1 /* $NetBSD: if_tap.c,v 1.42 2008/04/24 15:35:30 ad Exp $ */ 2 3 /* 4 * Copyright (c) 2003, 2004, 2008 The NetBSD Foundation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of The NetBSD Foundation nor the names of its 16 * contributors may be used to endorse or promote products derived 17 * from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet 34 * device to the system, but can also be accessed by userland through a 35 * character device interface, which allows reading and injecting frames. 36 */ 37 38 #include <sys/cdefs.h> 39 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.42 2008/04/24 15:35:30 ad Exp $"); 40 41 #if defined(_KERNEL_OPT) 42 #include "bpfilter.h" 43 #endif 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/kernel.h> 48 #include <sys/malloc.h> 49 #include <sys/conf.h> 50 #include <sys/device.h> 51 #include <sys/file.h> 52 #include <sys/filedesc.h> 53 #include <sys/ksyms.h> 54 #include <sys/poll.h> 55 #include <sys/select.h> 56 #include <sys/sockio.h> 57 #include <sys/sysctl.h> 58 #include <sys/kauth.h> 59 #include <sys/mutex.h> 60 #include <sys/simplelock.h> 61 #include <sys/intr.h> 62 63 #include <net/if.h> 64 #include <net/if_dl.h> 65 #include <net/if_ether.h> 66 #include <net/if_media.h> 67 #include <net/if_tap.h> 68 #if NBPFILTER > 0 69 #include <net/bpf.h> 70 #endif 71 72 #include <compat/sys/sockio.h> 73 74 /* 75 * sysctl node management 76 * 77 * It's not really possible to use a SYSCTL_SETUP block with 78 * current LKM implementation, so it is easier to just define 79 * our own function. 80 * 81 * The handler function is a "helper" in Andrew Brown's sysctl 82 * framework terminology. It is used as a gateway for sysctl 83 * requests over the nodes. 84 * 85 * tap_log allows the module to log creations of nodes and 86 * destroy them all at once using sysctl_teardown. 87 */ 88 static int tap_node; 89 static int tap_sysctl_handler(SYSCTLFN_PROTO); 90 SYSCTL_SETUP_PROTO(sysctl_tap_setup); 91 92 /* 93 * Since we're an Ethernet device, we need the 3 following 94 * components: a leading struct device, a struct ethercom, 95 * and also a struct ifmedia since we don't attach a PHY to 96 * ourselves. We could emulate one, but there's no real 97 * point. 98 */ 99 100 struct tap_softc { 101 device_t sc_dev; 102 struct ifmedia sc_im; 103 struct ethercom sc_ec; 104 int sc_flags; 105 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */ 106 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */ 107 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */ 108 #define TAP_GOING 0x00000008 /* interface is being destroyed */ 109 struct selinfo sc_rsel; 110 pid_t sc_pgid; /* For async. IO */ 111 kmutex_t sc_rdlock; 112 struct simplelock sc_kqlock; 113 void *sc_sih; 114 }; 115 116 /* autoconf(9) glue */ 117 118 void tapattach(int); 119 120 static int tap_match(device_t, cfdata_t, void *); 121 static void tap_attach(device_t, device_t, void *); 122 static int tap_detach(device_t, int); 123 124 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc), 125 tap_match, tap_attach, tap_detach, NULL); 126 extern struct cfdriver tap_cd; 127 128 /* Real device access routines */ 129 static int tap_dev_close(struct tap_softc *); 130 static int tap_dev_read(int, struct uio *, int); 131 static int tap_dev_write(int, struct uio *, int); 132 static int tap_dev_ioctl(int, u_long, void *, struct lwp *); 133 static int tap_dev_poll(int, int, struct lwp *); 134 static int tap_dev_kqfilter(int, struct knote *); 135 136 /* Fileops access routines */ 137 static int tap_fops_close(file_t *); 138 static int tap_fops_read(file_t *, off_t *, struct uio *, 139 kauth_cred_t, int); 140 static int tap_fops_write(file_t *, off_t *, struct uio *, 141 kauth_cred_t, int); 142 static int tap_fops_ioctl(file_t *, u_long, void *); 143 static int tap_fops_poll(file_t *, int); 144 static int tap_fops_kqfilter(file_t *, struct knote *); 145 146 static const struct fileops tap_fileops = { 147 tap_fops_read, 148 tap_fops_write, 149 tap_fops_ioctl, 150 fnullop_fcntl, 151 tap_fops_poll, 152 fbadop_stat, 153 tap_fops_close, 154 tap_fops_kqfilter, 155 }; 156 157 /* Helper for cloning open() */ 158 static int tap_dev_cloner(struct lwp *); 159 160 /* Character device routines */ 161 static int tap_cdev_open(dev_t, int, int, struct lwp *); 162 static int tap_cdev_close(dev_t, int, int, struct lwp *); 163 static int tap_cdev_read(dev_t, struct uio *, int); 164 static int tap_cdev_write(dev_t, struct uio *, int); 165 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *); 166 static int tap_cdev_poll(dev_t, int, struct lwp *); 167 static int tap_cdev_kqfilter(dev_t, struct knote *); 168 169 const struct cdevsw tap_cdevsw = { 170 tap_cdev_open, tap_cdev_close, 171 tap_cdev_read, tap_cdev_write, 172 tap_cdev_ioctl, nostop, notty, 173 tap_cdev_poll, nommap, 174 tap_cdev_kqfilter, 175 D_OTHER, 176 }; 177 178 #define TAP_CLONER 0xfffff /* Maximal minor value */ 179 180 /* kqueue-related routines */ 181 static void tap_kqdetach(struct knote *); 182 static int tap_kqread(struct knote *, long); 183 184 /* 185 * Those are needed by the if_media interface. 186 */ 187 188 static int tap_mediachange(struct ifnet *); 189 static void tap_mediastatus(struct ifnet *, struct ifmediareq *); 190 191 /* 192 * Those are needed by the ifnet interface, and would typically be 193 * there for any network interface driver. 194 * Some other routines are optional: watchdog and drain. 195 */ 196 197 static void tap_start(struct ifnet *); 198 static void tap_stop(struct ifnet *, int); 199 static int tap_init(struct ifnet *); 200 static int tap_ioctl(struct ifnet *, u_long, void *); 201 202 /* Internal functions */ 203 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *); 204 static void tap_softintr(void *); 205 206 /* 207 * tap is a clonable interface, although it is highly unrealistic for 208 * an Ethernet device. 209 * 210 * Here are the bits needed for a clonable interface. 211 */ 212 static int tap_clone_create(struct if_clone *, int); 213 static int tap_clone_destroy(struct ifnet *); 214 215 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap", 216 tap_clone_create, 217 tap_clone_destroy); 218 219 /* Helper functionis shared by the two cloning code paths */ 220 static struct tap_softc * tap_clone_creator(int); 221 int tap_clone_destroyer(device_t); 222 223 void 224 tapattach(int n) 225 { 226 int error; 227 228 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca); 229 if (error) { 230 aprint_error("%s: unable to register cfattach\n", 231 tap_cd.cd_name); 232 (void)config_cfdriver_detach(&tap_cd); 233 return; 234 } 235 236 if_clone_attach(&tap_cloners); 237 } 238 239 /* Pretty much useless for a pseudo-device */ 240 static int 241 tap_match(device_t parent, cfdata_t cfdata, void *arg) 242 { 243 244 return (1); 245 } 246 247 void 248 tap_attach(device_t parent, device_t self, void *aux) 249 { 250 struct tap_softc *sc = device_private(self); 251 struct ifnet *ifp; 252 const struct sysctlnode *node; 253 uint8_t enaddr[ETHER_ADDR_LEN] = 254 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff }; 255 char enaddrstr[3 * ETHER_ADDR_LEN]; 256 struct timeval tv; 257 uint32_t ui; 258 int error; 259 260 sc->sc_dev = self; 261 sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc); 262 263 /* 264 * In order to obtain unique initial Ethernet address on a host, 265 * do some randomisation using the current uptime. It's not meant 266 * for anything but avoiding hard-coding an address. 267 */ 268 getmicrouptime(&tv); 269 ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff; 270 memcpy(enaddr+3, (uint8_t *)&ui, 3); 271 272 aprint_verbose_dev(self, "Ethernet address %s\n", 273 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr)); 274 275 /* 276 * Why 1000baseT? Why not? You can add more. 277 * 278 * Note that there are 3 steps: init, one or several additions to 279 * list of supported media, and in the end, the selection of one 280 * of them. 281 */ 282 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus); 283 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL); 284 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL); 285 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL); 286 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); 287 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL); 288 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); 289 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL); 290 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO); 291 292 /* 293 * One should note that an interface must do multicast in order 294 * to support IPv6. 295 */ 296 ifp = &sc->sc_ec.ec_if; 297 strcpy(ifp->if_xname, device_xname(self)); 298 ifp->if_softc = sc; 299 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 300 ifp->if_ioctl = tap_ioctl; 301 ifp->if_start = tap_start; 302 ifp->if_stop = tap_stop; 303 ifp->if_init = tap_init; 304 IFQ_SET_READY(&ifp->if_snd); 305 306 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU; 307 308 /* Those steps are mandatory for an Ethernet driver, the fisrt call 309 * being common to all network interface drivers. */ 310 if_attach(ifp); 311 ether_ifattach(ifp, enaddr); 312 313 sc->sc_flags = 0; 314 315 /* 316 * Add a sysctl node for that interface. 317 * 318 * The pointer transmitted is not a string, but instead a pointer to 319 * the softc structure, which we can use to build the string value on 320 * the fly in the helper function of the node. See the comments for 321 * tap_sysctl_handler for details. 322 * 323 * Usually sysctl_createv is called with CTL_CREATE as the before-last 324 * component. However, we can allocate a number ourselves, as we are 325 * the only consumer of the net.link.<iface> node. In this case, the 326 * unit number is conveniently used to number the node. CTL_CREATE 327 * would just work, too. 328 */ 329 if ((error = sysctl_createv(NULL, 0, NULL, 330 &node, CTLFLAG_READWRITE, 331 CTLTYPE_STRING, device_xname(self), NULL, 332 tap_sysctl_handler, 0, sc, 18, 333 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev), 334 CTL_EOL)) != 0) 335 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n", 336 error); 337 338 /* 339 * Initialize the two locks for the device. 340 * 341 * We need a lock here because even though the tap device can be 342 * opened only once, the file descriptor might be passed to another 343 * process, say a fork(2)ed child. 344 * 345 * The Giant saves us from most of the hassle, but since the read 346 * operation can sleep, we don't want two processes to wake up at 347 * the same moment and both try and dequeue a single packet. 348 * 349 * The queue for event listeners (used by kqueue(9), see below) has 350 * to be protected, too, but we don't need the same level of 351 * complexity for that lock, so a simple spinning lock is fine. 352 */ 353 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE); 354 simple_lock_init(&sc->sc_kqlock); 355 } 356 357 /* 358 * When detaching, we do the inverse of what is done in the attach 359 * routine, in reversed order. 360 */ 361 static int 362 tap_detach(device_t self, int flags) 363 { 364 struct tap_softc *sc = device_private(self); 365 struct ifnet *ifp = &sc->sc_ec.ec_if; 366 int error, s; 367 368 sc->sc_flags |= TAP_GOING; 369 s = splnet(); 370 tap_stop(ifp, 1); 371 if_down(ifp); 372 splx(s); 373 374 softint_disestablish(sc->sc_sih); 375 376 /* 377 * Destroying a single leaf is a very straightforward operation using 378 * sysctl_destroyv. One should be sure to always end the path with 379 * CTL_EOL. 380 */ 381 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node, 382 device_unit(sc->sc_dev), CTL_EOL)) != 0) 383 aprint_error_dev(self, 384 "sysctl_destroyv returned %d, ignoring\n", error); 385 ether_ifdetach(ifp); 386 if_detach(ifp); 387 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY); 388 mutex_destroy(&sc->sc_rdlock); 389 390 return (0); 391 } 392 393 /* 394 * This function is called by the ifmedia layer to notify the driver 395 * that the user requested a media change. A real driver would 396 * reconfigure the hardware. 397 */ 398 static int 399 tap_mediachange(struct ifnet *ifp) 400 { 401 return (0); 402 } 403 404 /* 405 * Here the user asks for the currently used media. 406 */ 407 static void 408 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr) 409 { 410 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc; 411 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media; 412 } 413 414 /* 415 * This is the function where we SEND packets. 416 * 417 * There is no 'receive' equivalent. A typical driver will get 418 * interrupts from the hardware, and from there will inject new packets 419 * into the network stack. 420 * 421 * Once handled, a packet must be freed. A real driver might not be able 422 * to fit all the pending packets into the hardware, and is allowed to 423 * return before having sent all the packets. It should then use the 424 * if_flags flag IFF_OACTIVE to notify the upper layer. 425 * 426 * There are also other flags one should check, such as IFF_PAUSE. 427 * 428 * It is our duty to make packets available to BPF listeners. 429 * 430 * You should be aware that this function is called by the Ethernet layer 431 * at splnet(). 432 * 433 * When the device is opened, we have to pass the packet(s) to the 434 * userland. For that we stay in OACTIVE mode while the userland gets 435 * the packets, and we send a signal to the processes waiting to read. 436 * 437 * wakeup(sc) is the counterpart to the tsleep call in 438 * tap_dev_read, while selnotify() is used for kevent(2) and 439 * poll(2) (which includes select(2)) listeners. 440 */ 441 static void 442 tap_start(struct ifnet *ifp) 443 { 444 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc; 445 struct mbuf *m0; 446 447 if ((sc->sc_flags & TAP_INUSE) == 0) { 448 /* Simply drop packets */ 449 for(;;) { 450 IFQ_DEQUEUE(&ifp->if_snd, m0); 451 if (m0 == NULL) 452 return; 453 454 ifp->if_opackets++; 455 #if NBPFILTER > 0 456 if (ifp->if_bpf) 457 bpf_mtap(ifp->if_bpf, m0); 458 #endif 459 460 m_freem(m0); 461 } 462 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) { 463 ifp->if_flags |= IFF_OACTIVE; 464 wakeup(sc); 465 selnotify(&sc->sc_rsel, 0, 1); 466 if (sc->sc_flags & TAP_ASYNCIO) 467 softint_schedule(sc->sc_sih); 468 } 469 } 470 471 static void 472 tap_softintr(void *cookie) 473 { 474 struct tap_softc *sc; 475 struct ifnet *ifp; 476 int a, b; 477 478 sc = cookie; 479 480 if (sc->sc_flags & TAP_ASYNCIO) { 481 ifp = &sc->sc_ec.ec_if; 482 if (ifp->if_flags & IFF_RUNNING) { 483 a = POLL_IN; 484 b = POLLIN|POLLRDNORM; 485 } else { 486 a = POLL_HUP; 487 b = 0; 488 } 489 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL); 490 } 491 } 492 493 /* 494 * A typical driver will only contain the following handlers for 495 * ioctl calls, except SIOCSIFPHYADDR. 496 * The latter is a hack I used to set the Ethernet address of the 497 * faked device. 498 * 499 * Note that both ifmedia_ioctl() and ether_ioctl() have to be 500 * called under splnet(). 501 */ 502 static int 503 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data) 504 { 505 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc; 506 struct ifreq *ifr = (struct ifreq *)data; 507 int s, error; 508 509 s = splnet(); 510 511 switch (cmd) { 512 #ifdef OSIOCSIFMEDIA 513 case OSIOCSIFMEDIA: 514 #endif 515 case SIOCSIFMEDIA: 516 case SIOCGIFMEDIA: 517 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd); 518 break; 519 case SIOCSIFPHYADDR: 520 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data); 521 break; 522 default: 523 error = ether_ioctl(ifp, cmd, data); 524 if (error == ENETRESET) 525 error = 0; 526 break; 527 } 528 529 splx(s); 530 531 return (error); 532 } 533 534 /* 535 * Helper function to set Ethernet address. This shouldn't be done there, 536 * and should actually be available to all Ethernet drivers, real or not. 537 */ 538 static int 539 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra) 540 { 541 const struct sockaddr_dl *sdl = satosdl(&ifra->ifra_addr); 542 543 if (sdl->sdl_family != AF_LINK) 544 return (EINVAL); 545 546 if_set_sadl(ifp, CLLADDR(sdl), ETHER_ADDR_LEN); 547 548 return (0); 549 } 550 551 /* 552 * _init() would typically be called when an interface goes up, 553 * meaning it should configure itself into the state in which it 554 * can send packets. 555 */ 556 static int 557 tap_init(struct ifnet *ifp) 558 { 559 ifp->if_flags |= IFF_RUNNING; 560 561 tap_start(ifp); 562 563 return (0); 564 } 565 566 /* 567 * _stop() is called when an interface goes down. It is our 568 * responsability to validate that state by clearing the 569 * IFF_RUNNING flag. 570 * 571 * We have to wake up all the sleeping processes to have the pending 572 * read requests cancelled. 573 */ 574 static void 575 tap_stop(struct ifnet *ifp, int disable) 576 { 577 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc; 578 579 ifp->if_flags &= ~IFF_RUNNING; 580 wakeup(sc); 581 selnotify(&sc->sc_rsel, 0, 1); 582 if (sc->sc_flags & TAP_ASYNCIO) 583 softint_schedule(sc->sc_sih); 584 } 585 586 /* 587 * The 'create' command of ifconfig can be used to create 588 * any numbered instance of a given device. Thus we have to 589 * make sure we have enough room in cd_devs to create the 590 * user-specified instance. config_attach_pseudo will do this 591 * for us. 592 */ 593 static int 594 tap_clone_create(struct if_clone *ifc, int unit) 595 { 596 if (tap_clone_creator(unit) == NULL) { 597 aprint_error("%s%d: unable to attach an instance\n", 598 tap_cd.cd_name, unit); 599 return (ENXIO); 600 } 601 602 return (0); 603 } 604 605 /* 606 * tap(4) can be cloned by two ways: 607 * using 'ifconfig tap0 create', which will use the network 608 * interface cloning API, and call tap_clone_create above. 609 * opening the cloning device node, whose minor number is TAP_CLONER. 610 * See below for an explanation on how this part work. 611 */ 612 static struct tap_softc * 613 tap_clone_creator(int unit) 614 { 615 struct cfdata *cf; 616 617 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK); 618 cf->cf_name = tap_cd.cd_name; 619 cf->cf_atname = tap_ca.ca_name; 620 if (unit == -1) { 621 /* let autoconf find the first free one */ 622 cf->cf_unit = 0; 623 cf->cf_fstate = FSTATE_STAR; 624 } else { 625 cf->cf_unit = unit; 626 cf->cf_fstate = FSTATE_NOTFOUND; 627 } 628 629 return device_private(config_attach_pseudo(cf)); 630 } 631 632 /* 633 * The clean design of if_clone and autoconf(9) makes that part 634 * really straightforward. The second argument of config_detach 635 * means neither QUIET nor FORCED. 636 */ 637 static int 638 tap_clone_destroy(struct ifnet *ifp) 639 { 640 return tap_clone_destroyer(device_private(ifp->if_softc)); 641 } 642 643 int 644 tap_clone_destroyer(device_t dev) 645 { 646 cfdata_t cf = device_cfdata(dev); 647 int error; 648 649 if ((error = config_detach(dev, 0)) != 0) 650 aprint_error_dev(dev, "unable to detach instance\n"); 651 free(cf, M_DEVBUF); 652 653 return (error); 654 } 655 656 /* 657 * tap(4) is a bit of an hybrid device. It can be used in two different 658 * ways: 659 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it. 660 * 2. open /dev/tap, get a new interface created and read/write off it. 661 * That interface is destroyed when the process that had it created exits. 662 * 663 * The first way is managed by the cdevsw structure, and you access interfaces 664 * through a (major, minor) mapping: tap4 is obtained by the minor number 665 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_. 666 * 667 * The second way is the so-called "cloning" device. It's a special minor 668 * number (chosen as the maximal number, to allow as much tap devices as 669 * possible). The user first opens the cloner (e.g., /dev/tap), and that 670 * call ends in tap_cdev_open. The actual place where it is handled is 671 * tap_dev_cloner. 672 * 673 * An tap device cannot be opened more than once at a time, so the cdevsw 674 * part of open() does nothing but noting that the interface is being used and 675 * hence ready to actually handle packets. 676 */ 677 678 static int 679 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l) 680 { 681 struct tap_softc *sc; 682 683 if (minor(dev) == TAP_CLONER) 684 return tap_dev_cloner(l); 685 686 sc = device_private(device_lookup(&tap_cd, minor(dev))); 687 if (sc == NULL) 688 return (ENXIO); 689 690 /* The device can only be opened once */ 691 if (sc->sc_flags & TAP_INUSE) 692 return (EBUSY); 693 sc->sc_flags |= TAP_INUSE; 694 return (0); 695 } 696 697 /* 698 * There are several kinds of cloning devices, and the most simple is the one 699 * tap(4) uses. What it does is change the file descriptor with a new one, 700 * with its own fileops structure (which maps to the various read, write, 701 * ioctl functions). It starts allocating a new file descriptor with falloc, 702 * then actually creates the new tap devices. 703 * 704 * Once those two steps are successful, we can re-wire the existing file 705 * descriptor to its new self. This is done with fdclone(): it fills the fp 706 * structure as needed (notably f_data gets filled with the fifth parameter 707 * passed, the unit of the tap device which will allows us identifying the 708 * device later), and returns EMOVEFD. 709 * 710 * That magic value is interpreted by sys_open() which then replaces the 711 * current file descriptor by the new one (through a magic member of struct 712 * lwp, l_dupfd). 713 * 714 * The tap device is flagged as being busy since it otherwise could be 715 * externally accessed through the corresponding device node with the cdevsw 716 * interface. 717 */ 718 719 static int 720 tap_dev_cloner(struct lwp *l) 721 { 722 struct tap_softc *sc; 723 file_t *fp; 724 int error, fd; 725 726 if ((error = fd_allocfile(&fp, &fd)) != 0) 727 return (error); 728 729 if ((sc = tap_clone_creator(-1)) == NULL) { 730 fd_abort(curproc, fp, fd); 731 return (ENXIO); 732 } 733 734 sc->sc_flags |= TAP_INUSE; 735 736 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops, 737 (void *)(intptr_t)device_unit(sc->sc_dev)); 738 } 739 740 /* 741 * While all other operations (read, write, ioctl, poll and kqfilter) are 742 * really the same whether we are in cdevsw or fileops mode, the close() 743 * function is slightly different in the two cases. 744 * 745 * As for the other, the core of it is shared in tap_dev_close. What 746 * it does is sufficient for the cdevsw interface, but the cloning interface 747 * needs another thing: the interface is destroyed when the processes that 748 * created it closes it. 749 */ 750 static int 751 tap_cdev_close(dev_t dev, int flags, int fmt, 752 struct lwp *l) 753 { 754 struct tap_softc *sc = 755 device_private(device_lookup(&tap_cd, minor(dev))); 756 757 if (sc == NULL) 758 return (ENXIO); 759 760 return tap_dev_close(sc); 761 } 762 763 /* 764 * It might happen that the administrator used ifconfig to externally destroy 765 * the interface. In that case, tap_fops_close will be called while 766 * tap_detach is already happening. If we called it again from here, we 767 * would dead lock. TAP_GOING ensures that this situation doesn't happen. 768 */ 769 static int 770 tap_fops_close(file_t *fp) 771 { 772 int unit = (intptr_t)fp->f_data; 773 struct tap_softc *sc; 774 int error; 775 776 sc = device_private(device_lookup(&tap_cd, unit)); 777 if (sc == NULL) 778 return (ENXIO); 779 780 /* tap_dev_close currently always succeeds, but it might not 781 * always be the case. */ 782 if ((error = tap_dev_close(sc)) != 0) 783 return (error); 784 785 /* Destroy the device now that it is no longer useful, 786 * unless it's already being destroyed. */ 787 if ((sc->sc_flags & TAP_GOING) != 0) 788 return (0); 789 790 return tap_clone_destroyer(sc->sc_dev); 791 } 792 793 static int 794 tap_dev_close(struct tap_softc *sc) 795 { 796 struct ifnet *ifp; 797 int s; 798 799 s = splnet(); 800 /* Let tap_start handle packets again */ 801 ifp = &sc->sc_ec.ec_if; 802 ifp->if_flags &= ~IFF_OACTIVE; 803 804 /* Purge output queue */ 805 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) { 806 struct mbuf *m; 807 808 for (;;) { 809 IFQ_DEQUEUE(&ifp->if_snd, m); 810 if (m == NULL) 811 break; 812 813 ifp->if_opackets++; 814 #if NBPFILTER > 0 815 if (ifp->if_bpf) 816 bpf_mtap(ifp->if_bpf, m); 817 #endif 818 } 819 } 820 splx(s); 821 822 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO); 823 824 return (0); 825 } 826 827 static int 828 tap_cdev_read(dev_t dev, struct uio *uio, int flags) 829 { 830 return tap_dev_read(minor(dev), uio, flags); 831 } 832 833 static int 834 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio, 835 kauth_cred_t cred, int flags) 836 { 837 return tap_dev_read((intptr_t)fp->f_data, uio, flags); 838 } 839 840 static int 841 tap_dev_read(int unit, struct uio *uio, int flags) 842 { 843 struct tap_softc *sc = 844 device_private(device_lookup(&tap_cd, unit)); 845 struct ifnet *ifp; 846 struct mbuf *m, *n; 847 int error = 0, s; 848 849 if (sc == NULL) 850 return (ENXIO); 851 852 ifp = &sc->sc_ec.ec_if; 853 if ((ifp->if_flags & IFF_UP) == 0) 854 return (EHOSTDOWN); 855 856 /* 857 * In the TAP_NBIO case, we have to make sure we won't be sleeping 858 */ 859 if ((sc->sc_flags & TAP_NBIO) != 0) { 860 if (!mutex_tryenter(&sc->sc_rdlock)) 861 return (EWOULDBLOCK); 862 } else { 863 mutex_enter(&sc->sc_rdlock); 864 } 865 866 s = splnet(); 867 if (IFQ_IS_EMPTY(&ifp->if_snd)) { 868 ifp->if_flags &= ~IFF_OACTIVE; 869 splx(s); 870 /* 871 * We must release the lock before sleeping, and re-acquire it 872 * after. 873 */ 874 mutex_exit(&sc->sc_rdlock); 875 if (sc->sc_flags & TAP_NBIO) 876 error = EWOULDBLOCK; 877 else 878 error = tsleep(sc, PSOCK|PCATCH, "tap", 0); 879 if (error != 0) 880 return (error); 881 /* The device might have been downed */ 882 if ((ifp->if_flags & IFF_UP) == 0) 883 return (EHOSTDOWN); 884 if ((sc->sc_flags & TAP_NBIO)) { 885 if (!mutex_tryenter(&sc->sc_rdlock)) 886 return (EWOULDBLOCK); 887 } else { 888 mutex_enter(&sc->sc_rdlock); 889 } 890 s = splnet(); 891 } 892 893 IFQ_DEQUEUE(&ifp->if_snd, m); 894 ifp->if_flags &= ~IFF_OACTIVE; 895 splx(s); 896 if (m == NULL) { 897 error = 0; 898 goto out; 899 } 900 901 ifp->if_opackets++; 902 #if NBPFILTER > 0 903 if (ifp->if_bpf) 904 bpf_mtap(ifp->if_bpf, m); 905 #endif 906 907 /* 908 * One read is one packet. 909 */ 910 do { 911 error = uiomove(mtod(m, void *), 912 min(m->m_len, uio->uio_resid), uio); 913 MFREE(m, n); 914 m = n; 915 } while (m != NULL && uio->uio_resid > 0 && error == 0); 916 917 if (m != NULL) 918 m_freem(m); 919 920 out: 921 mutex_exit(&sc->sc_rdlock); 922 return (error); 923 } 924 925 static int 926 tap_cdev_write(dev_t dev, struct uio *uio, int flags) 927 { 928 return tap_dev_write(minor(dev), uio, flags); 929 } 930 931 static int 932 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio, 933 kauth_cred_t cred, int flags) 934 { 935 return tap_dev_write((intptr_t)fp->f_data, uio, flags); 936 } 937 938 static int 939 tap_dev_write(int unit, struct uio *uio, int flags) 940 { 941 struct tap_softc *sc = 942 device_private(device_lookup(&tap_cd, unit)); 943 struct ifnet *ifp; 944 struct mbuf *m, **mp; 945 int error = 0; 946 int s; 947 948 if (sc == NULL) 949 return (ENXIO); 950 951 ifp = &sc->sc_ec.ec_if; 952 953 /* One write, one packet, that's the rule */ 954 MGETHDR(m, M_DONTWAIT, MT_DATA); 955 if (m == NULL) { 956 ifp->if_ierrors++; 957 return (ENOBUFS); 958 } 959 m->m_pkthdr.len = uio->uio_resid; 960 961 mp = &m; 962 while (error == 0 && uio->uio_resid > 0) { 963 if (*mp != m) { 964 MGET(*mp, M_DONTWAIT, MT_DATA); 965 if (*mp == NULL) { 966 error = ENOBUFS; 967 break; 968 } 969 } 970 (*mp)->m_len = min(MHLEN, uio->uio_resid); 971 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio); 972 mp = &(*mp)->m_next; 973 } 974 if (error) { 975 ifp->if_ierrors++; 976 m_freem(m); 977 return (error); 978 } 979 980 ifp->if_ipackets++; 981 m->m_pkthdr.rcvif = ifp; 982 983 #if NBPFILTER > 0 984 if (ifp->if_bpf) 985 bpf_mtap(ifp->if_bpf, m); 986 #endif 987 s =splnet(); 988 (*ifp->if_input)(ifp, m); 989 splx(s); 990 991 return (0); 992 } 993 994 static int 995 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags, 996 struct lwp *l) 997 { 998 return tap_dev_ioctl(minor(dev), cmd, data, l); 999 } 1000 1001 static int 1002 tap_fops_ioctl(file_t *fp, u_long cmd, void *data) 1003 { 1004 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp); 1005 } 1006 1007 static int 1008 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l) 1009 { 1010 struct tap_softc *sc = 1011 device_private(device_lookup(&tap_cd, unit)); 1012 int error = 0; 1013 1014 if (sc == NULL) 1015 return (ENXIO); 1016 1017 switch (cmd) { 1018 case FIONREAD: 1019 { 1020 struct ifnet *ifp = &sc->sc_ec.ec_if; 1021 struct mbuf *m; 1022 int s; 1023 1024 s = splnet(); 1025 IFQ_POLL(&ifp->if_snd, m); 1026 1027 if (m == NULL) 1028 *(int *)data = 0; 1029 else 1030 *(int *)data = m->m_pkthdr.len; 1031 splx(s); 1032 } break; 1033 case TIOCSPGRP: 1034 case FIOSETOWN: 1035 error = fsetown(&sc->sc_pgid, cmd, data); 1036 break; 1037 case TIOCGPGRP: 1038 case FIOGETOWN: 1039 error = fgetown(sc->sc_pgid, cmd, data); 1040 break; 1041 case FIOASYNC: 1042 if (*(int *)data) 1043 sc->sc_flags |= TAP_ASYNCIO; 1044 else 1045 sc->sc_flags &= ~TAP_ASYNCIO; 1046 break; 1047 case FIONBIO: 1048 if (*(int *)data) 1049 sc->sc_flags |= TAP_NBIO; 1050 else 1051 sc->sc_flags &= ~TAP_NBIO; 1052 break; 1053 #ifdef OTAPGIFNAME 1054 case OTAPGIFNAME: 1055 #endif 1056 case TAPGIFNAME: 1057 { 1058 struct ifreq *ifr = (struct ifreq *)data; 1059 struct ifnet *ifp = &sc->sc_ec.ec_if; 1060 1061 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ); 1062 } break; 1063 default: 1064 error = ENOTTY; 1065 break; 1066 } 1067 1068 return (0); 1069 } 1070 1071 static int 1072 tap_cdev_poll(dev_t dev, int events, struct lwp *l) 1073 { 1074 return tap_dev_poll(minor(dev), events, l); 1075 } 1076 1077 static int 1078 tap_fops_poll(file_t *fp, int events) 1079 { 1080 return tap_dev_poll((intptr_t)fp->f_data, events, curlwp); 1081 } 1082 1083 static int 1084 tap_dev_poll(int unit, int events, struct lwp *l) 1085 { 1086 struct tap_softc *sc = 1087 device_private(device_lookup(&tap_cd, unit)); 1088 int revents = 0; 1089 1090 if (sc == NULL) 1091 return POLLERR; 1092 1093 if (events & (POLLIN|POLLRDNORM)) { 1094 struct ifnet *ifp = &sc->sc_ec.ec_if; 1095 struct mbuf *m; 1096 int s; 1097 1098 s = splnet(); 1099 IFQ_POLL(&ifp->if_snd, m); 1100 splx(s); 1101 1102 if (m != NULL) 1103 revents |= events & (POLLIN|POLLRDNORM); 1104 else { 1105 simple_lock(&sc->sc_kqlock); 1106 selrecord(l, &sc->sc_rsel); 1107 simple_unlock(&sc->sc_kqlock); 1108 } 1109 } 1110 revents |= events & (POLLOUT|POLLWRNORM); 1111 1112 return (revents); 1113 } 1114 1115 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach, 1116 tap_kqread }; 1117 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach, 1118 filt_seltrue }; 1119 1120 static int 1121 tap_cdev_kqfilter(dev_t dev, struct knote *kn) 1122 { 1123 return tap_dev_kqfilter(minor(dev), kn); 1124 } 1125 1126 static int 1127 tap_fops_kqfilter(file_t *fp, struct knote *kn) 1128 { 1129 return tap_dev_kqfilter((intptr_t)fp->f_data, kn); 1130 } 1131 1132 static int 1133 tap_dev_kqfilter(int unit, struct knote *kn) 1134 { 1135 struct tap_softc *sc = 1136 device_private(device_lookup(&tap_cd, unit)); 1137 1138 if (sc == NULL) 1139 return (ENXIO); 1140 1141 switch(kn->kn_filter) { 1142 case EVFILT_READ: 1143 kn->kn_fop = &tap_read_filterops; 1144 break; 1145 case EVFILT_WRITE: 1146 kn->kn_fop = &tap_seltrue_filterops; 1147 break; 1148 default: 1149 return (EINVAL); 1150 } 1151 1152 kn->kn_hook = sc; 1153 simple_lock(&sc->sc_kqlock); 1154 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext); 1155 simple_unlock(&sc->sc_kqlock); 1156 return (0); 1157 } 1158 1159 static void 1160 tap_kqdetach(struct knote *kn) 1161 { 1162 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook; 1163 1164 simple_lock(&sc->sc_kqlock); 1165 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext); 1166 simple_unlock(&sc->sc_kqlock); 1167 } 1168 1169 static int 1170 tap_kqread(struct knote *kn, long hint) 1171 { 1172 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook; 1173 struct ifnet *ifp = &sc->sc_ec.ec_if; 1174 struct mbuf *m; 1175 int s; 1176 1177 s = splnet(); 1178 IFQ_POLL(&ifp->if_snd, m); 1179 1180 if (m == NULL) 1181 kn->kn_data = 0; 1182 else 1183 kn->kn_data = m->m_pkthdr.len; 1184 splx(s); 1185 return (kn->kn_data != 0 ? 1 : 0); 1186 } 1187 1188 /* 1189 * sysctl management routines 1190 * You can set the address of an interface through: 1191 * net.link.tap.tap<number> 1192 * 1193 * Note the consistent use of tap_log in order to use 1194 * sysctl_teardown at unload time. 1195 * 1196 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those 1197 * blocks register a function in a special section of the kernel 1198 * (called a link set) which is used at init_sysctl() time to cycle 1199 * through all those functions to create the kernel's sysctl tree. 1200 * 1201 * It is not (currently) possible to use link sets in a LKM, so the 1202 * easiest is to simply call our own setup routine at load time. 1203 * 1204 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the 1205 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the 1206 * whole kernel sysctl tree is built, it is not possible to add any 1207 * permanent node. 1208 * 1209 * It should be noted that we're not saving the sysctlnode pointer 1210 * we are returned when creating the "tap" node. That structure 1211 * cannot be trusted once out of the calling function, as it might 1212 * get reused. So we just save the MIB number, and always give the 1213 * full path starting from the root for later calls to sysctl_createv 1214 * and sysctl_destroyv. 1215 */ 1216 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup") 1217 { 1218 const struct sysctlnode *node; 1219 int error = 0; 1220 1221 if ((error = sysctl_createv(clog, 0, NULL, NULL, 1222 CTLFLAG_PERMANENT, 1223 CTLTYPE_NODE, "net", NULL, 1224 NULL, 0, NULL, 0, 1225 CTL_NET, CTL_EOL)) != 0) 1226 return; 1227 1228 if ((error = sysctl_createv(clog, 0, NULL, NULL, 1229 CTLFLAG_PERMANENT, 1230 CTLTYPE_NODE, "link", NULL, 1231 NULL, 0, NULL, 0, 1232 CTL_NET, AF_LINK, CTL_EOL)) != 0) 1233 return; 1234 1235 /* 1236 * The first four parameters of sysctl_createv are for management. 1237 * 1238 * The four that follows, here starting with a '0' for the flags, 1239 * describe the node. 1240 * 1241 * The next series of four set its value, through various possible 1242 * means. 1243 * 1244 * Last but not least, the path to the node is described. That path 1245 * is relative to the given root (third argument). Here we're 1246 * starting from the root. 1247 */ 1248 if ((error = sysctl_createv(clog, 0, NULL, &node, 1249 CTLFLAG_PERMANENT, 1250 CTLTYPE_NODE, "tap", NULL, 1251 NULL, 0, NULL, 0, 1252 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0) 1253 return; 1254 tap_node = node->sysctl_num; 1255 } 1256 1257 /* 1258 * The helper functions make Andrew Brown's interface really 1259 * shine. It makes possible to create value on the fly whether 1260 * the sysctl value is read or written. 1261 * 1262 * As shown as an example in the man page, the first step is to 1263 * create a copy of the node to have sysctl_lookup work on it. 1264 * 1265 * Here, we have more work to do than just a copy, since we have 1266 * to create the string. The first step is to collect the actual 1267 * value of the node, which is a convenient pointer to the softc 1268 * of the interface. From there we create the string and use it 1269 * as the value, but only for the *copy* of the node. 1270 * 1271 * Then we let sysctl_lookup do the magic, which consists in 1272 * setting oldp and newp as required by the operation. When the 1273 * value is read, that means that the string will be copied to 1274 * the user, and when it is written, the new value will be copied 1275 * over in the addr array. 1276 * 1277 * If newp is NULL, the user was reading the value, so we don't 1278 * have anything else to do. If a new value was written, we 1279 * have to check it. 1280 * 1281 * If it is incorrect, we can return an error and leave 'node' as 1282 * it is: since it is a copy of the actual node, the change will 1283 * be forgotten. 1284 * 1285 * Upon a correct input, we commit the change to the ifnet 1286 * structure of our interface. 1287 */ 1288 static int 1289 tap_sysctl_handler(SYSCTLFN_ARGS) 1290 { 1291 struct sysctlnode node; 1292 struct tap_softc *sc; 1293 struct ifnet *ifp; 1294 int error; 1295 size_t len; 1296 char addr[3 * ETHER_ADDR_LEN]; 1297 uint8_t enaddr[ETHER_ADDR_LEN]; 1298 1299 node = *rnode; 1300 sc = node.sysctl_data; 1301 ifp = &sc->sc_ec.ec_if; 1302 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl)); 1303 node.sysctl_data = addr; 1304 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1305 if (error || newp == NULL) 1306 return (error); 1307 1308 len = strlen(addr); 1309 if (len < 11 || len > 17) 1310 return (EINVAL); 1311 1312 /* Commit change */ 1313 if (ether_nonstatic_aton(enaddr, addr) != 0) 1314 return (EINVAL); 1315 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN); 1316 return (error); 1317 } 1318