xref: /netbsd-src/sys/net/if_tap.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*	$NetBSD: if_tap.c,v 1.92 2016/08/15 05:10:33 christos Exp $	*/
2 
3 /*
4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5  *  All rights reserved.
6  *
7  *  Redistribution and use in source and binary forms, with or without
8  *  modification, are permitted provided that the following conditions
9  *  are met:
10  *  1. Redistributions of source code must retain the above copyright
11  *     notice, this list of conditions and the following disclaimer.
12  *  2. Redistributions in binary form must reproduce the above copyright
13  *     notice, this list of conditions and the following disclaimer in the
14  *     documentation and/or other materials provided with the distribution.
15  *
16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  *  POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
31  * device to the system, but can also be accessed by userland through a
32  * character device interface, which allows reading and injecting frames.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.92 2016/08/15 05:10:33 christos Exp $");
37 
38 #if defined(_KERNEL_OPT)
39 
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/cprng.h>
50 #include <sys/device.h>
51 #include <sys/file.h>
52 #include <sys/filedesc.h>
53 #include <sys/poll.h>
54 #include <sys/proc.h>
55 #include <sys/select.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 #include <sys/kauth.h>
59 #include <sys/mutex.h>
60 #include <sys/intr.h>
61 #include <sys/stat.h>
62 #include <sys/device.h>
63 #include <sys/module.h>
64 #include <sys/atomic.h>
65 
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <net/if_media.h>
70 #include <net/if_tap.h>
71 #include <net/bpf.h>
72 
73 #include <compat/sys/sockio.h>
74 
75 #include "ioconf.h"
76 
77 /*
78  * sysctl node management
79  *
80  * It's not really possible to use a SYSCTL_SETUP block with
81  * current module implementation, so it is easier to just define
82  * our own function.
83  *
84  * The handler function is a "helper" in Andrew Brown's sysctl
85  * framework terminology.  It is used as a gateway for sysctl
86  * requests over the nodes.
87  *
88  * tap_log allows the module to log creations of nodes and
89  * destroy them all at once using sysctl_teardown.
90  */
91 static int	tap_node;
92 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
93 static void	sysctl_tap_setup(struct sysctllog **);
94 
95 /*
96  * Since we're an Ethernet device, we need the 2 following
97  * components: a struct ethercom and a struct ifmedia
98  * since we don't attach a PHY to ourselves.
99  * We could emulate one, but there's no real point.
100  */
101 
102 struct tap_softc {
103 	device_t	sc_dev;
104 	struct ifmedia	sc_im;
105 	struct ethercom	sc_ec;
106 	int		sc_flags;
107 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
108 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
109 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
110 #define TAP_GOING	0x00000008	/* interface is being destroyed */
111 	struct selinfo	sc_rsel;
112 	pid_t		sc_pgid; /* For async. IO */
113 	kmutex_t	sc_rdlock;
114 	kmutex_t	sc_kqlock;
115 	void		*sc_sih;
116 	struct timespec sc_atime;
117 	struct timespec sc_mtime;
118 	struct timespec sc_btime;
119 };
120 
121 /* autoconf(9) glue */
122 
123 static int	tap_match(device_t, cfdata_t, void *);
124 static void	tap_attach(device_t, device_t, void *);
125 static int	tap_detach(device_t, int);
126 
127 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
128     tap_match, tap_attach, tap_detach, NULL);
129 extern struct cfdriver tap_cd;
130 
131 /* Real device access routines */
132 static int	tap_dev_close(struct tap_softc *);
133 static int	tap_dev_read(int, struct uio *, int);
134 static int	tap_dev_write(int, struct uio *, int);
135 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
136 static int	tap_dev_poll(int, int, struct lwp *);
137 static int	tap_dev_kqfilter(int, struct knote *);
138 
139 /* Fileops access routines */
140 static int	tap_fops_close(file_t *);
141 static int	tap_fops_read(file_t *, off_t *, struct uio *,
142     kauth_cred_t, int);
143 static int	tap_fops_write(file_t *, off_t *, struct uio *,
144     kauth_cred_t, int);
145 static int	tap_fops_ioctl(file_t *, u_long, void *);
146 static int	tap_fops_poll(file_t *, int);
147 static int	tap_fops_stat(file_t *, struct stat *);
148 static int	tap_fops_kqfilter(file_t *, struct knote *);
149 
150 static const struct fileops tap_fileops = {
151 	.fo_read = tap_fops_read,
152 	.fo_write = tap_fops_write,
153 	.fo_ioctl = tap_fops_ioctl,
154 	.fo_fcntl = fnullop_fcntl,
155 	.fo_poll = tap_fops_poll,
156 	.fo_stat = tap_fops_stat,
157 	.fo_close = tap_fops_close,
158 	.fo_kqfilter = tap_fops_kqfilter,
159 	.fo_restart = fnullop_restart,
160 };
161 
162 /* Helper for cloning open() */
163 static int	tap_dev_cloner(struct lwp *);
164 
165 /* Character device routines */
166 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
167 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
168 static int	tap_cdev_read(dev_t, struct uio *, int);
169 static int	tap_cdev_write(dev_t, struct uio *, int);
170 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
171 static int	tap_cdev_poll(dev_t, int, struct lwp *);
172 static int	tap_cdev_kqfilter(dev_t, struct knote *);
173 
174 const struct cdevsw tap_cdevsw = {
175 	.d_open = tap_cdev_open,
176 	.d_close = tap_cdev_close,
177 	.d_read = tap_cdev_read,
178 	.d_write = tap_cdev_write,
179 	.d_ioctl = tap_cdev_ioctl,
180 	.d_stop = nostop,
181 	.d_tty = notty,
182 	.d_poll = tap_cdev_poll,
183 	.d_mmap = nommap,
184 	.d_kqfilter = tap_cdev_kqfilter,
185 	.d_discard = nodiscard,
186 	.d_flag = D_OTHER
187 };
188 
189 #define TAP_CLONER	0xfffff		/* Maximal minor value */
190 
191 /* kqueue-related routines */
192 static void	tap_kqdetach(struct knote *);
193 static int	tap_kqread(struct knote *, long);
194 
195 /*
196  * Those are needed by the if_media interface.
197  */
198 
199 static int	tap_mediachange(struct ifnet *);
200 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
201 
202 /*
203  * Those are needed by the ifnet interface, and would typically be
204  * there for any network interface driver.
205  * Some other routines are optional: watchdog and drain.
206  */
207 
208 static void	tap_start(struct ifnet *);
209 static void	tap_stop(struct ifnet *, int);
210 static int	tap_init(struct ifnet *);
211 static int	tap_ioctl(struct ifnet *, u_long, void *);
212 
213 /* Internal functions */
214 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
215 static void	tap_softintr(void *);
216 
217 /*
218  * tap is a clonable interface, although it is highly unrealistic for
219  * an Ethernet device.
220  *
221  * Here are the bits needed for a clonable interface.
222  */
223 static int	tap_clone_create(struct if_clone *, int);
224 static int	tap_clone_destroy(struct ifnet *);
225 
226 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
227 					tap_clone_create,
228 					tap_clone_destroy);
229 
230 /* Helper functionis shared by the two cloning code paths */
231 static struct tap_softc *	tap_clone_creator(int);
232 int	tap_clone_destroyer(device_t);
233 
234 static struct sysctllog *tap_sysctl_clog;
235 
236 #ifdef _MODULE
237 devmajor_t tap_bmajor = -1, tap_cmajor = -1;
238 #endif
239 
240 static u_int tap_count;
241 
242 void
243 tapattach(int n)
244 {
245 
246 	/*
247 	 * Nothing to do here, initialization is handled by the
248 	 * module initialization code in tapinit() below).
249 	 */
250 }
251 
252 static void
253 tapinit(void)
254 {
255         int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
256         if (error) {
257                 aprint_error("%s: unable to register cfattach\n",
258                     tap_cd.cd_name);
259                 (void)config_cfdriver_detach(&tap_cd);
260                 return;
261         }
262 
263 	if_clone_attach(&tap_cloners);
264 	sysctl_tap_setup(&tap_sysctl_clog);
265 #ifdef _MODULE
266 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
267 #endif
268 }
269 
270 static int
271 tapdetach(void)
272 {
273 	int error = 0;
274 
275 	if (tap_count != 0)
276 		return EBUSY;
277 
278 #ifdef _MODULE
279 	if (error == 0)
280 		error = devsw_detach(NULL, &tap_cdevsw);
281 #endif
282 	if (error == 0)
283 		sysctl_teardown(&tap_sysctl_clog);
284 	if (error == 0)
285 		if_clone_detach(&tap_cloners);
286 
287 	if (error == 0)
288 		error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
289 
290 	return error;
291 }
292 
293 /* Pretty much useless for a pseudo-device */
294 static int
295 tap_match(device_t parent, cfdata_t cfdata, void *arg)
296 {
297 
298 	return (1);
299 }
300 
301 void
302 tap_attach(device_t parent, device_t self, void *aux)
303 {
304 	struct tap_softc *sc = device_private(self);
305 	struct ifnet *ifp;
306 	const struct sysctlnode *node;
307 	int error;
308 	uint8_t enaddr[ETHER_ADDR_LEN] =
309 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
310 	char enaddrstr[3 * ETHER_ADDR_LEN];
311 
312 	sc->sc_dev = self;
313 	sc->sc_sih = NULL;
314 	getnanotime(&sc->sc_btime);
315 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
316 	sc->sc_flags = 0;
317 	selinit(&sc->sc_rsel);
318 
319 	/*
320 	 * Initialize the two locks for the device.
321 	 *
322 	 * We need a lock here because even though the tap device can be
323 	 * opened only once, the file descriptor might be passed to another
324 	 * process, say a fork(2)ed child.
325 	 *
326 	 * The Giant saves us from most of the hassle, but since the read
327 	 * operation can sleep, we don't want two processes to wake up at
328 	 * the same moment and both try and dequeue a single packet.
329 	 *
330 	 * The queue for event listeners (used by kqueue(9), see below) has
331 	 * to be protected too, so use a spin lock.
332 	 */
333 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
334 	mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
335 
336 	if (!pmf_device_register(self, NULL, NULL))
337 		aprint_error_dev(self, "couldn't establish power handler\n");
338 
339 	/*
340 	 * In order to obtain unique initial Ethernet address on a host,
341 	 * do some randomisation.  It's not meant for anything but avoiding
342 	 * hard-coding an address.
343 	 */
344 	cprng_fast(&enaddr[3], 3);
345 
346 	aprint_verbose_dev(self, "Ethernet address %s\n",
347 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
348 
349 	/*
350 	 * Why 1000baseT? Why not? You can add more.
351 	 *
352 	 * Note that there are 3 steps: init, one or several additions to
353 	 * list of supported media, and in the end, the selection of one
354 	 * of them.
355 	 */
356 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
357 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
358 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
359 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
360 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
361 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
362 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
363 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
364 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
365 
366 	/*
367 	 * One should note that an interface must do multicast in order
368 	 * to support IPv6.
369 	 */
370 	ifp = &sc->sc_ec.ec_if;
371 	strcpy(ifp->if_xname, device_xname(self));
372 	ifp->if_softc	= sc;
373 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
374 	ifp->if_ioctl	= tap_ioctl;
375 	ifp->if_start	= tap_start;
376 	ifp->if_stop	= tap_stop;
377 	ifp->if_init	= tap_init;
378 	IFQ_SET_READY(&ifp->if_snd);
379 
380 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
381 
382 	/* Those steps are mandatory for an Ethernet driver. */
383 	if_initialize(ifp);
384 	ether_ifattach(ifp, enaddr);
385 	if_register(ifp);
386 
387 	/*
388 	 * Add a sysctl node for that interface.
389 	 *
390 	 * The pointer transmitted is not a string, but instead a pointer to
391 	 * the softc structure, which we can use to build the string value on
392 	 * the fly in the helper function of the node.  See the comments for
393 	 * tap_sysctl_handler for details.
394 	 *
395 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
396 	 * component.  However, we can allocate a number ourselves, as we are
397 	 * the only consumer of the net.link.<iface> node.  In this case, the
398 	 * unit number is conveniently used to number the node.  CTL_CREATE
399 	 * would just work, too.
400 	 */
401 	if ((error = sysctl_createv(NULL, 0, NULL,
402 	    &node, CTLFLAG_READWRITE,
403 	    CTLTYPE_STRING, device_xname(self), NULL,
404 	    tap_sysctl_handler, 0, (void *)sc, 18,
405 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
406 	    CTL_EOL)) != 0)
407 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
408 		    error);
409 }
410 
411 /*
412  * When detaching, we do the inverse of what is done in the attach
413  * routine, in reversed order.
414  */
415 static int
416 tap_detach(device_t self, int flags)
417 {
418 	struct tap_softc *sc = device_private(self);
419 	struct ifnet *ifp = &sc->sc_ec.ec_if;
420 	int error;
421 	int s;
422 
423 	sc->sc_flags |= TAP_GOING;
424 	s = splnet();
425 	tap_stop(ifp, 1);
426 	if_down(ifp);
427 	splx(s);
428 
429 	if (sc->sc_sih != NULL) {
430 		softint_disestablish(sc->sc_sih);
431 		sc->sc_sih = NULL;
432 	}
433 
434 	/*
435 	 * Destroying a single leaf is a very straightforward operation using
436 	 * sysctl_destroyv.  One should be sure to always end the path with
437 	 * CTL_EOL.
438 	 */
439 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
440 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
441 		aprint_error_dev(self,
442 		    "sysctl_destroyv returned %d, ignoring\n", error);
443 	ether_ifdetach(ifp);
444 	if_detach(ifp);
445 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
446 	seldestroy(&sc->sc_rsel);
447 	mutex_destroy(&sc->sc_rdlock);
448 	mutex_destroy(&sc->sc_kqlock);
449 
450 	pmf_device_deregister(self);
451 
452 	return (0);
453 }
454 
455 /*
456  * This function is called by the ifmedia layer to notify the driver
457  * that the user requested a media change.  A real driver would
458  * reconfigure the hardware.
459  */
460 static int
461 tap_mediachange(struct ifnet *ifp)
462 {
463 	return (0);
464 }
465 
466 /*
467  * Here the user asks for the currently used media.
468  */
469 static void
470 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
471 {
472 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
473 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
474 }
475 
476 /*
477  * This is the function where we SEND packets.
478  *
479  * There is no 'receive' equivalent.  A typical driver will get
480  * interrupts from the hardware, and from there will inject new packets
481  * into the network stack.
482  *
483  * Once handled, a packet must be freed.  A real driver might not be able
484  * to fit all the pending packets into the hardware, and is allowed to
485  * return before having sent all the packets.  It should then use the
486  * if_flags flag IFF_OACTIVE to notify the upper layer.
487  *
488  * There are also other flags one should check, such as IFF_PAUSE.
489  *
490  * It is our duty to make packets available to BPF listeners.
491  *
492  * You should be aware that this function is called by the Ethernet layer
493  * at splnet().
494  *
495  * When the device is opened, we have to pass the packet(s) to the
496  * userland.  For that we stay in OACTIVE mode while the userland gets
497  * the packets, and we send a signal to the processes waiting to read.
498  *
499  * wakeup(sc) is the counterpart to the tsleep call in
500  * tap_dev_read, while selnotify() is used for kevent(2) and
501  * poll(2) (which includes select(2)) listeners.
502  */
503 static void
504 tap_start(struct ifnet *ifp)
505 {
506 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
507 	struct mbuf *m0;
508 
509 	if ((sc->sc_flags & TAP_INUSE) == 0) {
510 		/* Simply drop packets */
511 		for(;;) {
512 			IFQ_DEQUEUE(&ifp->if_snd, m0);
513 			if (m0 == NULL)
514 				return;
515 
516 			ifp->if_opackets++;
517 			bpf_mtap(ifp, m0);
518 
519 			m_freem(m0);
520 		}
521 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
522 		ifp->if_flags |= IFF_OACTIVE;
523 		wakeup(sc);
524 		selnotify(&sc->sc_rsel, 0, 1);
525 		if (sc->sc_flags & TAP_ASYNCIO)
526 			softint_schedule(sc->sc_sih);
527 	}
528 }
529 
530 static void
531 tap_softintr(void *cookie)
532 {
533 	struct tap_softc *sc;
534 	struct ifnet *ifp;
535 	int a, b;
536 
537 	sc = cookie;
538 
539 	if (sc->sc_flags & TAP_ASYNCIO) {
540 		ifp = &sc->sc_ec.ec_if;
541 		if (ifp->if_flags & IFF_RUNNING) {
542 			a = POLL_IN;
543 			b = POLLIN|POLLRDNORM;
544 		} else {
545 			a = POLL_HUP;
546 			b = 0;
547 		}
548 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
549 	}
550 }
551 
552 /*
553  * A typical driver will only contain the following handlers for
554  * ioctl calls, except SIOCSIFPHYADDR.
555  * The latter is a hack I used to set the Ethernet address of the
556  * faked device.
557  *
558  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
559  * called under splnet().
560  */
561 static int
562 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
563 {
564 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
565 	struct ifreq *ifr = (struct ifreq *)data;
566 	int s, error;
567 
568 	s = splnet();
569 
570 	switch (cmd) {
571 #ifdef OSIOCSIFMEDIA
572 	case OSIOCSIFMEDIA:
573 #endif
574 	case SIOCSIFMEDIA:
575 	case SIOCGIFMEDIA:
576 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
577 		break;
578 	case SIOCSIFPHYADDR:
579 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
580 		break;
581 	default:
582 		error = ether_ioctl(ifp, cmd, data);
583 		if (error == ENETRESET)
584 			error = 0;
585 		break;
586 	}
587 
588 	splx(s);
589 
590 	return (error);
591 }
592 
593 /*
594  * Helper function to set Ethernet address.  This has been replaced by
595  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
596  */
597 static int
598 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
599 {
600 	const struct sockaddr *sa = &ifra->ifra_addr;
601 
602 	if (sa->sa_family != AF_LINK)
603 		return (EINVAL);
604 
605 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
606 
607 	return (0);
608 }
609 
610 /*
611  * _init() would typically be called when an interface goes up,
612  * meaning it should configure itself into the state in which it
613  * can send packets.
614  */
615 static int
616 tap_init(struct ifnet *ifp)
617 {
618 	ifp->if_flags |= IFF_RUNNING;
619 
620 	tap_start(ifp);
621 
622 	return (0);
623 }
624 
625 /*
626  * _stop() is called when an interface goes down.  It is our
627  * responsability to validate that state by clearing the
628  * IFF_RUNNING flag.
629  *
630  * We have to wake up all the sleeping processes to have the pending
631  * read requests cancelled.
632  */
633 static void
634 tap_stop(struct ifnet *ifp, int disable)
635 {
636 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
637 
638 	ifp->if_flags &= ~IFF_RUNNING;
639 	wakeup(sc);
640 	selnotify(&sc->sc_rsel, 0, 1);
641 	if (sc->sc_flags & TAP_ASYNCIO)
642 		softint_schedule(sc->sc_sih);
643 }
644 
645 /*
646  * The 'create' command of ifconfig can be used to create
647  * any numbered instance of a given device.  Thus we have to
648  * make sure we have enough room in cd_devs to create the
649  * user-specified instance.  config_attach_pseudo will do this
650  * for us.
651  */
652 static int
653 tap_clone_create(struct if_clone *ifc, int unit)
654 {
655 	if (tap_clone_creator(unit) == NULL) {
656 		aprint_error("%s%d: unable to attach an instance\n",
657                     tap_cd.cd_name, unit);
658 		return (ENXIO);
659 	}
660 	atomic_inc_uint(&tap_count);
661 	return (0);
662 }
663 
664 /*
665  * tap(4) can be cloned by two ways:
666  *   using 'ifconfig tap0 create', which will use the network
667  *     interface cloning API, and call tap_clone_create above.
668  *   opening the cloning device node, whose minor number is TAP_CLONER.
669  *     See below for an explanation on how this part work.
670  */
671 static struct tap_softc *
672 tap_clone_creator(int unit)
673 {
674 	struct cfdata *cf;
675 
676 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
677 	cf->cf_name = tap_cd.cd_name;
678 	cf->cf_atname = tap_ca.ca_name;
679 	if (unit == -1) {
680 		/* let autoconf find the first free one */
681 		cf->cf_unit = 0;
682 		cf->cf_fstate = FSTATE_STAR;
683 	} else {
684 		cf->cf_unit = unit;
685 		cf->cf_fstate = FSTATE_NOTFOUND;
686 	}
687 
688 	return device_private(config_attach_pseudo(cf));
689 }
690 
691 /*
692  * The clean design of if_clone and autoconf(9) makes that part
693  * really straightforward.  The second argument of config_detach
694  * means neither QUIET nor FORCED.
695  */
696 static int
697 tap_clone_destroy(struct ifnet *ifp)
698 {
699 	struct tap_softc *sc = ifp->if_softc;
700 	int error = tap_clone_destroyer(sc->sc_dev);
701 
702 	if (error == 0)
703 		atomic_dec_uint(&tap_count);
704 	return error;
705 }
706 
707 int
708 tap_clone_destroyer(device_t dev)
709 {
710 	cfdata_t cf = device_cfdata(dev);
711 	int error;
712 
713 	if ((error = config_detach(dev, 0)) != 0)
714 		aprint_error_dev(dev, "unable to detach instance\n");
715 	free(cf, M_DEVBUF);
716 
717 	return (error);
718 }
719 
720 /*
721  * tap(4) is a bit of an hybrid device.  It can be used in two different
722  * ways:
723  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
724  *  2. open /dev/tap, get a new interface created and read/write off it.
725  *     That interface is destroyed when the process that had it created exits.
726  *
727  * The first way is managed by the cdevsw structure, and you access interfaces
728  * through a (major, minor) mapping:  tap4 is obtained by the minor number
729  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
730  *
731  * The second way is the so-called "cloning" device.  It's a special minor
732  * number (chosen as the maximal number, to allow as much tap devices as
733  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
734  * call ends in tap_cdev_open.  The actual place where it is handled is
735  * tap_dev_cloner.
736  *
737  * An tap device cannot be opened more than once at a time, so the cdevsw
738  * part of open() does nothing but noting that the interface is being used and
739  * hence ready to actually handle packets.
740  */
741 
742 static int
743 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
744 {
745 	struct tap_softc *sc;
746 
747 	if (minor(dev) == TAP_CLONER)
748 		return tap_dev_cloner(l);
749 
750 	sc = device_lookup_private(&tap_cd, minor(dev));
751 	if (sc == NULL)
752 		return (ENXIO);
753 
754 	/* The device can only be opened once */
755 	if (sc->sc_flags & TAP_INUSE)
756 		return (EBUSY);
757 	sc->sc_flags |= TAP_INUSE;
758 	return (0);
759 }
760 
761 /*
762  * There are several kinds of cloning devices, and the most simple is the one
763  * tap(4) uses.  What it does is change the file descriptor with a new one,
764  * with its own fileops structure (which maps to the various read, write,
765  * ioctl functions).  It starts allocating a new file descriptor with falloc,
766  * then actually creates the new tap devices.
767  *
768  * Once those two steps are successful, we can re-wire the existing file
769  * descriptor to its new self.  This is done with fdclone():  it fills the fp
770  * structure as needed (notably f_devunit gets filled with the fifth parameter
771  * passed, the unit of the tap device which will allows us identifying the
772  * device later), and returns EMOVEFD.
773  *
774  * That magic value is interpreted by sys_open() which then replaces the
775  * current file descriptor by the new one (through a magic member of struct
776  * lwp, l_dupfd).
777  *
778  * The tap device is flagged as being busy since it otherwise could be
779  * externally accessed through the corresponding device node with the cdevsw
780  * interface.
781  */
782 
783 static int
784 tap_dev_cloner(struct lwp *l)
785 {
786 	struct tap_softc *sc;
787 	file_t *fp;
788 	int error, fd;
789 
790 	if ((error = fd_allocfile(&fp, &fd)) != 0)
791 		return (error);
792 
793 	if ((sc = tap_clone_creator(-1)) == NULL) {
794 		fd_abort(curproc, fp, fd);
795 		return (ENXIO);
796 	}
797 
798 	sc->sc_flags |= TAP_INUSE;
799 
800 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
801 	    (void *)(intptr_t)device_unit(sc->sc_dev));
802 }
803 
804 /*
805  * While all other operations (read, write, ioctl, poll and kqfilter) are
806  * really the same whether we are in cdevsw or fileops mode, the close()
807  * function is slightly different in the two cases.
808  *
809  * As for the other, the core of it is shared in tap_dev_close.  What
810  * it does is sufficient for the cdevsw interface, but the cloning interface
811  * needs another thing:  the interface is destroyed when the processes that
812  * created it closes it.
813  */
814 static int
815 tap_cdev_close(dev_t dev, int flags, int fmt,
816     struct lwp *l)
817 {
818 	struct tap_softc *sc =
819 	    device_lookup_private(&tap_cd, minor(dev));
820 
821 	if (sc == NULL)
822 		return (ENXIO);
823 
824 	return tap_dev_close(sc);
825 }
826 
827 /*
828  * It might happen that the administrator used ifconfig to externally destroy
829  * the interface.  In that case, tap_fops_close will be called while
830  * tap_detach is already happening.  If we called it again from here, we
831  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
832  */
833 static int
834 tap_fops_close(file_t *fp)
835 {
836 	int unit = fp->f_devunit;
837 	struct tap_softc *sc;
838 	int error;
839 
840 	sc = device_lookup_private(&tap_cd, unit);
841 	if (sc == NULL)
842 		return (ENXIO);
843 
844 	/* tap_dev_close currently always succeeds, but it might not
845 	 * always be the case. */
846 	KERNEL_LOCK(1, NULL);
847 	if ((error = tap_dev_close(sc)) != 0) {
848 		KERNEL_UNLOCK_ONE(NULL);
849 		return (error);
850 	}
851 
852 	/* Destroy the device now that it is no longer useful,
853 	 * unless it's already being destroyed. */
854 	if ((sc->sc_flags & TAP_GOING) != 0) {
855 		KERNEL_UNLOCK_ONE(NULL);
856 		return (0);
857 	}
858 
859 	error = tap_clone_destroyer(sc->sc_dev);
860 	KERNEL_UNLOCK_ONE(NULL);
861 	return error;
862 }
863 
864 static int
865 tap_dev_close(struct tap_softc *sc)
866 {
867 	struct ifnet *ifp;
868 	int s;
869 
870 	s = splnet();
871 	/* Let tap_start handle packets again */
872 	ifp = &sc->sc_ec.ec_if;
873 	ifp->if_flags &= ~IFF_OACTIVE;
874 
875 	/* Purge output queue */
876 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
877 		struct mbuf *m;
878 
879 		for (;;) {
880 			IFQ_DEQUEUE(&ifp->if_snd, m);
881 			if (m == NULL)
882 				break;
883 
884 			ifp->if_opackets++;
885 			bpf_mtap(ifp, m);
886 			m_freem(m);
887 		}
888 	}
889 	splx(s);
890 
891 	if (sc->sc_sih != NULL) {
892 		softint_disestablish(sc->sc_sih);
893 		sc->sc_sih = NULL;
894 	}
895 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
896 
897 	return (0);
898 }
899 
900 static int
901 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
902 {
903 	return tap_dev_read(minor(dev), uio, flags);
904 }
905 
906 static int
907 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
908     kauth_cred_t cred, int flags)
909 {
910 	int error;
911 
912 	KERNEL_LOCK(1, NULL);
913 	error = tap_dev_read(fp->f_devunit, uio, flags);
914 	KERNEL_UNLOCK_ONE(NULL);
915 	return error;
916 }
917 
918 static int
919 tap_dev_read(int unit, struct uio *uio, int flags)
920 {
921 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
922 	struct ifnet *ifp;
923 	struct mbuf *m, *n;
924 	int error = 0, s;
925 
926 	if (sc == NULL)
927 		return (ENXIO);
928 
929 	getnanotime(&sc->sc_atime);
930 
931 	ifp = &sc->sc_ec.ec_if;
932 	if ((ifp->if_flags & IFF_UP) == 0)
933 		return (EHOSTDOWN);
934 
935 	/*
936 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
937 	 */
938 	if ((sc->sc_flags & TAP_NBIO) != 0) {
939 		if (!mutex_tryenter(&sc->sc_rdlock))
940 			return (EWOULDBLOCK);
941 	} else {
942 		mutex_enter(&sc->sc_rdlock);
943 	}
944 
945 	s = splnet();
946 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
947 		ifp->if_flags &= ~IFF_OACTIVE;
948 		/*
949 		 * We must release the lock before sleeping, and re-acquire it
950 		 * after.
951 		 */
952 		mutex_exit(&sc->sc_rdlock);
953 		if (sc->sc_flags & TAP_NBIO)
954 			error = EWOULDBLOCK;
955 		else
956 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
957 		splx(s);
958 
959 		if (error != 0)
960 			return (error);
961 		/* The device might have been downed */
962 		if ((ifp->if_flags & IFF_UP) == 0)
963 			return (EHOSTDOWN);
964 		if ((sc->sc_flags & TAP_NBIO)) {
965 			if (!mutex_tryenter(&sc->sc_rdlock))
966 				return (EWOULDBLOCK);
967 		} else {
968 			mutex_enter(&sc->sc_rdlock);
969 		}
970 		s = splnet();
971 	}
972 
973 	IFQ_DEQUEUE(&ifp->if_snd, m);
974 	ifp->if_flags &= ~IFF_OACTIVE;
975 	splx(s);
976 	if (m == NULL) {
977 		error = 0;
978 		goto out;
979 	}
980 
981 	ifp->if_opackets++;
982 	bpf_mtap(ifp, m);
983 
984 	/*
985 	 * One read is one packet.
986 	 */
987 	do {
988 		error = uiomove(mtod(m, void *),
989 		    min(m->m_len, uio->uio_resid), uio);
990 		MFREE(m, n);
991 		m = n;
992 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
993 
994 	if (m != NULL)
995 		m_freem(m);
996 
997 out:
998 	mutex_exit(&sc->sc_rdlock);
999 	return (error);
1000 }
1001 
1002 static int
1003 tap_fops_stat(file_t *fp, struct stat *st)
1004 {
1005 	int error = 0;
1006 	struct tap_softc *sc;
1007 	int unit = fp->f_devunit;
1008 
1009 	(void)memset(st, 0, sizeof(*st));
1010 
1011 	KERNEL_LOCK(1, NULL);
1012 	sc = device_lookup_private(&tap_cd, unit);
1013 	if (sc == NULL) {
1014 		error = ENXIO;
1015 		goto out;
1016 	}
1017 
1018 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
1019 	st->st_atimespec = sc->sc_atime;
1020 	st->st_mtimespec = sc->sc_mtime;
1021 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
1022 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
1023 	st->st_gid = kauth_cred_getegid(fp->f_cred);
1024 out:
1025 	KERNEL_UNLOCK_ONE(NULL);
1026 	return error;
1027 }
1028 
1029 static int
1030 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
1031 {
1032 	return tap_dev_write(minor(dev), uio, flags);
1033 }
1034 
1035 static int
1036 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1037     kauth_cred_t cred, int flags)
1038 {
1039 	int error;
1040 
1041 	KERNEL_LOCK(1, NULL);
1042 	error = tap_dev_write(fp->f_devunit, uio, flags);
1043 	KERNEL_UNLOCK_ONE(NULL);
1044 	return error;
1045 }
1046 
1047 static int
1048 tap_dev_write(int unit, struct uio *uio, int flags)
1049 {
1050 	struct tap_softc *sc =
1051 	    device_lookup_private(&tap_cd, unit);
1052 	struct ifnet *ifp;
1053 	struct mbuf *m, **mp;
1054 	int error = 0;
1055 	int s;
1056 
1057 	if (sc == NULL)
1058 		return (ENXIO);
1059 
1060 	getnanotime(&sc->sc_mtime);
1061 	ifp = &sc->sc_ec.ec_if;
1062 
1063 	/* One write, one packet, that's the rule */
1064 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1065 	if (m == NULL) {
1066 		ifp->if_ierrors++;
1067 		return (ENOBUFS);
1068 	}
1069 	m->m_pkthdr.len = uio->uio_resid;
1070 
1071 	mp = &m;
1072 	while (error == 0 && uio->uio_resid > 0) {
1073 		if (*mp != m) {
1074 			MGET(*mp, M_DONTWAIT, MT_DATA);
1075 			if (*mp == NULL) {
1076 				error = ENOBUFS;
1077 				break;
1078 			}
1079 		}
1080 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
1081 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1082 		mp = &(*mp)->m_next;
1083 	}
1084 	if (error) {
1085 		ifp->if_ierrors++;
1086 		m_freem(m);
1087 		return (error);
1088 	}
1089 
1090 	ifp->if_ipackets++;
1091 	m_set_rcvif(m, ifp);
1092 
1093 	bpf_mtap(ifp, m);
1094 	s = splnet();
1095 	if_input(ifp, m);
1096 	splx(s);
1097 
1098 	return (0);
1099 }
1100 
1101 static int
1102 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1103     struct lwp *l)
1104 {
1105 	return tap_dev_ioctl(minor(dev), cmd, data, l);
1106 }
1107 
1108 static int
1109 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1110 {
1111 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
1112 }
1113 
1114 static int
1115 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1116 {
1117 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1118 
1119 	if (sc == NULL)
1120 		return ENXIO;
1121 
1122 	switch (cmd) {
1123 	case FIONREAD:
1124 		{
1125 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1126 			struct mbuf *m;
1127 			int s;
1128 
1129 			s = splnet();
1130 			IFQ_POLL(&ifp->if_snd, m);
1131 
1132 			if (m == NULL)
1133 				*(int *)data = 0;
1134 			else
1135 				*(int *)data = m->m_pkthdr.len;
1136 			splx(s);
1137 			return 0;
1138 		}
1139 	case TIOCSPGRP:
1140 	case FIOSETOWN:
1141 		return fsetown(&sc->sc_pgid, cmd, data);
1142 	case TIOCGPGRP:
1143 	case FIOGETOWN:
1144 		return fgetown(sc->sc_pgid, cmd, data);
1145 	case FIOASYNC:
1146 		if (*(int *)data) {
1147 			if (sc->sc_sih == NULL) {
1148 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1149 				    tap_softintr, sc);
1150 				if (sc->sc_sih == NULL)
1151 					return EBUSY; /* XXX */
1152 			}
1153 			sc->sc_flags |= TAP_ASYNCIO;
1154 		} else {
1155 			sc->sc_flags &= ~TAP_ASYNCIO;
1156 			if (sc->sc_sih != NULL) {
1157 				softint_disestablish(sc->sc_sih);
1158 				sc->sc_sih = NULL;
1159 			}
1160 		}
1161 		return 0;
1162 	case FIONBIO:
1163 		if (*(int *)data)
1164 			sc->sc_flags |= TAP_NBIO;
1165 		else
1166 			sc->sc_flags &= ~TAP_NBIO;
1167 		return 0;
1168 #ifdef OTAPGIFNAME
1169 	case OTAPGIFNAME:
1170 #endif
1171 	case TAPGIFNAME:
1172 		{
1173 			struct ifreq *ifr = (struct ifreq *)data;
1174 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1175 
1176 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1177 			return 0;
1178 		}
1179 	default:
1180 		return ENOTTY;
1181 	}
1182 }
1183 
1184 static int
1185 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1186 {
1187 	return tap_dev_poll(minor(dev), events, l);
1188 }
1189 
1190 static int
1191 tap_fops_poll(file_t *fp, int events)
1192 {
1193 	return tap_dev_poll(fp->f_devunit, events, curlwp);
1194 }
1195 
1196 static int
1197 tap_dev_poll(int unit, int events, struct lwp *l)
1198 {
1199 	struct tap_softc *sc =
1200 	    device_lookup_private(&tap_cd, unit);
1201 	int revents = 0;
1202 
1203 	if (sc == NULL)
1204 		return POLLERR;
1205 
1206 	if (events & (POLLIN|POLLRDNORM)) {
1207 		struct ifnet *ifp = &sc->sc_ec.ec_if;
1208 		struct mbuf *m;
1209 		int s;
1210 
1211 		s = splnet();
1212 		IFQ_POLL(&ifp->if_snd, m);
1213 
1214 		if (m != NULL)
1215 			revents |= events & (POLLIN|POLLRDNORM);
1216 		else {
1217 			mutex_spin_enter(&sc->sc_kqlock);
1218 			selrecord(l, &sc->sc_rsel);
1219 			mutex_spin_exit(&sc->sc_kqlock);
1220 		}
1221 		splx(s);
1222 	}
1223 	revents |= events & (POLLOUT|POLLWRNORM);
1224 
1225 	return (revents);
1226 }
1227 
1228 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1229 	tap_kqread };
1230 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1231 	filt_seltrue };
1232 
1233 static int
1234 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1235 {
1236 	return tap_dev_kqfilter(minor(dev), kn);
1237 }
1238 
1239 static int
1240 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1241 {
1242 	return tap_dev_kqfilter(fp->f_devunit, kn);
1243 }
1244 
1245 static int
1246 tap_dev_kqfilter(int unit, struct knote *kn)
1247 {
1248 	struct tap_softc *sc =
1249 	    device_lookup_private(&tap_cd, unit);
1250 
1251 	if (sc == NULL)
1252 		return (ENXIO);
1253 
1254 	KERNEL_LOCK(1, NULL);
1255 	switch(kn->kn_filter) {
1256 	case EVFILT_READ:
1257 		kn->kn_fop = &tap_read_filterops;
1258 		break;
1259 	case EVFILT_WRITE:
1260 		kn->kn_fop = &tap_seltrue_filterops;
1261 		break;
1262 	default:
1263 		KERNEL_UNLOCK_ONE(NULL);
1264 		return (EINVAL);
1265 	}
1266 
1267 	kn->kn_hook = sc;
1268 	mutex_spin_enter(&sc->sc_kqlock);
1269 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1270 	mutex_spin_exit(&sc->sc_kqlock);
1271 	KERNEL_UNLOCK_ONE(NULL);
1272 	return (0);
1273 }
1274 
1275 static void
1276 tap_kqdetach(struct knote *kn)
1277 {
1278 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1279 
1280 	KERNEL_LOCK(1, NULL);
1281 	mutex_spin_enter(&sc->sc_kqlock);
1282 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1283 	mutex_spin_exit(&sc->sc_kqlock);
1284 	KERNEL_UNLOCK_ONE(NULL);
1285 }
1286 
1287 static int
1288 tap_kqread(struct knote *kn, long hint)
1289 {
1290 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1291 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1292 	struct mbuf *m;
1293 	int s, rv;
1294 
1295 	KERNEL_LOCK(1, NULL);
1296 	s = splnet();
1297 	IFQ_POLL(&ifp->if_snd, m);
1298 
1299 	if (m == NULL)
1300 		kn->kn_data = 0;
1301 	else
1302 		kn->kn_data = m->m_pkthdr.len;
1303 	splx(s);
1304 	rv = (kn->kn_data != 0 ? 1 : 0);
1305 	KERNEL_UNLOCK_ONE(NULL);
1306 	return rv;
1307 }
1308 
1309 /*
1310  * sysctl management routines
1311  * You can set the address of an interface through:
1312  * net.link.tap.tap<number>
1313  *
1314  * Note the consistent use of tap_log in order to use
1315  * sysctl_teardown at unload time.
1316  *
1317  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
1318  * blocks register a function in a special section of the kernel
1319  * (called a link set) which is used at init_sysctl() time to cycle
1320  * through all those functions to create the kernel's sysctl tree.
1321  *
1322  * It is not possible to use link sets in a module, so the
1323  * easiest is to simply call our own setup routine at load time.
1324  *
1325  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1326  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
1327  * whole kernel sysctl tree is built, it is not possible to add any
1328  * permanent node.
1329  *
1330  * It should be noted that we're not saving the sysctlnode pointer
1331  * we are returned when creating the "tap" node.  That structure
1332  * cannot be trusted once out of the calling function, as it might
1333  * get reused.  So we just save the MIB number, and always give the
1334  * full path starting from the root for later calls to sysctl_createv
1335  * and sysctl_destroyv.
1336  */
1337 static void
1338 sysctl_tap_setup(struct sysctllog **clog)
1339 {
1340 	const struct sysctlnode *node;
1341 	int error = 0;
1342 
1343 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1344 	    CTLFLAG_PERMANENT,
1345 	    CTLTYPE_NODE, "link", NULL,
1346 	    NULL, 0, NULL, 0,
1347 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
1348 		return;
1349 
1350 	/*
1351 	 * The first four parameters of sysctl_createv are for management.
1352 	 *
1353 	 * The four that follows, here starting with a '0' for the flags,
1354 	 * describe the node.
1355 	 *
1356 	 * The next series of four set its value, through various possible
1357 	 * means.
1358 	 *
1359 	 * Last but not least, the path to the node is described.  That path
1360 	 * is relative to the given root (third argument).  Here we're
1361 	 * starting from the root.
1362 	 */
1363 	if ((error = sysctl_createv(clog, 0, NULL, &node,
1364 	    CTLFLAG_PERMANENT,
1365 	    CTLTYPE_NODE, "tap", NULL,
1366 	    NULL, 0, NULL, 0,
1367 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1368 		return;
1369 	tap_node = node->sysctl_num;
1370 }
1371 
1372 /*
1373  * The helper functions make Andrew Brown's interface really
1374  * shine.  It makes possible to create value on the fly whether
1375  * the sysctl value is read or written.
1376  *
1377  * As shown as an example in the man page, the first step is to
1378  * create a copy of the node to have sysctl_lookup work on it.
1379  *
1380  * Here, we have more work to do than just a copy, since we have
1381  * to create the string.  The first step is to collect the actual
1382  * value of the node, which is a convenient pointer to the softc
1383  * of the interface.  From there we create the string and use it
1384  * as the value, but only for the *copy* of the node.
1385  *
1386  * Then we let sysctl_lookup do the magic, which consists in
1387  * setting oldp and newp as required by the operation.  When the
1388  * value is read, that means that the string will be copied to
1389  * the user, and when it is written, the new value will be copied
1390  * over in the addr array.
1391  *
1392  * If newp is NULL, the user was reading the value, so we don't
1393  * have anything else to do.  If a new value was written, we
1394  * have to check it.
1395  *
1396  * If it is incorrect, we can return an error and leave 'node' as
1397  * it is:  since it is a copy of the actual node, the change will
1398  * be forgotten.
1399  *
1400  * Upon a correct input, we commit the change to the ifnet
1401  * structure of our interface.
1402  */
1403 static int
1404 tap_sysctl_handler(SYSCTLFN_ARGS)
1405 {
1406 	struct sysctlnode node;
1407 	struct tap_softc *sc;
1408 	struct ifnet *ifp;
1409 	int error;
1410 	size_t len;
1411 	char addr[3 * ETHER_ADDR_LEN];
1412 	uint8_t enaddr[ETHER_ADDR_LEN];
1413 
1414 	node = *rnode;
1415 	sc = node.sysctl_data;
1416 	ifp = &sc->sc_ec.ec_if;
1417 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1418 	node.sysctl_data = addr;
1419 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1420 	if (error || newp == NULL)
1421 		return (error);
1422 
1423 	len = strlen(addr);
1424 	if (len < 11 || len > 17)
1425 		return (EINVAL);
1426 
1427 	/* Commit change */
1428 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1429 		return (EINVAL);
1430 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1431 	return (error);
1432 }
1433 
1434 /*
1435  * Module infrastructure
1436  */
1437 #include "if_module.h"
1438 
1439 IF_MODULE(MODULE_CLASS_DRIVER, tap, "")
1440