1 /* $NetBSD: if_tap.c,v 1.65 2010/05/19 20:41:59 christos Exp $ */ 2 3 /* 4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet 31 * device to the system, but can also be accessed by userland through a 32 * character device interface, which allows reading and injecting frames. 33 */ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.65 2010/05/19 20:41:59 christos Exp $"); 37 38 #if defined(_KERNEL_OPT) 39 40 #include "opt_modular.h" 41 #include "opt_compat_netbsd.h" 42 #endif 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/kernel.h> 47 #include <sys/malloc.h> 48 #include <sys/conf.h> 49 #include <sys/device.h> 50 #include <sys/file.h> 51 #include <sys/filedesc.h> 52 #include <sys/ksyms.h> 53 #include <sys/poll.h> 54 #include <sys/proc.h> 55 #include <sys/select.h> 56 #include <sys/sockio.h> 57 #if defined(COMPAT_40) || defined(MODULAR) 58 #include <sys/sysctl.h> 59 #endif 60 #include <sys/kauth.h> 61 #include <sys/mutex.h> 62 #include <sys/simplelock.h> 63 #include <sys/intr.h> 64 #include <sys/stat.h> 65 66 #include <net/if.h> 67 #include <net/if_dl.h> 68 #include <net/if_ether.h> 69 #include <net/if_media.h> 70 #include <net/if_tap.h> 71 #include <net/bpf.h> 72 73 #include <compat/sys/sockio.h> 74 75 #if defined(COMPAT_40) || defined(MODULAR) 76 /* 77 * sysctl node management 78 * 79 * It's not really possible to use a SYSCTL_SETUP block with 80 * current module implementation, so it is easier to just define 81 * our own function. 82 * 83 * The handler function is a "helper" in Andrew Brown's sysctl 84 * framework terminology. It is used as a gateway for sysctl 85 * requests over the nodes. 86 * 87 * tap_log allows the module to log creations of nodes and 88 * destroy them all at once using sysctl_teardown. 89 */ 90 static int tap_node; 91 static int tap_sysctl_handler(SYSCTLFN_PROTO); 92 SYSCTL_SETUP_PROTO(sysctl_tap_setup); 93 #endif 94 95 /* 96 * Since we're an Ethernet device, we need the 3 following 97 * components: a leading struct device, a struct ethercom, 98 * and also a struct ifmedia since we don't attach a PHY to 99 * ourselves. We could emulate one, but there's no real 100 * point. 101 */ 102 103 struct tap_softc { 104 device_t sc_dev; 105 struct ifmedia sc_im; 106 struct ethercom sc_ec; 107 int sc_flags; 108 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */ 109 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */ 110 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */ 111 #define TAP_GOING 0x00000008 /* interface is being destroyed */ 112 struct selinfo sc_rsel; 113 pid_t sc_pgid; /* For async. IO */ 114 kmutex_t sc_rdlock; 115 struct simplelock sc_kqlock; 116 void *sc_sih; 117 struct timespec sc_atime; 118 struct timespec sc_mtime; 119 struct timespec sc_btime; 120 }; 121 122 /* autoconf(9) glue */ 123 124 void tapattach(int); 125 126 static int tap_match(device_t, cfdata_t, void *); 127 static void tap_attach(device_t, device_t, void *); 128 static int tap_detach(device_t, int); 129 130 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc), 131 tap_match, tap_attach, tap_detach, NULL); 132 extern struct cfdriver tap_cd; 133 134 /* Real device access routines */ 135 static int tap_dev_close(struct tap_softc *); 136 static int tap_dev_read(int, struct uio *, int); 137 static int tap_dev_write(int, struct uio *, int); 138 static int tap_dev_ioctl(int, u_long, void *, struct lwp *); 139 static int tap_dev_poll(int, int, struct lwp *); 140 static int tap_dev_kqfilter(int, struct knote *); 141 142 /* Fileops access routines */ 143 static int tap_fops_close(file_t *); 144 static int tap_fops_read(file_t *, off_t *, struct uio *, 145 kauth_cred_t, int); 146 static int tap_fops_write(file_t *, off_t *, struct uio *, 147 kauth_cred_t, int); 148 static int tap_fops_ioctl(file_t *, u_long, void *); 149 static int tap_fops_poll(file_t *, int); 150 static int tap_fops_stat(file_t *, struct stat *); 151 static int tap_fops_kqfilter(file_t *, struct knote *); 152 153 static const struct fileops tap_fileops = { 154 .fo_read = tap_fops_read, 155 .fo_write = tap_fops_write, 156 .fo_ioctl = tap_fops_ioctl, 157 .fo_fcntl = fnullop_fcntl, 158 .fo_poll = tap_fops_poll, 159 .fo_stat = tap_fops_stat, 160 .fo_close = tap_fops_close, 161 .fo_kqfilter = tap_fops_kqfilter, 162 .fo_restart = fnullop_restart, 163 }; 164 165 /* Helper for cloning open() */ 166 static int tap_dev_cloner(struct lwp *); 167 168 /* Character device routines */ 169 static int tap_cdev_open(dev_t, int, int, struct lwp *); 170 static int tap_cdev_close(dev_t, int, int, struct lwp *); 171 static int tap_cdev_read(dev_t, struct uio *, int); 172 static int tap_cdev_write(dev_t, struct uio *, int); 173 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *); 174 static int tap_cdev_poll(dev_t, int, struct lwp *); 175 static int tap_cdev_kqfilter(dev_t, struct knote *); 176 177 const struct cdevsw tap_cdevsw = { 178 tap_cdev_open, tap_cdev_close, 179 tap_cdev_read, tap_cdev_write, 180 tap_cdev_ioctl, nostop, notty, 181 tap_cdev_poll, nommap, 182 tap_cdev_kqfilter, 183 D_OTHER, 184 }; 185 186 #define TAP_CLONER 0xfffff /* Maximal minor value */ 187 188 /* kqueue-related routines */ 189 static void tap_kqdetach(struct knote *); 190 static int tap_kqread(struct knote *, long); 191 192 /* 193 * Those are needed by the if_media interface. 194 */ 195 196 static int tap_mediachange(struct ifnet *); 197 static void tap_mediastatus(struct ifnet *, struct ifmediareq *); 198 199 /* 200 * Those are needed by the ifnet interface, and would typically be 201 * there for any network interface driver. 202 * Some other routines are optional: watchdog and drain. 203 */ 204 205 static void tap_start(struct ifnet *); 206 static void tap_stop(struct ifnet *, int); 207 static int tap_init(struct ifnet *); 208 static int tap_ioctl(struct ifnet *, u_long, void *); 209 210 /* Internal functions */ 211 #if defined(COMPAT_40) || defined(MODULAR) 212 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *); 213 #endif 214 static void tap_softintr(void *); 215 216 /* 217 * tap is a clonable interface, although it is highly unrealistic for 218 * an Ethernet device. 219 * 220 * Here are the bits needed for a clonable interface. 221 */ 222 static int tap_clone_create(struct if_clone *, int); 223 static int tap_clone_destroy(struct ifnet *); 224 225 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap", 226 tap_clone_create, 227 tap_clone_destroy); 228 229 /* Helper functionis shared by the two cloning code paths */ 230 static struct tap_softc * tap_clone_creator(int); 231 int tap_clone_destroyer(device_t); 232 233 void 234 tapattach(int n) 235 { 236 int error; 237 238 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca); 239 if (error) { 240 aprint_error("%s: unable to register cfattach\n", 241 tap_cd.cd_name); 242 (void)config_cfdriver_detach(&tap_cd); 243 return; 244 } 245 246 if_clone_attach(&tap_cloners); 247 } 248 249 /* Pretty much useless for a pseudo-device */ 250 static int 251 tap_match(device_t parent, cfdata_t cfdata, void *arg) 252 { 253 254 return (1); 255 } 256 257 void 258 tap_attach(device_t parent, device_t self, void *aux) 259 { 260 struct tap_softc *sc = device_private(self); 261 struct ifnet *ifp; 262 #if defined(COMPAT_40) || defined(MODULAR) 263 const struct sysctlnode *node; 264 int error; 265 #endif 266 uint8_t enaddr[ETHER_ADDR_LEN] = 267 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff }; 268 char enaddrstr[3 * ETHER_ADDR_LEN]; 269 struct timeval tv; 270 uint32_t ui; 271 272 sc->sc_dev = self; 273 sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc); 274 getnanotime(&sc->sc_btime); 275 sc->sc_atime = sc->sc_mtime = sc->sc_btime; 276 277 if (!pmf_device_register(self, NULL, NULL)) 278 aprint_error_dev(self, "couldn't establish power handler\n"); 279 280 /* 281 * In order to obtain unique initial Ethernet address on a host, 282 * do some randomisation using the current uptime. It's not meant 283 * for anything but avoiding hard-coding an address. 284 */ 285 getmicrouptime(&tv); 286 ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff; 287 memcpy(enaddr+3, (uint8_t *)&ui, 3); 288 289 aprint_verbose_dev(self, "Ethernet address %s\n", 290 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr)); 291 292 /* 293 * Why 1000baseT? Why not? You can add more. 294 * 295 * Note that there are 3 steps: init, one or several additions to 296 * list of supported media, and in the end, the selection of one 297 * of them. 298 */ 299 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus); 300 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL); 301 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL); 302 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL); 303 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); 304 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL); 305 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); 306 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL); 307 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO); 308 309 /* 310 * One should note that an interface must do multicast in order 311 * to support IPv6. 312 */ 313 ifp = &sc->sc_ec.ec_if; 314 strcpy(ifp->if_xname, device_xname(self)); 315 ifp->if_softc = sc; 316 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 317 ifp->if_ioctl = tap_ioctl; 318 ifp->if_start = tap_start; 319 ifp->if_stop = tap_stop; 320 ifp->if_init = tap_init; 321 IFQ_SET_READY(&ifp->if_snd); 322 323 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU; 324 325 /* Those steps are mandatory for an Ethernet driver, the fisrt call 326 * being common to all network interface drivers. */ 327 if_attach(ifp); 328 ether_ifattach(ifp, enaddr); 329 330 sc->sc_flags = 0; 331 332 #if defined(COMPAT_40) || defined(MODULAR) 333 /* 334 * Add a sysctl node for that interface. 335 * 336 * The pointer transmitted is not a string, but instead a pointer to 337 * the softc structure, which we can use to build the string value on 338 * the fly in the helper function of the node. See the comments for 339 * tap_sysctl_handler for details. 340 * 341 * Usually sysctl_createv is called with CTL_CREATE as the before-last 342 * component. However, we can allocate a number ourselves, as we are 343 * the only consumer of the net.link.<iface> node. In this case, the 344 * unit number is conveniently used to number the node. CTL_CREATE 345 * would just work, too. 346 */ 347 if ((error = sysctl_createv(NULL, 0, NULL, 348 &node, CTLFLAG_READWRITE, 349 CTLTYPE_STRING, device_xname(self), NULL, 350 tap_sysctl_handler, 0, sc, 18, 351 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev), 352 CTL_EOL)) != 0) 353 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n", 354 error); 355 #endif 356 357 /* 358 * Initialize the two locks for the device. 359 * 360 * We need a lock here because even though the tap device can be 361 * opened only once, the file descriptor might be passed to another 362 * process, say a fork(2)ed child. 363 * 364 * The Giant saves us from most of the hassle, but since the read 365 * operation can sleep, we don't want two processes to wake up at 366 * the same moment and both try and dequeue a single packet. 367 * 368 * The queue for event listeners (used by kqueue(9), see below) has 369 * to be protected, too, but we don't need the same level of 370 * complexity for that lock, so a simple spinning lock is fine. 371 */ 372 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE); 373 simple_lock_init(&sc->sc_kqlock); 374 375 selinit(&sc->sc_rsel); 376 } 377 378 /* 379 * When detaching, we do the inverse of what is done in the attach 380 * routine, in reversed order. 381 */ 382 static int 383 tap_detach(device_t self, int flags) 384 { 385 struct tap_softc *sc = device_private(self); 386 struct ifnet *ifp = &sc->sc_ec.ec_if; 387 #if defined(COMPAT_40) || defined(MODULAR) 388 int error; 389 #endif 390 int s; 391 392 sc->sc_flags |= TAP_GOING; 393 s = splnet(); 394 tap_stop(ifp, 1); 395 if_down(ifp); 396 splx(s); 397 398 softint_disestablish(sc->sc_sih); 399 400 #if defined(COMPAT_40) || defined(MODULAR) 401 /* 402 * Destroying a single leaf is a very straightforward operation using 403 * sysctl_destroyv. One should be sure to always end the path with 404 * CTL_EOL. 405 */ 406 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node, 407 device_unit(sc->sc_dev), CTL_EOL)) != 0) 408 aprint_error_dev(self, 409 "sysctl_destroyv returned %d, ignoring\n", error); 410 #endif 411 ether_ifdetach(ifp); 412 if_detach(ifp); 413 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY); 414 seldestroy(&sc->sc_rsel); 415 mutex_destroy(&sc->sc_rdlock); 416 417 pmf_device_deregister(self); 418 419 return (0); 420 } 421 422 /* 423 * This function is called by the ifmedia layer to notify the driver 424 * that the user requested a media change. A real driver would 425 * reconfigure the hardware. 426 */ 427 static int 428 tap_mediachange(struct ifnet *ifp) 429 { 430 return (0); 431 } 432 433 /* 434 * Here the user asks for the currently used media. 435 */ 436 static void 437 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr) 438 { 439 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc; 440 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media; 441 } 442 443 /* 444 * This is the function where we SEND packets. 445 * 446 * There is no 'receive' equivalent. A typical driver will get 447 * interrupts from the hardware, and from there will inject new packets 448 * into the network stack. 449 * 450 * Once handled, a packet must be freed. A real driver might not be able 451 * to fit all the pending packets into the hardware, and is allowed to 452 * return before having sent all the packets. It should then use the 453 * if_flags flag IFF_OACTIVE to notify the upper layer. 454 * 455 * There are also other flags one should check, such as IFF_PAUSE. 456 * 457 * It is our duty to make packets available to BPF listeners. 458 * 459 * You should be aware that this function is called by the Ethernet layer 460 * at splnet(). 461 * 462 * When the device is opened, we have to pass the packet(s) to the 463 * userland. For that we stay in OACTIVE mode while the userland gets 464 * the packets, and we send a signal to the processes waiting to read. 465 * 466 * wakeup(sc) is the counterpart to the tsleep call in 467 * tap_dev_read, while selnotify() is used for kevent(2) and 468 * poll(2) (which includes select(2)) listeners. 469 */ 470 static void 471 tap_start(struct ifnet *ifp) 472 { 473 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc; 474 struct mbuf *m0; 475 476 if ((sc->sc_flags & TAP_INUSE) == 0) { 477 /* Simply drop packets */ 478 for(;;) { 479 IFQ_DEQUEUE(&ifp->if_snd, m0); 480 if (m0 == NULL) 481 return; 482 483 ifp->if_opackets++; 484 bpf_mtap(ifp, m0); 485 486 m_freem(m0); 487 } 488 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) { 489 ifp->if_flags |= IFF_OACTIVE; 490 wakeup(sc); 491 selnotify(&sc->sc_rsel, 0, 1); 492 if (sc->sc_flags & TAP_ASYNCIO) 493 softint_schedule(sc->sc_sih); 494 } 495 } 496 497 static void 498 tap_softintr(void *cookie) 499 { 500 struct tap_softc *sc; 501 struct ifnet *ifp; 502 int a, b; 503 504 sc = cookie; 505 506 if (sc->sc_flags & TAP_ASYNCIO) { 507 ifp = &sc->sc_ec.ec_if; 508 if (ifp->if_flags & IFF_RUNNING) { 509 a = POLL_IN; 510 b = POLLIN|POLLRDNORM; 511 } else { 512 a = POLL_HUP; 513 b = 0; 514 } 515 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL); 516 } 517 } 518 519 /* 520 * A typical driver will only contain the following handlers for 521 * ioctl calls, except SIOCSIFPHYADDR. 522 * The latter is a hack I used to set the Ethernet address of the 523 * faked device. 524 * 525 * Note that both ifmedia_ioctl() and ether_ioctl() have to be 526 * called under splnet(). 527 */ 528 static int 529 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data) 530 { 531 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc; 532 struct ifreq *ifr = (struct ifreq *)data; 533 int s, error; 534 535 s = splnet(); 536 537 switch (cmd) { 538 #ifdef OSIOCSIFMEDIA 539 case OSIOCSIFMEDIA: 540 #endif 541 case SIOCSIFMEDIA: 542 case SIOCGIFMEDIA: 543 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd); 544 break; 545 #if defined(COMPAT_40) || defined(MODULAR) 546 case SIOCSIFPHYADDR: 547 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data); 548 break; 549 #endif 550 default: 551 error = ether_ioctl(ifp, cmd, data); 552 if (error == ENETRESET) 553 error = 0; 554 break; 555 } 556 557 splx(s); 558 559 return (error); 560 } 561 562 #if defined(COMPAT_40) || defined(MODULAR) 563 /* 564 * Helper function to set Ethernet address. This has been replaced by 565 * the generic SIOCALIFADDR ioctl on a PF_LINK socket. 566 */ 567 static int 568 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra) 569 { 570 const struct sockaddr *sa = &ifra->ifra_addr; 571 572 if (sa->sa_family != AF_LINK) 573 return (EINVAL); 574 575 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false); 576 577 return (0); 578 } 579 #endif 580 581 /* 582 * _init() would typically be called when an interface goes up, 583 * meaning it should configure itself into the state in which it 584 * can send packets. 585 */ 586 static int 587 tap_init(struct ifnet *ifp) 588 { 589 ifp->if_flags |= IFF_RUNNING; 590 591 tap_start(ifp); 592 593 return (0); 594 } 595 596 /* 597 * _stop() is called when an interface goes down. It is our 598 * responsability to validate that state by clearing the 599 * IFF_RUNNING flag. 600 * 601 * We have to wake up all the sleeping processes to have the pending 602 * read requests cancelled. 603 */ 604 static void 605 tap_stop(struct ifnet *ifp, int disable) 606 { 607 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc; 608 609 ifp->if_flags &= ~IFF_RUNNING; 610 wakeup(sc); 611 selnotify(&sc->sc_rsel, 0, 1); 612 if (sc->sc_flags & TAP_ASYNCIO) 613 softint_schedule(sc->sc_sih); 614 } 615 616 /* 617 * The 'create' command of ifconfig can be used to create 618 * any numbered instance of a given device. Thus we have to 619 * make sure we have enough room in cd_devs to create the 620 * user-specified instance. config_attach_pseudo will do this 621 * for us. 622 */ 623 static int 624 tap_clone_create(struct if_clone *ifc, int unit) 625 { 626 if (tap_clone_creator(unit) == NULL) { 627 aprint_error("%s%d: unable to attach an instance\n", 628 tap_cd.cd_name, unit); 629 return (ENXIO); 630 } 631 632 return (0); 633 } 634 635 /* 636 * tap(4) can be cloned by two ways: 637 * using 'ifconfig tap0 create', which will use the network 638 * interface cloning API, and call tap_clone_create above. 639 * opening the cloning device node, whose minor number is TAP_CLONER. 640 * See below for an explanation on how this part work. 641 */ 642 static struct tap_softc * 643 tap_clone_creator(int unit) 644 { 645 struct cfdata *cf; 646 647 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK); 648 cf->cf_name = tap_cd.cd_name; 649 cf->cf_atname = tap_ca.ca_name; 650 if (unit == -1) { 651 /* let autoconf find the first free one */ 652 cf->cf_unit = 0; 653 cf->cf_fstate = FSTATE_STAR; 654 } else { 655 cf->cf_unit = unit; 656 cf->cf_fstate = FSTATE_NOTFOUND; 657 } 658 659 return device_private(config_attach_pseudo(cf)); 660 } 661 662 /* 663 * The clean design of if_clone and autoconf(9) makes that part 664 * really straightforward. The second argument of config_detach 665 * means neither QUIET nor FORCED. 666 */ 667 static int 668 tap_clone_destroy(struct ifnet *ifp) 669 { 670 struct tap_softc *sc = ifp->if_softc; 671 672 return tap_clone_destroyer(sc->sc_dev); 673 } 674 675 int 676 tap_clone_destroyer(device_t dev) 677 { 678 cfdata_t cf = device_cfdata(dev); 679 int error; 680 681 if ((error = config_detach(dev, 0)) != 0) 682 aprint_error_dev(dev, "unable to detach instance\n"); 683 free(cf, M_DEVBUF); 684 685 return (error); 686 } 687 688 /* 689 * tap(4) is a bit of an hybrid device. It can be used in two different 690 * ways: 691 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it. 692 * 2. open /dev/tap, get a new interface created and read/write off it. 693 * That interface is destroyed when the process that had it created exits. 694 * 695 * The first way is managed by the cdevsw structure, and you access interfaces 696 * through a (major, minor) mapping: tap4 is obtained by the minor number 697 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_. 698 * 699 * The second way is the so-called "cloning" device. It's a special minor 700 * number (chosen as the maximal number, to allow as much tap devices as 701 * possible). The user first opens the cloner (e.g., /dev/tap), and that 702 * call ends in tap_cdev_open. The actual place where it is handled is 703 * tap_dev_cloner. 704 * 705 * An tap device cannot be opened more than once at a time, so the cdevsw 706 * part of open() does nothing but noting that the interface is being used and 707 * hence ready to actually handle packets. 708 */ 709 710 static int 711 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l) 712 { 713 struct tap_softc *sc; 714 715 if (minor(dev) == TAP_CLONER) 716 return tap_dev_cloner(l); 717 718 sc = device_lookup_private(&tap_cd, minor(dev)); 719 if (sc == NULL) 720 return (ENXIO); 721 722 /* The device can only be opened once */ 723 if (sc->sc_flags & TAP_INUSE) 724 return (EBUSY); 725 sc->sc_flags |= TAP_INUSE; 726 return (0); 727 } 728 729 /* 730 * There are several kinds of cloning devices, and the most simple is the one 731 * tap(4) uses. What it does is change the file descriptor with a new one, 732 * with its own fileops structure (which maps to the various read, write, 733 * ioctl functions). It starts allocating a new file descriptor with falloc, 734 * then actually creates the new tap devices. 735 * 736 * Once those two steps are successful, we can re-wire the existing file 737 * descriptor to its new self. This is done with fdclone(): it fills the fp 738 * structure as needed (notably f_data gets filled with the fifth parameter 739 * passed, the unit of the tap device which will allows us identifying the 740 * device later), and returns EMOVEFD. 741 * 742 * That magic value is interpreted by sys_open() which then replaces the 743 * current file descriptor by the new one (through a magic member of struct 744 * lwp, l_dupfd). 745 * 746 * The tap device is flagged as being busy since it otherwise could be 747 * externally accessed through the corresponding device node with the cdevsw 748 * interface. 749 */ 750 751 static int 752 tap_dev_cloner(struct lwp *l) 753 { 754 struct tap_softc *sc; 755 file_t *fp; 756 int error, fd; 757 758 if ((error = fd_allocfile(&fp, &fd)) != 0) 759 return (error); 760 761 if ((sc = tap_clone_creator(-1)) == NULL) { 762 fd_abort(curproc, fp, fd); 763 return (ENXIO); 764 } 765 766 sc->sc_flags |= TAP_INUSE; 767 768 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops, 769 (void *)(intptr_t)device_unit(sc->sc_dev)); 770 } 771 772 /* 773 * While all other operations (read, write, ioctl, poll and kqfilter) are 774 * really the same whether we are in cdevsw or fileops mode, the close() 775 * function is slightly different in the two cases. 776 * 777 * As for the other, the core of it is shared in tap_dev_close. What 778 * it does is sufficient for the cdevsw interface, but the cloning interface 779 * needs another thing: the interface is destroyed when the processes that 780 * created it closes it. 781 */ 782 static int 783 tap_cdev_close(dev_t dev, int flags, int fmt, 784 struct lwp *l) 785 { 786 struct tap_softc *sc = 787 device_lookup_private(&tap_cd, minor(dev)); 788 789 if (sc == NULL) 790 return (ENXIO); 791 792 return tap_dev_close(sc); 793 } 794 795 /* 796 * It might happen that the administrator used ifconfig to externally destroy 797 * the interface. In that case, tap_fops_close will be called while 798 * tap_detach is already happening. If we called it again from here, we 799 * would dead lock. TAP_GOING ensures that this situation doesn't happen. 800 */ 801 static int 802 tap_fops_close(file_t *fp) 803 { 804 int unit = (intptr_t)fp->f_data; 805 struct tap_softc *sc; 806 int error; 807 808 sc = device_lookup_private(&tap_cd, unit); 809 if (sc == NULL) 810 return (ENXIO); 811 812 /* tap_dev_close currently always succeeds, but it might not 813 * always be the case. */ 814 KERNEL_LOCK(1, NULL); 815 if ((error = tap_dev_close(sc)) != 0) { 816 KERNEL_UNLOCK_ONE(NULL); 817 return (error); 818 } 819 820 /* Destroy the device now that it is no longer useful, 821 * unless it's already being destroyed. */ 822 if ((sc->sc_flags & TAP_GOING) != 0) { 823 KERNEL_UNLOCK_ONE(NULL); 824 return (0); 825 } 826 827 error = tap_clone_destroyer(sc->sc_dev); 828 KERNEL_UNLOCK_ONE(NULL); 829 return error; 830 } 831 832 static int 833 tap_dev_close(struct tap_softc *sc) 834 { 835 struct ifnet *ifp; 836 int s; 837 838 s = splnet(); 839 /* Let tap_start handle packets again */ 840 ifp = &sc->sc_ec.ec_if; 841 ifp->if_flags &= ~IFF_OACTIVE; 842 843 /* Purge output queue */ 844 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) { 845 struct mbuf *m; 846 847 for (;;) { 848 IFQ_DEQUEUE(&ifp->if_snd, m); 849 if (m == NULL) 850 break; 851 852 ifp->if_opackets++; 853 bpf_mtap(ifp, m); 854 m_freem(m); 855 } 856 } 857 splx(s); 858 859 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO); 860 861 return (0); 862 } 863 864 static int 865 tap_cdev_read(dev_t dev, struct uio *uio, int flags) 866 { 867 return tap_dev_read(minor(dev), uio, flags); 868 } 869 870 static int 871 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio, 872 kauth_cred_t cred, int flags) 873 { 874 int error; 875 876 KERNEL_LOCK(1, NULL); 877 error = tap_dev_read((intptr_t)fp->f_data, uio, flags); 878 KERNEL_UNLOCK_ONE(NULL); 879 return error; 880 } 881 882 static int 883 tap_dev_read(int unit, struct uio *uio, int flags) 884 { 885 struct tap_softc *sc = 886 device_lookup_private(&tap_cd, unit); 887 struct ifnet *ifp; 888 struct mbuf *m, *n; 889 int error = 0, s; 890 891 if (sc == NULL) 892 return (ENXIO); 893 894 getnanotime(&sc->sc_atime); 895 896 ifp = &sc->sc_ec.ec_if; 897 if ((ifp->if_flags & IFF_UP) == 0) 898 return (EHOSTDOWN); 899 900 /* 901 * In the TAP_NBIO case, we have to make sure we won't be sleeping 902 */ 903 if ((sc->sc_flags & TAP_NBIO) != 0) { 904 if (!mutex_tryenter(&sc->sc_rdlock)) 905 return (EWOULDBLOCK); 906 } else { 907 mutex_enter(&sc->sc_rdlock); 908 } 909 910 s = splnet(); 911 if (IFQ_IS_EMPTY(&ifp->if_snd)) { 912 ifp->if_flags &= ~IFF_OACTIVE; 913 /* 914 * We must release the lock before sleeping, and re-acquire it 915 * after. 916 */ 917 mutex_exit(&sc->sc_rdlock); 918 if (sc->sc_flags & TAP_NBIO) 919 error = EWOULDBLOCK; 920 else 921 error = tsleep(sc, PSOCK|PCATCH, "tap", 0); 922 splx(s); 923 924 if (error != 0) 925 return (error); 926 /* The device might have been downed */ 927 if ((ifp->if_flags & IFF_UP) == 0) 928 return (EHOSTDOWN); 929 if ((sc->sc_flags & TAP_NBIO)) { 930 if (!mutex_tryenter(&sc->sc_rdlock)) 931 return (EWOULDBLOCK); 932 } else { 933 mutex_enter(&sc->sc_rdlock); 934 } 935 s = splnet(); 936 } 937 938 IFQ_DEQUEUE(&ifp->if_snd, m); 939 ifp->if_flags &= ~IFF_OACTIVE; 940 splx(s); 941 if (m == NULL) { 942 error = 0; 943 goto out; 944 } 945 946 ifp->if_opackets++; 947 bpf_mtap(ifp, m); 948 949 /* 950 * One read is one packet. 951 */ 952 do { 953 error = uiomove(mtod(m, void *), 954 min(m->m_len, uio->uio_resid), uio); 955 MFREE(m, n); 956 m = n; 957 } while (m != NULL && uio->uio_resid > 0 && error == 0); 958 959 if (m != NULL) 960 m_freem(m); 961 962 out: 963 mutex_exit(&sc->sc_rdlock); 964 return (error); 965 } 966 967 static int 968 tap_fops_stat(file_t *fp, struct stat *st) 969 { 970 int error = 0; 971 struct tap_softc *sc; 972 int unit = (uintptr_t)fp->f_data; 973 974 (void)memset(st, 0, sizeof(*st)); 975 976 KERNEL_LOCK(1, NULL); 977 sc = device_lookup_private(&tap_cd, unit); 978 if (sc == NULL) { 979 error = ENXIO; 980 goto out; 981 } 982 983 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit); 984 st->st_atimespec = sc->sc_atime; 985 st->st_mtimespec = sc->sc_mtime; 986 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime; 987 st->st_uid = kauth_cred_geteuid(fp->f_cred); 988 st->st_gid = kauth_cred_getegid(fp->f_cred); 989 out: 990 KERNEL_UNLOCK_ONE(NULL); 991 return error; 992 } 993 994 static int 995 tap_cdev_write(dev_t dev, struct uio *uio, int flags) 996 { 997 return tap_dev_write(minor(dev), uio, flags); 998 } 999 1000 static int 1001 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio, 1002 kauth_cred_t cred, int flags) 1003 { 1004 int error; 1005 1006 KERNEL_LOCK(1, NULL); 1007 error = tap_dev_write((intptr_t)fp->f_data, uio, flags); 1008 KERNEL_UNLOCK_ONE(NULL); 1009 return error; 1010 } 1011 1012 static int 1013 tap_dev_write(int unit, struct uio *uio, int flags) 1014 { 1015 struct tap_softc *sc = 1016 device_lookup_private(&tap_cd, unit); 1017 struct ifnet *ifp; 1018 struct mbuf *m, **mp; 1019 int error = 0; 1020 int s; 1021 1022 if (sc == NULL) 1023 return (ENXIO); 1024 1025 getnanotime(&sc->sc_mtime); 1026 ifp = &sc->sc_ec.ec_if; 1027 1028 /* One write, one packet, that's the rule */ 1029 MGETHDR(m, M_DONTWAIT, MT_DATA); 1030 if (m == NULL) { 1031 ifp->if_ierrors++; 1032 return (ENOBUFS); 1033 } 1034 m->m_pkthdr.len = uio->uio_resid; 1035 1036 mp = &m; 1037 while (error == 0 && uio->uio_resid > 0) { 1038 if (*mp != m) { 1039 MGET(*mp, M_DONTWAIT, MT_DATA); 1040 if (*mp == NULL) { 1041 error = ENOBUFS; 1042 break; 1043 } 1044 } 1045 (*mp)->m_len = min(MHLEN, uio->uio_resid); 1046 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio); 1047 mp = &(*mp)->m_next; 1048 } 1049 if (error) { 1050 ifp->if_ierrors++; 1051 m_freem(m); 1052 return (error); 1053 } 1054 1055 ifp->if_ipackets++; 1056 m->m_pkthdr.rcvif = ifp; 1057 1058 bpf_mtap(ifp, m); 1059 s =splnet(); 1060 (*ifp->if_input)(ifp, m); 1061 splx(s); 1062 1063 return (0); 1064 } 1065 1066 static int 1067 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags, 1068 struct lwp *l) 1069 { 1070 return tap_dev_ioctl(minor(dev), cmd, data, l); 1071 } 1072 1073 static int 1074 tap_fops_ioctl(file_t *fp, u_long cmd, void *data) 1075 { 1076 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp); 1077 } 1078 1079 static int 1080 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l) 1081 { 1082 struct tap_softc *sc = 1083 device_lookup_private(&tap_cd, unit); 1084 int error = 0; 1085 1086 if (sc == NULL) 1087 return (ENXIO); 1088 1089 switch (cmd) { 1090 case FIONREAD: 1091 { 1092 struct ifnet *ifp = &sc->sc_ec.ec_if; 1093 struct mbuf *m; 1094 int s; 1095 1096 s = splnet(); 1097 IFQ_POLL(&ifp->if_snd, m); 1098 1099 if (m == NULL) 1100 *(int *)data = 0; 1101 else 1102 *(int *)data = m->m_pkthdr.len; 1103 splx(s); 1104 } break; 1105 case TIOCSPGRP: 1106 case FIOSETOWN: 1107 error = fsetown(&sc->sc_pgid, cmd, data); 1108 break; 1109 case TIOCGPGRP: 1110 case FIOGETOWN: 1111 error = fgetown(sc->sc_pgid, cmd, data); 1112 break; 1113 case FIOASYNC: 1114 if (*(int *)data) 1115 sc->sc_flags |= TAP_ASYNCIO; 1116 else 1117 sc->sc_flags &= ~TAP_ASYNCIO; 1118 break; 1119 case FIONBIO: 1120 if (*(int *)data) 1121 sc->sc_flags |= TAP_NBIO; 1122 else 1123 sc->sc_flags &= ~TAP_NBIO; 1124 break; 1125 #ifdef OTAPGIFNAME 1126 case OTAPGIFNAME: 1127 #endif 1128 case TAPGIFNAME: 1129 { 1130 struct ifreq *ifr = (struct ifreq *)data; 1131 struct ifnet *ifp = &sc->sc_ec.ec_if; 1132 1133 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ); 1134 } break; 1135 default: 1136 error = ENOTTY; 1137 break; 1138 } 1139 1140 return (0); 1141 } 1142 1143 static int 1144 tap_cdev_poll(dev_t dev, int events, struct lwp *l) 1145 { 1146 return tap_dev_poll(minor(dev), events, l); 1147 } 1148 1149 static int 1150 tap_fops_poll(file_t *fp, int events) 1151 { 1152 return tap_dev_poll((intptr_t)fp->f_data, events, curlwp); 1153 } 1154 1155 static int 1156 tap_dev_poll(int unit, int events, struct lwp *l) 1157 { 1158 struct tap_softc *sc = 1159 device_lookup_private(&tap_cd, unit); 1160 int revents = 0; 1161 1162 if (sc == NULL) 1163 return POLLERR; 1164 1165 if (events & (POLLIN|POLLRDNORM)) { 1166 struct ifnet *ifp = &sc->sc_ec.ec_if; 1167 struct mbuf *m; 1168 int s; 1169 1170 s = splnet(); 1171 IFQ_POLL(&ifp->if_snd, m); 1172 splx(s); 1173 1174 if (m != NULL) 1175 revents |= events & (POLLIN|POLLRDNORM); 1176 else { 1177 simple_lock(&sc->sc_kqlock); 1178 selrecord(l, &sc->sc_rsel); 1179 simple_unlock(&sc->sc_kqlock); 1180 } 1181 } 1182 revents |= events & (POLLOUT|POLLWRNORM); 1183 1184 return (revents); 1185 } 1186 1187 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach, 1188 tap_kqread }; 1189 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach, 1190 filt_seltrue }; 1191 1192 static int 1193 tap_cdev_kqfilter(dev_t dev, struct knote *kn) 1194 { 1195 return tap_dev_kqfilter(minor(dev), kn); 1196 } 1197 1198 static int 1199 tap_fops_kqfilter(file_t *fp, struct knote *kn) 1200 { 1201 return tap_dev_kqfilter((intptr_t)fp->f_data, kn); 1202 } 1203 1204 static int 1205 tap_dev_kqfilter(int unit, struct knote *kn) 1206 { 1207 struct tap_softc *sc = 1208 device_lookup_private(&tap_cd, unit); 1209 1210 if (sc == NULL) 1211 return (ENXIO); 1212 1213 KERNEL_LOCK(1, NULL); 1214 switch(kn->kn_filter) { 1215 case EVFILT_READ: 1216 kn->kn_fop = &tap_read_filterops; 1217 break; 1218 case EVFILT_WRITE: 1219 kn->kn_fop = &tap_seltrue_filterops; 1220 break; 1221 default: 1222 KERNEL_UNLOCK_ONE(NULL); 1223 return (EINVAL); 1224 } 1225 1226 kn->kn_hook = sc; 1227 simple_lock(&sc->sc_kqlock); 1228 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext); 1229 simple_unlock(&sc->sc_kqlock); 1230 KERNEL_UNLOCK_ONE(NULL); 1231 return (0); 1232 } 1233 1234 static void 1235 tap_kqdetach(struct knote *kn) 1236 { 1237 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook; 1238 1239 KERNEL_LOCK(1, NULL); 1240 simple_lock(&sc->sc_kqlock); 1241 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext); 1242 simple_unlock(&sc->sc_kqlock); 1243 KERNEL_UNLOCK_ONE(NULL); 1244 } 1245 1246 static int 1247 tap_kqread(struct knote *kn, long hint) 1248 { 1249 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook; 1250 struct ifnet *ifp = &sc->sc_ec.ec_if; 1251 struct mbuf *m; 1252 int s, rv; 1253 1254 KERNEL_LOCK(1, NULL); 1255 s = splnet(); 1256 IFQ_POLL(&ifp->if_snd, m); 1257 1258 if (m == NULL) 1259 kn->kn_data = 0; 1260 else 1261 kn->kn_data = m->m_pkthdr.len; 1262 splx(s); 1263 rv = (kn->kn_data != 0 ? 1 : 0); 1264 KERNEL_UNLOCK_ONE(NULL); 1265 return rv; 1266 } 1267 1268 #if defined(COMPAT_40) || defined(MODULAR) 1269 /* 1270 * sysctl management routines 1271 * You can set the address of an interface through: 1272 * net.link.tap.tap<number> 1273 * 1274 * Note the consistent use of tap_log in order to use 1275 * sysctl_teardown at unload time. 1276 * 1277 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those 1278 * blocks register a function in a special section of the kernel 1279 * (called a link set) which is used at init_sysctl() time to cycle 1280 * through all those functions to create the kernel's sysctl tree. 1281 * 1282 * It is not possible to use link sets in a module, so the 1283 * easiest is to simply call our own setup routine at load time. 1284 * 1285 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the 1286 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the 1287 * whole kernel sysctl tree is built, it is not possible to add any 1288 * permanent node. 1289 * 1290 * It should be noted that we're not saving the sysctlnode pointer 1291 * we are returned when creating the "tap" node. That structure 1292 * cannot be trusted once out of the calling function, as it might 1293 * get reused. So we just save the MIB number, and always give the 1294 * full path starting from the root for later calls to sysctl_createv 1295 * and sysctl_destroyv. 1296 */ 1297 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup") 1298 { 1299 const struct sysctlnode *node; 1300 int error = 0; 1301 1302 if ((error = sysctl_createv(clog, 0, NULL, NULL, 1303 CTLFLAG_PERMANENT, 1304 CTLTYPE_NODE, "net", NULL, 1305 NULL, 0, NULL, 0, 1306 CTL_NET, CTL_EOL)) != 0) 1307 return; 1308 1309 if ((error = sysctl_createv(clog, 0, NULL, NULL, 1310 CTLFLAG_PERMANENT, 1311 CTLTYPE_NODE, "link", NULL, 1312 NULL, 0, NULL, 0, 1313 CTL_NET, AF_LINK, CTL_EOL)) != 0) 1314 return; 1315 1316 /* 1317 * The first four parameters of sysctl_createv are for management. 1318 * 1319 * The four that follows, here starting with a '0' for the flags, 1320 * describe the node. 1321 * 1322 * The next series of four set its value, through various possible 1323 * means. 1324 * 1325 * Last but not least, the path to the node is described. That path 1326 * is relative to the given root (third argument). Here we're 1327 * starting from the root. 1328 */ 1329 if ((error = sysctl_createv(clog, 0, NULL, &node, 1330 CTLFLAG_PERMANENT, 1331 CTLTYPE_NODE, "tap", NULL, 1332 NULL, 0, NULL, 0, 1333 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0) 1334 return; 1335 tap_node = node->sysctl_num; 1336 } 1337 1338 /* 1339 * The helper functions make Andrew Brown's interface really 1340 * shine. It makes possible to create value on the fly whether 1341 * the sysctl value is read or written. 1342 * 1343 * As shown as an example in the man page, the first step is to 1344 * create a copy of the node to have sysctl_lookup work on it. 1345 * 1346 * Here, we have more work to do than just a copy, since we have 1347 * to create the string. The first step is to collect the actual 1348 * value of the node, which is a convenient pointer to the softc 1349 * of the interface. From there we create the string and use it 1350 * as the value, but only for the *copy* of the node. 1351 * 1352 * Then we let sysctl_lookup do the magic, which consists in 1353 * setting oldp and newp as required by the operation. When the 1354 * value is read, that means that the string will be copied to 1355 * the user, and when it is written, the new value will be copied 1356 * over in the addr array. 1357 * 1358 * If newp is NULL, the user was reading the value, so we don't 1359 * have anything else to do. If a new value was written, we 1360 * have to check it. 1361 * 1362 * If it is incorrect, we can return an error and leave 'node' as 1363 * it is: since it is a copy of the actual node, the change will 1364 * be forgotten. 1365 * 1366 * Upon a correct input, we commit the change to the ifnet 1367 * structure of our interface. 1368 */ 1369 static int 1370 tap_sysctl_handler(SYSCTLFN_ARGS) 1371 { 1372 struct sysctlnode node; 1373 struct tap_softc *sc; 1374 struct ifnet *ifp; 1375 int error; 1376 size_t len; 1377 char addr[3 * ETHER_ADDR_LEN]; 1378 uint8_t enaddr[ETHER_ADDR_LEN]; 1379 1380 node = *rnode; 1381 sc = node.sysctl_data; 1382 ifp = &sc->sc_ec.ec_if; 1383 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl)); 1384 node.sysctl_data = addr; 1385 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1386 if (error || newp == NULL) 1387 return (error); 1388 1389 len = strlen(addr); 1390 if (len < 11 || len > 17) 1391 return (EINVAL); 1392 1393 /* Commit change */ 1394 if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0) 1395 return (EINVAL); 1396 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false); 1397 return (error); 1398 } 1399 #endif 1400