xref: /netbsd-src/sys/net/if_tap.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: if_tap.c,v 1.106 2018/06/26 06:48:02 msaitoh Exp $	*/
2 
3 /*
4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5  *  All rights reserved.
6  *
7  *  Redistribution and use in source and binary forms, with or without
8  *  modification, are permitted provided that the following conditions
9  *  are met:
10  *  1. Redistributions of source code must retain the above copyright
11  *     notice, this list of conditions and the following disclaimer.
12  *  2. Redistributions in binary form must reproduce the above copyright
13  *     notice, this list of conditions and the following disclaimer in the
14  *     documentation and/or other materials provided with the distribution.
15  *
16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  *  POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
31  * device to the system, but can also be accessed by userland through a
32  * character device interface, which allows reading and injecting frames.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.106 2018/06/26 06:48:02 msaitoh Exp $");
37 
38 #if defined(_KERNEL_OPT)
39 
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/atomic.h>
46 #include <sys/conf.h>
47 #include <sys/cprng.h>
48 #include <sys/device.h>
49 #include <sys/file.h>
50 #include <sys/filedesc.h>
51 #include <sys/intr.h>
52 #include <sys/kauth.h>
53 #include <sys/kernel.h>
54 #include <sys/kmem.h>
55 #include <sys/module.h>
56 #include <sys/mutex.h>
57 #include <sys/condvar.h>
58 #include <sys/poll.h>
59 #include <sys/proc.h>
60 #include <sys/select.h>
61 #include <sys/sockio.h>
62 #include <sys/stat.h>
63 #include <sys/sysctl.h>
64 #include <sys/systm.h>
65 
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <net/if_media.h>
70 #include <net/if_tap.h>
71 #include <net/bpf.h>
72 
73 #include <compat/sys/sockio.h>
74 
75 #include "ioconf.h"
76 
77 /*
78  * sysctl node management
79  *
80  * It's not really possible to use a SYSCTL_SETUP block with
81  * current module implementation, so it is easier to just define
82  * our own function.
83  *
84  * The handler function is a "helper" in Andrew Brown's sysctl
85  * framework terminology.  It is used as a gateway for sysctl
86  * requests over the nodes.
87  *
88  * tap_log allows the module to log creations of nodes and
89  * destroy them all at once using sysctl_teardown.
90  */
91 static int	tap_node;
92 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
93 static void	sysctl_tap_setup(struct sysctllog **);
94 
95 /*
96  * Since we're an Ethernet device, we need the 2 following
97  * components: a struct ethercom and a struct ifmedia
98  * since we don't attach a PHY to ourselves.
99  * We could emulate one, but there's no real point.
100  */
101 
102 struct tap_softc {
103 	device_t	sc_dev;
104 	struct ifmedia	sc_im;
105 	struct ethercom	sc_ec;
106 	int		sc_flags;
107 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
108 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
109 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
110 #define TAP_GOING	0x00000008	/* interface is being destroyed */
111 	struct selinfo	sc_rsel;
112 	pid_t		sc_pgid; /* For async. IO */
113 	kmutex_t	sc_lock;
114 	kcondvar_t	sc_cv;
115 	void		*sc_sih;
116 	struct timespec sc_atime;
117 	struct timespec sc_mtime;
118 	struct timespec sc_btime;
119 };
120 
121 /* autoconf(9) glue */
122 
123 static int	tap_match(device_t, cfdata_t, void *);
124 static void	tap_attach(device_t, device_t, void *);
125 static int	tap_detach(device_t, int);
126 
127 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
128     tap_match, tap_attach, tap_detach, NULL);
129 extern struct cfdriver tap_cd;
130 
131 /* Real device access routines */
132 static int	tap_dev_close(struct tap_softc *);
133 static int	tap_dev_read(int, struct uio *, int);
134 static int	tap_dev_write(int, struct uio *, int);
135 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
136 static int	tap_dev_poll(int, int, struct lwp *);
137 static int	tap_dev_kqfilter(int, struct knote *);
138 
139 /* Fileops access routines */
140 static int	tap_fops_close(file_t *);
141 static int	tap_fops_read(file_t *, off_t *, struct uio *,
142     kauth_cred_t, int);
143 static int	tap_fops_write(file_t *, off_t *, struct uio *,
144     kauth_cred_t, int);
145 static int	tap_fops_ioctl(file_t *, u_long, void *);
146 static int	tap_fops_poll(file_t *, int);
147 static int	tap_fops_stat(file_t *, struct stat *);
148 static int	tap_fops_kqfilter(file_t *, struct knote *);
149 
150 static const struct fileops tap_fileops = {
151 	.fo_name = "tap",
152 	.fo_read = tap_fops_read,
153 	.fo_write = tap_fops_write,
154 	.fo_ioctl = tap_fops_ioctl,
155 	.fo_fcntl = fnullop_fcntl,
156 	.fo_poll = tap_fops_poll,
157 	.fo_stat = tap_fops_stat,
158 	.fo_close = tap_fops_close,
159 	.fo_kqfilter = tap_fops_kqfilter,
160 	.fo_restart = fnullop_restart,
161 };
162 
163 /* Helper for cloning open() */
164 static int	tap_dev_cloner(struct lwp *);
165 
166 /* Character device routines */
167 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
168 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
169 static int	tap_cdev_read(dev_t, struct uio *, int);
170 static int	tap_cdev_write(dev_t, struct uio *, int);
171 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
172 static int	tap_cdev_poll(dev_t, int, struct lwp *);
173 static int	tap_cdev_kqfilter(dev_t, struct knote *);
174 
175 const struct cdevsw tap_cdevsw = {
176 	.d_open = tap_cdev_open,
177 	.d_close = tap_cdev_close,
178 	.d_read = tap_cdev_read,
179 	.d_write = tap_cdev_write,
180 	.d_ioctl = tap_cdev_ioctl,
181 	.d_stop = nostop,
182 	.d_tty = notty,
183 	.d_poll = tap_cdev_poll,
184 	.d_mmap = nommap,
185 	.d_kqfilter = tap_cdev_kqfilter,
186 	.d_discard = nodiscard,
187 	.d_flag = D_OTHER | D_MPSAFE
188 };
189 
190 #define TAP_CLONER	0xfffff		/* Maximal minor value */
191 
192 /* kqueue-related routines */
193 static void	tap_kqdetach(struct knote *);
194 static int	tap_kqread(struct knote *, long);
195 
196 /*
197  * Those are needed by the if_media interface.
198  */
199 
200 static int	tap_mediachange(struct ifnet *);
201 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
202 
203 /*
204  * Those are needed by the ifnet interface, and would typically be
205  * there for any network interface driver.
206  * Some other routines are optional: watchdog and drain.
207  */
208 
209 static void	tap_start(struct ifnet *);
210 static void	tap_stop(struct ifnet *, int);
211 static int	tap_init(struct ifnet *);
212 static int	tap_ioctl(struct ifnet *, u_long, void *);
213 
214 /* Internal functions */
215 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
216 static void	tap_softintr(void *);
217 
218 /*
219  * tap is a clonable interface, although it is highly unrealistic for
220  * an Ethernet device.
221  *
222  * Here are the bits needed for a clonable interface.
223  */
224 static int	tap_clone_create(struct if_clone *, int);
225 static int	tap_clone_destroy(struct ifnet *);
226 
227 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
228 					tap_clone_create,
229 					tap_clone_destroy);
230 
231 /* Helper functions shared by the two cloning code paths */
232 static struct tap_softc *	tap_clone_creator(int);
233 int	tap_clone_destroyer(device_t);
234 
235 static struct sysctllog *tap_sysctl_clog;
236 
237 #ifdef _MODULE
238 devmajor_t tap_bmajor = -1, tap_cmajor = -1;
239 #endif
240 
241 static u_int tap_count;
242 
243 void
244 tapattach(int n)
245 {
246 
247 	/*
248 	 * Nothing to do here, initialization is handled by the
249 	 * module initialization code in tapinit() below).
250 	 */
251 }
252 
253 static void
254 tapinit(void)
255 {
256 	int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
257 	if (error) {
258 		aprint_error("%s: unable to register cfattach\n",
259 		    tap_cd.cd_name);
260 		(void)config_cfdriver_detach(&tap_cd);
261 		return;
262 	}
263 
264 	if_clone_attach(&tap_cloners);
265 	sysctl_tap_setup(&tap_sysctl_clog);
266 #ifdef _MODULE
267 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
268 #endif
269 }
270 
271 static int
272 tapdetach(void)
273 {
274 	int error = 0;
275 
276 	if (tap_count != 0)
277 		return EBUSY;
278 
279 #ifdef _MODULE
280 	if (error == 0)
281 		error = devsw_detach(NULL, &tap_cdevsw);
282 #endif
283 	if (error == 0)
284 		sysctl_teardown(&tap_sysctl_clog);
285 	if (error == 0)
286 		if_clone_detach(&tap_cloners);
287 
288 	if (error == 0)
289 		error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
290 
291 	return error;
292 }
293 
294 /* Pretty much useless for a pseudo-device */
295 static int
296 tap_match(device_t parent, cfdata_t cfdata, void *arg)
297 {
298 
299 	return 1;
300 }
301 
302 void
303 tap_attach(device_t parent, device_t self, void *aux)
304 {
305 	struct tap_softc *sc = device_private(self);
306 	struct ifnet *ifp;
307 	const struct sysctlnode *node;
308 	int error;
309 	uint8_t enaddr[ETHER_ADDR_LEN] =
310 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
311 	char enaddrstr[3 * ETHER_ADDR_LEN];
312 
313 	sc->sc_dev = self;
314 	sc->sc_sih = NULL;
315 	getnanotime(&sc->sc_btime);
316 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
317 	sc->sc_flags = 0;
318 	selinit(&sc->sc_rsel);
319 
320 	cv_init(&sc->sc_cv, "tapread");
321 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
322 
323 	if (!pmf_device_register(self, NULL, NULL))
324 		aprint_error_dev(self, "couldn't establish power handler\n");
325 
326 	/*
327 	 * In order to obtain unique initial Ethernet address on a host,
328 	 * do some randomisation.  It's not meant for anything but avoiding
329 	 * hard-coding an address.
330 	 */
331 	cprng_fast(&enaddr[3], 3);
332 
333 	aprint_verbose_dev(self, "Ethernet address %s\n",
334 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
335 
336 	/*
337 	 * Why 1000baseT? Why not? You can add more.
338 	 *
339 	 * Note that there are 3 steps: init, one or several additions to
340 	 * list of supported media, and in the end, the selection of one
341 	 * of them.
342 	 */
343 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
344 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
345 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
346 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
347 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
348 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
349 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
350 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
351 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
352 
353 	/*
354 	 * One should note that an interface must do multicast in order
355 	 * to support IPv6.
356 	 */
357 	ifp = &sc->sc_ec.ec_if;
358 	strcpy(ifp->if_xname, device_xname(self));
359 	ifp->if_softc	= sc;
360 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
361 	ifp->if_extflags = IFEF_NO_LINK_STATE_CHANGE;
362 #ifdef NET_MPSAFE
363 	ifp->if_extflags |= IFEF_MPSAFE;
364 #endif
365 	ifp->if_ioctl	= tap_ioctl;
366 	ifp->if_start	= tap_start;
367 	ifp->if_stop	= tap_stop;
368 	ifp->if_init	= tap_init;
369 	IFQ_SET_READY(&ifp->if_snd);
370 
371 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
372 
373 	/* Those steps are mandatory for an Ethernet driver. */
374 	error = if_initialize(ifp);
375 	if (error != 0) {
376 		aprint_error_dev(self, "if_initialize failed(%d)\n", error);
377 		ifmedia_removeall(&sc->sc_im);
378 		pmf_device_deregister(self);
379 		mutex_destroy(&sc->sc_lock);
380 		seldestroy(&sc->sc_rsel);
381 
382 		return; /* Error */
383 	}
384 	ifp->if_percpuq = if_percpuq_create(ifp);
385 	ether_ifattach(ifp, enaddr);
386 	if_register(ifp);
387 
388 	/*
389 	 * Add a sysctl node for that interface.
390 	 *
391 	 * The pointer transmitted is not a string, but instead a pointer to
392 	 * the softc structure, which we can use to build the string value on
393 	 * the fly in the helper function of the node.  See the comments for
394 	 * tap_sysctl_handler for details.
395 	 *
396 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
397 	 * component.  However, we can allocate a number ourselves, as we are
398 	 * the only consumer of the net.link.<iface> node.  In this case, the
399 	 * unit number is conveniently used to number the node.  CTL_CREATE
400 	 * would just work, too.
401 	 */
402 	if ((error = sysctl_createv(NULL, 0, NULL,
403 	    &node, CTLFLAG_READWRITE,
404 	    CTLTYPE_STRING, device_xname(self), NULL,
405 	    tap_sysctl_handler, 0, (void *)sc, 18,
406 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
407 	    CTL_EOL)) != 0)
408 		aprint_error_dev(self,
409 		    "sysctl_createv returned %d, ignoring\n", error);
410 }
411 
412 /*
413  * When detaching, we do the inverse of what is done in the attach
414  * routine, in reversed order.
415  */
416 static int
417 tap_detach(device_t self, int flags)
418 {
419 	struct tap_softc *sc = device_private(self);
420 	struct ifnet *ifp = &sc->sc_ec.ec_if;
421 	int error;
422 
423 	sc->sc_flags |= TAP_GOING;
424 	tap_stop(ifp, 1);
425 	if_down(ifp);
426 
427 	if (sc->sc_sih != NULL) {
428 		softint_disestablish(sc->sc_sih);
429 		sc->sc_sih = NULL;
430 	}
431 
432 	/*
433 	 * Destroying a single leaf is a very straightforward operation using
434 	 * sysctl_destroyv.  One should be sure to always end the path with
435 	 * CTL_EOL.
436 	 */
437 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
438 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
439 		aprint_error_dev(self,
440 		    "sysctl_destroyv returned %d, ignoring\n", error);
441 	ether_ifdetach(ifp);
442 	if_detach(ifp);
443 	ifmedia_removeall(&sc->sc_im);
444 	seldestroy(&sc->sc_rsel);
445 	mutex_destroy(&sc->sc_lock);
446 	cv_destroy(&sc->sc_cv);
447 
448 	pmf_device_deregister(self);
449 
450 	return 0;
451 }
452 
453 /*
454  * This function is called by the ifmedia layer to notify the driver
455  * that the user requested a media change.  A real driver would
456  * reconfigure the hardware.
457  */
458 static int
459 tap_mediachange(struct ifnet *ifp)
460 {
461 	return 0;
462 }
463 
464 /*
465  * Here the user asks for the currently used media.
466  */
467 static void
468 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
469 {
470 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
471 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
472 }
473 
474 /*
475  * This is the function where we SEND packets.
476  *
477  * There is no 'receive' equivalent.  A typical driver will get
478  * interrupts from the hardware, and from there will inject new packets
479  * into the network stack.
480  *
481  * Once handled, a packet must be freed.  A real driver might not be able
482  * to fit all the pending packets into the hardware, and is allowed to
483  * return before having sent all the packets.  It should then use the
484  * if_flags flag IFF_OACTIVE to notify the upper layer.
485  *
486  * There are also other flags one should check, such as IFF_PAUSE.
487  *
488  * It is our duty to make packets available to BPF listeners.
489  *
490  * You should be aware that this function is called by the Ethernet layer
491  * at splnet().
492  *
493  * When the device is opened, we have to pass the packet(s) to the
494  * userland.  For that we stay in OACTIVE mode while the userland gets
495  * the packets, and we send a signal to the processes waiting to read.
496  *
497  * wakeup(sc) is the counterpart to the tsleep call in
498  * tap_dev_read, while selnotify() is used for kevent(2) and
499  * poll(2) (which includes select(2)) listeners.
500  */
501 static void
502 tap_start(struct ifnet *ifp)
503 {
504 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
505 	struct mbuf *m0;
506 
507 	mutex_enter(&sc->sc_lock);
508 	if ((sc->sc_flags & TAP_INUSE) == 0) {
509 		/* Simply drop packets */
510 		for(;;) {
511 			IFQ_DEQUEUE(&ifp->if_snd, m0);
512 			if (m0 == NULL)
513 				goto done;
514 
515 			ifp->if_opackets++;
516 			bpf_mtap(ifp, m0, BPF_D_OUT);
517 
518 			m_freem(m0);
519 		}
520 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
521 		ifp->if_flags |= IFF_OACTIVE;
522 		cv_broadcast(&sc->sc_cv);
523 		selnotify(&sc->sc_rsel, 0, 1);
524 		if (sc->sc_flags & TAP_ASYNCIO)
525 			softint_schedule(sc->sc_sih);
526 	}
527 done:
528 	mutex_exit(&sc->sc_lock);
529 }
530 
531 static void
532 tap_softintr(void *cookie)
533 {
534 	struct tap_softc *sc;
535 	struct ifnet *ifp;
536 	int a, b;
537 
538 	sc = cookie;
539 
540 	if (sc->sc_flags & TAP_ASYNCIO) {
541 		ifp = &sc->sc_ec.ec_if;
542 		if (ifp->if_flags & IFF_RUNNING) {
543 			a = POLL_IN;
544 			b = POLLIN|POLLRDNORM;
545 		} else {
546 			a = POLL_HUP;
547 			b = 0;
548 		}
549 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
550 	}
551 }
552 
553 /*
554  * A typical driver will only contain the following handlers for
555  * ioctl calls, except SIOCSIFPHYADDR.
556  * The latter is a hack I used to set the Ethernet address of the
557  * faked device.
558  *
559  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
560  * called under splnet().
561  */
562 static int
563 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
564 {
565 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
566 	struct ifreq *ifr = (struct ifreq *)data;
567 	int s, error;
568 
569 	s = splnet();
570 
571 	switch (cmd) {
572 #ifdef OSIOCSIFMEDIA
573 	case OSIOCSIFMEDIA:
574 #endif
575 	case SIOCSIFMEDIA:
576 	case SIOCGIFMEDIA:
577 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
578 		break;
579 	case SIOCSIFPHYADDR:
580 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
581 		break;
582 	default:
583 		error = ether_ioctl(ifp, cmd, data);
584 		if (error == ENETRESET)
585 			error = 0;
586 		break;
587 	}
588 
589 	splx(s);
590 
591 	return error;
592 }
593 
594 /*
595  * Helper function to set Ethernet address.  This has been replaced by
596  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
597  */
598 static int
599 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
600 {
601 	const struct sockaddr *sa = &ifra->ifra_addr;
602 
603 	if (sa->sa_family != AF_LINK)
604 		return EINVAL;
605 
606 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
607 
608 	return 0;
609 }
610 
611 /*
612  * _init() would typically be called when an interface goes up,
613  * meaning it should configure itself into the state in which it
614  * can send packets.
615  */
616 static int
617 tap_init(struct ifnet *ifp)
618 {
619 	ifp->if_flags |= IFF_RUNNING;
620 
621 	tap_start(ifp);
622 
623 	return 0;
624 }
625 
626 /*
627  * _stop() is called when an interface goes down.  It is our
628  * responsability to validate that state by clearing the
629  * IFF_RUNNING flag.
630  *
631  * We have to wake up all the sleeping processes to have the pending
632  * read requests cancelled.
633  */
634 static void
635 tap_stop(struct ifnet *ifp, int disable)
636 {
637 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
638 
639 	mutex_enter(&sc->sc_lock);
640 	ifp->if_flags &= ~IFF_RUNNING;
641 	cv_broadcast(&sc->sc_cv);
642 	selnotify(&sc->sc_rsel, 0, 1);
643 	if (sc->sc_flags & TAP_ASYNCIO)
644 		softint_schedule(sc->sc_sih);
645 	mutex_exit(&sc->sc_lock);
646 }
647 
648 /*
649  * The 'create' command of ifconfig can be used to create
650  * any numbered instance of a given device.  Thus we have to
651  * make sure we have enough room in cd_devs to create the
652  * user-specified instance.  config_attach_pseudo will do this
653  * for us.
654  */
655 static int
656 tap_clone_create(struct if_clone *ifc, int unit)
657 {
658 	if (tap_clone_creator(unit) == NULL) {
659 		aprint_error("%s%d: unable to attach an instance\n",
660 		    tap_cd.cd_name, unit);
661 		return ENXIO;
662 	}
663 	atomic_inc_uint(&tap_count);
664 	return 0;
665 }
666 
667 /*
668  * tap(4) can be cloned by two ways:
669  *   using 'ifconfig tap0 create', which will use the network
670  *     interface cloning API, and call tap_clone_create above.
671  *   opening the cloning device node, whose minor number is TAP_CLONER.
672  *     See below for an explanation on how this part work.
673  */
674 static struct tap_softc *
675 tap_clone_creator(int unit)
676 {
677 	cfdata_t cf;
678 
679 	cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
680 	cf->cf_name = tap_cd.cd_name;
681 	cf->cf_atname = tap_ca.ca_name;
682 	if (unit == -1) {
683 		/* let autoconf find the first free one */
684 		cf->cf_unit = 0;
685 		cf->cf_fstate = FSTATE_STAR;
686 	} else {
687 		cf->cf_unit = unit;
688 		cf->cf_fstate = FSTATE_NOTFOUND;
689 	}
690 
691 	return device_private(config_attach_pseudo(cf));
692 }
693 
694 /*
695  * The clean design of if_clone and autoconf(9) makes that part
696  * really straightforward.  The second argument of config_detach
697  * means neither QUIET nor FORCED.
698  */
699 static int
700 tap_clone_destroy(struct ifnet *ifp)
701 {
702 	struct tap_softc *sc = ifp->if_softc;
703 	int error = tap_clone_destroyer(sc->sc_dev);
704 
705 	if (error == 0)
706 		atomic_dec_uint(&tap_count);
707 	return error;
708 }
709 
710 int
711 tap_clone_destroyer(device_t dev)
712 {
713 	cfdata_t cf = device_cfdata(dev);
714 	int error;
715 
716 	if ((error = config_detach(dev, 0)) != 0)
717 		aprint_error_dev(dev, "unable to detach instance\n");
718 	kmem_free(cf, sizeof(*cf));
719 
720 	return error;
721 }
722 
723 /*
724  * tap(4) is a bit of an hybrid device.  It can be used in two different
725  * ways:
726  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
727  *  2. open /dev/tap, get a new interface created and read/write off it.
728  *     That interface is destroyed when the process that had it created exits.
729  *
730  * The first way is managed by the cdevsw structure, and you access interfaces
731  * through a (major, minor) mapping:  tap4 is obtained by the minor number
732  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
733  *
734  * The second way is the so-called "cloning" device.  It's a special minor
735  * number (chosen as the maximal number, to allow as much tap devices as
736  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
737  * call ends in tap_cdev_open.  The actual place where it is handled is
738  * tap_dev_cloner.
739  *
740  * An tap device cannot be opened more than once at a time, so the cdevsw
741  * part of open() does nothing but noting that the interface is being used and
742  * hence ready to actually handle packets.
743  */
744 
745 static int
746 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
747 {
748 	struct tap_softc *sc;
749 
750 	if (minor(dev) == TAP_CLONER)
751 		return tap_dev_cloner(l);
752 
753 	sc = device_lookup_private(&tap_cd, minor(dev));
754 	if (sc == NULL)
755 		return ENXIO;
756 
757 	/* The device can only be opened once */
758 	if (sc->sc_flags & TAP_INUSE)
759 		return EBUSY;
760 	sc->sc_flags |= TAP_INUSE;
761 	return 0;
762 }
763 
764 /*
765  * There are several kinds of cloning devices, and the most simple is the one
766  * tap(4) uses.  What it does is change the file descriptor with a new one,
767  * with its own fileops structure (which maps to the various read, write,
768  * ioctl functions).  It starts allocating a new file descriptor with falloc,
769  * then actually creates the new tap devices.
770  *
771  * Once those two steps are successful, we can re-wire the existing file
772  * descriptor to its new self.  This is done with fdclone():  it fills the fp
773  * structure as needed (notably f_devunit gets filled with the fifth parameter
774  * passed, the unit of the tap device which will allows us identifying the
775  * device later), and returns EMOVEFD.
776  *
777  * That magic value is interpreted by sys_open() which then replaces the
778  * current file descriptor by the new one (through a magic member of struct
779  * lwp, l_dupfd).
780  *
781  * The tap device is flagged as being busy since it otherwise could be
782  * externally accessed through the corresponding device node with the cdevsw
783  * interface.
784  */
785 
786 static int
787 tap_dev_cloner(struct lwp *l)
788 {
789 	struct tap_softc *sc;
790 	file_t *fp;
791 	int error, fd;
792 
793 	if ((error = fd_allocfile(&fp, &fd)) != 0)
794 		return error;
795 
796 	if ((sc = tap_clone_creator(-1)) == NULL) {
797 		fd_abort(curproc, fp, fd);
798 		return ENXIO;
799 	}
800 
801 	sc->sc_flags |= TAP_INUSE;
802 
803 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
804 	    (void *)(intptr_t)device_unit(sc->sc_dev));
805 }
806 
807 /*
808  * While all other operations (read, write, ioctl, poll and kqfilter) are
809  * really the same whether we are in cdevsw or fileops mode, the close()
810  * function is slightly different in the two cases.
811  *
812  * As for the other, the core of it is shared in tap_dev_close.  What
813  * it does is sufficient for the cdevsw interface, but the cloning interface
814  * needs another thing:  the interface is destroyed when the processes that
815  * created it closes it.
816  */
817 static int
818 tap_cdev_close(dev_t dev, int flags, int fmt,
819     struct lwp *l)
820 {
821 	struct tap_softc *sc =
822 	    device_lookup_private(&tap_cd, minor(dev));
823 
824 	if (sc == NULL)
825 		return ENXIO;
826 
827 	return tap_dev_close(sc);
828 }
829 
830 /*
831  * It might happen that the administrator used ifconfig to externally destroy
832  * the interface.  In that case, tap_fops_close will be called while
833  * tap_detach is already happening.  If we called it again from here, we
834  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
835  */
836 static int
837 tap_fops_close(file_t *fp)
838 {
839 	int unit = fp->f_devunit;
840 	struct tap_softc *sc;
841 	int error;
842 
843 	sc = device_lookup_private(&tap_cd, unit);
844 	if (sc == NULL)
845 		return ENXIO;
846 
847 	/* tap_dev_close currently always succeeds, but it might not
848 	 * always be the case. */
849 	KERNEL_LOCK(1, NULL);
850 	if ((error = tap_dev_close(sc)) != 0) {
851 		KERNEL_UNLOCK_ONE(NULL);
852 		return error;
853 	}
854 
855 	/* Destroy the device now that it is no longer useful,
856 	 * unless it's already being destroyed. */
857 	if ((sc->sc_flags & TAP_GOING) != 0) {
858 		KERNEL_UNLOCK_ONE(NULL);
859 		return 0;
860 	}
861 
862 	error = tap_clone_destroyer(sc->sc_dev);
863 	KERNEL_UNLOCK_ONE(NULL);
864 	return error;
865 }
866 
867 static int
868 tap_dev_close(struct tap_softc *sc)
869 {
870 	struct ifnet *ifp;
871 	int s;
872 
873 	s = splnet();
874 	/* Let tap_start handle packets again */
875 	ifp = &sc->sc_ec.ec_if;
876 	ifp->if_flags &= ~IFF_OACTIVE;
877 
878 	/* Purge output queue */
879 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
880 		struct mbuf *m;
881 
882 		for (;;) {
883 			IFQ_DEQUEUE(&ifp->if_snd, m);
884 			if (m == NULL)
885 				break;
886 
887 			ifp->if_opackets++;
888 			bpf_mtap(ifp, m, BPF_D_OUT);
889 			m_freem(m);
890 		}
891 	}
892 	splx(s);
893 
894 	if (sc->sc_sih != NULL) {
895 		softint_disestablish(sc->sc_sih);
896 		sc->sc_sih = NULL;
897 	}
898 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
899 
900 	return 0;
901 }
902 
903 static int
904 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
905 {
906 	return tap_dev_read(minor(dev), uio, flags);
907 }
908 
909 static int
910 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
911     kauth_cred_t cred, int flags)
912 {
913 	int error;
914 
915 	KERNEL_LOCK(1, NULL);
916 	error = tap_dev_read(fp->f_devunit, uio, flags);
917 	KERNEL_UNLOCK_ONE(NULL);
918 	return error;
919 }
920 
921 static int
922 tap_dev_read(int unit, struct uio *uio, int flags)
923 {
924 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
925 	struct ifnet *ifp;
926 	struct mbuf *m, *n;
927 	int error = 0;
928 
929 	if (sc == NULL)
930 		return ENXIO;
931 
932 	getnanotime(&sc->sc_atime);
933 
934 	ifp = &sc->sc_ec.ec_if;
935 	if ((ifp->if_flags & IFF_UP) == 0)
936 		return EHOSTDOWN;
937 
938 	/*
939 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
940 	 */
941 	if ((sc->sc_flags & TAP_NBIO) != 0) {
942 		if (!mutex_tryenter(&sc->sc_lock))
943 			return EWOULDBLOCK;
944 	} else {
945 		mutex_enter(&sc->sc_lock);
946 	}
947 
948 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
949 		ifp->if_flags &= ~IFF_OACTIVE;
950 		if (sc->sc_flags & TAP_NBIO)
951 			error = EWOULDBLOCK;
952 		else
953 			error = cv_wait_sig(&sc->sc_cv, &sc->sc_lock);
954 
955 		if (error != 0) {
956 			mutex_exit(&sc->sc_lock);
957 			return error;
958 		}
959 		/* The device might have been downed */
960 		if ((ifp->if_flags & IFF_UP) == 0) {
961 			mutex_exit(&sc->sc_lock);
962 			return EHOSTDOWN;
963 		}
964 	}
965 
966 	IFQ_DEQUEUE(&ifp->if_snd, m);
967 	mutex_exit(&sc->sc_lock);
968 
969 	ifp->if_flags &= ~IFF_OACTIVE;
970 	if (m == NULL) {
971 		error = 0;
972 		goto out;
973 	}
974 
975 	ifp->if_opackets++;
976 	bpf_mtap(ifp, m, BPF_D_OUT);
977 
978 	/*
979 	 * One read is one packet.
980 	 */
981 	do {
982 		error = uiomove(mtod(m, void *),
983 		    min(m->m_len, uio->uio_resid), uio);
984 		m = n = m_free(m);
985 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
986 
987 	if (m != NULL)
988 		m_freem(m);
989 
990 out:
991 	return error;
992 }
993 
994 static int
995 tap_fops_stat(file_t *fp, struct stat *st)
996 {
997 	int error = 0;
998 	struct tap_softc *sc;
999 	int unit = fp->f_devunit;
1000 
1001 	(void)memset(st, 0, sizeof(*st));
1002 
1003 	KERNEL_LOCK(1, NULL);
1004 	sc = device_lookup_private(&tap_cd, unit);
1005 	if (sc == NULL) {
1006 		error = ENXIO;
1007 		goto out;
1008 	}
1009 
1010 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
1011 	st->st_atimespec = sc->sc_atime;
1012 	st->st_mtimespec = sc->sc_mtime;
1013 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
1014 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
1015 	st->st_gid = kauth_cred_getegid(fp->f_cred);
1016 out:
1017 	KERNEL_UNLOCK_ONE(NULL);
1018 	return error;
1019 }
1020 
1021 static int
1022 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
1023 {
1024 	return tap_dev_write(minor(dev), uio, flags);
1025 }
1026 
1027 static int
1028 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1029     kauth_cred_t cred, int flags)
1030 {
1031 	int error;
1032 
1033 	KERNEL_LOCK(1, NULL);
1034 	error = tap_dev_write(fp->f_devunit, uio, flags);
1035 	KERNEL_UNLOCK_ONE(NULL);
1036 	return error;
1037 }
1038 
1039 static int
1040 tap_dev_write(int unit, struct uio *uio, int flags)
1041 {
1042 	struct tap_softc *sc =
1043 	    device_lookup_private(&tap_cd, unit);
1044 	struct ifnet *ifp;
1045 	struct mbuf *m, **mp;
1046 	int error = 0;
1047 
1048 	if (sc == NULL)
1049 		return ENXIO;
1050 
1051 	getnanotime(&sc->sc_mtime);
1052 	ifp = &sc->sc_ec.ec_if;
1053 
1054 	/* One write, one packet, that's the rule */
1055 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1056 	if (m == NULL) {
1057 		ifp->if_ierrors++;
1058 		return ENOBUFS;
1059 	}
1060 	m->m_pkthdr.len = uio->uio_resid;
1061 
1062 	mp = &m;
1063 	while (error == 0 && uio->uio_resid > 0) {
1064 		if (*mp != m) {
1065 			MGET(*mp, M_DONTWAIT, MT_DATA);
1066 			if (*mp == NULL) {
1067 				error = ENOBUFS;
1068 				break;
1069 			}
1070 		}
1071 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
1072 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1073 		mp = &(*mp)->m_next;
1074 	}
1075 	if (error) {
1076 		ifp->if_ierrors++;
1077 		m_freem(m);
1078 		return error;
1079 	}
1080 
1081 	m_set_rcvif(m, ifp);
1082 
1083 	if_percpuq_enqueue(ifp->if_percpuq, m);
1084 
1085 	return 0;
1086 }
1087 
1088 static int
1089 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1090     struct lwp *l)
1091 {
1092 	return tap_dev_ioctl(minor(dev), cmd, data, l);
1093 }
1094 
1095 static int
1096 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1097 {
1098 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
1099 }
1100 
1101 static int
1102 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1103 {
1104 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1105 
1106 	if (sc == NULL)
1107 		return ENXIO;
1108 
1109 	switch (cmd) {
1110 	case FIONREAD:
1111 		{
1112 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1113 			struct mbuf *m;
1114 			int s;
1115 
1116 			s = splnet();
1117 			IFQ_POLL(&ifp->if_snd, m);
1118 
1119 			if (m == NULL)
1120 				*(int *)data = 0;
1121 			else
1122 				*(int *)data = m->m_pkthdr.len;
1123 			splx(s);
1124 			return 0;
1125 		}
1126 	case TIOCSPGRP:
1127 	case FIOSETOWN:
1128 		return fsetown(&sc->sc_pgid, cmd, data);
1129 	case TIOCGPGRP:
1130 	case FIOGETOWN:
1131 		return fgetown(sc->sc_pgid, cmd, data);
1132 	case FIOASYNC:
1133 		if (*(int *)data) {
1134 			if (sc->sc_sih == NULL) {
1135 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1136 				    tap_softintr, sc);
1137 				if (sc->sc_sih == NULL)
1138 					return EBUSY; /* XXX */
1139 			}
1140 			sc->sc_flags |= TAP_ASYNCIO;
1141 		} else {
1142 			sc->sc_flags &= ~TAP_ASYNCIO;
1143 			if (sc->sc_sih != NULL) {
1144 				softint_disestablish(sc->sc_sih);
1145 				sc->sc_sih = NULL;
1146 			}
1147 		}
1148 		return 0;
1149 	case FIONBIO:
1150 		if (*(int *)data)
1151 			sc->sc_flags |= TAP_NBIO;
1152 		else
1153 			sc->sc_flags &= ~TAP_NBIO;
1154 		return 0;
1155 #ifdef OTAPGIFNAME
1156 	case OTAPGIFNAME:
1157 #endif
1158 	case TAPGIFNAME:
1159 		{
1160 			struct ifreq *ifr = (struct ifreq *)data;
1161 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1162 
1163 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1164 			return 0;
1165 		}
1166 	default:
1167 		return ENOTTY;
1168 	}
1169 }
1170 
1171 static int
1172 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1173 {
1174 	return tap_dev_poll(minor(dev), events, l);
1175 }
1176 
1177 static int
1178 tap_fops_poll(file_t *fp, int events)
1179 {
1180 	return tap_dev_poll(fp->f_devunit, events, curlwp);
1181 }
1182 
1183 static int
1184 tap_dev_poll(int unit, int events, struct lwp *l)
1185 {
1186 	struct tap_softc *sc =
1187 	    device_lookup_private(&tap_cd, unit);
1188 	int revents = 0;
1189 
1190 	if (sc == NULL)
1191 		return POLLERR;
1192 
1193 	if (events & (POLLIN|POLLRDNORM)) {
1194 		struct ifnet *ifp = &sc->sc_ec.ec_if;
1195 		struct mbuf *m;
1196 		int s;
1197 
1198 		s = splnet();
1199 		IFQ_POLL(&ifp->if_snd, m);
1200 
1201 		if (m != NULL)
1202 			revents |= events & (POLLIN|POLLRDNORM);
1203 		else {
1204 			mutex_spin_enter(&sc->sc_lock);
1205 			selrecord(l, &sc->sc_rsel);
1206 			mutex_spin_exit(&sc->sc_lock);
1207 		}
1208 		splx(s);
1209 	}
1210 	revents |= events & (POLLOUT|POLLWRNORM);
1211 
1212 	return revents;
1213 }
1214 
1215 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1216 	tap_kqread };
1217 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1218 	filt_seltrue };
1219 
1220 static int
1221 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1222 {
1223 	return tap_dev_kqfilter(minor(dev), kn);
1224 }
1225 
1226 static int
1227 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1228 {
1229 	return tap_dev_kqfilter(fp->f_devunit, kn);
1230 }
1231 
1232 static int
1233 tap_dev_kqfilter(int unit, struct knote *kn)
1234 {
1235 	struct tap_softc *sc =
1236 	    device_lookup_private(&tap_cd, unit);
1237 
1238 	if (sc == NULL)
1239 		return ENXIO;
1240 
1241 	KERNEL_LOCK(1, NULL);
1242 	switch(kn->kn_filter) {
1243 	case EVFILT_READ:
1244 		kn->kn_fop = &tap_read_filterops;
1245 		break;
1246 	case EVFILT_WRITE:
1247 		kn->kn_fop = &tap_seltrue_filterops;
1248 		break;
1249 	default:
1250 		KERNEL_UNLOCK_ONE(NULL);
1251 		return EINVAL;
1252 	}
1253 
1254 	kn->kn_hook = sc;
1255 	mutex_spin_enter(&sc->sc_lock);
1256 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1257 	mutex_spin_exit(&sc->sc_lock);
1258 	KERNEL_UNLOCK_ONE(NULL);
1259 	return 0;
1260 }
1261 
1262 static void
1263 tap_kqdetach(struct knote *kn)
1264 {
1265 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1266 
1267 	KERNEL_LOCK(1, NULL);
1268 	mutex_spin_enter(&sc->sc_lock);
1269 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1270 	mutex_spin_exit(&sc->sc_lock);
1271 	KERNEL_UNLOCK_ONE(NULL);
1272 }
1273 
1274 static int
1275 tap_kqread(struct knote *kn, long hint)
1276 {
1277 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1278 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1279 	struct mbuf *m;
1280 	int s, rv;
1281 
1282 	KERNEL_LOCK(1, NULL);
1283 	s = splnet();
1284 	IFQ_POLL(&ifp->if_snd, m);
1285 
1286 	if (m == NULL)
1287 		kn->kn_data = 0;
1288 	else
1289 		kn->kn_data = m->m_pkthdr.len;
1290 	splx(s);
1291 	rv = (kn->kn_data != 0 ? 1 : 0);
1292 	KERNEL_UNLOCK_ONE(NULL);
1293 	return rv;
1294 }
1295 
1296 /*
1297  * sysctl management routines
1298  * You can set the address of an interface through:
1299  * net.link.tap.tap<number>
1300  *
1301  * Note the consistent use of tap_log in order to use
1302  * sysctl_teardown at unload time.
1303  *
1304  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
1305  * blocks register a function in a special section of the kernel
1306  * (called a link set) which is used at init_sysctl() time to cycle
1307  * through all those functions to create the kernel's sysctl tree.
1308  *
1309  * It is not possible to use link sets in a module, so the
1310  * easiest is to simply call our own setup routine at load time.
1311  *
1312  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1313  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
1314  * whole kernel sysctl tree is built, it is not possible to add any
1315  * permanent node.
1316  *
1317  * It should be noted that we're not saving the sysctlnode pointer
1318  * we are returned when creating the "tap" node.  That structure
1319  * cannot be trusted once out of the calling function, as it might
1320  * get reused.  So we just save the MIB number, and always give the
1321  * full path starting from the root for later calls to sysctl_createv
1322  * and sysctl_destroyv.
1323  */
1324 static void
1325 sysctl_tap_setup(struct sysctllog **clog)
1326 {
1327 	const struct sysctlnode *node;
1328 	int error = 0;
1329 
1330 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1331 	    CTLFLAG_PERMANENT,
1332 	    CTLTYPE_NODE, "link", NULL,
1333 	    NULL, 0, NULL, 0,
1334 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
1335 		return;
1336 
1337 	/*
1338 	 * The first four parameters of sysctl_createv are for management.
1339 	 *
1340 	 * The four that follows, here starting with a '0' for the flags,
1341 	 * describe the node.
1342 	 *
1343 	 * The next series of four set its value, through various possible
1344 	 * means.
1345 	 *
1346 	 * Last but not least, the path to the node is described.  That path
1347 	 * is relative to the given root (third argument).  Here we're
1348 	 * starting from the root.
1349 	 */
1350 	if ((error = sysctl_createv(clog, 0, NULL, &node,
1351 	    CTLFLAG_PERMANENT,
1352 	    CTLTYPE_NODE, "tap", NULL,
1353 	    NULL, 0, NULL, 0,
1354 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1355 		return;
1356 	tap_node = node->sysctl_num;
1357 }
1358 
1359 /*
1360  * The helper functions make Andrew Brown's interface really
1361  * shine.  It makes possible to create value on the fly whether
1362  * the sysctl value is read or written.
1363  *
1364  * As shown as an example in the man page, the first step is to
1365  * create a copy of the node to have sysctl_lookup work on it.
1366  *
1367  * Here, we have more work to do than just a copy, since we have
1368  * to create the string.  The first step is to collect the actual
1369  * value of the node, which is a convenient pointer to the softc
1370  * of the interface.  From there we create the string and use it
1371  * as the value, but only for the *copy* of the node.
1372  *
1373  * Then we let sysctl_lookup do the magic, which consists in
1374  * setting oldp and newp as required by the operation.  When the
1375  * value is read, that means that the string will be copied to
1376  * the user, and when it is written, the new value will be copied
1377  * over in the addr array.
1378  *
1379  * If newp is NULL, the user was reading the value, so we don't
1380  * have anything else to do.  If a new value was written, we
1381  * have to check it.
1382  *
1383  * If it is incorrect, we can return an error and leave 'node' as
1384  * it is:  since it is a copy of the actual node, the change will
1385  * be forgotten.
1386  *
1387  * Upon a correct input, we commit the change to the ifnet
1388  * structure of our interface.
1389  */
1390 static int
1391 tap_sysctl_handler(SYSCTLFN_ARGS)
1392 {
1393 	struct sysctlnode node;
1394 	struct tap_softc *sc;
1395 	struct ifnet *ifp;
1396 	int error;
1397 	size_t len;
1398 	char addr[3 * ETHER_ADDR_LEN];
1399 	uint8_t enaddr[ETHER_ADDR_LEN];
1400 
1401 	node = *rnode;
1402 	sc = node.sysctl_data;
1403 	ifp = &sc->sc_ec.ec_if;
1404 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1405 	node.sysctl_data = addr;
1406 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1407 	if (error || newp == NULL)
1408 		return error;
1409 
1410 	len = strlen(addr);
1411 	if (len < 11 || len > 17)
1412 		return EINVAL;
1413 
1414 	/* Commit change */
1415 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1416 		return EINVAL;
1417 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1418 	return error;
1419 }
1420 
1421 /*
1422  * Module infrastructure
1423  */
1424 #include "if_module.h"
1425 
1426 IF_MODULE(MODULE_CLASS_DRIVER, tap, "")
1427