creator(int);
231 int	tap_clone_destroyer(device_t);
232 
233 static struct sysctllog *tap_sysctl_clog;
234 
235 #ifdef _MODULE
236 devmajor_t tap_bmajor = -1, tap_cmajor = -1;
237 #endif
238 
239 static u_int tap_count;
240 
241 void
242 tapattach(int n)
243 {
244 
245 	/*
246 	 * Nothing to do here, initialization is handled by the
247 	 * module initialization code in tapinit() below).
248 	 */
249 }
250 
251 static void
252 tapinit(void)
253 {
254 	int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
255 	if (error) {
256 		aprint_error("%s: unable to register cfattach\n",
257 		    tap_cd.cd_name);
258 		(void)config_cfdriver_detach(&tap_cd);
259 		return;
260 	}
261 
262 	if_clone_attach(&tap_cloners);
263 	sysctl_tap_setup(&tap_sysctl_clog);
264 #ifdef _MODULE
265 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
266 #endif
267 }
268 
269 static int
270 tapdetach(void)
271 {
272 	int error = 0;
273 
274 	if (tap_count != 0)
275 		return EBUSY;
276 
277 #ifdef _MODULE
278 	if (error == 0)
279 		error = devsw_detach(NULL, &tap_cdevsw);
280 #endif
281 	if (error == 0)
282 		sysctl_teardown(&tap_sysctl_clog);
283 	if (error == 0)
284 		if_clone_detach(&tap_cloners);
285 
286 	if (error == 0)
287 		error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
288 
289 	return error;
290 }
291 
292 /* Pretty much useless for a pseudo-device */
293 static int
294 tap_match(device_t parent, cfdata_t cfdata, void *arg)
295 {
296 
297 	return 1;
298 }
299 
300 void
301 tap_attach(device_t parent, device_t self, void *aux)
302 {
303 	struct tap_softc *sc = device_private(self);
304 	struct ifnet *ifp;
305 	const struct sysctlnode *node;
306 	int error;
307 	uint8_t enaddr[ETHER_ADDR_LEN] =
308 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
309 	char enaddrstr[3 * ETHER_ADDR_LEN];
310 
311 	sc->sc_dev = self;
312 	sc->sc_sih = NULL;
313 	getnanotime(&sc->sc_btime);
314 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
315 	sc->sc_flags = 0;
316 	selinit(&sc->sc_rsel);
317 
318 	/*
319 	 * Initialize the two locks for the device.
320 	 *
321 	 * We need a lock here because even though the tap device can be
322 	 * opened only once, the file descriptor might be passed to another
323 	 * process, say a fork(2)ed child.
324 	 *
325 	 * The Giant saves us from most of the hassle, but since the read
326 	 * operation can sleep, we don't want two processes to wake up at
327 	 * the same moment and both try and dequeue a single packet.
328 	 *
329 	 * The queue for event listeners (used by kqueue(9), see below) has
330 	 * to be protected too, so use a spin lock.
331 	 */
332 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
333 	mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
334 
335 	if (!pmf_device_register(self, NULL, NULL))
336 		aprint_error_dev(self, "couldn't establish power handler\n");
337 
338 	/*
339 	 * In order to obtain unique initial Ethernet address on a host,
340 	 * do some randomisation.  It's not meant for anything but avoiding
341 	 * hard-coding an address.
342 	 */
343 	cprng_fast(&enaddr[3], 3);
344 
345 	aprint_verbose_dev(self, "Ethernet address %s\n",
346 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
347 
348 	/*
349 	 * Why 1000baseT? Why not? You can add more.
350 	 *
351 	 * Note that there are 3 steps: init, one or several additions to
352 	 * list of supported media, and in the end, the selection of one
353 	 * of them.
354 	 */
355 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
356 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
357 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
358 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
359 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
360 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
361 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
362 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
363 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
364 
365 	/*
366 	 * One should note that an interface must do multicast in order
367 	 * to support IPv6.
368 	 */
369 	ifp = &sc->sc_ec.ec_if;
370 	strcpy(ifp->if_xname, device_xname(self));
371 	ifp->if_softc	= sc;
372 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
373 	ifp->if_ioctl	= tap_ioctl;
374 	ifp->if_start	= tap_start;
375 	ifp->if_stop	= tap_stop;
376 	ifp->if_init	= tap_init;
377 	IFQ_SET_READY(&ifp->if_snd);
378 
379 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
380 
381 	/* Those steps are mandatory for an Ethernet driver. */
382 	if_initialize(ifp);
383 	ether_ifattach(ifp, enaddr);
384 	if_register(ifp);
385 
386 	/*
387 	 * Add a sysctl node for that interface.
388 	 *
389 	 * The pointer transmitted is not a string, but instead a pointer to
390 	 * the softc structure, which we can use to build the string value on
391 	 * the fly in the helper function of the node.  See the comments for
392 	 * tap_sysctl_handler for details.
393 	 *
394 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
395 	 * component.  However, we can allocate a number ourselves, as we are
396 	 * the only consumer of the net.link.<iface> node.  In this case, the
397 	 * unit number is conveniently used to number the node.  CTL_CREATE
398 	 * would just work, too.
399 	 */
400 	if ((error = sysctl_createv(NULL, 0, NULL,
401 	    &node, CTLFLAG_READWRITE,
402 	    CTLTYPE_STRING, device_xname(self), NULL,
403 	    tap_sysctl_handler, 0, (void *)sc, 18,
404 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
405 	    CTL_EOL)) != 0)
406 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
407 		    error);
408 }
409 
410 /*
411  * When detaching, we do the inverse of what is done in the attach
412  * routine, in reversed order.
413  */
414 static int
415 tap_detach(device_t self, int flags)
416 {
417 	struct tap_softc *sc = device_private(self);
418 	struct ifnet *ifp = &sc->sc_ec.ec_if;
419 	int error;
420 	int s;
421 
422 	sc->sc_flags |= TAP_GOING;
423 	s = splnet();
424 	tap_stop(ifp, 1);
425 	if_down(ifp);
426 	splx(s);
427 
428 	if (sc->sc_sih != NULL) {
429 		softint_disestablish(sc->sc_sih);
430 		sc->sc_sih = NULL;
431 	}
432 
433 	/*
434 	 * Destroying a single leaf is a very straightforward operation using
435 	 * sysctl_destroyv.  One should be sure to always end the path with
436 	 * CTL_EOL.
437 	 */
438 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
439 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
440 		aprint_error_dev(self,
441 		    "sysctl_destroyv returned %d, ignoring\n", error);
442 	ether_ifdetach(ifp);
443 	if_detach(ifp);
444 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
445 	seldestroy(&sc->sc_rsel);
446 	mutex_destroy(&sc->sc_rdlock);
447 	mutex_destroy(&sc->sc_kqlock);
448 
449 	pmf_device_deregister(self);
450 
451 	return 0;
452 }
453 
454 /*
455  * This function is called by the ifmedia layer to notify the driver
456  * that the user requested a media change.  A real driver would
457  * reconfigure the hardware.
458  */
459 static int
460 tap_mediachange(struct ifnet *ifp)
461 {
462 	return 0;
463 }
464 
465 /*
466  * Here the user asks for the currently used media.
467  */
468 static void
469 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
470 {
471 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
472 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
473 }
474 
475 /*
476  * This is the function where we SEND packets.
477  *
478  * There is no 'receive' equivalent.  A typical driver will get
479  * interrupts from the hardware, and from there will inject new packets
480  * into the network stack.
481  *
482  * Once handled, a packet must be freed.  A real driver might not be able
483  * to fit all the pending packets into the hardware, and is allowed to
484  * return before having sent all the packets.  It should then use the
485  * if_flags flag IFF_OACTIVE to notify the upper layer.
486  *
487  * There are also other flags one should check, such as IFF_PAUSE.
488  *
489  * It is our duty to make packets available to BPF listeners.
490  *
491  * You should be aware that this function is called by the Ethernet layer
492  * at splnet().
493  *
494  * When the device is opened, we have to pass the packet(s) to the
495  * userland.  For that we stay in OACTIVE mode while the userland gets
496  * the packets, and we send a signal to the processes waiting to read.
497  *
498  * wakeup(sc) is the counterpart to the tsleep call in
499  * tap_dev_read, while selnotify() is used for kevent(2) and
500  * poll(2) (which includes select(2)) listeners.
501  */
502 static void
503 tap_start(struct ifnet *ifp)
504 {
505 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
506 	struct mbuf *m0;
507 
508 	if ((sc->sc_flags & TAP_INUSE) == 0) {
509 		/* Simply drop packets */
510 		for(;;) {
511 			IFQ_DEQUEUE(&ifp->if_snd, m0);
512 			if (m0 == NULL)
513 				return;
514 
515 			ifp->if_opackets++;
516 			bpf_mtap(ifp, m0);
517 
518 			m_freem(m0);
519 		}
520 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
521 		ifp->if_flags |= IFF_OACTIVE;
522 		wakeup(sc);
523 		selnotify(&sc->sc_rsel, 0, 1);
524 		if (sc->sc_flags & TAP_ASYNCIO)
525 			softint_schedule(sc->sc_sih);
526 	}
527 }
528 
529 static void
530 tap_softintr(void *cookie)
531 {
532 	struct tap_softc *sc;
533 	struct ifnet *ifp;
534 	int a, b;
535 
536 	sc = cookie;
537 
538 	if (sc->sc_flags & TAP_ASYNCIO) {
539 		ifp = &sc->sc_ec.ec_if;
540 		if (ifp->if_flags & IFF_RUNNING) {
541 			a = POLL_IN;
542 			b = POLLIN|POLLRDNORM;
543 		} else {
544 			a = POLL_HUP;
545 			b = 0;
546 		}
547 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
548 	}
549 }
550 
551 /*
552  * A typical driver will only contain the following handlers for
553  * ioctl calls, except SIOCSIFPHYADDR.
554  * The latter is a hack I used to set the Ethernet address of the
555  * faked device.
556  *
557  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
558  * called under splnet().
559  */
560 static int
561 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
562 {
563 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
564 	struct ifreq *ifr = (struct ifreq *)data;
565 	int s, error;
566 
567 	s = splnet();
568 
569 	switch (cmd) {
570 #ifdef OSIOCSIFMEDIA
571 	case OSIOCSIFMEDIA:
572 #endif
573 	case SIOCSIFMEDIA:
574 	case SIOCGIFMEDIA:
575 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
576 		break;
577 	case SIOCSIFPHYADDR:
578 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
579 		break;
580 	default:
581 		error = ether_ioctl(ifp, cmd, data);
582 		if (error == ENETRESET)
583 			error = 0;
584 		break;
585 	}
586 
587 	splx(s);
588 
589 	return error;
590 }
591 
592 /*
593  * Helper function to set Ethernet address.  This has been replaced by
594  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
595  */
596 static int
597 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
598 {
599 	const struct sockaddr *sa = &ifra->ifra_addr;
600 
601 	if (sa->sa_family != AF_LINK)
602 		return EINVAL;
603 
604 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
605 
606 	return 0;
607 }
608 
609 /*
610  * _init() would typically be called when an interface goes up,
611  * meaning it should configure itself into the state in which it
612  * can send packets.
613  */
614 static int
615 tap_init(struct ifnet *ifp)
616 {
617 	ifp->if_flags |= IFF_RUNNING;
618 
619 	tap_start(ifp);
620 
621 	return 0;
622 }
623 
624 /*
625  * _stop() is called when an interface goes down.  It is our
626  * responsability to validate that state by clearing the
627  * IFF_RUNNING flag.
628  *
629  * We have to wake up all the sleeping processes to have the pending
630  * read requests cancelled.
631  */
632 static void
633 tap_stop(struct ifnet *ifp, int disable)
634 {
635 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
636 
637 	ifp->if_flags &= ~IFF_RUNNING;
638 	wakeup(sc);
639 	selnotify(&sc->sc_rsel, 0, 1);
640 	if (sc->sc_flags & TAP_ASYNCIO)
641 		softint_schedule(sc->sc_sih);
642 }
643 
644 /*
645  * The 'create' command of ifconfig can be used to create
646  * any numbered instance of a given device.  Thus we have to
647  * make sure we have enough room in cd_devs to create the
648  * user-specified instance.  config_attach_pseudo will do this
649  * for us.
650  */
651 static int
652 tap_clone_create(struct if_clone *ifc, int unit)
653 {
654 	if (tap_clone_creator(unit) == NULL) {
655 		aprint_error("%s%d: unable to attach an instance\n",
656 		    tap_cd.cd_name, unit);
657 		return ENXIO;
658 	}
659 	atomic_inc_uint(&tap_count);
660 	return 0;
661 }
662 
663 /*
664  * tap(4) can be cloned by two ways:
665  *   using 'ifconfig tap0 create', which will use the network
666  *     interface cloning API, and call tap_clone_create above.
667  *   opening the cloning device node, whose minor number is TAP_CLONER.
668  *     See below for an explanation on how this part work.
669  */
670 static struct tap_softc *
671 tap_clone_creator(int unit)
672 {
673 	cfdata_t cf;
674 
675 	cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
676 	cf->cf_name = tap_cd.cd_name;
677 	cf->cf_atname = tap_ca.ca_name;
678 	if (unit == -1) {
679 		/* let autoconf find the first free one */
680 		cf->cf_unit = 0;
681 		cf->cf_fstate = FSTATE_STAR;
682 	} else {
683 		cf->cf_unit = unit;
684 		cf->cf_fstate = FSTATE_NOTFOUND;
685 	}
686 
687 	return device_private(config_attach_pseudo(cf));
688 }
689 
690 /*
691  * The clean design of if_clone and autoconf(9) makes that part
692  * really straightforward.  The second argument of config_detach
693  * means neither QUIET nor FORCED.
694  */
695 static int
696 tap_clone_destroy(struct ifnet *ifp)
697 {
698 	struct tap_softc *sc = ifp->if_softc;
699 	int error = tap_clone_destroyer(sc->sc_dev);
700 
701 	if (error == 0)
702 		atomic_dec_uint(&tap_count);
703 	return error;
704 }
705 
706 int
707 tap_clone_destroyer(device_t dev)
708 {
709 	cfdata_t cf = device_cfdata(dev);
710 	int error;
711 
712 	if ((error = config_detach(dev, 0)) != 0)
713 		aprint_error_dev(dev, "unable to detach instance\n");
714 	kmem_free(cf, sizeof(*cf));
715 
716 	return error;
717 }
718 
719 /*
720  * tap(4) is a bit of an hybrid device.  It can be used in two different
721  * ways:
722  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
723  *  2. open /dev/tap, get a new interface created and read/write off it.
724  *     That interface is destroyed when the process that had it created exits.
725  *
726  * The first way is managed by the cdevsw structure, and you access interfaces
727  * through a (major, minor) mapping:  tap4 is obtained by the minor number
728  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
729  *
730  * The second way is the so-called "cloning" device.  It's a special minor
731  * number (chosen as the maximal number, to allow as much tap devices as
732  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
733  * call ends in tap_cdev_open.  The actual place where it is handled is
734  * tap_dev_cloner.
735  *
736  * An tap device cannot be opened more than once at a time, so the cdevsw
737  * part of open() does nothing but noting that the interface is being used and
738  * hence ready to actually handle packets.
739  */
740 
741 static int
742 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
743 {
744 	struct tap_softc *sc;
745 
746 	if (minor(dev) == TAP_CLONER)
747 		return tap_dev_cloner(l);
748 
749 	sc = device_lookup_private(&tap_cd, minor(dev));
750 	if (sc == NULL)
751 		return ENXIO;
752 
753 	/* The device can only be opened once */
754 	if (sc->sc_flags & TAP_INUSE)
755 		return EBUSY;
756 	sc->sc_flags |= TAP_INUSE;
757 	return 0;
758 }
759 
760 /*
761  * There are several kinds of cloning devices, and the most simple is the one
762  * tap(4) uses.  What it does is change the file descriptor with a new one,
763  * with its own fileops structure (which maps to the various read, write,
764  * ioctl functions).  It starts allocating a new file descriptor with falloc,
765  * then actually creates the new tap devices.
766  *
767  * Once those two steps are successful, we can re-wire the existing file
768  * descriptor to its new self.  This is done with fdclone():  it fills the fp
769  * structure as needed (notably f_devunit gets filled with the fifth parameter
770  * passed, the unit of the tap device which will allows us identifying the
771  * device later), and returns EMOVEFD.
772  *
773  * That magic value is interpreted by sys_open() which then replaces the
774  * current file descriptor by the new one (through a magic member of struct
775  * lwp, l_dupfd).
776  *
777  * The tap device is flagged as being busy since it otherwise could be
778  * externally accessed through the corresponding device node with the cdevsw
779  * interface.
780  */
781 
782 static int
783 tap_dev_cloner(struct lwp *l)
784 {
785 	struct tap_softc *sc;
786 	file_t *fp;
787 	int error, fd;
788 
789 	if ((error = fd_allocfile(&fp, &fd)) != 0)
790 		return error;
791 
792 	if ((sc = tap_clone_creator(-1)) == NULL) {
793 		fd_abort(curproc, fp, fd);
794 		return ENXIO;
795 	}
796 
797 	sc->sc_flags |= TAP_INUSE;
798 
799 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
800 	    (void *)(intptr_t)device_unit(sc->sc_dev));
801 }
802 
803 /*
804  * While all other operations (read, write, ioctl, poll and kqfilter) are
805  * really the same whether we are in cdevsw or fileops mode, the close()
806  * function is slightly different in the two cases.
807  *
808  * As for the other, the core of it is shared in tap_dev_close.  What
809  * it does is sufficient for the cdevsw interface, but the cloning interface
810  * needs another thing:  the interface is destroyed when the processes that
811  * created it closes it.
812  */
813 static int
814 tap_cdev_close(dev_t dev, int flags, int fmt,
815     struct lwp *l)
816 {
817 	struct tap_softc *sc =
818 	    device_lookup_private(&tap_cd, minor(dev));
819 
820 	if (sc == NULL)
821 		return ENXIO;
822 
823 	return tap_dev_close(sc);
824 }
825 
826 /*
827  * It might happen that the administrator used ifconfig to externally destroy
828  * the interface.  In that case, tap_fops_close will be called while
829  * tap_detach is already happening.  If we called it again from here, we
830  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
831  */
832 static int
833 tap_fops_close(file_t *fp)
834 {
835 	int unit = fp->f_devunit;
836 	struct tap_softc *sc;
837 	int error;
838 
839 	sc = device_lookup_private(&tap_cd, unit);
840 	if (sc == NULL)
841 		return ENXIO;
842 
843 	/* tap_dev_close currently always succeeds, but it might not
844 	 * always be the case. */
845 	KERNEL_LOCK(1, NULL);
846 	if ((error = tap_dev_close(sc)) != 0) {
847 		KERNEL_UNLOCK_ONE(NULL);
848 		return error;
849 	}
850 
851 	/* Destroy the device now that it is no longer useful,
852 	 * unless it's already being destroyed. */
853 	if ((sc->sc_flags & TAP_GOING) != 0) {
854 		KERNEL_UNLOCK_ONE(NULL);
855 		return 0;
856 	}
857 
858 	error = tap_clone_destroyer(sc->sc_dev);
859 	KERNEL_UNLOCK_ONE(NULL);
860 	return error;
861 }
862 
863 static int
864 tap_dev_close(struct tap_softc *sc)
865 {
866 	struct ifnet *ifp;
867 	int s;
868 
869 	s = splnet();
870 	/* Let tap_start handle packets again */
871 	ifp = &sc->sc_ec.ec_if;
872 	ifp->if_flags &= ~IFF_OACTIVE;
873 
874 	/* Purge output queue */
875 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
876 		struct mbuf *m;
877 
878 		for (;;) {
879 			IFQ_DEQUEUE(&ifp->if_snd, m);
880 			if (m == NULL)
881 				break;
882 
883 			ifp->if_opackets++;
884 			bpf_mtap(ifp, m);
885 			m_freem(m);
886 		}
887 	}
888 	splx(s);
889 
890 	if (sc->sc_sih != NULL) {
891 		softint_disestablish(sc->sc_sih);
892 		sc->sc_sih = NULL;
893 	}
894 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
895 
896 	return 0;
897 }
898 
899 static int
900 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
901 {
902 	return tap_dev_read(minor(dev), uio, flags);
903 }
904 
905 static int
906 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
907     kauth_cred_t cred, int flags)
908 {
909 	int error;
910 
911 	KERNEL_LOCK(1, NULL);
912 	error = tap_dev_read(fp->f_devunit, uio, flags);
913 	KERNEL_UNLOCK_ONE(NULL);
914 	return error;
915 }
916 
917 static int
918 tap_dev_read(int unit, struct uio *uio, int flags)
919 {
920 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
921 	struct ifnet *ifp;
922 	struct mbuf *m, *n;
923 	int error = 0, s;
924 
925 	if (sc == NULL)
926 		return ENXIO;
927 
928 	getnanotime(&sc->sc_atime);
929 
930 	ifp = &sc->sc_ec.ec_if;
931 	if ((ifp->if_flags & IFF_UP) == 0)
932 		return EHOSTDOWN;
933 
934 	/*
935 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
936 	 */
937 	if ((sc->sc_flags & TAP_NBIO) != 0) {
938 		if (!mutex_tryenter(&sc->sc_rdlock))
939 			return EWOULDBLOCK;
940 	} else {
941 		mutex_enter(&sc->sc_rdlock);
942 	}
943 
944 	s = splnet();
945 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
946 		ifp->if_flags &= ~IFF_OACTIVE;
947 		/*
948 		 * We must release the lock before sleeping, and re-acquire it
949 		 * after.
950 		 */
951 		mutex_exit(&sc->sc_rdlock);
952 		if (sc->sc_flags & TAP_NBIO)
953 			error = EWOULDBLOCK;
954 		else
955 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
956 		splx(s);
957 
958 		if (error != 0)
959 			return error;
960 		/* The device might have been downed */
961 		if ((ifp->if_flags & IFF_UP) == 0)
962 			return EHOSTDOWN;
963 		if ((sc->sc_flags & TAP_NBIO)) {
964 			if (!mutex_tryenter(&sc->sc_rdlock))
965 				return EWOULDBLOCK;
966 		} else {
967 			mutex_enter(&sc->sc_rdlock);
968 		}
969 		s = splnet();
970 	}
971 
972 	IFQ_DEQUEUE(&ifp->if_snd, m);
973 	ifp->if_flags &= ~IFF_OACTIVE;
974 	splx(s);
975 	if (m == NULL) {
976 		error = 0;
977 		goto out;
978 	}
979 
980 	ifp->if_opackets++;
981 	bpf_mtap(ifp, m);
982 
983 	/*
984 	 * One read is one packet.
985 	 */
986 	do {
987 		error = uiomove(mtod(m, void *),
988 		    min(m->m_len, uio->uio_resid), uio);
989 		m = n = m_free(m);
990 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
991 
992 	if (m != NULL)
993 		m_freem(m);
994 
995 out:
996 	mutex_exit(&sc->sc_rdlock);
997 	return error;
998 }
999 
1000 static int
1001 tap_fops_stat(file_t *fp, struct stat *st)
1002 {
1003 	int error = 0;
1004 	struct tap_softc *sc;
1005 	int unit = fp->f_devunit;
1006 
1007 	(void)memset(st, 0, sizeof(*st));
1008 
1009 	KERNEL_LOCK(1, NULL);
1010 	sc = device_lookup_private(&tap_cd, unit);
1011 	if (sc == NULL) {
1012 		error = ENXIO;
1013 		goto out;
1014 	}
1015 
1016 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
1017 	st->st_atimespec = sc->sc_atime;
1018 	st->st_mtimespec = sc->sc_mtime;
1019 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
1020 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
1021 	st->st_gid = kauth_cred_getegid(fp->f_cred);
1022 out:
1023 	KERNEL_UNLOCK_ONE(NULL);
1024 	return error;
1025 }
1026 
1027 static int
1028 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
1029 {
1030 	return tap_dev_write(minor(dev), uio, flags);
1031 }
1032 
1033 static int
1034 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1035     kauth_cred_t cred, int flags)
1036 {
1037 	int error;
1038 
1039 	KERNEL_LOCK(1, NULL);
1040 	error = tap_dev_write(fp->f_devunit, uio, flags);
1041 	KERNEL_UNLOCK_ONE(NULL);
1042 	return error;
1043 }
1044 
1045 static int
1046 tap_dev_write(int unit, struct uio *uio, int flags)
1047 {
1048 	struct tap_softc *sc =
1049 	    device_lookup_private(&tap_cd, unit);
1050 	struct ifnet *ifp;
1051 	struct mbuf *m, **mp;
1052 	int error = 0;
1053 	int s;
1054 
1055 	if (sc == NULL)
1056 		return ENXIO;
1057 
1058 	getnanotime(&sc->sc_mtime);
1059 	ifp = &sc->sc_ec.ec_if;
1060 
1061 	/* One write, one packet, that's the rule */
1062 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1063 	if (m == NULL) {
1064 		ifp->if_ierrors++;
1065 		return ENOBUFS;
1066 	}
1067 	m->m_pkthdr.len = uio->uio_resid;
1068 
1069 	mp = &m;
1070 	while (error == 0 && uio->uio_resid > 0) {
1071 		if (*mp != m) {
1072 			MGET(*mp, M_DONTWAIT, MT_DATA);
1073 			if (*mp == NULL) {
1074 				error = ENOBUFS;
1075 				break;
1076 			}
1077 		}
1078 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
1079 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1080 		mp = &(*mp)->m_next;
1081 	}
1082 	if (error) {
1083 		ifp->if_ierrors++;
1084 		m_freem(m);
1085 		return error;
1086 	}
1087 
1088 	m_set_rcvif(m, ifp);
1089 
1090 	s = splnet();
1091 	if_input(ifp, m);
1092 	splx(s);
1093 
1094 	return 0;
1095 }
1096 
1097 static int
1098 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1099     struct lwp *l)
1100 {
1101 	return tap_dev_ioctl(minor(dev), cmd, data, l);
1102 }
1103 
1104 static int
1105 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1106 {
1107 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
1108 }
1109 
1110 static int
1111 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1112 {
1113 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1114 
1115 	if (sc == NULL)
1116 		return ENXIO;
1117 
1118 	switch (cmd) {
1119 	case FIONREAD:
1120 		{
1121 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1122 			struct mbuf *m;
1123 			int s;
1124 
1125 			s = splnet();
1126 			IFQ_POLL(&ifp->if_snd, m);
1127 
1128 			if (m == NULL)
1129 				*(int *)data = 0;
1130 			else
1131 				*(int *)data = m->m_pkthdr.len;
1132 			splx(s);
1133 			return 0;
1134 		}
1135 	case TIOCSPGRP:
1136 	case FIOSETOWN:
1137 		return fsetown(&sc->sc_pgid, cmd, data);
1138 	case TIOCGPGRP:
1139 	case FIOGETOWN:
1140 		return fgetown(sc->sc_pgid, cmd, data);
1141 	case FIOASYNC:
1142 		if (*(int *)data) {
1143 			if (sc->sc_sih == NULL) {
1144 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1145 				    tap_softintr, sc);
1146 				if (sc->sc_sih == NULL)
1147 					return EBUSY; /* XXX */
1148 			}
1149 			sc->sc_flags |= TAP_ASYNCIO;
1150 		} else {
1151 			sc->sc_flags &= ~TAP_ASYNCIO;
1152 			if (sc->sc_sih != NULL) {
1153 				softint_disestablish(sc->sc_sih);
1154 				sc->sc_sih = NULL;
1155 			}
1156 		}
1157 		return 0;
1158 	case FIONBIO:
1159 		if (*(int *)data)
1160 			sc->sc_flags |= TAP_NBIO;
1161 		else
1162 			sc->sc_flags &= ~TAP_NBIO;
1163 		return 0;
1164 #ifdef OTAPGIFNAME
1165 	case OTAPGIFNAME:
1166 #endif
1167 	case TAPGIFNAME:
1168 		{
1169 			struct ifreq *ifr = (struct ifreq *)data;
1170 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1171 
1172 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1173 			return 0;
1174 		}
1175 	default:
1176 		return ENOTTY;
1177 	}
1178 }
1179 
1180 static int
1181 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1182 {
1183 	return tap_dev_poll(minor(dev), events, l);
1184 }
1185 
1186 static int
1187 tap_fops_poll(file_t *fp, int events)
1188 {
1189 	return tap_dev_poll(fp->f_devunit, events, curlwp);
1190 }
1191 
1192 static int
1193 tap_dev_poll(int unit, int events, struct lwp *l)
1194 {
1195 	struct tap_softc *sc =
1196 	    device_lookup_private(&tap_cd, unit);
1197 	int revents = 0;
1198 
1199 	if (sc == NULL)
1200 		return POLLERR;
1201 
1202 	if (events & (POLLIN|POLLRDNORM)) {
1203 		struct ifnet *ifp = &sc->sc_ec.ec_if;
1204 		struct mbuf *m;
1205 		int s;
1206 
1207 		s = splnet();
1208 		IFQ_POLL(&ifp->if_snd, m);
1209 
1210 		if (m != NULL)
1211 			revents |= events & (POLLIN|POLLRDNORM);
1212 		else {
1213 			mutex_spin_enter(&sc->sc_kqlock);
1214 			selrecord(l, &sc->sc_rsel);
1215 			mutex_spin_exit(&sc->sc_kqlock);
1216 		}
1217 		splx(s);
1218 	}
1219 	revents |= events & (POLLOUT|POLLWRNORM);
1220 
1221 	return revents;
1222 }
1223 
1224 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1225 	tap_kqread };
1226 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1227 	filt_seltrue };
1228 
1229 static int
1230 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1231 {
1232 	return tap_dev_kqfilter(minor(dev), kn);
1233 }
1234 
1235 static int
1236 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1237 {
1238 	return tap_dev_kqfilter(fp->f_devunit, kn);
1239 }
1240 
1241 static int
1242 tap_dev_kqfilter(int unit, struct knote *kn)
1243 {
1244 	struct tap_softc *sc =
1245 	    device_lookup_private(&tap_cd, unit);
1246 
1247 	if (sc == NULL)
1248 		return ENXIO;
1249 
1250 	KERNEL_LOCK(1, NULL);
1251 	switch(kn->kn_filter) {
1252 	case EVFILT_READ:
1253 		kn->kn_fop = &tap_read_filterops;
1254 		break;
1255 	case EVFILT_WRITE:
1256 		kn->kn_fop = &tap_seltrue_filterops;
1257 		break;
1258 	default:
1259 		KERNEL_UNLOCK_ONE(NULL);
1260 		return EINVAL;
1261 	}
1262 
1263 	kn->kn_hook = sc;
1264 	mutex_spin_enter(&sc->sc_kqlock);
1265 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1266 	mutex_spin_exit(&sc->sc_kqlock);
1267 	KERNEL_UNLOCK_ONE(NULL);
1268 	return 0;
1269 }
1270 
1271 static void
1272 tap_kqdetach(struct knote *kn)
1273 {
1274 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1275 
1276 	KERNEL_LOCK(1, NULL);
1277 	mutex_spin_enter(&sc->sc_kqlock);
1278 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1279 	mutex_spin_exit(&sc->sc_kqlock);
1280 	KERNEL_UNLOCK_ONE(NULL);
1281 }
1282 
1283 static int
1284 tap_kqread(struct knote *kn, long hint)
1285 {
1286 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1287 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1288 	struct mbuf *m;
1289 	int s, rv;
1290 
1291 	KERNEL_LOCK(1, NULL);
1292 	s = splnet();
1293 	IFQ_POLL(&ifp->if_snd, m);
1294 
1295 	if (m == NULL)
1296 		kn->kn_data = 0;
1297 	else
1298 		kn->kn_data = m->m_pkthdr.len;
1299 	splx(s);
1300 	rv = (kn->kn_data != 0 ? 1 : 0);
1301 	KERNEL_UNLOCK_ONE(NULL);
1302 	return rv;
1303 }
1304 
1305 /*
1306  * sysctl management routines
1307  * You can set the address of an interface through:
1308  * net.link.tap.tap<number>
1309  *
1310  * Note the consistent use of tap_log in order to use
1311  * sysctl_teardown at unload time.
1312  *
1313  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
1314  * blocks register a function in a special section of the kernel
1315  * (called a link set) which is used at init_sysctl() time to cycle
1316  * through all those functions to create the kernel's sysctl tree.
1317  *
1318  * It is not possible to use link sets in a module, so the
1319  * easiest is to simply call our own setup routine at load time.
1320  *
1321  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1322  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
1323  * whole kernel sysctl tree is built, it is not possible to add any
1324  * permanent node.
1325  *
1326  * It should be noted that we're not saving the sysctlnode pointer
1327  * we are returned when creating the "tap" node.  That structure
1328  * cannot be trusted once out of the calling function, as it might
1329  * get reused.  So we just save the MIB number, and always give the
1330  * full path starting from the root for later calls to sysctl_createv
1331  * and sysctl_destroyv.
1332  */
1333 static void
1334 sysctl_tap_setup(struct sysctllog **clog)
1335 {
1336 	const struct sysctlnode *node;
1337 	int error = 0;
1338 
1339 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1340 	    CTLFLAG_PERMANENT,
1341 	    CTLTYPE_NODE, "link", NULL,
1342 	    NULL, 0, NULL, 0,
1343 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
1344 		return;
1345 
1346 	/*
1347 	 * The first four parameters of sysctl_createv are for management.
1348 	 *
1349 	 * The four that follows, here starting with a '0' for the flags,
1350 	 * describe the node.
1351 	 *
1352 	 * The next series of four set its value, through various possible
1353 	 * means.
1354 	 *
1355 	 * Last but not least, the path to the node is described.  That path
1356 	 * is relative to the given root (third argument).  Here we're
1357 	 * starting from the root.
1358 	 */
1359 	if ((error = sysctl_createv(clog, 0, NULL, &node,
1360 	    CTLFLAG_PERMANENT,
1361 	    CTLTYPE_NODE, "tap", NULL,
1362 	    NULL, 0, NULL, 0,
1363 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1364 		return;
1365 	tap_node = node->sysctl_num;
1366 }
1367 
1368 /*
1369  * The helper functions make Andrew Brown's interface really
1370  * shine.  It makes possible to create value on the fly whether
1371  * the sysctl value is read or written.
1372  *
1373  * As shown as an example in the man page, the first step is to
1374  * create a copy of the node to have sysctl_lookup work on it.
1375  *
1376  * Here, we have more work to do than just a copy, since we have
1377  * to create the string.  The first step is to collect the actual
1378  * value of the node, which is a convenient pointer to the softc
1379  * of the interface.  From there we create the string and use it
1380  * as the value, but only for the *copy* of the node.
1381  *
1382  * Then we let sysctl_lookup do the magic, which consists in
1383  * setting oldp and newp as required by the operation.  When the
1384  * value is read, that means that the string will be copied to
1385  * the user, and when it is written, the new value will be copied
1386  * over in the addr array.
1387  *
1388  * If newp is NULL, the user was reading the value, so we don't
1389  * have anything else to do.  If a new value was written, we
1390  * have to check it.
1391  *
1392  * If it is incorrect, we can return an error and leave 'node' as
1393  * it is:  since it is a copy of the actual node, the change will
1394  * be forgotten.
1395  *
1396  * Upon a correct input, we commit the change to the ifnet
1397  * structure of our interface.
1398  */
1399 static int
1400 tap_sysctl_handler(SYSCTLFN_ARGS)
1401 {
1402 	struct sysctlnode node;
1403 	struct tap_softc *sc;
1404 	struct ifnet *ifp;
1405 	int error;
1406 	size_t len;
1407 	char addr[3 * ETHER_ADDR_LEN];
1408 	uint8_t enaddr[ETHER_ADDR_LEN];
1409 
1410 	node = *rnode;
1411 	sc = node.sysctl_data;
1412 	ifp = &sc->sc_ec.ec_if;
1413 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1414 	node.sysctl_data = addr;
1415 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1416 	if (error || newp == NULL)
1417 		return error;
1418 
1419 	len = strlen(addr);
1420 	if (len < 11 || len > 17)
1421 		return EINVAL;
1422 
1423 	/* Commit change */
1424 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1425 		return EINVAL;
1426 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1427 	return error;
1428 }
1429 
1430 /*
1431  * Module infrastructure
1432  */
1433 #include "if_module.h"
1434 
1435 IF_MODULE(MODULE_CLASS_DRIVER, tap, "")
1436