xref: /netbsd-src/sys/net/if_tap.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: if_tap.c,v 1.22 2006/10/12 01:32:28 christos Exp $	*/
2 
3 /*
4  *  Copyright (c) 2003, 2004 The NetBSD Foundation.
5  *  All rights reserved.
6  *
7  *  This code is derived from software contributed to the NetBSD Foundation
8  *   by Quentin Garnier.
9  *
10  *  Redistribution and use in source and binary forms, with or without
11  *  modification, are permitted provided that the following conditions
12  *  are met:
13  *  1. Redistributions of source code must retain the above copyright
14  *     notice, this list of conditions and the following disclaimer.
15  *  2. Redistributions in binary form must reproduce the above copyright
16  *     notice, this list of conditions and the following disclaimer in the
17  *     documentation and/or other materials provided with the distribution.
18  *  3. All advertising materials mentioning features or use of this software
19  *     must display the following acknowledgement:
20  *         This product includes software developed by the NetBSD
21  *         Foundation, Inc. and its contributors.
22  *  4. Neither the name of The NetBSD Foundation nor the names of its
23  *     contributors may be used to endorse or promote products derived
24  *     from this software without specific prior written permission.
25  *
26  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  *  POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
41  * device to the system, but can also be accessed by userland through a
42  * character device interface, which allows reading and injecting frames.
43  */
44 
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.22 2006/10/12 01:32:28 christos Exp $");
47 
48 #if defined(_KERNEL_OPT)
49 #include "bpfilter.h"
50 #endif
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/conf.h>
57 #include <sys/device.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/ksyms.h>
61 #include <sys/poll.h>
62 #include <sys/select.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65 #include <sys/kauth.h>
66 
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_ether.h>
70 #include <net/if_media.h>
71 #include <net/if_tap.h>
72 #if NBPFILTER > 0
73 #include <net/bpf.h>
74 #endif
75 
76 /*
77  * sysctl node management
78  *
79  * It's not really possible to use a SYSCTL_SETUP block with
80  * current LKM implementation, so it is easier to just define
81  * our own function.
82  *
83  * The handler function is a "helper" in Andrew Brown's sysctl
84  * framework terminology.  It is used as a gateway for sysctl
85  * requests over the nodes.
86  *
87  * tap_log allows the module to log creations of nodes and
88  * destroy them all at once using sysctl_teardown.
89  */
90 static int tap_node;
91 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
92 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
93 
94 /*
95  * Since we're an Ethernet device, we need the 3 following
96  * components: a leading struct device, a struct ethercom,
97  * and also a struct ifmedia since we don't attach a PHY to
98  * ourselves. We could emulate one, but there's no real
99  * point.
100  */
101 
102 struct tap_softc {
103 	struct device	sc_dev;
104 	struct ifmedia	sc_im;
105 	struct ethercom	sc_ec;
106 	int		sc_flags;
107 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
108 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
109 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
110 #define TAP_GOING	0x00000008	/* interface is being destroyed */
111 	struct selinfo	sc_rsel;
112 	pid_t		sc_pgid; /* For async. IO */
113 	struct lock	sc_rdlock;
114 	struct simplelock	sc_kqlock;
115 };
116 
117 /* autoconf(9) glue */
118 
119 void	tapattach(int);
120 
121 static int	tap_match(struct device *, struct cfdata *, void *);
122 static void	tap_attach(struct device *, struct device *, void *);
123 static int	tap_detach(struct device*, int);
124 
125 /* Ethernet address helper functions */
126 
127 static int	tap_ether_aton(u_char *, char *);
128 
129 CFATTACH_DECL(tap, sizeof(struct tap_softc),
130     tap_match, tap_attach, tap_detach, NULL);
131 extern struct cfdriver tap_cd;
132 
133 /* Real device access routines */
134 static int	tap_dev_close(struct tap_softc *);
135 static int	tap_dev_read(int, struct uio *, int);
136 static int	tap_dev_write(int, struct uio *, int);
137 static int	tap_dev_ioctl(int, u_long, caddr_t, struct lwp *);
138 static int	tap_dev_poll(int, int, struct lwp *);
139 static int	tap_dev_kqfilter(int, struct knote *);
140 
141 /* Fileops access routines */
142 static int	tap_fops_close(struct file *, struct lwp *);
143 static int	tap_fops_read(struct file *, off_t *, struct uio *,
144     kauth_cred_t, int);
145 static int	tap_fops_write(struct file *, off_t *, struct uio *,
146     kauth_cred_t, int);
147 static int	tap_fops_ioctl(struct file *, u_long, void *,
148     struct lwp *);
149 static int	tap_fops_poll(struct file *, int, struct lwp *);
150 static int	tap_fops_kqfilter(struct file *, struct knote *);
151 
152 static const struct fileops tap_fileops = {
153 	tap_fops_read,
154 	tap_fops_write,
155 	tap_fops_ioctl,
156 	fnullop_fcntl,
157 	tap_fops_poll,
158 	fbadop_stat,
159 	tap_fops_close,
160 	tap_fops_kqfilter,
161 };
162 
163 /* Helper for cloning open() */
164 static int	tap_dev_cloner(struct lwp *);
165 
166 /* Character device routines */
167 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
168 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
169 static int	tap_cdev_read(dev_t, struct uio *, int);
170 static int	tap_cdev_write(dev_t, struct uio *, int);
171 static int	tap_cdev_ioctl(dev_t, u_long, caddr_t, int, struct lwp *);
172 static int	tap_cdev_poll(dev_t, int, struct lwp *);
173 static int	tap_cdev_kqfilter(dev_t, struct knote *);
174 
175 const struct cdevsw tap_cdevsw = {
176 	tap_cdev_open, tap_cdev_close,
177 	tap_cdev_read, tap_cdev_write,
178 	tap_cdev_ioctl, nostop, notty,
179 	tap_cdev_poll, nommap,
180 	tap_cdev_kqfilter,
181 	D_OTHER,
182 };
183 
184 #define TAP_CLONER	0xfffff		/* Maximal minor value */
185 
186 /* kqueue-related routines */
187 static void	tap_kqdetach(struct knote *);
188 static int	tap_kqread(struct knote *, long);
189 
190 /*
191  * Those are needed by the if_media interface.
192  */
193 
194 static int	tap_mediachange(struct ifnet *);
195 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
196 
197 /*
198  * Those are needed by the ifnet interface, and would typically be
199  * there for any network interface driver.
200  * Some other routines are optional: watchdog and drain.
201  */
202 
203 static void	tap_start(struct ifnet *);
204 static void	tap_stop(struct ifnet *, int);
205 static int	tap_init(struct ifnet *);
206 static int	tap_ioctl(struct ifnet *, u_long, caddr_t);
207 
208 /* This is an internal function to keep tap_ioctl readable */
209 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
210 
211 /*
212  * tap is a clonable interface, although it is highly unrealistic for
213  * an Ethernet device.
214  *
215  * Here are the bits needed for a clonable interface.
216  */
217 static int	tap_clone_create(struct if_clone *, int);
218 static int	tap_clone_destroy(struct ifnet *);
219 
220 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
221 					tap_clone_create,
222 					tap_clone_destroy);
223 
224 /* Helper functionis shared by the two cloning code paths */
225 static struct tap_softc *	tap_clone_creator(int);
226 int	tap_clone_destroyer(struct device *);
227 
228 void
229 tapattach(int n __unused)
230 {
231 	int error;
232 
233 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
234 	if (error) {
235 		aprint_error("%s: unable to register cfattach\n",
236 		    tap_cd.cd_name);
237 		(void)config_cfdriver_detach(&tap_cd);
238 		return;
239 	}
240 
241 	if_clone_attach(&tap_cloners);
242 }
243 
244 /* Pretty much useless for a pseudo-device */
245 static int
246 tap_match(struct device *self __unused, struct cfdata *cfdata __unused,
247     void *arg __unused)
248 {
249 	return (1);
250 }
251 
252 void
253 tap_attach(struct device *parent __unused, struct device *self,
254     void *aux __unused)
255 {
256 	struct tap_softc *sc = (struct tap_softc *)self;
257 	struct ifnet *ifp;
258 	const struct sysctlnode *node;
259 	u_int8_t enaddr[ETHER_ADDR_LEN] =
260 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
261 	char enaddrstr[3 * ETHER_ADDR_LEN];
262 	struct timeval tv;
263 	uint32_t ui;
264 	int error;
265 
266 	aprint_normal("%s: faking Ethernet device\n",
267 	    self->dv_xname);
268 
269 	/*
270 	 * In order to obtain unique initial Ethernet address on a host,
271 	 * do some randomisation using the current uptime.  It's not meant
272 	 * for anything but avoiding hard-coding an address.
273 	 */
274 	getmicrouptime(&tv);
275 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
276 	memcpy(enaddr+3, (u_int8_t *)&ui, 3);
277 
278 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
279 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
280 
281 	/*
282 	 * Why 1000baseT? Why not? You can add more.
283 	 *
284 	 * Note that there are 3 steps: init, one or several additions to
285 	 * list of supported media, and in the end, the selection of one
286 	 * of them.
287 	 */
288 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
289 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
290 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
291 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
292 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
293 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
294 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
295 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
296 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
297 
298 	/*
299 	 * One should note that an interface must do multicast in order
300 	 * to support IPv6.
301 	 */
302 	ifp = &sc->sc_ec.ec_if;
303 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
304 	ifp->if_softc	= sc;
305 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
306 	ifp->if_ioctl	= tap_ioctl;
307 	ifp->if_start	= tap_start;
308 	ifp->if_stop	= tap_stop;
309 	ifp->if_init	= tap_init;
310 	IFQ_SET_READY(&ifp->if_snd);
311 
312 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
313 
314 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
315 	 * being common to all network interface drivers. */
316 	if_attach(ifp);
317 	ether_ifattach(ifp, enaddr);
318 
319 	sc->sc_flags = 0;
320 
321 	/*
322 	 * Add a sysctl node for that interface.
323 	 *
324 	 * The pointer transmitted is not a string, but instead a pointer to
325 	 * the softc structure, which we can use to build the string value on
326 	 * the fly in the helper function of the node.  See the comments for
327 	 * tap_sysctl_handler for details.
328 	 *
329 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
330 	 * component.  However, we can allocate a number ourselves, as we are
331 	 * the only consumer of the net.link.<iface> node.  In this case, the
332 	 * unit number is conveniently used to number the node.  CTL_CREATE
333 	 * would just work, too.
334 	 */
335 	if ((error = sysctl_createv(NULL, 0, NULL,
336 	    &node, CTLFLAG_READWRITE,
337 	    CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
338 	    tap_sysctl_handler, 0, sc, 18,
339 	    CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
340 	    CTL_EOL)) != 0)
341 		aprint_error("%s: sysctl_createv returned %d, ignoring\n",
342 		    sc->sc_dev.dv_xname, error);
343 
344 	/*
345 	 * Initialize the two locks for the device.
346 	 *
347 	 * We need a lock here because even though the tap device can be
348 	 * opened only once, the file descriptor might be passed to another
349 	 * process, say a fork(2)ed child.
350 	 *
351 	 * The Giant saves us from most of the hassle, but since the read
352 	 * operation can sleep, we don't want two processes to wake up at
353 	 * the same moment and both try and dequeue a single packet.
354 	 *
355 	 * The queue for event listeners (used by kqueue(9), see below) has
356 	 * to be protected, too, but we don't need the same level of
357 	 * complexity for that lock, so a simple spinning lock is fine.
358 	 */
359 	lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
360 	simple_lock_init(&sc->sc_kqlock);
361 }
362 
363 /*
364  * When detaching, we do the inverse of what is done in the attach
365  * routine, in reversed order.
366  */
367 static int
368 tap_detach(struct device* self, int flags __unused)
369 {
370 	struct tap_softc *sc = (struct tap_softc *)self;
371 	struct ifnet *ifp = &sc->sc_ec.ec_if;
372 	int error, s;
373 
374 	/*
375 	 * Some processes might be sleeping on "tap", so we have to make
376 	 * them release their hold on the device.
377 	 *
378 	 * The LK_DRAIN operation will wait for every locked process to
379 	 * release their hold.
380 	 */
381 	sc->sc_flags |= TAP_GOING;
382 	s = splnet();
383 	tap_stop(ifp, 1);
384 	if_down(ifp);
385 	splx(s);
386 	lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
387 
388 	/*
389 	 * Destroying a single leaf is a very straightforward operation using
390 	 * sysctl_destroyv.  One should be sure to always end the path with
391 	 * CTL_EOL.
392 	 */
393 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
394 	    device_unit(&sc->sc_dev), CTL_EOL)) != 0)
395 		aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
396 		    sc->sc_dev.dv_xname, error);
397 	ether_ifdetach(ifp);
398 	if_detach(ifp);
399 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
400 
401 	return (0);
402 }
403 
404 /*
405  * This function is called by the ifmedia layer to notify the driver
406  * that the user requested a media change.  A real driver would
407  * reconfigure the hardware.
408  */
409 static int
410 tap_mediachange(struct ifnet *ifp __unused)
411 {
412 	return (0);
413 }
414 
415 /*
416  * Here the user asks for the currently used media.
417  */
418 static void
419 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
420 {
421 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
422 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
423 }
424 
425 /*
426  * This is the function where we SEND packets.
427  *
428  * There is no 'receive' equivalent.  A typical driver will get
429  * interrupts from the hardware, and from there will inject new packets
430  * into the network stack.
431  *
432  * Once handled, a packet must be freed.  A real driver might not be able
433  * to fit all the pending packets into the hardware, and is allowed to
434  * return before having sent all the packets.  It should then use the
435  * if_flags flag IFF_OACTIVE to notify the upper layer.
436  *
437  * There are also other flags one should check, such as IFF_PAUSE.
438  *
439  * It is our duty to make packets available to BPF listeners.
440  *
441  * You should be aware that this function is called by the Ethernet layer
442  * at splnet().
443  *
444  * When the device is opened, we have to pass the packet(s) to the
445  * userland.  For that we stay in OACTIVE mode while the userland gets
446  * the packets, and we send a signal to the processes waiting to read.
447  *
448  * wakeup(sc) is the counterpart to the tsleep call in
449  * tap_dev_read, while selnotify() is used for kevent(2) and
450  * poll(2) (which includes select(2)) listeners.
451  */
452 static void
453 tap_start(struct ifnet *ifp)
454 {
455 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
456 	struct mbuf *m0;
457 
458 	if ((sc->sc_flags & TAP_INUSE) == 0) {
459 		/* Simply drop packets */
460 		for(;;) {
461 			IFQ_DEQUEUE(&ifp->if_snd, m0);
462 			if (m0 == NULL)
463 				return;
464 
465 			ifp->if_opackets++;
466 #if NBPFILTER > 0
467 			if (ifp->if_bpf)
468 				bpf_mtap(ifp->if_bpf, m0);
469 #endif
470 
471 			m_freem(m0);
472 		}
473 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
474 		ifp->if_flags |= IFF_OACTIVE;
475 		wakeup(sc);
476 		selnotify(&sc->sc_rsel, 1);
477 		if (sc->sc_flags & TAP_ASYNCIO)
478 			fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
479 			    POLLIN|POLLRDNORM, NULL);
480 	}
481 }
482 
483 /*
484  * A typical driver will only contain the following handlers for
485  * ioctl calls, except SIOCSIFPHYADDR.
486  * The latter is a hack I used to set the Ethernet address of the
487  * faked device.
488  *
489  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
490  * called under splnet().
491  */
492 static int
493 tap_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
494 {
495 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
496 	struct ifreq *ifr = (struct ifreq *)data;
497 	int s, error;
498 
499 	s = splnet();
500 
501 	switch (cmd) {
502 	case SIOCSIFMEDIA:
503 	case SIOCGIFMEDIA:
504 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
505 		break;
506 	case SIOCSIFPHYADDR:
507 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
508 		break;
509 	default:
510 		error = ether_ioctl(ifp, cmd, data);
511 		if (error == ENETRESET)
512 			error = 0;
513 		break;
514 	}
515 
516 	splx(s);
517 
518 	return (error);
519 }
520 
521 /*
522  * Helper function to set Ethernet address.  This shouldn't be done there,
523  * and should actually be available to all Ethernet drivers, real or not.
524  */
525 static int
526 tap_lifaddr(struct ifnet *ifp, u_long cmd __unused, struct ifaliasreq *ifra)
527 {
528 	struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
529 
530 	if (sa->sa_family != AF_LINK)
531 		return (EINVAL);
532 
533 	memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
534 
535 	return (0);
536 }
537 
538 /*
539  * _init() would typically be called when an interface goes up,
540  * meaning it should configure itself into the state in which it
541  * can send packets.
542  */
543 static int
544 tap_init(struct ifnet *ifp)
545 {
546 	ifp->if_flags |= IFF_RUNNING;
547 
548 	tap_start(ifp);
549 
550 	return (0);
551 }
552 
553 /*
554  * _stop() is called when an interface goes down.  It is our
555  * responsability to validate that state by clearing the
556  * IFF_RUNNING flag.
557  *
558  * We have to wake up all the sleeping processes to have the pending
559  * read requests cancelled.
560  */
561 static void
562 tap_stop(struct ifnet *ifp, int disable __unused)
563 {
564 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
565 
566 	ifp->if_flags &= ~IFF_RUNNING;
567 	wakeup(sc);
568 	selnotify(&sc->sc_rsel, 1);
569 	if (sc->sc_flags & TAP_ASYNCIO)
570 		fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
571 }
572 
573 /*
574  * The 'create' command of ifconfig can be used to create
575  * any numbered instance of a given device.  Thus we have to
576  * make sure we have enough room in cd_devs to create the
577  * user-specified instance.  config_attach_pseudo will do this
578  * for us.
579  */
580 static int
581 tap_clone_create(struct if_clone *ifc __unused, int unit)
582 {
583 	if (tap_clone_creator(unit) == NULL) {
584 		aprint_error("%s%d: unable to attach an instance\n",
585                     tap_cd.cd_name, unit);
586 		return (ENXIO);
587 	}
588 
589 	return (0);
590 }
591 
592 /*
593  * tap(4) can be cloned by two ways:
594  *   using 'ifconfig tap0 create', which will use the network
595  *     interface cloning API, and call tap_clone_create above.
596  *   opening the cloning device node, whose minor number is TAP_CLONER.
597  *     See below for an explanation on how this part work.
598  *
599  * config_attach_pseudo can be called with unit = DVUNIT_ANY to have
600  * autoconf(9) choose a unit number for us.  This is what happens when
601  * the cloner is openend, while the ifcloner interface creates a device
602  * with a specific unit number.
603  */
604 static struct tap_softc *
605 tap_clone_creator(int unit)
606 {
607 	struct cfdata *cf;
608 
609 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
610 	cf->cf_name = tap_cd.cd_name;
611 	cf->cf_atname = tap_ca.ca_name;
612 	cf->cf_unit = unit;
613 	cf->cf_fstate = FSTATE_STAR;
614 
615 	return (struct tap_softc *)config_attach_pseudo(cf);
616 }
617 
618 /*
619  * The clean design of if_clone and autoconf(9) makes that part
620  * really straightforward.  The second argument of config_detach
621  * means neither QUIET nor FORCED.
622  */
623 static int
624 tap_clone_destroy(struct ifnet *ifp)
625 {
626 	return tap_clone_destroyer((struct device *)ifp->if_softc);
627 }
628 
629 int
630 tap_clone_destroyer(struct device *dev)
631 {
632 	struct cfdata *cf = device_cfdata(dev);
633 	int error;
634 
635 	if ((error = config_detach(dev, 0)) != 0)
636 		aprint_error("%s: unable to detach instance\n",
637 		    dev->dv_xname);
638 	free(cf, M_DEVBUF);
639 
640 	return (error);
641 }
642 
643 /*
644  * tap(4) is a bit of an hybrid device.  It can be used in two different
645  * ways:
646  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
647  *  2. open /dev/tap, get a new interface created and read/write off it.
648  *     That interface is destroyed when the process that had it created exits.
649  *
650  * The first way is managed by the cdevsw structure, and you access interfaces
651  * through a (major, minor) mapping:  tap4 is obtained by the minor number
652  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
653  *
654  * The second way is the so-called "cloning" device.  It's a special minor
655  * number (chosen as the maximal number, to allow as much tap devices as
656  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
657  * call ends in tap_cdev_open.  The actual place where it is handled is
658  * tap_dev_cloner.
659  *
660  * An tap device cannot be opened more than once at a time, so the cdevsw
661  * part of open() does nothing but noting that the interface is being used and
662  * hence ready to actually handle packets.
663  */
664 
665 static int
666 tap_cdev_open(dev_t dev, int flags __unused, int fmt __unused, struct lwp *l)
667 {
668 	struct tap_softc *sc;
669 
670 	if (minor(dev) == TAP_CLONER)
671 		return tap_dev_cloner(l);
672 
673 	sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
674 	if (sc == NULL)
675 		return (ENXIO);
676 
677 	/* The device can only be opened once */
678 	if (sc->sc_flags & TAP_INUSE)
679 		return (EBUSY);
680 	sc->sc_flags |= TAP_INUSE;
681 	return (0);
682 }
683 
684 /*
685  * There are several kinds of cloning devices, and the most simple is the one
686  * tap(4) uses.  What it does is change the file descriptor with a new one,
687  * with its own fileops structure (which maps to the various read, write,
688  * ioctl functions).  It starts allocating a new file descriptor with falloc,
689  * then actually creates the new tap devices.
690  *
691  * Once those two steps are successful, we can re-wire the existing file
692  * descriptor to its new self.  This is done with fdclone():  it fills the fp
693  * structure as needed (notably f_data gets filled with the fifth parameter
694  * passed, the unit of the tap device which will allows us identifying the
695  * device later), and returns EMOVEFD.
696  *
697  * That magic value is interpreted by sys_open() which then replaces the
698  * current file descriptor by the new one (through a magic member of struct
699  * lwp, l_dupfd).
700  *
701  * The tap device is flagged as being busy since it otherwise could be
702  * externally accessed through the corresponding device node with the cdevsw
703  * interface.
704  */
705 
706 static int
707 tap_dev_cloner(struct lwp *l)
708 {
709 	struct tap_softc *sc;
710 	struct file *fp;
711 	int error, fd;
712 
713 	if ((error = falloc(l, &fp, &fd)) != 0)
714 		return (error);
715 
716 	if ((sc = tap_clone_creator(DVUNIT_ANY)) == NULL) {
717 		FILE_UNUSE(fp, l);
718 		ffree(fp);
719 		return (ENXIO);
720 	}
721 
722 	sc->sc_flags |= TAP_INUSE;
723 
724 	return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
725 	    (void *)(intptr_t)device_unit(&sc->sc_dev));
726 }
727 
728 /*
729  * While all other operations (read, write, ioctl, poll and kqfilter) are
730  * really the same whether we are in cdevsw or fileops mode, the close()
731  * function is slightly different in the two cases.
732  *
733  * As for the other, the core of it is shared in tap_dev_close.  What
734  * it does is sufficient for the cdevsw interface, but the cloning interface
735  * needs another thing:  the interface is destroyed when the processes that
736  * created it closes it.
737  */
738 static int
739 tap_cdev_close(dev_t dev, int flags __unused, int fmt __unused,
740     struct lwp *l __unused)
741 {
742 	struct tap_softc *sc =
743 	    (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
744 
745 	if (sc == NULL)
746 		return (ENXIO);
747 
748 	return tap_dev_close(sc);
749 }
750 
751 /*
752  * It might happen that the administrator used ifconfig to externally destroy
753  * the interface.  In that case, tap_fops_close will be called while
754  * tap_detach is already happening.  If we called it again from here, we
755  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
756  */
757 static int
758 tap_fops_close(struct file *fp, struct lwp *l __unused)
759 {
760 	int unit = (intptr_t)fp->f_data;
761 	struct tap_softc *sc;
762 	int error;
763 
764 	sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
765 	if (sc == NULL)
766 		return (ENXIO);
767 
768 	/* tap_dev_close currently always succeeds, but it might not
769 	 * always be the case. */
770 	if ((error = tap_dev_close(sc)) != 0)
771 		return (error);
772 
773 	/* Destroy the device now that it is no longer useful,
774 	 * unless it's already being destroyed. */
775 	if ((sc->sc_flags & TAP_GOING) != 0)
776 		return (0);
777 
778 	return tap_clone_destroyer((struct device *)sc);
779 }
780 
781 static int
782 tap_dev_close(struct tap_softc *sc)
783 {
784 	struct ifnet *ifp;
785 	int s;
786 
787 	s = splnet();
788 	/* Let tap_start handle packets again */
789 	ifp = &sc->sc_ec.ec_if;
790 	ifp->if_flags &= ~IFF_OACTIVE;
791 
792 	/* Purge output queue */
793 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
794 		struct mbuf *m;
795 
796 		for (;;) {
797 			IFQ_DEQUEUE(&ifp->if_snd, m);
798 			if (m == NULL)
799 				break;
800 
801 			ifp->if_opackets++;
802 #if NBPFILTER > 0
803 			if (ifp->if_bpf)
804 				bpf_mtap(ifp->if_bpf, m);
805 #endif
806 		}
807 	}
808 	splx(s);
809 
810 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
811 
812 	return (0);
813 }
814 
815 static int
816 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
817 {
818 	return tap_dev_read(minor(dev), uio, flags);
819 }
820 
821 static int
822 tap_fops_read(struct file *fp, off_t *offp __unused, struct uio *uio,
823     kauth_cred_t cred __unused, int flags)
824 {
825 	return tap_dev_read((intptr_t)fp->f_data, uio, flags);
826 }
827 
828 static int
829 tap_dev_read(int unit, struct uio *uio, int flags __unused)
830 {
831 	struct tap_softc *sc =
832 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
833 	struct ifnet *ifp;
834 	struct mbuf *m, *n;
835 	int error = 0, s;
836 
837 	if (sc == NULL)
838 		return (ENXIO);
839 
840 	ifp = &sc->sc_ec.ec_if;
841 	if ((ifp->if_flags & IFF_UP) == 0)
842 		return (EHOSTDOWN);
843 
844 	/*
845 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
846 	 */
847 	if ((sc->sc_flags & TAP_NBIO) &&
848 	    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
849 		return (EWOULDBLOCK);
850 	error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
851 	if (error != 0)
852 		return (error);
853 
854 	s = splnet();
855 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
856 		ifp->if_flags &= ~IFF_OACTIVE;
857 		splx(s);
858 		/*
859 		 * We must release the lock before sleeping, and re-acquire it
860 		 * after.
861 		 */
862 		(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
863 		if (sc->sc_flags & TAP_NBIO)
864 			error = EWOULDBLOCK;
865 		else
866 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
867 
868 		if (error != 0)
869 			return (error);
870 		/* The device might have been downed */
871 		if ((ifp->if_flags & IFF_UP) == 0)
872 			return (EHOSTDOWN);
873 		if ((sc->sc_flags & TAP_NBIO) &&
874 		    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
875 			return (EWOULDBLOCK);
876 		error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
877 		if (error != 0)
878 			return (error);
879 		s = splnet();
880 	}
881 
882 	IFQ_DEQUEUE(&ifp->if_snd, m);
883 	ifp->if_flags &= ~IFF_OACTIVE;
884 	splx(s);
885 	if (m == NULL) {
886 		error = 0;
887 		goto out;
888 	}
889 
890 	ifp->if_opackets++;
891 #if NBPFILTER > 0
892 	if (ifp->if_bpf)
893 		bpf_mtap(ifp->if_bpf, m);
894 #endif
895 
896 	/*
897 	 * One read is one packet.
898 	 */
899 	do {
900 		error = uiomove(mtod(m, caddr_t),
901 		    min(m->m_len, uio->uio_resid), uio);
902 		MFREE(m, n);
903 		m = n;
904 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
905 
906 	if (m != NULL)
907 		m_freem(m);
908 
909 out:
910 	(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
911 	return (error);
912 }
913 
914 static int
915 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
916 {
917 	return tap_dev_write(minor(dev), uio, flags);
918 }
919 
920 static int
921 tap_fops_write(struct file *fp, off_t *offp __unused, struct uio *uio,
922     kauth_cred_t cred __unused, int flags)
923 {
924 	return tap_dev_write((intptr_t)fp->f_data, uio, flags);
925 }
926 
927 static int
928 tap_dev_write(int unit, struct uio *uio, int flags __unused)
929 {
930 	struct tap_softc *sc =
931 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
932 	struct ifnet *ifp;
933 	struct mbuf *m, **mp;
934 	int error = 0;
935 	int s;
936 
937 	if (sc == NULL)
938 		return (ENXIO);
939 
940 	ifp = &sc->sc_ec.ec_if;
941 
942 	/* One write, one packet, that's the rule */
943 	MGETHDR(m, M_DONTWAIT, MT_DATA);
944 	if (m == NULL) {
945 		ifp->if_ierrors++;
946 		return (ENOBUFS);
947 	}
948 	m->m_pkthdr.len = uio->uio_resid;
949 
950 	mp = &m;
951 	while (error == 0 && uio->uio_resid > 0) {
952 		if (*mp != m) {
953 			MGET(*mp, M_DONTWAIT, MT_DATA);
954 			if (*mp == NULL) {
955 				error = ENOBUFS;
956 				break;
957 			}
958 		}
959 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
960 		error = uiomove(mtod(*mp, caddr_t), (*mp)->m_len, uio);
961 		mp = &(*mp)->m_next;
962 	}
963 	if (error) {
964 		ifp->if_ierrors++;
965 		m_freem(m);
966 		return (error);
967 	}
968 
969 	ifp->if_ipackets++;
970 	m->m_pkthdr.rcvif = ifp;
971 
972 #if NBPFILTER > 0
973 	if (ifp->if_bpf)
974 		bpf_mtap(ifp->if_bpf, m);
975 #endif
976 	s =splnet();
977 	(*ifp->if_input)(ifp, m);
978 	splx(s);
979 
980 	return (0);
981 }
982 
983 static int
984 tap_cdev_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags __unused,
985     struct lwp *l)
986 {
987 	return tap_dev_ioctl(minor(dev), cmd, data, l);
988 }
989 
990 static int
991 tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
992 {
993 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (caddr_t)data, l);
994 }
995 
996 static int
997 tap_dev_ioctl(int unit, u_long cmd, caddr_t data, struct lwp *l)
998 {
999 	struct tap_softc *sc =
1000 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
1001 	int error = 0;
1002 
1003 	if (sc == NULL)
1004 		return (ENXIO);
1005 
1006 	switch (cmd) {
1007 	case FIONREAD:
1008 		{
1009 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1010 			struct mbuf *m;
1011 			int s;
1012 
1013 			s = splnet();
1014 			IFQ_POLL(&ifp->if_snd, m);
1015 
1016 			if (m == NULL)
1017 				*(int *)data = 0;
1018 			else
1019 				*(int *)data = m->m_pkthdr.len;
1020 			splx(s);
1021 		} break;
1022 	case TIOCSPGRP:
1023 	case FIOSETOWN:
1024 		error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
1025 		break;
1026 	case TIOCGPGRP:
1027 	case FIOGETOWN:
1028 		error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
1029 		break;
1030 	case FIOASYNC:
1031 		if (*(int *)data)
1032 			sc->sc_flags |= TAP_ASYNCIO;
1033 		else
1034 			sc->sc_flags &= ~TAP_ASYNCIO;
1035 		break;
1036 	case FIONBIO:
1037 		if (*(int *)data)
1038 			sc->sc_flags |= TAP_NBIO;
1039 		else
1040 			sc->sc_flags &= ~TAP_NBIO;
1041 		break;
1042 	case TAPGIFNAME:
1043 		{
1044 			struct ifreq *ifr = (struct ifreq *)data;
1045 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1046 
1047 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1048 		} break;
1049 	default:
1050 		error = ENOTTY;
1051 		break;
1052 	}
1053 
1054 	return (0);
1055 }
1056 
1057 static int
1058 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1059 {
1060 	return tap_dev_poll(minor(dev), events, l);
1061 }
1062 
1063 static int
1064 tap_fops_poll(struct file *fp, int events, struct lwp *l)
1065 {
1066 	return tap_dev_poll((intptr_t)fp->f_data, events, l);
1067 }
1068 
1069 static int
1070 tap_dev_poll(int unit, int events, struct lwp *l)
1071 {
1072 	struct tap_softc *sc =
1073 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
1074 	int revents = 0;
1075 
1076 	if (sc == NULL)
1077 		return (ENXIO);
1078 
1079 	if (events & (POLLIN|POLLRDNORM)) {
1080 		struct ifnet *ifp = &sc->sc_ec.ec_if;
1081 		struct mbuf *m;
1082 		int s;
1083 
1084 		s = splnet();
1085 		IFQ_POLL(&ifp->if_snd, m);
1086 		splx(s);
1087 
1088 		if (m != NULL)
1089 			revents |= events & (POLLIN|POLLRDNORM);
1090 		else {
1091 			simple_lock(&sc->sc_kqlock);
1092 			selrecord(l, &sc->sc_rsel);
1093 			simple_unlock(&sc->sc_kqlock);
1094 		}
1095 	}
1096 	revents |= events & (POLLOUT|POLLWRNORM);
1097 
1098 	return (revents);
1099 }
1100 
1101 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1102 	tap_kqread };
1103 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1104 	filt_seltrue };
1105 
1106 static int
1107 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1108 {
1109 	return tap_dev_kqfilter(minor(dev), kn);
1110 }
1111 
1112 static int
1113 tap_fops_kqfilter(struct file *fp, struct knote *kn)
1114 {
1115 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1116 }
1117 
1118 static int
1119 tap_dev_kqfilter(int unit, struct knote *kn)
1120 {
1121 	struct tap_softc *sc =
1122 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
1123 
1124 	if (sc == NULL)
1125 		return (ENXIO);
1126 
1127 	switch(kn->kn_filter) {
1128 	case EVFILT_READ:
1129 		kn->kn_fop = &tap_read_filterops;
1130 		break;
1131 	case EVFILT_WRITE:
1132 		kn->kn_fop = &tap_seltrue_filterops;
1133 		break;
1134 	default:
1135 		return (1);
1136 	}
1137 
1138 	kn->kn_hook = sc;
1139 	simple_lock(&sc->sc_kqlock);
1140 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1141 	simple_unlock(&sc->sc_kqlock);
1142 	return (0);
1143 }
1144 
1145 static void
1146 tap_kqdetach(struct knote *kn)
1147 {
1148 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1149 
1150 	simple_lock(&sc->sc_kqlock);
1151 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1152 	simple_unlock(&sc->sc_kqlock);
1153 }
1154 
1155 static int
1156 tap_kqread(struct knote *kn, long hint __unused)
1157 {
1158 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1159 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1160 	struct mbuf *m;
1161 	int s;
1162 
1163 	s = splnet();
1164 	IFQ_POLL(&ifp->if_snd, m);
1165 
1166 	if (m == NULL)
1167 		kn->kn_data = 0;
1168 	else
1169 		kn->kn_data = m->m_pkthdr.len;
1170 	splx(s);
1171 	return (kn->kn_data != 0 ? 1 : 0);
1172 }
1173 
1174 /*
1175  * sysctl management routines
1176  * You can set the address of an interface through:
1177  * net.link.tap.tap<number>
1178  *
1179  * Note the consistent use of tap_log in order to use
1180  * sysctl_teardown at unload time.
1181  *
1182  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
1183  * blocks register a function in a special section of the kernel
1184  * (called a link set) which is used at init_sysctl() time to cycle
1185  * through all those functions to create the kernel's sysctl tree.
1186  *
1187  * It is not (currently) possible to use link sets in a LKM, so the
1188  * easiest is to simply call our own setup routine at load time.
1189  *
1190  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1191  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
1192  * whole kernel sysctl tree is built, it is not possible to add any
1193  * permanent node.
1194  *
1195  * It should be noted that we're not saving the sysctlnode pointer
1196  * we are returned when creating the "tap" node.  That structure
1197  * cannot be trusted once out of the calling function, as it might
1198  * get reused.  So we just save the MIB number, and always give the
1199  * full path starting from the root for later calls to sysctl_createv
1200  * and sysctl_destroyv.
1201  */
1202 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1203 {
1204 	const struct sysctlnode *node;
1205 	int error = 0;
1206 
1207 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1208 	    CTLFLAG_PERMANENT,
1209 	    CTLTYPE_NODE, "net", NULL,
1210 	    NULL, 0, NULL, 0,
1211 	    CTL_NET, CTL_EOL)) != 0)
1212 		return;
1213 
1214 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1215 	    CTLFLAG_PERMANENT,
1216 	    CTLTYPE_NODE, "link", NULL,
1217 	    NULL, 0, NULL, 0,
1218 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
1219 		return;
1220 
1221 	/*
1222 	 * The first four parameters of sysctl_createv are for management.
1223 	 *
1224 	 * The four that follows, here starting with a '0' for the flags,
1225 	 * describe the node.
1226 	 *
1227 	 * The next series of four set its value, through various possible
1228 	 * means.
1229 	 *
1230 	 * Last but not least, the path to the node is described.  That path
1231 	 * is relative to the given root (third argument).  Here we're
1232 	 * starting from the root.
1233 	 */
1234 	if ((error = sysctl_createv(clog, 0, NULL, &node,
1235 	    CTLFLAG_PERMANENT,
1236 	    CTLTYPE_NODE, "tap", NULL,
1237 	    NULL, 0, NULL, 0,
1238 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1239 		return;
1240 	tap_node = node->sysctl_num;
1241 }
1242 
1243 /*
1244  * The helper functions make Andrew Brown's interface really
1245  * shine.  It makes possible to create value on the fly whether
1246  * the sysctl value is read or written.
1247  *
1248  * As shown as an example in the man page, the first step is to
1249  * create a copy of the node to have sysctl_lookup work on it.
1250  *
1251  * Here, we have more work to do than just a copy, since we have
1252  * to create the string.  The first step is to collect the actual
1253  * value of the node, which is a convenient pointer to the softc
1254  * of the interface.  From there we create the string and use it
1255  * as the value, but only for the *copy* of the node.
1256  *
1257  * Then we let sysctl_lookup do the magic, which consists in
1258  * setting oldp and newp as required by the operation.  When the
1259  * value is read, that means that the string will be copied to
1260  * the user, and when it is written, the new value will be copied
1261  * over in the addr array.
1262  *
1263  * If newp is NULL, the user was reading the value, so we don't
1264  * have anything else to do.  If a new value was written, we
1265  * have to check it.
1266  *
1267  * If it is incorrect, we can return an error and leave 'node' as
1268  * it is:  since it is a copy of the actual node, the change will
1269  * be forgotten.
1270  *
1271  * Upon a correct input, we commit the change to the ifnet
1272  * structure of our interface.
1273  */
1274 static int
1275 tap_sysctl_handler(SYSCTLFN_ARGS)
1276 {
1277 	struct sysctlnode node;
1278 	struct tap_softc *sc;
1279 	struct ifnet *ifp;
1280 	int error;
1281 	size_t len;
1282 	char addr[3 * ETHER_ADDR_LEN];
1283 
1284 	node = *rnode;
1285 	sc = node.sysctl_data;
1286 	ifp = &sc->sc_ec.ec_if;
1287 	(void)ether_snprintf(addr, sizeof(addr), LLADDR(ifp->if_sadl));
1288 	node.sysctl_data = addr;
1289 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1290 	if (error || newp == NULL)
1291 		return (error);
1292 
1293 	len = strlen(addr);
1294 	if (len < 11 || len > 17)
1295 		return (EINVAL);
1296 
1297 	/* Commit change */
1298 	if (tap_ether_aton(LLADDR(ifp->if_sadl), addr) != 0)
1299 		return (EINVAL);
1300 	return (error);
1301 }
1302 
1303 /*
1304  * ether_aton implementation, not using a static buffer.
1305  */
1306 static int
1307 tap_ether_aton(u_char *dest, char *str)
1308 {
1309 	int i;
1310 	char *cp = str;
1311 	u_char val[6];
1312 
1313 #define	set_value			\
1314 	if (*cp > '9' && *cp < 'a')	\
1315 		*cp -= 'A' - 10;	\
1316 	else if (*cp > '9')		\
1317 		*cp -= 'a' - 10;	\
1318 	else				\
1319 		*cp -= '0'
1320 
1321 	for (i = 0; i < 6; i++, cp++) {
1322 		if (!isxdigit(*cp))
1323 			return (1);
1324 		set_value;
1325 		val[i] = *cp++;
1326 		if (isxdigit(*cp)) {
1327 			set_value;
1328 			val[i] *= 16;
1329 			val[i] += *cp++;
1330 		}
1331 		if (*cp == ':' || i == 5)
1332 			continue;
1333 		else
1334 			return (1);
1335 	}
1336 	memcpy(dest, val, 6);
1337 	return (0);
1338 }
1339